linux/drivers/staging/panel/panel.c
<<
>>
Prefs
   1/*
   2 * Front panel driver for Linux
   3 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License
   7 * as published by the Free Software Foundation; either version
   8 * 2 of the License, or (at your option) any later version.
   9 *
  10 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
  11 * connected to a parallel printer port.
  12 *
  13 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
  14 * serial module compatible with Samsung's KS0074. The pins may be connected in
  15 * any combination, everything is programmable.
  16 *
  17 * The keypad consists in a matrix of push buttons connecting input pins to
  18 * data output pins or to the ground. The combinations have to be hard-coded
  19 * in the driver, though several profiles exist and adding new ones is easy.
  20 *
  21 * Several profiles are provided for commonly found LCD+keypad modules on the
  22 * market, such as those found in Nexcom's appliances.
  23 *
  24 * FIXME:
  25 *      - the initialization/deinitialization process is very dirty and should
  26 *        be rewritten. It may even be buggy.
  27 *
  28 * TODO:
  29 *      - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
  30 *      - make the LCD a part of a virtual screen of Vx*Vy
  31 *      - make the inputs list smp-safe
  32 *      - change the keyboard to a double mapping : signals -> key_id -> values
  33 *        so that applications can change values without knowing signals
  34 *
  35 */
  36
  37#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  38
  39#include <linux/module.h>
  40
  41#include <linux/types.h>
  42#include <linux/errno.h>
  43#include <linux/signal.h>
  44#include <linux/sched.h>
  45#include <linux/spinlock.h>
  46#include <linux/interrupt.h>
  47#include <linux/miscdevice.h>
  48#include <linux/slab.h>
  49#include <linux/ioport.h>
  50#include <linux/fcntl.h>
  51#include <linux/init.h>
  52#include <linux/delay.h>
  53#include <linux/kernel.h>
  54#include <linux/ctype.h>
  55#include <linux/parport.h>
  56#include <linux/list.h>
  57#include <linux/notifier.h>
  58#include <linux/reboot.h>
  59#include <generated/utsrelease.h>
  60
  61#include <linux/io.h>
  62#include <linux/uaccess.h>
  63
  64#define LCD_MINOR               156
  65#define KEYPAD_MINOR            185
  66
  67#define PANEL_VERSION           "0.9.5"
  68
  69#define LCD_MAXBYTES            256     /* max burst write */
  70
  71#define KEYPAD_BUFFER           64
  72
  73/* poll the keyboard this every second */
  74#define INPUT_POLL_TIME         (HZ/50)
  75/* a key starts to repeat after this times INPUT_POLL_TIME */
  76#define KEYPAD_REP_START        (10)
  77/* a key repeats this times INPUT_POLL_TIME */
  78#define KEYPAD_REP_DELAY        (2)
  79
  80/* keep the light on this times INPUT_POLL_TIME for each flash */
  81#define FLASH_LIGHT_TEMPO       (200)
  82
  83/* converts an r_str() input to an active high, bits string : 000BAOSE */
  84#define PNL_PINPUT(a)           ((((unsigned char)(a)) ^ 0x7F) >> 3)
  85
  86#define PNL_PBUSY               0x80    /* inverted input, active low */
  87#define PNL_PACK                0x40    /* direct input, active low */
  88#define PNL_POUTPA              0x20    /* direct input, active high */
  89#define PNL_PSELECD             0x10    /* direct input, active high */
  90#define PNL_PERRORP             0x08    /* direct input, active low */
  91
  92#define PNL_PBIDIR              0x20    /* bi-directional ports */
  93/* high to read data in or-ed with data out */
  94#define PNL_PINTEN              0x10
  95#define PNL_PSELECP             0x08    /* inverted output, active low */
  96#define PNL_PINITP              0x04    /* direct output, active low */
  97#define PNL_PAUTOLF             0x02    /* inverted output, active low */
  98#define PNL_PSTROBE             0x01    /* inverted output */
  99
 100#define PNL_PD0                 0x01
 101#define PNL_PD1                 0x02
 102#define PNL_PD2                 0x04
 103#define PNL_PD3                 0x08
 104#define PNL_PD4                 0x10
 105#define PNL_PD5                 0x20
 106#define PNL_PD6                 0x40
 107#define PNL_PD7                 0x80
 108
 109#define PIN_NONE                0
 110#define PIN_STROBE              1
 111#define PIN_D0                  2
 112#define PIN_D1                  3
 113#define PIN_D2                  4
 114#define PIN_D3                  5
 115#define PIN_D4                  6
 116#define PIN_D5                  7
 117#define PIN_D6                  8
 118#define PIN_D7                  9
 119#define PIN_AUTOLF              14
 120#define PIN_INITP               16
 121#define PIN_SELECP              17
 122#define PIN_NOT_SET             127
 123
 124#define LCD_FLAG_S              0x0001
 125#define LCD_FLAG_ID             0x0002
 126#define LCD_FLAG_B              0x0004  /* blink on */
 127#define LCD_FLAG_C              0x0008  /* cursor on */
 128#define LCD_FLAG_D              0x0010  /* display on */
 129#define LCD_FLAG_F              0x0020  /* large font mode */
 130#define LCD_FLAG_N              0x0040  /* 2-rows mode */
 131#define LCD_FLAG_L              0x0080  /* backlight enabled */
 132
 133/* LCD commands */
 134#define LCD_CMD_DISPLAY_CLEAR   0x01    /* Clear entire display */
 135
 136#define LCD_CMD_ENTRY_MODE      0x04    /* Set entry mode */
 137#define LCD_CMD_CURSOR_INC      0x02    /* Increment cursor */
 138
 139#define LCD_CMD_DISPLAY_CTRL    0x08    /* Display control */
 140#define LCD_CMD_DISPLAY_ON      0x04    /* Set display on */
 141#define LCD_CMD_CURSOR_ON       0x02    /* Set cursor on */
 142#define LCD_CMD_BLINK_ON        0x01    /* Set blink on */
 143
 144#define LCD_CMD_SHIFT           0x10    /* Shift cursor/display */
 145#define LCD_CMD_DISPLAY_SHIFT   0x08    /* Shift display instead of cursor */
 146#define LCD_CMD_SHIFT_RIGHT     0x04    /* Shift display/cursor to the right */
 147
 148#define LCD_CMD_FUNCTION_SET    0x20    /* Set function */
 149#define LCD_CMD_DATA_LEN_8BITS  0x10    /* Set data length to 8 bits */
 150#define LCD_CMD_TWO_LINES       0x08    /* Set to two display lines */
 151#define LCD_CMD_FONT_5X10_DOTS  0x04    /* Set char font to 5x10 dots */
 152
 153#define LCD_CMD_SET_CGRAM_ADDR  0x40    /* Set char generator RAM address */
 154
 155#define LCD_CMD_SET_DDRAM_ADDR  0x80    /* Set display data RAM address */
 156
 157#define LCD_ESCAPE_LEN          24      /* max chars for LCD escape command */
 158#define LCD_ESCAPE_CHAR 27      /* use char 27 for escape command */
 159
 160#define NOT_SET                 -1
 161
 162/* macros to simplify use of the parallel port */
 163#define r_ctr(x)        (parport_read_control((x)->port))
 164#define r_dtr(x)        (parport_read_data((x)->port))
 165#define r_str(x)        (parport_read_status((x)->port))
 166#define w_ctr(x, y)     (parport_write_control((x)->port, (y)))
 167#define w_dtr(x, y)     (parport_write_data((x)->port, (y)))
 168
 169/* this defines which bits are to be used and which ones to be ignored */
 170/* logical or of the output bits involved in the scan matrix */
 171static __u8 scan_mask_o;
 172/* logical or of the input bits involved in the scan matrix */
 173static __u8 scan_mask_i;
 174
 175typedef __u64 pmask_t;
 176
 177enum input_type {
 178        INPUT_TYPE_STD,
 179        INPUT_TYPE_KBD,
 180};
 181
 182enum input_state {
 183        INPUT_ST_LOW,
 184        INPUT_ST_RISING,
 185        INPUT_ST_HIGH,
 186        INPUT_ST_FALLING,
 187};
 188
 189struct logical_input {
 190        struct list_head list;
 191        pmask_t mask;
 192        pmask_t value;
 193        enum input_type type;
 194        enum input_state state;
 195        __u8 rise_time, fall_time;
 196        __u8 rise_timer, fall_timer, high_timer;
 197
 198        union {
 199                struct {        /* valid when type == INPUT_TYPE_STD */
 200                        void (*press_fct)(int);
 201                        void (*release_fct)(int);
 202                        int press_data;
 203                        int release_data;
 204                } std;
 205                struct {        /* valid when type == INPUT_TYPE_KBD */
 206                        /* strings can be non null-terminated */
 207                        char press_str[sizeof(void *) + sizeof(int)];
 208                        char repeat_str[sizeof(void *) + sizeof(int)];
 209                        char release_str[sizeof(void *) + sizeof(int)];
 210                } kbd;
 211        } u;
 212};
 213
 214static LIST_HEAD(logical_inputs);       /* list of all defined logical inputs */
 215
 216/* physical contacts history
 217 * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
 218 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
 219 * corresponds to the ground.
 220 * Within each group, bits are stored in the same order as read on the port :
 221 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
 222 * So, each __u64 (or pmask_t) is represented like this :
 223 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
 224 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
 225 */
 226
 227/* what has just been read from the I/O ports */
 228static pmask_t phys_read;
 229/* previous phys_read */
 230static pmask_t phys_read_prev;
 231/* stabilized phys_read (phys_read|phys_read_prev) */
 232static pmask_t phys_curr;
 233/* previous phys_curr */
 234static pmask_t phys_prev;
 235/* 0 means that at least one logical signal needs be computed */
 236static char inputs_stable;
 237
 238/* these variables are specific to the keypad */
 239static struct {
 240        bool enabled;
 241} keypad;
 242
 243static char keypad_buffer[KEYPAD_BUFFER];
 244static int keypad_buflen;
 245static int keypad_start;
 246static char keypressed;
 247static wait_queue_head_t keypad_read_wait;
 248
 249/* lcd-specific variables */
 250static struct {
 251        bool enabled;
 252        bool initialized;
 253        bool must_clear;
 254
 255        int height;
 256        int width;
 257        int bwidth;
 258        int hwidth;
 259        int charset;
 260        int proto;
 261        int light_tempo;
 262
 263        /* TODO: use union here? */
 264        struct {
 265                int e;
 266                int rs;
 267                int rw;
 268                int cl;
 269                int da;
 270                int bl;
 271        } pins;
 272
 273        /* contains the LCD config state */
 274        unsigned long int flags;
 275
 276        /* Contains the LCD X and Y offset */
 277        struct {
 278                unsigned long int x;
 279                unsigned long int y;
 280        } addr;
 281
 282        /* Current escape sequence and it's length or -1 if outside */
 283        struct {
 284                char buf[LCD_ESCAPE_LEN + 1];
 285                int len;
 286        } esc_seq;
 287} lcd;
 288
 289/* Needed only for init */
 290static int selected_lcd_type = NOT_SET;
 291
 292/*
 293 * Bit masks to convert LCD signals to parallel port outputs.
