linux/fs/block_dev.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/block_dev.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *  Copyright (C) 2001  Andrea Arcangeli <andrea@suse.de> SuSE
   6 */
   7
   8#include <linux/init.h>
   9#include <linux/mm.h>
  10#include <linux/fcntl.h>
  11#include <linux/slab.h>
  12#include <linux/kmod.h>
  13#include <linux/major.h>
  14#include <linux/device_cgroup.h>
  15#include <linux/highmem.h>
  16#include <linux/blkdev.h>
  17#include <linux/module.h>
  18#include <linux/blkpg.h>
  19#include <linux/magic.h>
  20#include <linux/buffer_head.h>
  21#include <linux/swap.h>
  22#include <linux/pagevec.h>
  23#include <linux/writeback.h>
  24#include <linux/mpage.h>
  25#include <linux/mount.h>
  26#include <linux/uio.h>
  27#include <linux/namei.h>
  28#include <linux/log2.h>
  29#include <linux/cleancache.h>
  30#include <asm/uaccess.h>
  31#include "internal.h"
  32
  33struct bdev_inode {
  34        struct block_device bdev;
  35        struct inode vfs_inode;
  36};
  37
  38static const struct address_space_operations def_blk_aops;
  39
  40static inline struct bdev_inode *BDEV_I(struct inode *inode)
  41{
  42        return container_of(inode, struct bdev_inode, vfs_inode);
  43}
  44
  45inline struct block_device *I_BDEV(struct inode *inode)
  46{
  47        return &BDEV_I(inode)->bdev;
  48}
  49EXPORT_SYMBOL(I_BDEV);
  50
  51static void bdev_write_inode(struct inode *inode)
  52{
  53        spin_lock(&inode->i_lock);
  54        while (inode->i_state & I_DIRTY) {
  55                spin_unlock(&inode->i_lock);
  56                WARN_ON_ONCE(write_inode_now(inode, true));
  57                spin_lock(&inode->i_lock);
  58        }
  59        spin_unlock(&inode->i_lock);
  60}
  61
  62/* Kill _all_ buffers and pagecache , dirty or not.. */
  63void kill_bdev(struct block_device *bdev)
  64{
  65        struct address_space *mapping = bdev->bd_inode->i_mapping;
  66
  67        if (mapping->nrpages == 0 && mapping->nrshadows == 0)
  68                return;
  69
  70        invalidate_bh_lrus();
  71        truncate_inode_pages(mapping, 0);
  72}       
  73EXPORT_SYMBOL(kill_bdev);
  74
  75/* Invalidate clean unused buffers and pagecache. */
  76void invalidate_bdev(struct block_device *bdev)
  77{
  78        struct address_space *mapping = bdev->bd_inode->i_mapping;
  79
  80        if (mapping->nrpages == 0)
  81                return;
  82
  83        invalidate_bh_lrus();
  84        lru_add_drain_all();    /* make sure all lru add caches are flushed */
  85        invalidate_mapping_pages(mapping, 0, -1);
  86        /* 99% of the time, we don't need to flush the cleancache on the bdev.
