linux/drivers/staging/lustre/include/linux/libcfs/libcfs_private.h
<<
>>
Prefs
   1/*
   2 * GPL HEADER START
   3 *
   4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 only,
   8 * as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but
  11 * WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  13 * General Public License version 2 for more details (a copy is included
  14 * in the LICENSE file that accompanied this code).
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * version 2 along with this program; If not, see
  18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
  19 *
  20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  21 * CA 95054 USA or visit www.sun.com if you need additional information or
  22 * have any questions.
  23 *
  24 * GPL HEADER END
  25 */
  26/*
  27 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
  28 * Use is subject to license terms.
  29 *
  30 * Copyright (c) 2011, 2012, Intel Corporation.
  31 */
  32/*
  33 * This file is part of Lustre, http://www.lustre.org/
  34 * Lustre is a trademark of Sun Microsystems, Inc.
  35 *
  36 * libcfs/include/libcfs/libcfs_private.h
  37 *
  38 * Various defines for libcfs.
  39 *
  40 */
  41
  42#ifndef __LIBCFS_PRIVATE_H__
  43#define __LIBCFS_PRIVATE_H__
  44
  45/* XXX this layering violation is for nidstrings */
  46#include "../lnet/types.h"
  47
  48#ifndef DEBUG_SUBSYSTEM
  49# define DEBUG_SUBSYSTEM S_UNDEFINED
  50#endif
  51
  52
  53/*
  54 * When this is on, LASSERT macro includes check for assignment used instead
  55 * of equality check, but doesn't have unlikely(). Turn this on from time to
  56 * time to make test-builds. This shouldn't be on for production release.
  57 */
  58#define LASSERT_CHECKED (0)
  59
  60#define LASSERTF(cond, fmt, ...)                                        \
  61do {                                                                    \
  62        if (unlikely(!(cond))) {                                        \
  63                LIBCFS_DEBUG_MSG_DATA_DECL(__msg_data, D_EMERG, NULL);  \
  64                libcfs_debug_msg(&__msg_data,                           \
  65                                 "ASSERTION( %s ) failed: " fmt, #cond, \
  66                                 ## __VA_ARGS__);                       \
  67                lbug_with_loc(&__msg_data);                             \
  68        }                                                               \
  69} while (0)
  70
  71#define LASSERT(cond) LASSERTF(cond, "\n")
  72
  73#ifdef CONFIG_LUSTRE_DEBUG_EXPENSIVE_CHECK
  74/**
  75 * This is for more expensive checks that one doesn't want to be enabled all
  76 * the time. LINVRNT() has to be explicitly enabled by
  77 * CONFIG_LUSTRE_DEBUG_EXPENSIVE_CHECK option.
  78 */
  79# define LINVRNT(exp) LASSERT(exp)
  80#else
  81# define LINVRNT(exp) ((void)sizeof !!(exp))
  82#endif
  83
  84#define KLASSERT(e) LASSERT(e)
  85
  86void lbug_with_loc(struct libcfs_debug_msg_data *)__attribute__((noreturn));
  87
  88#define LBUG()                                                    \
  89do {                                                                \
  90        LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, D_EMERG, NULL);          \
  91        lbug_with_loc(&msgdata);                                        \
  92} while (0)
  93
  94extern atomic_t libcfs_kmemory;
  95/*
  96 * Memory
  97 */
  98
  99# define libcfs_kmem_inc(ptr, size)             \
 100do {                                            \
 101        atomic_add(size, &libcfs_kmemory);      \
 102} while (0)
 103
 104# define libcfs_kmem_dec(ptr, size)             \
 105do {                                            \
 106        atomic_sub(size, &libcfs_kmemory);      \
 107} while (0)
 108
 109# define libcfs_kmem_read()                     \
 110        atomic_read(&libcfs_kmemory)
 111