 294 * _d_ are values for data port, _c_ are for control port.
 295 * [0] = signal OFF, [1] = signal ON, [2] = mask
 296 */
 297#define BIT_CLR         0
 298#define BIT_SET         1
 299#define BIT_MSK         2
 300#define BIT_STATES      3
 301/*
 302 * one entry for each bit on the LCD
 303 */
 304#define LCD_BIT_E       0
 305#define LCD_BIT_RS      1
 306#define LCD_BIT_RW      2
 307#define LCD_BIT_BL      3
 308#define LCD_BIT_CL      4
 309#define LCD_BIT_DA      5
 310#define LCD_BITS        6
 311
 312/*
 313 * each bit can be either connected to a DATA or CTRL port
 314 */
 315#define LCD_PORT_C      0
 316#define LCD_PORT_D      1
 317#define LCD_PORTS       2
 318
 319static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
 320
 321/*
 322 * LCD protocols
 323 */
 324#define LCD_PROTO_PARALLEL      0
 325#define LCD_PROTO_SERIAL        1
 326#define LCD_PROTO_TI_DA8XX_LCD  2
 327
 328/*
 329 * LCD character sets
 330 */
 331#define LCD_CHARSET_NORMAL      0
 332#define LCD_CHARSET_KS0074      1
 333
 334/*
 335 * LCD types
 336 */
 337#define LCD_TYPE_NONE           0
 338#define LCD_TYPE_CUSTOM         1
 339#define LCD_TYPE_OLD            2
 340#define LCD_TYPE_KS0074         3
 341#define LCD_TYPE_HANTRONIX      4
 342#define LCD_TYPE_NEXCOM         5
 343
 344/*
 345 * keypad types
 346 */
 347#define KEYPAD_TYPE_NONE        0
 348#define KEYPAD_TYPE_OLD         1
 349#define KEYPAD_TYPE_NEW         2
 350#define KEYPAD_TYPE_NEXCOM      3
 351
 352/*
 353 * panel profiles
 354 */
 355#define PANEL_PROFILE_CUSTOM    0
 356#define PANEL_PROFILE_OLD       1
 357#define PANEL_PROFILE_NEW       2
 358#define PANEL_PROFILE_HANTRONIX 3
 359#define PANEL_PROFILE_NEXCOM    4
 360#define PANEL_PROFILE_LARGE     5
 361
 362/*
 363 * Construct custom config from the kernel's configuration
 364 */
 365#define DEFAULT_PARPORT         0
 366#define DEFAULT_PROFILE         PANEL_PROFILE_LARGE
 367#define DEFAULT_KEYPAD_TYPE     KEYPAD_TYPE_OLD
 368#define DEFAULT_LCD_TYPE        LCD_TYPE_OLD
 369#define DEFAULT_LCD_HEIGHT      2
 370#define DEFAULT_LCD_WIDTH       40
 371#define DEFAULT_LCD_BWIDTH      40
 372#define DEFAULT_LCD_HWIDTH      64
 373#define DEFAULT_LCD_CHARSET     LCD_CHARSET_NORMAL
 374#define DEFAULT_LCD_PROTO       LCD_PROTO_PARALLEL
 375
 376#define DEFAULT_LCD_PIN_E       PIN_AUTOLF
 377#define DEFAULT_LCD_PIN_RS      PIN_SELECP
 378#define DEFAULT_LCD_PIN_RW      PIN_INITP
 379#define DEFAULT_LCD_PIN_SCL     PIN_STROBE
 380#define DEFAULT_LCD_PIN_SDA     PIN_D0
 381#define DEFAULT_LCD_PIN_BL      PIN_NOT_SET
 382
 383#ifdef CONFIG_PANEL_PARPORT
 384#undef DEFAULT_PARPORT
 385#define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
 386#endif
 387
 388#ifdef CONFIG_PANEL_PROFILE
 389#undef DEFAULT_PROFILE
 390#define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
 391#endif
 392
 393#if DEFAULT_PROFILE == 0        /* custom */
 394#ifdef CONFIG_PANEL_KEYPAD
 395#undef DEFAULT_KEYPAD_TYPE
 396#define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD
 397#endif
 398
 399#ifdef CONFIG_PANEL_LCD
 400#undef DEFAULT_LCD_TYPE
 401#define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD
 402#endif
 403
 404#ifdef CONFIG_PANEL_LCD_HEIGHT
 405#undef DEFAULT_LCD_HEIGHT
 406#define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
 407#endif
 408
 409#ifdef CONFIG_PANEL_LCD_WIDTH
 410#undef DEFAULT_LCD_WIDTH
 411#define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
 412#endif
 413
 414#ifdef CONFIG_PANEL_LCD_BWIDTH
 415#undef DEFAULT_LCD_BWIDTH
 416#define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
 417#endif
 418
 419#ifdef CONFIG_PANEL_LCD_HWIDTH
 420#undef DEFAULT_LCD_HWIDTH
 421#define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
 422#endif
 423
 424#ifdef CONFIG_PANEL_LCD_CHARSET
 425#undef DEFAULT_LCD_CHARSET
 426#define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
 427#endif
 428
 429#ifdef CONFIG_PANEL_LCD_PROTO
 430#undef DEFAULT_LCD_PROTO
 431#define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
 432#endif
 433
 434#ifdef CONFIG_PANEL_LCD_PIN_E
 435#undef DEFAULT_LCD_PIN_E
 436#define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
 437#endif
 438
 439#ifdef CONFIG_PANEL_LCD_PIN_RS
 440#undef DEFAULT_LCD_PIN_RS
 441#define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
 442#endif
 443
 444#ifdef CONFIG_PANEL_LCD_PIN_RW
 445#undef DEFAULT_LCD_PIN_RW
 446#define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
 447#endif
 448
 449#ifdef CONFIG_PANEL_LCD_PIN_SCL
 450#undef DEFAULT_LCD_PIN_SCL
 451#define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
 452#endif
 453
 454#ifdef CONFIG_PANEL_LCD_PIN_SDA
 455#undef DEFAULT_LCD_PIN_SDA
 456#define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
 457#endif
 458
 459#ifdef CONFIG_PANEL_LCD_PIN_BL
 460#undef DEFAULT_LCD_PIN_BL
 461#define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
 462#endif
 463
 464#endif /* DEFAULT_PROFILE == 0 */
 465
 466/* global variables */
 467
 468/* Device single-open policy control */
 469static atomic_t lcd_available = ATOMIC_INIT(1);
 470static atomic_t keypad_available = ATOMIC_INIT(1);
 471
 472static struct pardevice *pprt;
 473
 474static int keypad_initialized;
 475
 476static void (*lcd_write_cmd)(int);
 477static void (*lcd_write_data)(int);
 478static void (*lcd_clear_fast)(void);
 479
 480static DEFINE_SPINLOCK(pprt_lock);
 481static struct timer_list scan_timer;
 482
 483MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
 484
 485static int parport = DEFAULT_PARPORT;
 486module_param(parport, int, 0000);
 487MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
 488
 489static int profile = DEFAULT_PROFILE;
 490module_param(profile, int, 0000);
 491MODULE_PARM_DESC(profile,
 492                 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
 493                 "4=16x2 nexcom; default=40x2, old kp");
 494
 495static int keypad_type = NOT_SET;
 496module_param(keypad_type, int, 0000);
 497MODULE_PARM_DESC(keypad_type,
 498                 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
 499
 500static int lcd_type = NOT_SET;
 501module_param(lcd_type, int, 0000);
 502MODULE_PARM_DESC(lcd_type,
 503                 "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom");
 504
 505static int lcd_height = NOT_SET;
 506module_param(lcd_height, int, 0000);
 507MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
 508
 509static int lcd_width = NOT_SET;
 510module_param(lcd_width, int, 0000);
 511MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
 512
 513static int lcd_bwidth = NOT_SET;        /* internal buffer width (usually 40) */
 514module_param(lcd_bwidth, int, 0000);
 515MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
 516
 517static int lcd_hwidth = NOT_SET;        /* hardware buffer width (usually 64) */
 518module_param(lcd_hwidth, int, 0000);
 519MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
 520
 521static int lcd_charset = NOT_SET;
 522module_param(lcd_charset, int, 0000);
 523MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
 524
 525static int lcd_proto = NOT_SET;
 526module_param(lcd_proto, int, 0000);
 527MODULE_PARM_DESC(lcd_proto,
 528                 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
 529
 530/*
 531 * These are the parallel port pins the LCD control signals are connected to.
 532 * Set this to 0 if the signal is not used. Set it to its opposite value
 533 * (negative) if the signal is negated. -MAXINT is used to indicate that the
 534 * pin has not been explicitly specified.
 535 *
 536 * WARNING! no check will be performed about collisions with keypad !