  87         * But, for the strange corners, lets be cautious
  88         */
  89        cleancache_invalidate_inode(mapping);
  90}
  91EXPORT_SYMBOL(invalidate_bdev);
  92
  93int set_blocksize(struct block_device *bdev, int size)
  94{
  95        /* Size must be a power of two, and between 512 and PAGE_SIZE */
  96        if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
  97                return -EINVAL;
  98
  99        /* Size cannot be smaller than the size supported by the device */
 100        if (size < bdev_logical_block_size(bdev))
 101                return -EINVAL;
 102
 103        /* Don't change the size if it is same as current */
 104        if (bdev->bd_block_size != size) {
 105                sync_blockdev(bdev);
 106                bdev->bd_block_size = size;
 107                bdev->bd_inode->i_blkbits = blksize_bits(size);
 108                kill_bdev(bdev);
 109        }
 110        return 0;
 111}
 112
 113EXPORT_SYMBOL(set_blocksize);
 114
 115int sb_set_blocksize(struct super_block *sb, int size)
 116{
 117        if (set_blocksize(sb->s_bdev, size))
 118                return 0;
 119        /* If we get here, we know size is power of two
 120         * and it's value is between 512 and PAGE_SIZE */
 121        sb->s_blocksize = size;
 122        sb->s_blocksize_bits = blksize_bits(size);
 123        return sb->s_blocksize;
 124}
 125
 126EXPORT_SYMBOL(sb_set_blocksize);
 127
 128int sb_min_blocksize(struct super_block *sb, int size)
 129{
 130        int minsize = bdev_logical_block_size(sb->s_bdev);
 131        if (size < minsize)
 132                size = minsize;
 133        return sb_set_blocksize(sb, size);
 134}
 135
 136EXPORT_SYMBOL(sb_min_blocksize);
 137
 138static int
 139blkdev_get_block(struct inode *inode, sector_t iblock,
 140                struct buffer_head *bh, int create)
 141{
 142        bh->b_bdev = I_BDEV(inode);
 143        bh->b_blocknr = iblock;
 144        set_buffer_mapped(bh);
 145        return 0;
 146}
 147
 148static ssize_t
 149blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t offset)
 150{
 151        struct file *file = iocb->ki_filp;
 152        struct inode *inode = file->f_mapping->host;
 153
 154        return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter, offset,
 155                                    blkdev_get_block, NULL, NULL,
 156                                    DIO_SKIP_DIO_COUNT);
 157}
 158
 159int __sync_blockdev(struct block_device *bdev, int wait)
 160{
 161        if (!bdev)
 162                return 0;
 163        if (!wait)
 164                return filemap_flush(bdev->bd_inode->i_mapping);
 165        return filemap_write_and_wait(bdev->bd_inode->i_mapping);
 166}
 167
 168/*
 169 * Write out and wait upon all the dirty data associated with a block
 170 * device via its mapping.  Does not take the superblock lock.
 171 */
 172int sync_blockdev(struct block_device *bdev)
 173{
 174        return __sync_blockdev(bdev, 1);
 175}
 176EXPORT_SYMBOL(sync_blockdev);
 177
 178/*
 179 * Write out and wait upon all dirty data associated with this
 180 * device.   Filesystem data as well as the underlying block
 181 * device.  Takes the superblock lock.
 182 */
 183int fsync_bdev(struct block_device *bdev)
 184{
 185        struct super_block *sb = get_super(bdev);
 186        if (sb) {
 187                int res = sync_filesystem(sb);
 188                drop_super(sb);
 189                return res;
 190        }
 191        return sync_blockdev(bdev);
 192}
 193EXPORT_SYMBOL(fsync_bdev);
 194
 195/**
 196 * freeze_bdev  --  lock a filesystem and force it into a consistent state
 197 * @bdev:       blockdevice to lock
 198 *
 199 * If a superblock is found on this device, we take the s_umount semaphore
 200 * on it to make sure nobody unmounts until the snapshot creation is done.
 201 * The reference counter (bd_fsfreeze_count) guarantees that only the last
 202 * unfreeze process can unfreeze the frozen filesystem actually when multiple
 203 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
 204 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
 205 * actually.
 206 */
 207struct super_block *freeze_bdev(struct block_device *bdev)
 208{
 209        struct super_block *sb;
 210        int error = 0;
 211
 212        mutex_lock(&bdev->bd_fsfreeze_mutex);
 213        if (++bdev->bd_fsfreeze_count > 1) {
 214                /*
 215                 * We don't even need to grab a reference - the first call
 216                 * to freeze_bdev grab an active reference and only the last
 217                 * thaw_bdev drops it.