 112#ifndef LIBCFS_VMALLOC_SIZE
 113#define LIBCFS_VMALLOC_SIZE     (2 << PAGE_CACHE_SHIFT) /* 2 pages */
 114#endif
 115
 116#define LIBCFS_ALLOC_PRE(size, mask)                                        \
 117do {                                                                        \
 118        LASSERT(!in_interrupt() ||                                          \
 119                ((size) <= LIBCFS_VMALLOC_SIZE &&                           \
 120                 ((mask) & __GFP_WAIT) == 0));                              \
 121} while (0)
 122
 123#define LIBCFS_ALLOC_POST(ptr, size)                                        \
 124do {                                                                        \
 125        if (unlikely((ptr) == NULL)) {                                      \
 126                CERROR("LNET: out of memory at %s:%d (tried to alloc '"     \
 127                       #ptr "' = %d)\n", __FILE__, __LINE__, (int)(size));  \
 128                CERROR("LNET: %d total bytes allocated by lnet\n",          \
 129                       libcfs_kmem_read());                                 \
 130        } else {                                                            \
 131                memset((ptr), 0, (size));                                   \
 132                libcfs_kmem_inc((ptr), (size));                             \
 133                CDEBUG(D_MALLOC, "alloc '" #ptr "': %d at %p (tot %d).\n",  \
 134                       (int)(size), (ptr), libcfs_kmem_read());             \
 135        }                                                                  \
 136} while (0)
 137
 138/**
 139 * allocate memory with GFP flags @mask
 140 */
 141#define LIBCFS_ALLOC_GFP(ptr, size, mask)                                   \
 142do {                                                                        \
 143        LIBCFS_ALLOC_PRE((size), (mask));                                   \
 144        (ptr) = (size) <= LIBCFS_VMALLOC_SIZE ?                             \
 145                kmalloc((size), (mask)) : vmalloc(size);            \
 146        LIBCFS_ALLOC_POST((ptr), (size));                                   \
 147} while (0)
 148
 149/**
 150 * default allocator
 151 */
 152#define LIBCFS_ALLOC(ptr, size) \
 153        LIBCFS_ALLOC_GFP(ptr, size, GFP_NOFS)
 154
 155/**
 156 * non-sleeping allocator
 157 */
 158#define LIBCFS_ALLOC_ATOMIC(ptr, size) \
 159        LIBCFS_ALLOC_GFP(ptr, size, GFP_ATOMIC)
 160
 161/**
 162 * allocate memory for specified CPU partition
 163 *   \a cptab != NULL, \a cpt is CPU partition id of \a cptab
 164 *   \a cptab == NULL, \a cpt is HW NUMA node id
 165 */
 166#define LIBCFS_CPT_ALLOC_GFP(ptr, cptab, cpt, size, mask)                   \
 167do {                                                                        \
 168        LIBCFS_ALLOC_PRE((size), (mask));                                   \
 169        (ptr) = (size) <= LIBCFS_VMALLOC_SIZE ?                             \
 170                kmalloc_node((size), (mask), cfs_cpt_spread_node(cptab, cpt)) :\
 171                vmalloc_node(size, cfs_cpt_spread_node(cptab, cpt));        \
 172        LIBCFS_ALLOC_POST((ptr), (size));                                   \
 173} while (0)
 174
 175/** default numa allocator */
 176#define LIBCFS_CPT_ALLOC(ptr, cptab, cpt, size)                             \
 177        LIBCFS_CPT_ALLOC_GFP(ptr, cptab, cpt, size, GFP_NOFS)
 178
 179#define LIBCFS_FREE(ptr, size)                                    \
 180do {                                                                \
 181        int s = (size);                                          \
 182        if (unlikely((ptr) == NULL)) {                            \
 183                CERROR("LIBCFS: free NULL '" #ptr "' (%d bytes) at "    \
 184                       "%s:%d\n", s, __FILE__, __LINE__);              \