 537 */
 538
 539static int lcd_e_pin  = PIN_NOT_SET;
 540module_param(lcd_e_pin, int, 0000);
 541MODULE_PARM_DESC(lcd_e_pin,
 542                 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
 543
 544static int lcd_rs_pin = PIN_NOT_SET;
 545module_param(lcd_rs_pin, int, 0000);
 546MODULE_PARM_DESC(lcd_rs_pin,
 547                 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
 548
 549static int lcd_rw_pin = PIN_NOT_SET;
 550module_param(lcd_rw_pin, int, 0000);
 551MODULE_PARM_DESC(lcd_rw_pin,
 552                 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
 553
 554static int lcd_cl_pin = PIN_NOT_SET;
 555module_param(lcd_cl_pin, int, 0000);
 556MODULE_PARM_DESC(lcd_cl_pin,
 557                 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
 558
 559static int lcd_da_pin = PIN_NOT_SET;
 560module_param(lcd_da_pin, int, 0000);
 561MODULE_PARM_DESC(lcd_da_pin,
 562                 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
 563
 564static int lcd_bl_pin = PIN_NOT_SET;
 565module_param(lcd_bl_pin, int, 0000);
 566MODULE_PARM_DESC(lcd_bl_pin,
 567                 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
 568
 569/* Deprecated module parameters - consider not using them anymore */
 570
 571static int lcd_enabled = NOT_SET;
 572module_param(lcd_enabled, int, 0000);
 573MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
 574
 575static int keypad_enabled = NOT_SET;
 576module_param(keypad_enabled, int, 0000);
 577MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
 578
 579
 580static const unsigned char *lcd_char_conv;
 581
 582/* for some LCD drivers (ks0074) we need a charset conversion table. */
 583static const unsigned char lcd_char_conv_ks0074[256] = {
 584        /*          0|8   1|9   2|A   3|B   4|C   5|D   6|E   7|F */
 585        /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 586        /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
 587        /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
 588        /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
 589        /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
 590        /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
 591        /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
 592        /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
 593        /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
 594        /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
 595        /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
 596        /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
 597        /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
 598        /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
 599        /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
 600        /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
 601        /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
 602        /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
 603        /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
 604        /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
 605        /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
 606        /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
 607        /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
 608        /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
 609        /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
 610        /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
 611        /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
 612        /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
 613        /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
 614        /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
 615        /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
 616        /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
 617};
 618
 619static const char old_keypad_profile[][4][9] = {
 620        {"S0", "Left\n", "Left\n", ""},
 621        {"S1", "Down\n", "Down\n", ""},
 622        {"S2", "Up\n", "Up\n", ""},
 623        {"S3", "Right\n", "Right\n", ""},
 624        {"S4", "Esc\n", "Esc\n", ""},
 625        {"S5", "Ret\n", "Ret\n", ""},
 626        {"", "", "", ""}
 627};
 628
 629/* signals, press, repeat, release */
 630static const char new_keypad_profile[][4][9] = {
 631        {"S0", "Left\n", "Left\n", ""},
 632        {"S1", "Down\n", "Down\n", ""},
 633        {"S2", "Up\n", "Up\n", ""},
 634        {"S3", "Right\n", "Right\n", ""},
 635        {"S4s5", "", "Esc\n", "Esc\n"},
 636        {"s4S5", "", "Ret\n", "Ret\n"},
 637        {"S4S5", "Help\n", "", ""},
 638        /* add new signals above this line */
 639        {"", "", "", ""}
 640};
 641
 642/* signals, press, repeat, release */
 643static const char nexcom_keypad_profile[][4][9] = {
 644        {"a-p-e-", "Down\n", "Down\n", ""},
 645        {"a-p-E-", "Ret\n", "Ret\n", ""},
 646        {"a-P-E-", "Esc\n", "Esc\n", ""},
 647        {"a-P-e-", "Up\n", "Up\n", ""},
 648        /* add new signals above this line */
 649        {"", "", "", ""}
 650};
 651
 652static const char (*keypad_profile)[4][9] = old_keypad_profile;
 653
 654/* FIXME: this should be converted to a bit array containing signals states */
 655static struct {
 656        unsigned char e;  /* parallel LCD E (data latch on falling edge) */
 657        unsigned char rs; /* parallel LCD RS  (0 = cmd, 1 = data) */
 658        unsigned char rw; /* parallel LCD R/W (0 = W, 1 = R) */
 659        unsigned char bl; /* parallel LCD backlight (0 = off, 1 = on) */
 660        unsigned char cl; /* serial LCD clock (latch on rising edge) */
 661        unsigned char da; /* serial LCD data */
 662} bits;
 663
 664static void init_scan_timer(void);
 665
 666/* sets data port bits according to current signals values */
 667static int set_data_bits(void)
 668{
 669        int val, bit;
 670
 671        val = r_dtr(pprt);
 672        for (bit = 0; bit < LCD_BITS; bit++)
 673                val &= lcd_bits[LCD_PORT_D][bit][BIT_MSK];
 674
 675        val |= lcd_bits[LCD_PORT_D][LCD_BIT_E][bits.e]
 676            | lcd_bits[LCD_PORT_D][LCD_BIT_RS][bits.rs]
 677            | lcd_bits[LCD_PORT_D][LCD_BIT_RW][bits.rw]
 678            | lcd_bits[LCD_PORT_D][LCD_BIT_BL][bits.bl]
 679            | lcd_bits[LCD_PORT_D][LCD_BIT_CL][bits.cl]
 680            | lcd_bits[LCD_PORT_D][LCD_BIT_DA][bits.da];
 681
 682        w_dtr(pprt, val);
 683        return val;
 684}
 685
 686/* sets ctrl port bits according to current signals values */
 687static int set_ctrl_bits(void)
 688{
 689        int val, bit;
 690
 691        val = r_ctr(pprt);
 692        for (bit = 0; bit < LCD_BITS; bit++)
 693                val &= lcd_bits[LCD_PORT_C][bit][BIT_MSK];
 694
 695        val |= lcd_bits[LCD_PORT_C][LCD_BIT_E][bits.e]
 696            | lcd_bits[LCD_PORT_C][LCD_BIT_RS][bits.rs]
 697            | lcd_bits[LCD_PORT_C][LCD_BIT_RW][bits.rw]
 698            | lcd_bits[LCD_PORT_C][LCD_BIT_BL][bits.bl]
 699            | lcd_bits[LCD_PORT_C][LCD_BIT_CL][bits.cl]
 700            | lcd_bits[LCD_PORT_C][LCD_BIT_DA][bits.da];
 701
 702        w_ctr(pprt, val);
 703        return val;
 704}
 705
 706/* sets ctrl & data port bits according to current signals values */
 707static void panel_set_bits(void)
 708{
 709        set_data_bits();
 710        set_ctrl_bits();
 711}
 712
 713/*
 714 * Converts a parallel port pin (from -25 to 25) to data and control ports
 715 * masks, and data and control port bits. The signal will be considered
 716 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
 717 *
 718 * Result will be used this way :
 719 *   out(dport, in(dport) & d_val[2] | d_val[signal_state])
 720 *   out(cport, in(cport) & c_val[2] | c_val[signal_state])
 721 */
 722static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
 723{
 724        int d_bit, c_bit, inv;
 725
 726        d_val[0] = 0;
 727        c_val[0] = 0;
 728        d_val[1] = 0;
 729        c_val[1] = 0;
 730        d_val[2] = 0xFF;
 731        c_val[2] = 0xFF;
 732
 733        if (pin == 0)
 734                return;
 735
 736        inv = (pin < 0);
 737        if (inv)
 738                pin = -pin;
 739
 740        d_bit = 0;
 741        c_bit = 0;
 742
 743        switch (pin) {
 744        case PIN_STROBE:        /* strobe, inverted */
 745                c_bit = PNL_PSTROBE;
 746                inv = !inv;
 747                break;
 748        case PIN_D0...PIN_D7:   /* D0 - D7 = 2 - 9 */
 749                d_bit = 1 << (pin - 2);
 750                break;
 751        case PIN_AUTOLF:        /* autofeed, inverted */
 752                c_bit = PNL_PAUTOLF;
 753                inv = !inv;
 754                break;
 755        case PIN_INITP:         /* init, direct */
 756                c_bit = PNL_PINITP;
 757                break;
 758        case PIN_SELECP:        /* select_in, inverted */
 759                c_bit = PNL_PSELECP;
 760                inv = !inv;
 761                break;
 762        default:                /* unknown pin, ignore */
 763                break;
 764        }
 765
 766        if (c_bit) {
 767                c_val[2] &= ~c_bit;
 768                c_val[!inv] = c_bit;
 769        } else if (d_bit) {
 770                d_val[2] &= ~d_bit;
 771                d_val[!inv] = d_bit;
 772        }
 773}
 774
 775/* sleeps that many milliseconds with a reschedule */
 776static void long_sleep(int ms)
 777{
 778        if (in_interrupt()) {
 779                mdelay(ms);
 780        } else {
 781                __set_current_state(TASK_INTERRUPTIBLE);
 782                schedule_timeout((ms * HZ + 999) / 1000);
 783        }
 784}
 785
 786/* send a serial byte to the LCD panel. The caller is responsible for locking
 787   if needed. */
 788static void lcd_send_serial(int byte)
 789{
 790        int bit;
 791
 792        /* the data bit is set on D0, and the clock on STROBE.
 793         * LCD reads D0 on STROBE's rising edge. */
 794        for (bit = 0; bit < 8; bit++) {
 795                bits.cl = BIT_CLR;      /* CLK low */
 796                panel_set_bits();
 797                bits.da = byte & 1;
 798                panel_set_bits();
 799                udelay(2);  /* maintain the data during 2 us before CLK up */
 800                bits.cl = BIT_SET;      /* CLK high */
 801                panel_set_bits();
 802                udelay(1);  /* maintain the strobe during 1 us */
 803                byte >>= 1;
 804        }
 805}
 806
 807/* turn the backlight on or off */
 808static void lcd_backlight(int on)
 809{
 810        if (lcd.pins.bl == PIN_NONE)
 811                return;
 812
 813        /* The backlight is activated by setting the AUTOFEED line to +5V  */
 814        spin_lock_irq(&pprt_lock);
 815        bits.bl = on;
 816        panel_set_bits();
 817        spin_unlock_irq(&pprt_lock);
 818}
 819
 820/* send a command to the LCD panel in serial mode */
 821static void lcd_write_cmd_s(int cmd)
 822{
 823        spin_lock_irq(&pprt_lock);
 824        lcd_send_serial(0x1F);  /* R/W=W, RS=0 */
 825        lcd_send_serial(cmd & 0x0F);
 826        lcd_send_serial((cmd >> 4) & 0x0F);
 827        udelay(40);             /* the shortest command takes at least 40 us */
 828        spin_unlock_irq(&pprt_lock);
 829}
 830
 831/* send data to the LCD panel in serial mode */
 832static void lcd_write_data_s(int data)
 833{
 834        spin_lock_irq(&pprt_lock);
 835        lcd_send_serial(0x5F);  /* R/W=W, RS=1 */
 836        lcd_send_serial(data & 0x0F);
 837        lcd_send_serial((data >> 4) & 0x0F);
 838        udelay(40);             /* the shortest data takes at least 40 us */
 839        spin_unlock_irq(&pprt_lock);
 840}
 841
 842/* send a command to the LCD panel in 8 bits parallel mode */
 843static void lcd_write_cmd_p8(int cmd)
 844{
 845        spin_lock_irq(&pprt_lock);
 846        /* present the data to the data port */
 847        w_dtr(pprt, cmd);
 848        udelay(20);     /* maintain the data during 20 us before the strobe */