 218                 */
 219                sb = get_super(bdev);
 220                drop_super(sb);
 221                mutex_unlock(&bdev->bd_fsfreeze_mutex);
 222                return sb;
 223        }
 224
 225        sb = get_active_super(bdev);
 226        if (!sb)
 227                goto out;
 228        if (sb->s_op->freeze_super)
 229                error = sb->s_op->freeze_super(sb);
 230        else
 231                error = freeze_super(sb);
 232        if (error) {
 233                deactivate_super(sb);
 234                bdev->bd_fsfreeze_count--;
 235                mutex_unlock(&bdev->bd_fsfreeze_mutex);
 236                return ERR_PTR(error);
 237        }
 238        deactivate_super(sb);
 239 out:
 240        sync_blockdev(bdev);
 241        mutex_unlock(&bdev->bd_fsfreeze_mutex);
 242        return sb;      /* thaw_bdev releases s->s_umount */
 243}
 244EXPORT_SYMBOL(freeze_bdev);
 245
 246/**
 247 * thaw_bdev  -- unlock filesystem
 248 * @bdev:       blockdevice to unlock
 249 * @sb:         associated superblock
 250 *
 251 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
 252 */
 253int thaw_bdev(struct block_device *bdev, struct super_block *sb)
 254{
 255        int error = -EINVAL;
 256
 257        mutex_lock(&bdev->bd_fsfreeze_mutex);
 258        if (!bdev->bd_fsfreeze_count)
 259                goto out;
 260
 261        error = 0;
 262        if (--bdev->bd_fsfreeze_count > 0)
 263                goto out;
 264
 265        if (!sb)
 266                goto out;
 267
 268        if (sb->s_op->thaw_super)
 269                error = sb->s_op->thaw_super(sb);
 270        else
 271                error = thaw_super(sb);
 272        if (error) {
 273                bdev->bd_fsfreeze_count++;
 274                mutex_unlock(&bdev->bd_fsfreeze_mutex);
 275                return error;
 276        }
 277out:
 278        mutex_unlock(&bdev->bd_fsfreeze_mutex);
 279        return 0;
 280}
 281EXPORT_SYMBOL(thaw_bdev);
 282
 283static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
 284{
 285        return block_write_full_page(page, blkdev_get_block, wbc);
 286}
 287
 288static int blkdev_readpage(struct file * file, struct page * page)
 289{
 290        return block_read_full_page(page, blkdev_get_block);
 291}
 292
 293static int blkdev_readpages(struct file *file, struct address_space *mapping,
 294                        struct list_head *pages, unsigned nr_pages)
 295{
 296        return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
 297}
 298
 299static int blkdev_write_begin(struct file *file, struct address_space *mapping,
 300                        loff_t pos, unsigned len, unsigned flags,
 301                        struct page **pagep, void **fsdata)
 302{
 303        return block_write_begin(mapping, pos, len, flags, pagep,
 304                                 blkdev_get_block);
 305}
 306
 307static int blkdev_write_end(struct file *file, struct address_space *mapping,
 308                        loff_t pos, unsigned len, unsigned copied,
 309                        struct page *page, void *fsdata)
 310{
 311        int ret;
 312        ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
 313
 314        unlock_page(page);
 315        page_cache_release(page);
 316
 317        return ret;
 318}
 319
 320/*
 321 * private llseek:
 322 * for a block special file file_inode(file)->i_size is zero
 323 * so we compute the size by hand (just as in block_read/write above)
 324 */
 325static loff_t block_llseek(struct file *file, loff_t offset, int whence)
 326{
 327        struct inode *bd_inode = file->f_mapping->host;
 328        loff_t retval;
 329
 330        mutex_lock(&bd_inode->i_mutex);
 331        retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
 332        mutex_unlock(&bd_inode->i_mutex);
 333        return retval;
 334}
 335        
 336int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
 337{
 338        struct inode *bd_inode = filp->f_mapping->host;
 339        struct block_device *bdev = I_BDEV(bd_inode);
 340        int error;
 341        
 342        error = filemap_write_and_wait_range(filp->f_mapping, start, end);
 343        if (error)
 344                return error;
 345
 346        /*
 347         * There is no need to serialise calls to blkdev_issue_flush with
 348         * i_mutex and doing so causes performance issues with concurrent
 349         * O_SYNC writers to a block device.
 350         */
 351        error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
 352        if (error == -EOPNOTSUPP)
 353                error = 0;
 354
 355        return error;
 356}
 357EXPORT_SYMBOL(blkdev_fsync);
 358
 359/**
 360 * bdev_read_page() - Start reading a page from a block device
 361 * @bdev: The device to read the page from
 362 * @sector: The offset on the device to read the page to (need not be aligned)
 363 * @page: The page to read
 364 *
 365 * On entry, the page should be locked.  It will be unlocked when the page
 366 * has been read.  If the block driver implements rw_page synchronously,
 367 * that will be true on exit from this function, but it need not be.