 185                break;                                            \
 186        }                                                              \
 187        libcfs_kmem_dec((ptr), s);                                    \
 188        CDEBUG(D_MALLOC, "kfreed '" #ptr "': %d at %p (tot %d).\n",     \
 189               s, (ptr), libcfs_kmem_read());                           \
 190        if (unlikely(s > LIBCFS_VMALLOC_SIZE))                    \
 191                vfree(ptr);                                 \
 192        else                                                        \
 193                kfree(ptr);                                       \
 194} while (0)
 195
 196/******************************************************************************/
 197
 198/* htonl hack - either this, or compile with -O2. Stupid byteorder/generic.h */
 199#if defined(__GNUC__) && (__GNUC__ >= 2) && !defined(__OPTIMIZE__)
 200#define ___htonl(x) __cpu_to_be32(x)
 201#define ___htons(x) __cpu_to_be16(x)
 202#define ___ntohl(x) __be32_to_cpu(x)
 203#define ___ntohs(x) __be16_to_cpu(x)
 204#define htonl(x) ___htonl(x)
 205#define ntohl(x) ___ntohl(x)
 206#define htons(x) ___htons(x)
 207#define ntohs(x) ___ntohs(x)
 208#endif
 209
 210void libcfs_run_upcall(char **argv);
 211void libcfs_run_lbug_upcall(struct libcfs_debug_msg_data *);
 212void libcfs_debug_dumplog(void);
 213int libcfs_debug_init(unsigned long bufsize);
 214int libcfs_debug_cleanup(void);
 215int libcfs_debug_clear_buffer(void);
 216int libcfs_debug_mark_buffer(const char *text);
 217
 218void libcfs_debug_set_level(unsigned int debug_level);
 219
 220/*
 221 * allocate per-cpu-partition data, returned value is an array of pointers,
 222 * variable can be indexed by CPU ID.
 223 *      cptable != NULL: size of array is number of CPU partitions
 224 *      cptable == NULL: size of array is number of HW cores
 225 */
 226void *cfs_percpt_alloc(struct cfs_cpt_table *cptab, unsigned int size);
 227/*
 228 * destroy per-cpu-partition variable
 229 */
 230void  cfs_percpt_free(void *vars);
 231int   cfs_percpt_number(void *vars);
 232void *cfs_percpt_current(void *vars);
 233void *cfs_percpt_index(void *vars, int idx);
 234
 235#define cfs_percpt_for_each(var, i, vars)               \
 236        for (i = 0; i < cfs_percpt_number(vars) &&      \
 237                    ((var) = (vars)[i]) != NULL; i++)
 238
 239/*
 240 * allocate a variable array, returned value is an array of pointers.
 241 * Caller can specify length of array by count.
 242 */
 243void *cfs_array_alloc(int count, unsigned int size);
 244void  cfs_array_free(void *vars);
 245
 246#define LASSERT_ATOMIC_ENABLED    (1)
 247
 248#if LASSERT_ATOMIC_ENABLED
 249
 250/** assert value of @a is equal to @v */
 251#define LASSERT_ATOMIC_EQ(a, v)                          \
 252do {                                                        \
 253        LASSERTF(atomic_read(a) == v,                  \
 254                 "value: %d\n", atomic_read((a)));        \
 255} while (0)
 256
 257/** assert value of @a is unequal to @v */
 258#define LASSERT_ATOMIC_NE(a, v)                          \
 259do {                                                        \
 260        LASSERTF(atomic_read(a) != v,                  \
 261                 "value: %d\n", atomic_read((a)));        \
 262} while (0)
 263
 264/** assert value of @a is little than @v */
 265#define LASSERT_ATOMIC_LT(a, v)                          \
 266do {                                                        \
 267        LASSERTF(atomic_read(a) < v,                    \
 268                 "value: %d\n", atomic_read((a)));        \
 269} while (0)
 270
 271/** assert value of @a is little/equal to @v */
 272#define LASSERT_ATOMIC_LE(a, v)                          \
 273do {                                                        \
 274        LASSERTF(atomic_read(a) <= v,                  \