 849
 850        bits.e = BIT_SET;
 851        bits.rs = BIT_CLR;
 852        bits.rw = BIT_CLR;
 853        set_ctrl_bits();
 854
 855        udelay(40);     /* maintain the strobe during 40 us */
 856
 857        bits.e = BIT_CLR;
 858        set_ctrl_bits();
 859
 860        udelay(120);    /* the shortest command takes at least 120 us */
 861        spin_unlock_irq(&pprt_lock);
 862}
 863
 864/* send data to the LCD panel in 8 bits parallel mode */
 865static void lcd_write_data_p8(int data)
 866{
 867        spin_lock_irq(&pprt_lock);
 868        /* present the data to the data port */
 869        w_dtr(pprt, data);
 870        udelay(20);     /* maintain the data during 20 us before the strobe */
 871
 872        bits.e = BIT_SET;
 873        bits.rs = BIT_SET;
 874        bits.rw = BIT_CLR;
 875        set_ctrl_bits();
 876
 877        udelay(40);     /* maintain the strobe during 40 us */
 878
 879        bits.e = BIT_CLR;
 880        set_ctrl_bits();
 881
 882        udelay(45);     /* the shortest data takes at least 45 us */
 883        spin_unlock_irq(&pprt_lock);
 884}
 885
 886/* send a command to the TI LCD panel */
 887static void lcd_write_cmd_tilcd(int cmd)
 888{
 889        spin_lock_irq(&pprt_lock);
 890        /* present the data to the control port */
 891        w_ctr(pprt, cmd);
 892        udelay(60);
 893        spin_unlock_irq(&pprt_lock);
 894}
 895
 896/* send data to the TI LCD panel */
 897static void lcd_write_data_tilcd(int data)
 898{
 899        spin_lock_irq(&pprt_lock);
 900        /* present the data to the data port */
 901        w_dtr(pprt, data);
 902        udelay(60);
 903        spin_unlock_irq(&pprt_lock);
 904}
 905
 906static void lcd_gotoxy(void)
 907{
 908        lcd_write_cmd(LCD_CMD_SET_DDRAM_ADDR
 909                      | (lcd.addr.y ? lcd.hwidth : 0)
 910                      /* we force the cursor to stay at the end of the
 911                         line if it wants to go farther */
 912                      | ((lcd.addr.x < lcd.bwidth) ? lcd.addr.x &
 913                         (lcd.hwidth - 1) : lcd.bwidth - 1));
 914}
 915
 916static void lcd_print(char c)
 917{
 918        if (lcd.addr.x < lcd.bwidth) {
 919                if (lcd_char_conv != NULL)
 920                        c = lcd_char_conv[(unsigned char)c];
 921                lcd_write_data(c);
 922                lcd.addr.x++;
 923        }
 924        /* prevents the cursor from wrapping onto the next line */
 925        if (lcd.addr.x == lcd.bwidth)
 926                lcd_gotoxy();
 927}
 928
 929/* fills the display with spaces and resets X/Y */
 930static void lcd_clear_fast_s(void)
 931{
 932        int pos;
 933
 934        lcd.addr.x = 0;
 935        lcd.addr.y = 0;
 936        lcd_gotoxy();
 937
 938        spin_lock_irq(&pprt_lock);
 939        for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
 940                lcd_send_serial(0x5F);  /* R/W=W, RS=1 */
 941                lcd_send_serial(' ' & 0x0F);
 942                lcd_send_serial((' ' >> 4) & 0x0F);
 943                udelay(40);     /* the shortest data takes at least 40 us */
 944        }
 945        spin_unlock_irq(&pprt_lock);
 946
 947        lcd.addr.x = 0;
 948        lcd.addr.y = 0;
 949        lcd_gotoxy();
 950}
 951
 952/* fills the display with spaces and resets X/Y */
 953static void lcd_clear_fast_p8(void)
 954{
 955        int pos;
 956
 957        lcd.addr.x = 0;
 958        lcd.addr.y = 0;
 959        lcd_gotoxy();
 960
 961        spin_lock_irq(&pprt_lock);
 962        for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
 963                /* present the data to the data port */
 964                w_dtr(pprt, ' ');
 965
 966                /* maintain the data during 20 us before the strobe */
 967                udelay(20);
 968
 969                bits.e = BIT_SET;
 970                bits.rs = BIT_SET;
 971                bits.rw = BIT_CLR;
 972                set_ctrl_bits();
 973
 974                /* maintain the strobe during 40 us */
 975                udelay(40);
 976
 977                bits.e = BIT_CLR;
 978                set_ctrl_bits();
 979
 980                /* the shortest data takes at least 45 us */
 981                udelay(45);
 982        }
 983        spin_unlock_irq(&pprt_lock);
 984
 985        lcd.addr.x = 0;
 986        lcd.addr.y = 0;
 987        lcd_gotoxy();
 988}
 989
 990/* fills the display with spaces and resets X/Y */
 991static void lcd_clear_fast_tilcd(void)
 992{
 993        int pos;
 994
 995        lcd.addr.x = 0;
 996        lcd.addr.y = 0;
 997        lcd_gotoxy();
 998
 999        spin_lock_irq(&pprt_lock);
1000        for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
1001                /* present the data to the data port */
1002                w_dtr(pprt, ' ');
1003                udelay(60);
1004        }
1005
1006        spin_unlock_irq(&pprt_lock);
1007
1008        lcd.addr.x = 0;
1009        lcd.addr.y = 0;
1010        lcd_gotoxy();
1011}
1012
1013/* clears the display and resets X/Y */
1014static void lcd_clear_display(void)
1015{
1016        lcd_write_cmd(LCD_CMD_DISPLAY_CLEAR);
1017        lcd.addr.x = 0;
1018        lcd.addr.y = 0;
1019        /* we must wait a few milliseconds (15) */
1020        long_sleep(15);
1021}
1022
1023static void lcd_init_display(void)
1024{
1025        lcd.flags = ((lcd.height > 1) ? LCD_FLAG_N : 0)
1026            | LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B;
1027
1028        long_sleep(20);         /* wait 20 ms after power-up for the paranoid */
1029
1030        /* 8bits, 1 line, small fonts; let's do it 3 times */
1031        lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1032        long_sleep(10);
1033        lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1034        long_sleep(10);
1035        lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1036        long_sleep(10);
1037
1038        /* set font height and lines number */
1039        lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS
1040                      | ((lcd.flags & LCD_FLAG_F) ? LCD_CMD_FONT_5X10_DOTS : 0)
1041                      | ((lcd.flags & LCD_FLAG_N) ? LCD_CMD_TWO_LINES : 0)
1042            );
1043        long_sleep(10);
1044
1045        /* display off, cursor off, blink off */
1046        lcd_write_cmd(LCD_CMD_DISPLAY_CTRL);
1047        long_sleep(10);
1048
1049        lcd_write_cmd(LCD_CMD_DISPLAY_CTRL      /* set display mode */
1050                      | ((lcd.flags & LCD_FLAG_D) ? LCD_CMD_DISPLAY_ON : 0)
1051                      | ((lcd.flags & LCD_FLAG_C) ? LCD_CMD_CURSOR_ON : 0)
1052                      | ((lcd.flags & LCD_FLAG_B) ? LCD_CMD_BLINK_ON : 0)
1053            );
1054
1055        lcd_backlight((lcd.flags & LCD_FLAG_L) ? 1 : 0);
1056
1057        long_sleep(10);
1058
1059        /* entry mode set : increment, cursor shifting */
1060        lcd_write_cmd(LCD_CMD_ENTRY_MODE | LCD_CMD_CURSOR_INC);
1061
1062        lcd_clear_display();
1063}
1064
1065/*
1066 * These are the file operation function for user access to /dev/lcd
1067 * This function can also be called from inside the kernel, by
1068 * setting file and ppos to NULL.
1069 *
1070 */
1071
1072static inline int handle_lcd_special_code(void)
1073{
1074        /* LCD special codes */
1075
1076        int processed = 0;
1077
1078        char *esc = lcd.esc_seq.buf + 2;
1079        int oldflags = lcd.flags;
1080
1081        /* check for display mode flags */
1082        switch (*esc) {
1083        case 'D':       /* Display ON */
1084                lcd.flags |= LCD_FLAG_D;
1085                processed = 1;
1086                break;
1087        case 'd':       /* Display OFF */
1088                lcd.flags &= ~LCD_FLAG_D;
1089                processed = 1;
1090                break;
1091        case 'C':       /* Cursor ON */
1092                lcd.flags |= LCD_FLAG_C;
1093                processed = 1;
1094                break;
1095        case 'c':       /* Cursor OFF */
1096                lcd.flags &= ~LCD_FLAG_C;
1097                processed = 1;
1098                break;
1099        case 'B':       /* Blink ON */
1100                lcd.flags |= LCD_FLAG_B;
1101                processed = 1;
1102                break;
1103        case 'b':       /* Blink OFF */
1104                lcd.flags &= ~LCD_FLAG_B;
1105                processed = 1;
1106                break;
1107        case '+':       /* Back light ON */
1108                lcd.flags |= LCD_FLAG_L;
1109                processed = 1;
1110                break;
1111        case '-':       /* Back light OFF */
1112                lcd.flags &= ~LCD_FLAG_L;
1113                processed = 1;
1114                break;
1115        case '*':
1116                /* flash back light using the keypad timer */
1117                if (scan_timer.function != NULL) {
1118                        if (lcd.light_tempo == 0
1119                                        && ((lcd.flags & LCD_FLAG_L) == 0))
1120                                lcd_backlight(1);
1121                        lcd.light_tempo = FLASH_LIGHT_TEMPO;
1122                }
1123                processed = 1;
1124                break;
1125        case 'f':       /* Small Font */
1126                lcd.flags &= ~LCD_FLAG_F;
1127                processed = 1;
1128                break;
1129        case 'F':       /* Large Font */
1130                lcd.flags |= LCD_FLAG_F;
1131                processed = 1;
1132                break;
1133        case 'n':       /* One Line */
1134                lcd.flags &= ~LCD_FLAG_N;
1135                processed = 1;
1136                break;
1137        case 'N':       /* Two Lines */
1138                lcd.flags |= LCD_FLAG_N;
1139                break;
1140        case 'l':       /* Shift Cursor Left */
1141                if (lcd.addr.x > 0) {
1142                        /* back one char if not at end of line */
1143                        if (lcd.addr.x < lcd.bwidth)
1144                                lcd_write_cmd(LCD_CMD_SHIFT);
1145                        lcd.addr.x--;
1146                }
1147                processed = 1;
1148                break;
1149        case 'r':       /* shift cursor right */
1150                if (lcd.addr.x < lcd.width) {
1151                        /* allow the cursor to pass the end of the line */
1152                        if (lcd.addr.x < (lcd.bwidth - 1))
1153                                lcd_write_cmd(LCD_CMD_SHIFT |
1154                                                LCD_CMD_SHIFT_RIGHT);
1155                        lcd.addr.x++;
1156                }
1157                processed = 1;
1158                break;
1159        case 'L':       /* shift display left */
1160                lcd_write_cmd(LCD_CMD_SHIFT | LCD_CMD_DISPLAY_SHIFT);
1161                processed = 1;
1162                break;
1163        case 'R':       /* shift display right */
1164                lcd_write_cmd(LCD_CMD_SHIFT | LCD_CMD_DISPLAY_SHIFT |
1165                                LCD_CMD_SHIFT_RIGHT);
1166                processed = 1;
1167                break;
1168        case 'k': {     /* kill end of line */
1169                int x;
1170
1171                for (x = lcd.addr.x; x < lcd.bwidth; x++)
1172                        lcd_write_data(' ');
1173
1174                /* restore cursor position */
1175                lcd_gotoxy();
1176                processed = 1;
1177                break;
1178        }
1179        case 'I':       /* reinitialize display */
1180                lcd_init_display();
1181                processed = 1;
1182                break;
1183        case 'G': {
1184                /* Generator : LGcxxxxx...xx; must have <c> between '0'
1185                 * and '7', representing the numerical ASCII code of the
1186                 * redefined character, and <xx...xx> a sequence of 16
1187                 * hex digits representing 8 bytes for each character.
1188                 * Most LCDs will only use 5 lower bits of the 7 first
1189                 * bytes.