 368 *
 369 * Errors returned by this function are usually "soft", eg out of memory, or
 370 * queue full; callers should try a different route to read this page rather
 371 * than propagate an error back up the stack.
 372 *
 373 * Return: negative errno if an error occurs, 0 if submission was successful.
 374 */
 375int bdev_read_page(struct block_device *bdev, sector_t sector,
 376                        struct page *page)
 377{
 378        const struct block_device_operations *ops = bdev->bd_disk->fops;
 379        if (!ops->rw_page)
 380                return -EOPNOTSUPP;
 381        return ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ);
 382}
 383EXPORT_SYMBOL_GPL(bdev_read_page);
 384
 385/**
 386 * bdev_write_page() - Start writing a page to a block device
 387 * @bdev: The device to write the page to
 388 * @sector: The offset on the device to write the page to (need not be aligned)
 389 * @page: The page to write
 390 * @wbc: The writeback_control for the write
 391 *
 392 * On entry, the page should be locked and not currently under writeback.
 393 * On exit, if the write started successfully, the page will be unlocked and
 394 * under writeback.  If the write failed already (eg the driver failed to
 395 * queue the page to the device), the page will still be locked.  If the
 396 * caller is a ->writepage implementation, it will need to unlock the page.
 397 *
 398 * Errors returned by this function are usually "soft", eg out of memory, or
 399 * queue full; callers should try a different route to write this page rather
 400 * than propagate an error back up the stack.
 401 *
 402 * Return: negative errno if an error occurs, 0 if submission was successful.
 403 */
 404int bdev_write_page(struct block_device *bdev, sector_t sector,
 405                        struct page *page, struct writeback_control *wbc)
 406{
 407        int result;
 408        int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE;
 409        const struct block_device_operations *ops = bdev->bd_disk->fops;
 410        if (!ops->rw_page)
 411                return -EOPNOTSUPP;
 412        set_page_writeback(page);
 413        result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw);
 414        if (result)
 415                end_page_writeback(page);
 416        else
 417                unlock_page(page);
 418        return result;
 419}
 420EXPORT_SYMBOL_GPL(bdev_write_page);
 421
 422/**
 423 * bdev_direct_access() - Get the address for directly-accessibly memory
 424 * @bdev: The device containing the memory
 425 * @sector: The offset within the device
 426 * @addr: Where to put the address of the memory
 427 * @pfn: The Page Frame Number for the memory
 428 * @size: The number of bytes requested
 429 *
 430 * If a block device is made up of directly addressable memory, this function
 431 * will tell the caller the PFN and the address of the memory.  The address
 432 * may be directly dereferenced within the kernel without the need to call
 433 * ioremap(), kmap() or similar.  The PFN is suitable for inserting into
 434 * page tables.
 435 *
 436 * Return: negative errno if an error occurs, otherwise the number of bytes
 437 * accessible at this address.