 275                 "value: %d\n", atomic_read((a)));        \
 276} while (0)
 277
 278/** assert value of @a is great than @v */
 279#define LASSERT_ATOMIC_GT(a, v)                          \
 280do {                                                        \
 281        LASSERTF(atomic_read(a) > v,                    \
 282                 "value: %d\n", atomic_read((a)));        \
 283} while (0)
 284
 285/** assert value of @a is great/equal to @v */
 286#define LASSERT_ATOMIC_GE(a, v)                          \
 287do {                                                        \
 288        LASSERTF(atomic_read(a) >= v,                  \
 289                 "value: %d\n", atomic_read((a)));        \
 290} while (0)
 291
 292/** assert value of @a is great than @v1 and little than @v2 */
 293#define LASSERT_ATOMIC_GT_LT(a, v1, v2)                  \
 294do {                                                        \
 295        int __v = atomic_read(a);                          \
 296        LASSERTF(__v > v1 && __v < v2, "value: %d\n", __v);     \
 297} while (0)
 298
 299/** assert value of @a is great than @v1 and little/equal to @v2 */
 300#define LASSERT_ATOMIC_GT_LE(a, v1, v2)                  \
 301do {                                                        \
 302        int __v = atomic_read(a);                          \
 303        LASSERTF(__v > v1 && __v <= v2, "value: %d\n", __v);    \
 304} while (0)
 305
 306/** assert value of @a is great/equal to @v1 and little than @v2 */
 307#define LASSERT_ATOMIC_GE_LT(a, v1, v2)                  \
 308do {                                                        \
 309        int __v = atomic_read(a);                          \
 310        LASSERTF(__v >= v1 && __v < v2, "value: %d\n", __v);    \
 311} while (0)
 312
 313/** assert value of @a is great/equal to @v1 and little/equal to @v2 */
 314#define LASSERT_ATOMIC_GE_LE(a, v1, v2)                  \
 315do {                                                        \
 316        int __v = atomic_read(a);                          \
 317        LASSERTF(__v >= v1 && __v <= v2, "value: %d\n", __v);   \
 318} while (0)
 319
 320#else /* !LASSERT_ATOMIC_ENABLED */
 321
 322#define LASSERT_ATOMIC_EQ(a, v)          do {} while (0)
 323#define LASSERT_ATOMIC_NE(a, v)          do {} while (0)
 324#define LASSERT_ATOMIC_LT(a, v)          do {} while (0)
 325#define LASSERT_ATOMIC_LE(a, v)          do {} while (0)
 326#define LASSERT_ATOMIC_GT(a, v)          do {} while (0)
 327#define LASSERT_ATOMIC_GE(a, v)          do {} while (0)
 328#define LASSERT_ATOMIC_GT_LT(a, v1, v2)  do {} while (0)
 329#define LASSERT_ATOMIC_GT_LE(a, v1, v2)  do {} while (0)
 330#define LASSERT_ATOMIC_GE_LT(a, v1, v2)  do {} while (0)
 331#define LASSERT_ATOMIC_GE_LE(a, v1, v2)  do {} while (0)
 332
 333#endif /* LASSERT_ATOMIC_ENABLED */
 334
 335#define LASSERT_ATOMIC_ZERO(a)            LASSERT_ATOMIC_EQ(a, 0)
 336#define LASSERT_ATOMIC_POS(a)              LASSERT_ATOMIC_GT(a, 0)
 337
 338#define CFS_ALLOC_PTR(ptr)      LIBCFS_ALLOC(ptr, sizeof(*(ptr)))
 339#define CFS_FREE_PTR(ptr)       LIBCFS_FREE(ptr, sizeof(*(ptr)))
 340
 341/*
 342 * percpu partition lock
 343 *
 344 * There are some use-cases like this in Lustre:
 345 * . each CPU partition has it's own private data which is frequently changed,
 346 *   and mostly by the local CPU partition.
 347 * . all CPU partitions share some global data, these data are rarely changed.
 348 *
 349 * LNet is typical example.
 350 * CPU partition lock is designed for this kind of use-cases:
 351 * . each CPU partition has it's own private lock
 352 * . change on private data just needs to take the private lock
 353 * . read on shared data just needs to take _any_ of private locks
 354 * . change on shared data needs to take _all_ private locks,
 355 *   which is slow and should be really rare.