1190                 */
1191
1192                unsigned char cgbytes[8];
1193                unsigned char cgaddr;
1194                int cgoffset;
1195                int shift;
1196                char value;
1197                int addr;
1198
1199                if (strchr(esc, ';') == NULL)
1200                        break;
1201
1202                esc++;
1203
1204                cgaddr = *(esc++) - '0';
1205                if (cgaddr > 7) {
1206                        processed = 1;
1207                        break;
1208                }
1209
1210                cgoffset = 0;
1211                shift = 0;
1212                value = 0;
1213                while (*esc && cgoffset < 8) {
1214                        shift ^= 4;
1215                        if (*esc >= '0' && *esc <= '9') {
1216                                value |= (*esc - '0') << shift;
1217                        } else if (*esc >= 'A' && *esc <= 'Z') {
1218                                value |= (*esc - 'A' + 10) << shift;
1219                        } else if (*esc >= 'a' && *esc <= 'z') {
1220                                value |= (*esc - 'a' + 10) << shift;
1221                        } else {
1222                                esc++;
1223                                continue;
1224                        }
1225
1226                        if (shift == 0) {
1227                                cgbytes[cgoffset++] = value;
1228                                value = 0;
1229                        }
1230
1231                        esc++;
1232                }
1233
1234                lcd_write_cmd(LCD_CMD_SET_CGRAM_ADDR | (cgaddr * 8));
1235                for (addr = 0; addr < cgoffset; addr++)
1236                        lcd_write_data(cgbytes[addr]);
1237
1238                /* ensures that we stop writing to CGRAM */
1239                lcd_gotoxy();
1240                processed = 1;
1241                break;
1242        }
1243        case 'x':       /* gotoxy : LxXXX[yYYY]; */
1244        case 'y':       /* gotoxy : LyYYY[xXXX]; */
1245                if (strchr(esc, ';') == NULL)
1246                        break;
1247
1248                while (*esc) {
1249                        if (*esc == 'x') {
1250                                esc++;
1251                                if (kstrtoul(esc, 10, &lcd.addr.x) < 0)
1252                                        break;
1253                        } else if (*esc == 'y') {
1254                                esc++;
1255                                if (kstrtoul(esc, 10, &lcd.addr.y) < 0)
1256                                        break;
1257                        } else {
1258                                break;
1259                        }
1260                }
1261
1262                lcd_gotoxy();
1263                processed = 1;
1264                break;
1265        }
1266
1267        /* TODO: This indent party here got ugly, clean it! */
1268        /* Check whether one flag was changed */
1269        if (oldflags != lcd.flags) {
1270                /* check whether one of B,C,D flags were changed */
1271                if ((oldflags ^ lcd.flags) &
1272                    (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
1273                        /* set display mode */
1274                        lcd_write_cmd(LCD_CMD_DISPLAY_CTRL
1275                                      | ((lcd.flags & LCD_FLAG_D)
1276                                                      ? LCD_CMD_DISPLAY_ON : 0)
1277                                      | ((lcd.flags & LCD_FLAG_C)
1278                                                      ? LCD_CMD_CURSOR_ON : 0)
1279                                      | ((lcd.flags & LCD_FLAG_B)
1280                                                      ? LCD_CMD_BLINK_ON : 0));
1281                /* check whether one of F,N flags was changed */
1282                else if ((oldflags ^ lcd.flags) & (LCD_FLAG_F | LCD_FLAG_N))
1283                        lcd_write_cmd(LCD_CMD_FUNCTION_SET
1284                                      | LCD_CMD_DATA_LEN_8BITS
1285                                      | ((lcd.flags & LCD_FLAG_F)
1286                                                      ? LCD_CMD_TWO_LINES : 0)
1287                                      | ((lcd.flags & LCD_FLAG_N)
1288                                                      ? LCD_CMD_FONT_5X10_DOTS
1289                                                                      : 0));
1290                /* check whether L flag was changed */
1291                else if ((oldflags ^ lcd.flags) & (LCD_FLAG_L)) {
1292                        if (lcd.flags & (LCD_FLAG_L))
1293                                lcd_backlight(1);
1294                        else if (lcd.light_tempo == 0)
1295                                /* switch off the light only when the tempo
1296                                   lighting is gone */
1297                                lcd_backlight(0);
1298                }
1299        }
1300
1301        return processed;
1302}
1303
1304static void lcd_write_char(char c)
1305{
1306        /* first, we'll test if we're in escape mode */
1307        if ((c != '\n') && lcd.esc_seq.len >= 0) {
1308                /* yes, let's add this char to the buffer */
1309                lcd.esc_seq.buf[lcd.esc_seq.len++] = c;
1310                lcd.esc_seq.buf[lcd.esc_seq.len] = 0;
1311        } else {
1312                /* aborts any previous escape sequence */
1313                lcd.esc_seq.len = -1;
1314
1315                switch (c) {
1316                case LCD_ESCAPE_CHAR:
1317                        /* start of an escape sequence */
1318                        lcd.esc_seq.len = 0;
1319                        lcd.esc_seq.buf[lcd.esc_seq.len] = 0;
1320                        break;
1321                case '\b':
1322                        /* go back one char and clear it */
1323                        if (lcd.addr.x > 0) {
1324                                /* check if we're not at the
1325                                   end of the line */
1326                                if (lcd.addr.x < lcd.bwidth)
1327                                        /* back one char */
1328                                        lcd_write_cmd(LCD_CMD_SHIFT);
1329                                lcd.addr.x--;
1330                        }
1331                        /* replace with a space */
1332                        lcd_write_data(' ');
1333                        /* back one char again */
1334                        lcd_write_cmd(LCD_CMD_SHIFT);
1335                        break;
1336                case '\014':
1337                        /* quickly clear the display */
1338                        lcd_clear_fast();
1339                        break;
1340                case '\n':
1341                        /* flush the remainder of the current line and
1342                           go to the beginning of the next line */
1343                        for (; lcd.addr.x < lcd.bwidth; lcd.addr.x++)
1344                                lcd_write_data(' ');
1345                        lcd.addr.x = 0;
1346                        lcd.addr.y = (lcd.addr.y + 1) % lcd.height;
1347                        lcd_gotoxy();
1348                        break;
1349                case '\r':
1350                        /* go to the beginning of the same line */
1351                        lcd.addr.x = 0;
1352                        lcd_gotoxy();
1353                        break;
1354                case '\t':
1355                        /* print a space instead of the tab */
1356                        lcd_print(' ');
1357                        break;
1358                default:
1359                        /* simply print this char */
1360                        lcd_print(c);
1361                        break;
1362                }
1363        }
1364
1365        /* now we'll see if we're in an escape mode and if the current
1366           escape sequence can be understood. */
1367        if (lcd.esc_seq.len >= 2) {
1368                int processed = 0;
1369
1370                if (!strcmp(lcd.esc_seq.buf, "[2J")) {
1371                        /* clear the display */
1372                        lcd_clear_fast();
1373                        processed = 1;
1374                } else if (!strcmp(lcd.esc_seq.buf, "[H")) {
1375                        /* cursor to home */
1376                        lcd.addr.x = 0;
1377                        lcd.addr.y = 0;
1378                        lcd_gotoxy();
1379                        processed = 1;
1380                }
1381                /* codes starting with ^[[L */
1382                else if ((lcd.esc_seq.len >= 3) &&
1383                         (lcd.esc_seq.buf[0] == '[') &&
1384                         (lcd.esc_seq.buf[1] == 'L')) {
1385                        processed = handle_lcd_special_code();
1386                }
1387
1388                /* LCD special escape codes */
1389                /* flush the escape sequence if it's been processed
1390                   or if it is getting too long. */
1391                if (processed || (lcd.esc_seq.len >= LCD_ESCAPE_LEN))
1392                        lcd.esc_seq.len = -1;
1393        } /* escape codes */
1394}
1395
1396static ssize_t lcd_write(struct file *file,
1397                         const char __user *buf, size_t count, loff_t *ppos)
1398{
1399        const char __user *tmp = buf;
1400        char c;
1401
1402        for (; count-- > 0; (*ppos)++, tmp++) {
1403                if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1404                        /* let's be a little nice with other processes
1405                           that need some CPU */
1406                        schedule();
1407
1408                if (get_user(c, tmp))
1409                        return -EFAULT;
1410
1411                lcd_write_char(c);
1412        }
1413
1414        return tmp - buf;
1415}
1416
1417static int lcd_open(struct inode *inode, struct file *file)
1418{
1419        if (!atomic_dec_and_test(&lcd_available))
1420                return -EBUSY;  /* open only once at a time */
1421
1422        if (file->f_mode & FMODE_READ)  /* device is write-only */
1423                return -EPERM;
1424
1425        if (lcd.must_clear) {
1426                lcd_clear_display();
1427                lcd.must_clear = false;
1428        }
1429        return nonseekable_open(inode, file);
1430}
1431
1432static int lcd_release(struct inode *inode, struct file *file)
1433{
1434        atomic_inc(&lcd_available);
1435        return 0;
1436}
1437
1438static const struct file_operations lcd_fops = {
1439        .write   = lcd_write,
1440        .open    = lcd_open,
1441        .release = lcd_release,
1442        .llseek  = no_llseek,
1443};
1444
1445static struct miscdevice lcd_dev = {
1446        .minor  = LCD_MINOR,
1447        .name   = "lcd",
1448        .fops   = &lcd_fops,
1449};
1450
1451/* public function usable from the kernel for any purpose */
1452static void panel_lcd_print(const char *s)
1453{
1454        const char *tmp = s;
1455        int count = strlen(s);
1456
1457        if (lcd.enabled && lcd.initialized) {
1458                for (; count-- > 0; tmp++) {
1459                        if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1460                                /* let's be a little nice with other processes
1461                                   that need some CPU */
1462                                schedule();
1463
1464                        lcd_write_char(*tmp);
1465                }
1466        }
1467}
1468
1469/* initialize the LCD driver */
1470static void lcd_init(void)
1471{
1472        switch (selected_lcd_type) {
1473        case LCD_TYPE_OLD:
1474                /* parallel mode, 8 bits */
1475                lcd.proto = LCD_PROTO_PARALLEL;
1476                lcd.charset = LCD_CHARSET_NORMAL;