 438 */
 439long bdev_direct_access(struct block_device *bdev, sector_t sector,
 440                        void **addr, unsigned long *pfn, long size)
 441{
 442        long avail;
 443        const struct block_device_operations *ops = bdev->bd_disk->fops;
 444
 445        if (size < 0)
 446                return size;
 447        if (!ops->direct_access)
 448                return -EOPNOTSUPP;
 449        if ((sector + DIV_ROUND_UP(size, 512)) >
 450                                        part_nr_sects_read(bdev->bd_part))
 451                return -ERANGE;
 452        sector += get_start_sect(bdev);
 453        if (sector % (PAGE_SIZE / 512))
 454                return -EINVAL;
 455        avail = ops->direct_access(bdev, sector, addr, pfn, size);
 456        if (!avail)
 457                return -ERANGE;
 458        return min(avail, size);
 459}
 460EXPORT_SYMBOL_GPL(bdev_direct_access);
 461
 462/*
 463 * pseudo-fs
 464 */
 465
 466static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
 467static struct kmem_cache * bdev_cachep __read_mostly;
 468
 469static struct inode *bdev_alloc_inode(struct super_block *sb)
 470{
 471        struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
 472        if (!ei)
 473                return NULL;
 474        return &ei->vfs_inode;
 475}
 476
 477static void bdev_i_callback(struct rcu_head *head)
 478{
 479        struct inode *inode = container_of(head, struct inode, i_rcu);
 480        struct bdev_inode *bdi = BDEV_I(inode);
 481
 482        kmem_cache_free(bdev_cachep, bdi);
 483}
 484
 485static void bdev_destroy_inode(struct inode *inode)
 486{
 487        call_rcu(&inode->i_rcu, bdev_i_callback);
 488}
 489
 490static void init_once(void *foo)
 491{
 492        struct bdev_inode *ei = (struct bdev_inode *) foo;
 493        struct block_device *bdev = &ei->bdev;
 494
 495        memset(bdev, 0, sizeof(*bdev));
 496        mutex_init(&bdev->bd_mutex);
 497        INIT_LIST_HEAD(&bdev->bd_inodes);
 498        INIT_LIST_HEAD(&bdev->bd_list);
 499#ifdef CONFIG_SYSFS
 500        INIT_LIST_HEAD(&bdev->bd_holder_disks);
 501#endif
 502        inode_init_once(&ei->vfs_inode);
 503        /* Initialize mutex for freeze. */
 504        mutex_init(&bdev->bd_fsfreeze_mutex);
 505}
 506
 507static inline void __bd_forget(struct inode *inode)
 508{
 509        list_del_init(&inode->i_devices);
 510        inode->i_bdev = NULL;
 511        inode->i_mapping = &inode->i_data;
 512}
 513
 514static void bdev_evict_inode(struct inode *inode)
 515{
 516        struct block_device *bdev = &BDEV_I(inode)->bdev;
 517        struct list_head *p;
 518        truncate_inode_pages_final(&inode->i_data);
 519        invalidate_inode_buffers(inode); /* is it needed here? */
 520        clear_inode(inode);
 521        spin_lock(&bdev_lock);
 522        while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
 523                __bd_forget(list_entry(p, struct inode, i_devices));
 524        }
 525        list_del_init(&bdev->bd_list);
 526        spin_unlock(&bdev_lock);
 527}
 528
 529static const struct super_operations bdev_sops = {
 530        .statfs = simple_statfs,
 531        .alloc_inode = bdev_alloc_inode,
 532        .destroy_inode = bdev_destroy_inode,
 533        .drop_inode = generic_delete_inode,
 534        .evict_inode = bdev_evict_inode,
 535};
 536
 537static struct dentry *bd_mount(struct file_system_type *fs_type,
 538        int flags, const char *dev_name, void *data)
 539{
 540        return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
 541}
 542
 543static struct file_system_type bd_type = {
 544        .name           = "bdev",
 545        .mount          = bd_mount,
 546        .kill_sb        = kill_anon_super,
 547};
 548
 549static struct super_block *blockdev_superblock __read_mostly;
 550
 551void __init bdev_cache_init(void)
 552{
 553        int err;
 554        static struct vfsmount *bd_mnt;
 555
 556        bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
 557                        0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
 558                                SLAB_MEM_SPREAD|SLAB_PANIC),
 559                        init_once);
 560        err = register_filesystem(&bd_type);
 561        if (err)
 562                panic("Cannot register bdev pseudo-fs");
 563        bd_mnt = kern_mount(&bd_type);
 564        if (IS_ERR(bd_mnt))
 565                panic("Cannot create bdev pseudo-fs");
 566        blockdev_superblock = bd_mnt->mnt_sb;   /* For writeback */
 567}
 568
 569/*
 570 * Most likely _very_ bad one - but then it's hardly critical for small
 571 * /dev and can be fixed when somebody will need really large one.
 572 * Keep in mind that it will be fed through icache hash function too.