 356 */
 357
 358enum {
 359        CFS_PERCPT_LOCK_EX      = -1, /* negative */
 360};
 361
 362struct cfs_percpt_lock {
 363        /* cpu-partition-table for this lock */
 364        struct cfs_cpt_table    *pcl_cptab;
 365        /* exclusively locked */
 366        unsigned int            pcl_locked;
 367        /* private lock table */
 368        spinlock_t              **pcl_locks;
 369};
 370
 371/* return number of private locks */
 372static inline int
 373cfs_percpt_lock_num(struct cfs_percpt_lock *pcl)
 374{
 375        return cfs_cpt_number(pcl->pcl_cptab);
 376}
 377
 378/*
 379 * create a cpu-partition lock based on CPU partition table \a cptab,
 380 * each private lock has extra \a psize bytes padding data
 381 */
 382struct cfs_percpt_lock *cfs_percpt_lock_alloc(struct cfs_cpt_table *cptab);
 383/* destroy a cpu-partition lock */
 384void cfs_percpt_lock_free(struct cfs_percpt_lock *pcl);
 385
 386/* lock private lock \a index of \a pcl */
 387void cfs_percpt_lock(struct cfs_percpt_lock *pcl, int index);
 388/* unlock private lock \a index of \a pcl */
 389void cfs_percpt_unlock(struct cfs_percpt_lock *pcl, int index);
 390/* create percpt (atomic) refcount based on @cptab */
 391atomic_t **cfs_percpt_atomic_alloc(struct cfs_cpt_table *cptab, int val);
 392/* destroy percpt refcount */
 393void cfs_percpt_atomic_free(atomic_t **refs);
 394/* return sum of all percpu refs */
 395int cfs_percpt_atomic_summary(atomic_t **refs);
 396
 397/** Compile-time assertion.
 398
 399 * Check an invariant described by a constant expression at compile time by
 400 * forcing a compiler error if it does not hold.  \a cond must be a constant
 401 * expression as defined by the ISO C Standard:
 402 *
 403 *       6.8.4.2  The switch statement
 404 *       ....
 405 *       [#3] The expression of each case label shall be  an  integer
 406 *       constant   expression  and  no  two  of  the  case  constant
 407 *       expressions in the same switch statement shall have the same
 408 *       value  after  conversion...
 409 *
 410 */
 411#define CLASSERT(cond) do {switch (42) {case (cond): case 0: break; } } while (0)
 412
 413/* support decl needed both by kernel and liblustre */
 414int      libcfs_isknown_lnd(int type);
 415char       *libcfs_lnd2modname(int type);
 416char       *libcfs_lnd2str(int type);
 417int      libcfs_str2lnd(const char *str);
 418char       *libcfs_net2str(__u32 net);
 419char       *libcfs_nid2str(lnet_nid_t nid);
 420__u32       libcfs_str2net(const char *str);
 421lnet_nid_t  libcfs_str2nid(const char *str);
 422int      libcfs_str2anynid(lnet_nid_t *nid, const char *str);
 423char       *libcfs_id2str(lnet_process_id_t id);
 424void    cfs_free_nidlist(struct list_head *list);
 425int      cfs_parse_nidlist(char *str, int len, struct list_head *list);
 426int      cfs_match_nid(lnet_nid_t nid, struct list_head *list);
 427
 428/** \addtogroup lnet_addr
 429 * @{ */
 430/* how an LNET NID encodes net:address */
 431/** extract the address part of an lnet_nid_t */
 432#define LNET_NIDADDR(nid)      ((__u32)((nid) & 0xffffffff))
 433/** extract the network part of an lnet_nid_t */
 434#define LNET_NIDNET(nid)       ((__u32)(((nid) >> 32)) & 0xffffffff)
 435/** make an lnet_nid_t from a network part and an address part */
 436#define LNET_MKNID(net, addr)   ((((__u64)(net))<<32)|((__u64)(addr)))
 437/* how net encodes type:number */
 438#define LNET_NETNUM(net)       ((net) & 0xffff)
 439#define LNET_NETTYP(net)       (((net) >> 16) & 0xffff)
 440#define LNET_MKNET(typ, num)    ((((__u32)(typ))<<16)|((__u32)(num)))
 441/** @} lnet_addr */
 442
 443/* max value for numeric network address */
 444#define MAX_NUMERIC_VALUE 0xffffffff
 445
 446/* implication */
 447#define ergo(a, b) (!(a) || (b))
 448/* logical equivalence */
 449#define equi(a, b) (!!(a) == !!(b))
 450
 451/* --------------------------------------------------------------------
 452 * Light-weight trace
 453 * Support for temporary event tracing with minimal Heisenberg effect.