1477                lcd.pins.e = PIN_STROBE;
1478                lcd.pins.rs = PIN_AUTOLF;
1479
1480                lcd.width = 40;
1481                lcd.bwidth = 40;
1482                lcd.hwidth = 64;
1483                lcd.height = 2;
1484                break;
1485        case LCD_TYPE_KS0074:
1486                /* serial mode, ks0074 */
1487                lcd.proto = LCD_PROTO_SERIAL;
1488                lcd.charset = LCD_CHARSET_KS0074;
1489                lcd.pins.bl = PIN_AUTOLF;
1490                lcd.pins.cl = PIN_STROBE;
1491                lcd.pins.da = PIN_D0;
1492
1493                lcd.width = 16;
1494                lcd.bwidth = 40;
1495                lcd.hwidth = 16;
1496                lcd.height = 2;
1497                break;
1498        case LCD_TYPE_NEXCOM:
1499                /* parallel mode, 8 bits, generic */
1500                lcd.proto = LCD_PROTO_PARALLEL;
1501                lcd.charset = LCD_CHARSET_NORMAL;
1502                lcd.pins.e = PIN_AUTOLF;
1503                lcd.pins.rs = PIN_SELECP;
1504                lcd.pins.rw = PIN_INITP;
1505
1506                lcd.width = 16;
1507                lcd.bwidth = 40;
1508                lcd.hwidth = 64;
1509                lcd.height = 2;
1510                break;
1511        case LCD_TYPE_CUSTOM:
1512                /* customer-defined */
1513                lcd.proto = DEFAULT_LCD_PROTO;
1514                lcd.charset = DEFAULT_LCD_CHARSET;
1515                /* default geometry will be set later */
1516                break;
1517        case LCD_TYPE_HANTRONIX:
1518                /* parallel mode, 8 bits, hantronix-like */
1519        default:
1520                lcd.proto = LCD_PROTO_PARALLEL;
1521                lcd.charset = LCD_CHARSET_NORMAL;
1522                lcd.pins.e = PIN_STROBE;
1523                lcd.pins.rs = PIN_SELECP;
1524
1525                lcd.width = 16;
1526                lcd.bwidth = 40;
1527                lcd.hwidth = 64;
1528                lcd.height = 2;
1529                break;
1530        }
1531
1532        /* Overwrite with module params set on loading */
1533        if (lcd_height != NOT_SET)
1534                lcd.height = lcd_height;
1535        if (lcd_width != NOT_SET)
1536                lcd.width = lcd_width;
1537        if (lcd_bwidth != NOT_SET)
1538                lcd.bwidth = lcd_bwidth;
1539        if (lcd_hwidth != NOT_SET)
1540                lcd.hwidth = lcd_hwidth;
1541        if (lcd_charset != NOT_SET)
1542                lcd.charset = lcd_charset;
1543        if (lcd_proto != NOT_SET)
1544                lcd.proto = lcd_proto;
1545        if (lcd_e_pin != PIN_NOT_SET)
1546                lcd.pins.e = lcd_e_pin;
1547        if (lcd_rs_pin != PIN_NOT_SET)
1548                lcd.pins.rs = lcd_rs_pin;
1549        if (lcd_rw_pin != PIN_NOT_SET)
1550                lcd.pins.rw = lcd_rw_pin;
1551        if (lcd_cl_pin != PIN_NOT_SET)
1552                lcd.pins.cl = lcd_cl_pin;
1553        if (lcd_da_pin != PIN_NOT_SET)
1554                lcd.pins.da = lcd_da_pin;
1555        if (lcd_bl_pin != PIN_NOT_SET)
1556                lcd.pins.bl = lcd_bl_pin;
1557
1558        /* this is used to catch wrong and default values */
1559        if (lcd.width <= 0)
1560                lcd.width = DEFAULT_LCD_WIDTH;
1561        if (lcd.bwidth <= 0)
1562                lcd.bwidth = DEFAULT_LCD_BWIDTH;
1563        if (lcd.hwidth <= 0)
1564                lcd.hwidth = DEFAULT_LCD_HWIDTH;
1565        if (lcd.height <= 0)
1566                lcd.height = DEFAULT_LCD_HEIGHT;
1567
1568        if (lcd.proto == LCD_PROTO_SERIAL) {    /* SERIAL */
1569                lcd_write_cmd = lcd_write_cmd_s;
1570                lcd_write_data = lcd_write_data_s;
1571                lcd_clear_fast = lcd_clear_fast_s;
1572
1573                if (lcd.pins.cl == PIN_NOT_SET)
1574                        lcd.pins.cl = DEFAULT_LCD_PIN_SCL;
1575                if (lcd.pins.da == PIN_NOT_SET)
1576                        lcd.pins.da = DEFAULT_LCD_PIN_SDA;
1577
1578        } else if (lcd.proto == LCD_PROTO_PARALLEL) {   /* PARALLEL */
1579                lcd_write_cmd = lcd_write_cmd_p8;
1580                lcd_write_data = lcd_write_data_p8;
1581                lcd_clear_fast = lcd_clear_fast_p8;
1582
1583                if (lcd.pins.e == PIN_NOT_SET)
1584                        lcd.pins.e = DEFAULT_LCD_PIN_E;
1585                if (lcd.pins.rs == PIN_NOT_SET)
1586                        lcd.pins.rs = DEFAULT_LCD_PIN_RS;
1587                if (lcd.pins.rw == PIN_NOT_SET)
1588                        lcd.pins.rw = DEFAULT_LCD_PIN_RW;
1589        } else {
1590                lcd_write_cmd = lcd_write_cmd_tilcd;
1591                lcd_write_data = lcd_write_data_tilcd;
1592                lcd_clear_fast = lcd_clear_fast_tilcd;
1593        }
1594
1595        if (lcd.pins.bl == PIN_NOT_SET)
1596                lcd.pins.bl = DEFAULT_LCD_PIN_BL;
1597
1598        if (lcd.pins.e == PIN_NOT_SET)
1599                lcd.pins.e = PIN_NONE;
1600        if (lcd.pins.rs == PIN_NOT_SET)
1601                lcd.pins.rs = PIN_NONE;
1602        if (lcd.pins.rw == PIN_NOT_SET)
1603                lcd.pins.rw = PIN_NONE;
1604        if (lcd.pins.bl == PIN_NOT_SET)
1605                lcd.pins.bl = PIN_NONE;
1606        if (lcd.pins.cl == PIN_NOT_SET)
1607                lcd.pins.cl = PIN_NONE;
1608        if (lcd.pins.da == PIN_NOT_SET)
1609                lcd.pins.da = PIN_NONE;
1610
1611        if (lcd.charset == NOT_SET)
1612                lcd.charset = DEFAULT_LCD_CHARSET;
1613
1614        if (lcd.charset == LCD_CHARSET_KS0074)
1615                lcd_char_conv = lcd_char_conv_ks0074;
1616        else
1617                lcd_char_conv = NULL;
1618
1619        if (lcd.pins.bl != PIN_NONE)
1620                init_scan_timer();
1621
1622        pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1623                    lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1624        pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1625                    lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1626        pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1627                    lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1628        pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1629                    lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1630        pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1631                    lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1632        pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1633                    lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1634
1635        /* before this line, we must NOT send anything to the display.
1636         * Since lcd_init_display() needs to write data, we have to
1637         * enable mark the LCD initialized just before. */
1638        lcd.initialized = true;
1639        lcd_init_display();
1640
1641        /* display a short message */
1642#ifdef CONFIG_PANEL_CHANGE_MESSAGE
1643#ifdef CONFIG_PANEL_BOOT_MESSAGE
1644        panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE);
1645#endif
1646#else
1647        panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE "\nPanel-"
1648                        PANEL_VERSION);
1649#endif
1650        lcd.addr.x = 0;
1651        lcd.addr.y = 0;
1652        /* clear the display on the next device opening */
1653        lcd.must_clear = true;
1654        lcd_gotoxy();
1655}
1656
1657/*
1658 * These are the file operation function for user access to /dev/keypad
1659 */
1660
1661static ssize_t keypad_read(struct file *file,
1662                           char __user *buf, size_t count, loff_t *ppos)
1663{
1664        unsigned i = *ppos;
1665        char __user *tmp = buf;
1666
1667        if (keypad_buflen == 0) {
1668                if (file->f_flags & O_NONBLOCK)
1669                        return -EAGAIN;
1670
1671                if (wait_event_interruptible(keypad_read_wait,
1672                                             keypad_buflen != 0))
1673                        return -EINTR;
1674        }
1675
1676        for (; count-- > 0 && (keypad_buflen > 0);
1677             ++i, ++tmp, --keypad_buflen) {
1678                put_user(keypad_buffer[keypad_start], tmp);
1679                keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1680        }
1681        *ppos = i;
1682
1683        return tmp - buf;
1684}
1685
1686static int keypad_open(struct inode *inode, struct file *file)
1687{
1688        if (!atomic_dec_and_test(&keypad_available))
1689                return -EBUSY;  /* open only once at a time */
1690
1691        if (file->f_mode & FMODE_WRITE) /* device is read-only */
1692                return -EPERM;
1693
1694        keypad_buflen = 0;      /* flush the buffer on opening */
1695        return 0;
1696}
1697
1698static int keypad_release(struct inode *inode, struct file *file)
1699{
1700        atomic_inc(&keypad_available);
1701        return 0;
1702}
1703
1704static const struct file_operations keypad_fops = {
1705        .read    = keypad_read,         /* read */
1706        .open    = keypad_open,         /* open */
1707        .release = keypad_release,      /* close */
1708        .llseek  = default_llseek,
1709};
1710
1711static struct miscdevice keypad_dev = {
1712        .minor  = KEYPAD_MINOR,
1713        .name   = "keypad",
1714        .fops   = &keypad_fops,
1715};
1716
1717static void keypad_send_key(const char *string, int max_len)
1718{
1719        /* send the key to the device only if a process is attached to it. */
1720        if (!atomic_read(&keypad_available)) {
1721                while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1722                        keypad_buffer[(keypad_start + keypad_buflen++) %
1723                                      KEYPAD_BUFFER] = *string++;
1724                }
1725                wake_up_interruptible(&keypad_read_wait);
1726        }
1727}
1728
1729/* this function scans all the bits involving at least one logical signal,
1730 * and puts the results in the bitfield "phys_read" (one bit per established
1731 * contact), and sets "phys_read_prev" to "phys_read".
1732 *
1733 * Note: to debounce input signals, we will only consider as switched a signal
1734 * which is stable across 2 measures. Signals which are different between two
1735 * reads will be kept as they previously were in their logical form (phys_prev).
1736 * A signal which has just switched will have a 1 in
1737 * (phys_read ^ phys_read_prev).
1738 */
1739static void phys_scan_contacts(void)
1740{
1741        int bit, bitval;
1742        char oldval;
1743        char bitmask;
1744        char gndmask;
1745
1746        phys_prev = phys_curr;
1747        phys_read_prev = phys_read;
1748        phys_read = 0;          /* flush all signals */
1749
1750        /* keep track of old value, with all outputs disabled */
1751        oldval = r_dtr(pprt) | scan_mask_o;
1752        /* activate all keyboard outputs (active low) */
1753        w_dtr(pprt, oldval & ~scan_mask_o);
1754
1755        /* will have a 1 for each bit set to gnd */
1756        bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1757        /* disable all matrix signals */
1758        w_dtr(pprt, oldval);
1759
1760        /* now that all outputs are cleared, the only active input bits are
1761         * directly connected to the ground
1762         */
1763
1764        /* 1 for each grounded input */
1765        gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1766
1767        /* grounded inputs are signals 40-44 */
1768        phys_read |= (pmask_t) gndmask << 40;
1769
1770        if (bitmask != gndmask) {
1771                /* since clearing the outputs changed some inputs, we know
1772                 * that some input signals are currently tied to some outputs.
1773                 * So we'll scan them.