 573 */
 574static inline unsigned long hash(dev_t dev)
 575{
 576        return MAJOR(dev)+MINOR(dev);
 577}
 578
 579static int bdev_test(struct inode *inode, void *data)
 580{
 581        return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
 582}
 583
 584static int bdev_set(struct inode *inode, void *data)
 585{
 586        BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
 587        return 0;
 588}
 589
 590static LIST_HEAD(all_bdevs);
 591
 592struct block_device *bdget(dev_t dev)
 593{
 594        struct block_device *bdev;
 595        struct inode *inode;
 596
 597        inode = iget5_locked(blockdev_superblock, hash(dev),
 598                        bdev_test, bdev_set, &dev);
 599
 600        if (!inode)
 601                return NULL;
 602
 603        bdev = &BDEV_I(inode)->bdev;
 604
 605        if (inode->i_state & I_NEW) {
 606                bdev->bd_contains = NULL;
 607                bdev->bd_super = NULL;
 608                bdev->bd_inode = inode;
 609                bdev->bd_block_size = (1 << inode->i_blkbits);
 610                bdev->bd_part_count = 0;
 611                bdev->bd_invalidated = 0;
 612                inode->i_mode = S_IFBLK;
 613                inode->i_rdev = dev;
 614                inode->i_bdev = bdev;
 615                inode->i_data.a_ops = &def_blk_aops;
 616                mapping_set_gfp_mask(&inode->i_data, GFP_USER);
 617                spin_lock(&bdev_lock);
 618                list_add(&bdev->bd_list, &all_bdevs);
 619                spin_unlock(&bdev_lock);
 620                unlock_new_inode(inode);
 621        }
 622        return bdev;
 623}
 624
 625EXPORT_SYMBOL(bdget);
 626
 627/**
 628 * bdgrab -- Grab a reference to an already referenced block device
 629 * @bdev:       Block device to grab a reference to.
 630 */
 631struct block_device *bdgrab(struct block_device *bdev)
 632{
 633        ihold(bdev->bd_inode);
 634        return bdev;
 635}
 636EXPORT_SYMBOL(bdgrab);
 637
 638long nr_blockdev_pages(void)
 639{
 640        struct block_device *bdev;
 641        long ret = 0;
 642        spin_lock(&bdev_lock);
 643        list_for_each_entry(bdev, &all_bdevs, bd_list) {
 644                ret += bdev->bd_inode->i_mapping->nrpages;
 645        }
 646        spin_unlock(&bdev_lock);
 647        return ret;
 648}
 649
 650void bdput(struct block_device *bdev)
 651{
 652        iput(bdev->bd_inode);
 653}
 654
 655EXPORT_SYMBOL(bdput);
 656 
 657static struct block_device *bd_acquire(struct inode *inode)
 658{
 659        struct block_device *bdev;
 660
 661        spin_lock(&bdev_lock);
 662        bdev = inode->i_bdev;
 663        if (bdev) {
 664                ihold(bdev->bd_inode);
 665                spin_unlock(&bdev_lock);
 666                return bdev;
 667        }
 668        spin_unlock(&bdev_lock);
 669
 670        bdev = bdget(inode->i_rdev);
 671        if (bdev) {
 672                spin_lock(&bdev_lock);
 673                if (!inode->i_bdev) {
 674                        /*
 675                         * We take an additional reference to bd_inode,
 676                         * and it's released in clear_inode() of inode.
 677                         * So, we can access it via ->i_mapping always
 678                         * without igrab().
 679                         */
 680                        ihold(bdev->bd_inode);
 681                        inode->i_bdev = bdev;
 682                        inode->i_mapping = bdev->bd_inode->i_mapping;
 683                        list_add(&inode->i_devices, &bdev->bd_inodes);
 684                }
 685                spin_unlock(&bdev_lock);
 686        }
 687        return bdev;
 688}
 689
 690int sb_is_blkdev_sb(struct super_block *sb)
 691{
 692        return sb == blockdev_superblock;
 693}
 694
 695/* Call when you free inode */
 696
 697void bd_forget(struct inode *inode)
 698{
 699        struct block_device *bdev = NULL;
 700
 701        spin_lock(&bdev_lock);
 702        if (!sb_is_blkdev_sb(inode->i_sb))
 703                bdev = inode->i_bdev;
 704        __bd_forget(inode);
 705        spin_unlock(&bdev_lock);
 706
 707        if (bdev)
 708                iput(bdev->bd_inode);
 709}
 710
 711/**
 712 * bd_may_claim - test whether a block device can be claimed
 713 * @bdev: block device of interest
 714 * @whole: whole block device containing @bdev, may equal @bdev
 715 * @holder: holder trying to claim @bdev
 716 *
 717 * Test whether @bdev can be claimed by @holder.