 454 * -------------------------------------------------------------------- */
 455
 456struct libcfs_device_userstate {
 457        int        ldu_memhog_pages;
 458        struct page   *ldu_memhog_root_page;
 459};
 460
 461#define MKSTR(ptr) ((ptr)) ? (ptr) : ""
 462
 463static inline int cfs_size_round4(int val)
 464{
 465        return (val + 3) & (~0x3);
 466}
 467
 468#ifndef HAVE_CFS_SIZE_ROUND
 469static inline int cfs_size_round(int val)
 470{
 471        return (val + 7) & (~0x7);
 472}
 473
 474#define HAVE_CFS_SIZE_ROUND
 475#endif
 476
 477static inline int cfs_size_round16(int val)
 478{
 479        return (val + 0xf) & (~0xf);
 480}
 481
 482static inline int cfs_size_round32(int val)
 483{
 484        return (val + 0x1f) & (~0x1f);
 485}
 486
 487static inline int cfs_size_round0(int val)
 488{
 489        if (!val)
 490                return 0;
 491        return (val + 1 + 7) & (~0x7);
 492}
 493
 494static inline size_t cfs_round_strlen(char *fset)
 495{
 496        return (size_t)cfs_size_round((int)strlen(fset) + 1);
 497}
 498
 499/* roundup \a val to power2 */
 500static inline unsigned int cfs_power2_roundup(unsigned int val)
 501{
 502        if (val != LOWEST_BIT_SET(val)) { /* not a power of 2 already */
 503                do {
 504                        val &= ~LOWEST_BIT_SET(val);
 505                } while (val != LOWEST_BIT_SET(val));
 506                /* ...and round up */
 507                val <<= 1;
 508        }
 509        return val;
 510}
 511
 512#define LOGL(var, len, ptr)                                    \
 513do {                                                        \
 514        if (var)                                                \
 515                memcpy((char *)ptr, (const char *)var, len);    \
 516        ptr += cfs_size_round(len);                          \
 517} while (0)
 518
 519#define LOGU(var, len, ptr)                                    \
 520do {                                                        \
 521        if (var)                                                \
 522                memcpy((char *)var, (const char *)ptr, len);    \
 523        ptr += cfs_size_round(len);                          \
 524} while (0)
 525
 526#define LOGL0(var, len, ptr)                          \
 527do {                                                \
 528        if (!len)                                      \
 529                break;                            \
 530        memcpy((char *)ptr, (const char *)var, len);    \
 531        *((char *)(ptr) + len) = 0;                  \
 532        ptr += cfs_size_round(len + 1);          \
 533} while (0)
 534
 535/**
 536 *  Lustre Network Driver types.
 537 */
 538enum {
 539        /* Only add to these values (i.e. don't ever change or redefine them):
 540         * network addresses depend on them... */
 541        QSWLND    = 1,
 542        SOCKLND   = 2,
 543        GMLND     = 3, /* obsolete, keep it so that libcfs_nid2str works */
 544        PTLLND    = 4,
 545        O2IBLND   = 5,
 546        CIBLND    = 6,
 547        OPENIBLND = 7,
 548        IIBLND    = 8,
 549        LOLND     = 9,
 550        RALND     = 10,
 551        VIBLND    = 11,
 552        MXLND     = 12,
 553        GNILND    = 13,
 554};
 555
 556#endif
 557