1774                 */
1775                for (bit = 0; bit < 8; bit++) {
1776                        bitval = 1 << bit;
1777
1778                        if (!(scan_mask_o & bitval))    /* skip unused bits */
1779                                continue;
1780
1781                        w_dtr(pprt, oldval & ~bitval);  /* enable this output */
1782                        bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1783                        phys_read |= (pmask_t) bitmask << (5 * bit);
1784                }
1785                w_dtr(pprt, oldval);    /* disable all outputs */
1786        }
1787        /* this is easy: use old bits when they are flapping,
1788         * use new ones when stable */
1789        phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1790                    (phys_read & ~(phys_read ^ phys_read_prev));
1791}
1792
1793static inline int input_state_high(struct logical_input *input)
1794{
1795#if 0
1796        /* FIXME:
1797         * this is an invalid test. It tries to catch
1798         * transitions from single-key to multiple-key, but
1799         * doesn't take into account the contacts polarity.
1800         * The only solution to the problem is to parse keys
1801         * from the most complex to the simplest combinations,
1802         * and mark them as 'caught' once a combination
1803         * matches, then unmatch it for all other ones.
1804         */
1805
1806        /* try to catch dangerous transitions cases :
1807         * someone adds a bit, so this signal was a false
1808         * positive resulting from a transition. We should
1809         * invalidate the signal immediately and not call the
1810         * release function.
1811         * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1812         */
1813        if (((phys_prev & input->mask) == input->value) &&
1814            ((phys_curr & input->mask) >  input->value)) {
1815                input->state = INPUT_ST_LOW; /* invalidate */
1816                return 1;
1817        }
1818#endif
1819
1820        if ((phys_curr & input->mask) == input->value) {
1821                if ((input->type == INPUT_TYPE_STD) &&
1822                    (input->high_timer == 0)) {
1823                        input->high_timer++;
1824                        if (input->u.std.press_fct != NULL)
1825                                input->u.std.press_fct(input->u.std.press_data);
1826                } else if (input->type == INPUT_TYPE_KBD) {
1827                        /* will turn on the light */
1828                        keypressed = 1;
1829
1830                        if (input->high_timer == 0) {
1831                                char *press_str = input->u.kbd.press_str;
1832
1833                                if (press_str[0]) {
1834                                        int s = sizeof(input->u.kbd.press_str);
1835
1836                                        keypad_send_key(press_str, s);
1837                                }
1838                        }
1839
1840                        if (input->u.kbd.repeat_str[0]) {
1841                                char *repeat_str = input->u.kbd.repeat_str;
1842
1843                                if (input->high_timer >= KEYPAD_REP_START) {
1844                                        int s = sizeof(input->u.kbd.repeat_str);
1845
1846                                        input->high_timer -= KEYPAD_REP_DELAY;
1847                                        keypad_send_key(repeat_str, s);
1848                                }
1849                                /* we will need to come back here soon */
1850                                inputs_stable = 0;
1851                        }
1852
1853                        if (input->high_timer < 255)
1854                                input->high_timer++;
1855                }
1856                return 1;
1857        }
1858
1859        /* else signal falling down. Let's fall through. */
1860        input->state = INPUT_ST_FALLING;
1861        input->fall_timer = 0;
1862
1863        return 0;
1864}
1865
1866static inline void input_state_falling(struct logical_input *input)
1867{
1868#if 0
1869        /* FIXME !!! same comment as in input_state_high */
1870        if (((phys_prev & input->mask) == input->value) &&
1871            ((phys_curr & input->mask) >  input->value)) {
1872                input->state = INPUT_ST_LOW;    /* invalidate */
1873                return;
1874        }
1875#endif
1876
1877        if ((phys_curr & input->mask) == input->value) {
1878                if (input->type == INPUT_TYPE_KBD) {
1879                        /* will turn on the light */
1880                        keypressed = 1;
1881
1882                        if (input->u.kbd.repeat_str[0]) {
1883                                char *repeat_str = input->u.kbd.repeat_str;
1884
1885                                if (input->high_timer >= KEYPAD_REP_START) {
1886                                        int s = sizeof(input->u.kbd.repeat_str);
1887
1888                                        input->high_timer -= KEYPAD_REP_DELAY;
1889                                        keypad_send_key(repeat_str, s);
1890                                }
1891                                /* we will need to come back here soon */
1892                                inputs_stable = 0;
1893                        }
1894
1895                        if (input->high_timer < 255)
1896                                input->high_timer++;
1897                }
1898                input->state = INPUT_ST_HIGH;
1899        } else if (input->fall_timer >= input->fall_time) {
1900                /* call release event */
1901                if (input->type == INPUT_TYPE_STD) {
1902                        void (*release_fct)(int) = input->u.std.release_fct;
1903
1904                        if (release_fct != NULL)
1905                                release_fct(input->u.std.release_data);
1906                } else if (input->type == INPUT_TYPE_KBD) {
1907                        char *release_str = input->u.kbd.release_str;
1908
1909                        if (release_str[0]) {
1910                                int s = sizeof(input->u.kbd.release_str);
1911
1912                                keypad_send_key(release_str, s);
1913                        }
1914                }
1915
1916                input->state = INPUT_ST_LOW;
1917        } else {
1918                input->fall_timer++;
1919                inputs_stable = 0;
1920        }
1921}
1922
1923static void panel_process_inputs(void)
1924{
1925        struct list_head *item;
1926        struct logical_input *input;
1927
1928        keypressed = 0;
1929        inputs_stable = 1;
1930        list_for_each(item, &logical_inputs) {
1931                input = list_entry(item, struct logical_input, list);
1932
1933                switch (input->state) {
1934                case INPUT_ST_LOW:
1935                        if ((phys_curr & input->mask) != input->value)
1936                                break;
1937                        /* if all needed ones were already set previously,
1938                         * this means that this logical signal has been
1939                         * activated by the releasing of another combined
1940                         * signal, so we don't want to match.
1941                         * eg: AB -(release B)-> A -(release A)-> 0 :
1942                         *     don't match A.
1943                         */
1944                        if ((phys_prev & input->mask) == input->value)
1945                                break;
1946                        input->rise_timer = 0;
1947                        input->state = INPUT_ST_RISING;
1948                        /* no break here, fall through */
1949                case INPUT_ST_RISING:
1950                        if ((phys_curr & input->mask) != input->value) {
1951                                input->state = INPUT_ST_LOW;
1952                                break;
1953                        }
1954                        if (input->rise_timer < input->rise_time) {
1955                                inputs_stable = 0;
1956                                input->rise_timer++;
1957                                break;
1958                        }
1959                        input->high_timer = 0;
1960                        input->state = INPUT_ST_HIGH;
1961                        /* no break here, fall through */
1962                case INPUT_ST_HIGH:
1963                        if (input_state_high(input))
1964                                break;
1965                        /* no break here, fall through */
1966                case INPUT_ST_FALLING:
1967                        input_state_falling(input);
1968                }
1969        }
1970}
1971
1972static void panel_scan_timer(void)
1973{
1974        if (keypad.enabled && keypad_initialized) {
1975                if (spin_trylock_irq(&pprt_lock)) {
1976                        phys_scan_contacts();
1977
1978                        /* no need for the parport anymore */
1979                        spin_unlock_irq(&pprt_lock);
1980                }
1981
1982                if (!inputs_stable || phys_curr != phys_prev)
1983                        panel_process_inputs();
1984        }
1985
1986        if (lcd.enabled && lcd.initialized) {
1987                if (keypressed) {
1988                        if (lcd.light_tempo == 0
1989                                        && ((lcd.flags & LCD_FLAG_L) == 0))
1990                                lcd_backlight(1);
1991                        lcd.light_tempo = FLASH_LIGHT_TEMPO;
1992                } else if (lcd.light_tempo > 0) {
1993                        lcd.light_tempo--;
1994                        if (lcd.light_tempo == 0
1995                                        && ((lcd.flags & LCD_FLAG_L) == 0))
1996                                lcd_backlight(0);
1997                }
1998        }
1999
2000        mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
2001}
2002
2003static void init_scan_timer(void)
2004{
2005        if (scan_timer.function != NULL)
2006                return;         /* already started */
2007
2008        setup_timer(&scan_timer, (void *)&panel_scan_timer, 0);
2009        scan_timer.expires = jiffies + INPUT_POLL_TIME;
2010        add_timer(&scan_timer);
2011}
2012
2013/* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
2014 * if <omask> or <imask> are non-null, they will be or'ed with the bits
2015 * corresponding to out and in bits respectively.
2016 * returns 1 if ok, 0 if error (in which case, nothing is written).
2017 */
2018static int input_name2mask(const char *name, pmask_t *mask, pmask_t *value,
2019                           char *imask, char *omask)
2020{
2021        static char sigtab[10] = "EeSsPpAaBb";
2022        char im, om;
2023        pmask_t m, v;
2024
2025        om = 0ULL;
2026        im = 0ULL;
2027        m = 0ULL;
2028        v = 0ULL;
2029        while (*name) {
2030                int in, out, bit, neg;
2031
2032                for (in = 0; (in < sizeof(sigtab)) && (sigtab[in] != *name);
2033                     in++)
2034                        ;
2035
2036                if (in >= sizeof(sigtab))
2037                        return 0;       /* input name not found */
2038                neg = (in & 1); /* odd (lower) names are negated */
2039                in >>= 1;
2040                im |= (1 << in);
2041
2042                name++;
2043                if (isdigit(*name)) {
2044                        out = *name - '0';
2045                        om |= (1 << out);
2046                } else if (*name == '-') {
2047                        out = 8;
2048                } else {
2049                        return 0;       /* unknown bit name */
2050                }
2051
2052                bit = (out * 5) + in;
2053
2054                m |= 1ULL << bit;
2055                if (!neg)
2056                        v |= 1ULL << bit;
2057                name++;
2058        }
2059        *mask = m;
2060        *value = v;
2061        if (imask)
2062                *imask |= im;
2063        if (omask)
2064                *omask |= om;
2065        return 1;
2066}
2067
2068/* tries to bind a key to the signal name <name>. The key will send the
2069 * strings <press>, <repeat>, <release> for these respective events.
2070 * Returns the pointer to the new key if ok, NULL if the key could not be bound.
2071 */
2072static struct logical_input *panel_bind_key(const char *name, const char *press,
2073                                            const char *repeat,
2074                                            const char *release)
2075{
2076        struct logical_input *key;
2077
2078        key = kzalloc(sizeof(*key), GFP_KERNEL);
2079        if (!key)
2080                return NULL;
2081
2082        if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
2083                             &scan_mask_o)) {
2084                kfree(key);
2085                return NULL;
2086        }
2087
2088        key->type = INPUT_TYPE_KBD;
2089        key->state = INPUT_ST_LOW;
2090        key->rise_time = 1;
2091        key->fall_time = 1;
2092
2093        strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
2094        strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
2095        strncpy(key->u.kbd.release_str, release,
2096                sizeof(key->u.kbd.release_str));
2097        list_add(&key->list, &logical_inputs);
2098        return key;
2099}
2100
2101#if 0
2102/* tries to bind a callback function to the signal name <name>. The function
2103 * <press_fct> will be called with the <press_data> arg when the signal is
2104 * activated, and so on for <release_fct>/<release_data>
2105 * Returns the pointer to the new signal if ok, NULL if the signal could not
2106 * be bound.
2107 */
2108static struct logical_input *panel_bind_callback(char *name,
2109                                                 void (*press_fct)(int),
2110                                                 int press_data,
2111                                                 void (*release_fct)(int),
2112                                                 int release_data)
2113{
2114        struct logical_input *callback;
2115
2116        callback = kmalloc(sizeof(*callback), GFP_KERNEL);
2117        if (!callback)
2118                return NULL;
2119
2120        memset(callback, 0, sizeof(struct logical_input));
2121        if (!input_name2mask(name, &callback->mask, &callback->value,
2122                             &scan_mask_i, &scan_mask_o))
2123                return NULL;
2124
2125        callback->type = INPUT_TYPE_STD;
2126        callback->state = INPUT_ST_LOW;
2127        callback->rise_time = 1;
2128        callback->fall_time = 1;
2129        callback->u.std.press_fct = press_fct;
2130        callback->u.std.press_data = press_data;
2131        callback->u.std.release_fct = release_fct;
2132        callback->u.std.release_data = release_data;
2133        list_add(&callback->list, &logical_inputs);
2134        return callback;
2135}
2136#endif
2137
2138static void keypad_init(void)
2139{
2140        int keynum;
2141
2142        init_waitqueue_head(&keypad_read_wait);
2143        keypad_buflen = 0;      /* flushes any eventual noisy keystroke */
2144
2145        /* Let's create all known keys */
2146
2147        for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
2148                panel_bind_key(keypad_profile[keynum][0],
2149                               keypad_profile[keynum][1],
2150                               keypad_profile[keynum][2],
2151                               keypad_profile[keynum][3]);
2152        }
2153
2154        init_scan_timer();
2155        keypad_initialized = 1;
2156}
2157
2158/**************************************************/
2159/* device initialization                          */
2160/**************************************************/
2161
2162static int panel_notify_sys(struct notifier_block *this, unsigned long code,
2163                            void *unused)
2164{
2165        if (lcd.enabled && lcd.initialized) {
2166                switch (code) {
2167                case SYS_DOWN:
2168                        panel_lcd_print
2169                            ("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
2170                        break;
2171                case SYS_HALT:
2172                        panel_lcd_print
2173                            ("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
2174                        break;
2175                case SYS_POWER_OFF:
2176                        panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
2177                        break;
2178                default:
2179                        break;
2180                }
2181        }
2182        return NOTIFY_DONE;
2183}
2184
2185static struct notifier_block panel_notifier = {
2186        panel_notify_sys,
2187        NULL,
2188        0
2189};
2190
2191static void panel_attach(struct parport *port)
2192{
2193        if (port->number != parport)
2194                return;
2195
2196        if (pprt) {
2197                pr_err("%s: port->number=%d parport=%d, already registered!\n",
2198                       __func__, port->number, parport);
2199                return;
2200        }
2201
2202        pprt = parport_register_device(port, "panel", NULL, NULL,  /* pf, kf */
2203                                       NULL,
2204                                       /*PARPORT_DEV_EXCL */
2205                                       0, (void *)&pprt);
2206        if (pprt == NULL) {
2207                pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
2208                       __func__, port->number, parport);
2209                return;
2210        }
2211
2212        if (parport_claim(pprt)) {
2213                pr_err("could not claim access to parport%d. Aborting.\n",
2214                       parport);
2215                goto err_unreg_device;
2216        }
2217
2218        /* must init LCD first, just in case an IRQ from the keypad is
2219         * generated at keypad init
2220         */
2221        if (lcd.enabled) {
2222                lcd_init();
2223                if (misc_register(&lcd_dev))
2224                        goto err_unreg_device;
2225        }
2226
2227        if (keypad.enabled) {
2228                keypad_init();
2229                if (misc_register(&keypad_dev))
2230                        goto err_lcd_unreg;
2231        }
2232        register_reboot_notifier(&panel_notifier);
2233        return;
2234
2235err_lcd_unreg:
2236        if (lcd.enabled)
2237                misc_deregister(&lcd_dev);
2238err_unreg_device:
2239        parport_unregister_device(pprt);
2240        pprt = NULL;
2241}
2242
2243static void panel_detach(struct parport *port)
2244{
2245        if (port->number != parport)
2246                return;
2247
2248        if (!pprt) {
2249                pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
2250                       __func__, port->number, parport);
2251                return;
2252        }
2253
2254        unregister_reboot_notifier(&panel_notifier);
2255
2256        if (keypad.enabled && keypad_initialized) {
2257                misc_deregister(&keypad_dev);
2258                keypad_initialized = 0;
2259        }
2260
2261        if (lcd.enabled && lcd.initialized) {
2262                misc_deregister(&lcd_dev);
2263                lcd.initialized = false;
2264        }
2265
2266        parport_release(pprt);
2267        parport_unregister_device(pprt);
2268        pprt = NULL;
2269}
2270
2271static struct parport_driver panel_driver = {
2272        .name = "panel",
2273        .attach = panel_attach,
2274        .detach = panel_detach,
2275};
2276
2277/* init function */
2278static int __init panel_init_module(void)
2279{
2280        int selected_keypad_type = NOT_SET, err;
2281
2282        /* take care of an eventual profile */
2283        switch (profile) {
2284        case PANEL_PROFILE_CUSTOM:
2285                /* custom profile */
2286                selected_keypad_type = DEFAULT_KEYPAD_TYPE;
2287                selected_lcd_type = DEFAULT_LCD_TYPE;
2288                break;
2289        case PANEL_PROFILE_OLD:
2290                /* 8 bits, 2*16, old keypad */
2291                selected_keypad_type = KEYPAD_TYPE_OLD;
2292                selected_lcd_type = LCD_TYPE_OLD;
2293
2294                /* TODO: This two are a little hacky, sort it out later */
2295                if (lcd_width == NOT_SET)
2296                        lcd_width = 16;
2297                if (lcd_hwidth == NOT_SET)
2298                        lcd_hwidth = 16;
2299                break;
2300        case PANEL_PROFILE_NEW:
2301                /* serial, 2*16, new keypad */
2302                selected_keypad_type = KEYPAD_TYPE_NEW;
2303                selected_lcd_type = LCD_TYPE_KS0074;
2304                break;
2305        case PANEL_PROFILE_HANTRONIX:
2306                /* 8 bits, 2*16 hantronix-like, no keypad */
2307                selected_keypad_type = KEYPAD_TYPE_NONE;
2308                selected_lcd_type = LCD_TYPE_HANTRONIX;
2309                break;
2310        case PANEL_PROFILE_NEXCOM:
2311                /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
2312                selected_keypad_type = KEYPAD_TYPE_NEXCOM;
2313                selected_lcd_type = LCD_TYPE_NEXCOM;
2314                break;
2315        case PANEL_PROFILE_LARGE:
2316                /* 8 bits, 2*40, old keypad */
2317                selected_keypad_type = KEYPAD_TYPE_OLD;
2318                selected_lcd_type = LCD_TYPE_OLD;
2319                break;
2320        }
2321
2322        /*
2323         * Overwrite selection with module param values (both keypad and lcd),
2324         * where the deprecated params have lower prio.
2325         */
2326        if (keypad_enabled != NOT_SET)
2327                selected_keypad_type = keypad_enabled;
2328        if (keypad_type != NOT_SET)
2329                selected_keypad_type = keypad_type;
2330
2331        keypad.enabled = (selected_keypad_type > 0);
2332
2333        if (lcd_enabled != NOT_SET)
2334                selected_lcd_type = lcd_enabled;
2335        if (lcd_type != NOT_SET)
2336                selected_lcd_type = lcd_type;
2337
2338        lcd.enabled = (selected_lcd_type > 0);
2339
2340        if (lcd.enabled) {
2341                /*
2342                 * Init lcd struct with load-time values to preserve exact
2343                 * current functionality (at least for now).
2344                 */
2345                lcd.height = lcd_height;
2346                lcd.width = lcd_width;
2347                lcd.bwidth = lcd_bwidth;
2348                lcd.hwidth = lcd_hwidth;
2349                lcd.charset = lcd_charset;
2350                lcd.proto = lcd_proto;
2351                lcd.pins.e = lcd_e_pin;
2352                lcd.pins.rs = lcd_rs_pin;
2353                lcd.pins.rw = lcd_rw_pin;
2354                lcd.pins.cl = lcd_cl_pin;
2355                lcd.pins.da = lcd_da_pin;
2356                lcd.pins.bl = lcd_bl_pin;
2357
2358                /* Leave it for now, just in case */
2359                lcd.esc_seq.len = -1;
2360        }
2361
2362        switch (selected_keypad_type) {
2363        case KEYPAD_TYPE_OLD:
2364                keypad_profile = old_keypad_profile;
2365                break;
2366        case KEYPAD_TYPE_NEW:
2367                keypad_profile = new_keypad_profile;
2368                break;
2369        case KEYPAD_TYPE_NEXCOM:
2370                keypad_profile = nexcom_keypad_profile;
2371                break;
2372        default:
2373                keypad_profile = NULL;
2374                break;
2375        }
2376
2377        if (!lcd.enabled && !keypad.enabled) {
2378                /* no device enabled, let's exit */
2379                pr_err("driver version " PANEL_VERSION " disabled.\n");
2380                return -ENODEV;
2381        }
2382
2383        err = parport_register_driver(&panel_driver);
2384        if (err) {
2385                pr_err("could not register with parport. Aborting.\n");
2386                return err;
2387        }
2388
2389        if (pprt)
2390                pr_info("driver version " PANEL_VERSION
2391                        " registered on parport%d (io=0x%lx).\n", parport,
2392                        pprt->port->base);
2393        else
2394                pr_info("driver version " PANEL_VERSION
2395                        " not yet registered\n");
2396        return 0;
2397}
2398
2399static void __exit panel_cleanup_module(void)
2400{
2401
2402        if (scan_timer.function != NULL)
2403                del_timer_sync(&scan_timer);
2404
2405        if (pprt != NULL) {
2406                if (keypad.enabled) {
2407                        misc_deregister(&keypad_dev);
2408                        keypad_initialized = 0;
2409                }
2410
2411                if (lcd.enabled) {
2412                        panel_lcd_print("\x0cLCD driver " PANEL_VERSION
2413                                        "\nunloaded.\x1b[Lc\x1b[Lb\x1b[L-");
2414                        misc_deregister(&lcd_dev);
2415                        lcd.initialized = false;
2416                }
2417
2418                /* TODO: free all input signals */
2419                parport_release(pprt);
2420                parport_unregister_device(pprt);
2421                pprt = NULL;
2422        }
2423        parport_unregister_driver(&panel_driver);
2424}
2425
2426module_init(panel_init_module);
2427module_exit(panel_cleanup_module);
2428MODULE_AUTHOR("Willy Tarreau");
2429MODULE_LICENSE("GPL");
2430
2431/*
2432 * Local variables:
2433 *  c-indent-level: 4
2434 *  tab-width: 8
2435 * End:
2436 */
2437