 718 *
 719 * CONTEXT:
 720 * spin_lock(&bdev_lock).
 721 *
 722 * RETURNS:
 723 * %true if @bdev can be claimed, %false otherwise.
 724 */
 725static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
 726                         void *holder)
 727{
 728        if (bdev->bd_holder == holder)
 729                return true;     /* already a holder */
 730        else if (bdev->bd_holder != NULL)
 731                return false;    /* held by someone else */
 732        else if (bdev->bd_contains == bdev)
 733                return true;     /* is a whole device which isn't held */
 734
 735        else if (whole->bd_holder == bd_may_claim)
 736                return true;     /* is a partition of a device that is being partitioned */
 737        else if (whole->bd_holder != NULL)
 738                return false;    /* is a partition of a held device */
 739        else
 740                return true;     /* is a partition of an un-held device */
 741}
 742
 743/**
 744 * bd_prepare_to_claim - prepare to claim a block device
 745 * @bdev: block device of interest
 746 * @whole: the whole device containing @bdev, may equal @bdev
 747 * @holder: holder trying to claim @bdev
 748 *
 749 * Prepare to claim @bdev.  This function fails if @bdev is already
 750 * claimed by another holder and waits if another claiming is in
 751 * progress.  This function doesn't actually claim.  On successful
 752 * return, the caller has ownership of bd_claiming and bd_holder[s].
 753 *
 754 * CONTEXT:
 755 * spin_lock(&bdev_lock).  Might release bdev_lock, sleep and regrab
 756 * it multiple times.
 757 *
 758 * RETURNS:
 759 * 0 if @bdev can be claimed, -EBUSY otherwise.
 760 */
 761static int bd_prepare_to_claim(struct block_device *bdev,
 762                               struct block_device *whole, void *holder)
 763{
 764retry:
 765        /* if someone else claimed, fail */
 766        if (!bd_may_claim(bdev, whole, holder))
 767                return -EBUSY;
 768
 769        /* if claiming is already in progress, wait for it to finish */
 770        if (whole->bd_claiming) {
 771                wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
 772                DEFINE_WAIT(wait);
 773
 774                prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
 775                spin_unlock(&bdev_lock);
 776                schedule();
 777                finish_wait(wq, &wait);
 778                spin_lock(&bdev_lock);
 779                goto retry;
 780        }
 781
 782        /* yay, all mine */
 783        return 0;
 784}
 785
 786/**
 787 * bd_start_claiming - start claiming a block device
 788 * @bdev: block device of interest
 789 * @holder: holder trying to claim @bdev
 790 *
 791 * @bdev is about to be opened exclusively.  Check @bdev can be opened
 792 * exclusively and mark that an exclusive open is in progress.  Each
 793 * successful call to this function must be matched with a call to
 794 * either bd_finish_claiming() or bd_abort_claiming() (which do not
 795 * fail).
 796 *
 797 * This function is used to gain exclusive access to the block device
 798 * without actually causing other exclusive open attempts to fail. It
 799 * should be used when the open sequence itself requires exclusive
 800 * access but may subsequently fail.
 801 *
 802 * CONTEXT:
 803 * Might sleep.
 804 *
 805 * RETURNS:
 806 * Pointer to the block device containing @bdev on success, ERR_PTR()
 807 * value on failure.
 808 */
 809static struct block_device *bd_start_claiming(struct block_device *bdev,
 810                                              void *holder)
 811{
 812        struct gendisk *disk;
 813        struct block_device *whole;
 814        int partno, err;
 815
 816        might_sleep();
 817
 818        /*
 819         * @bdev might not have been initialized properly yet, look up
 820         * and grab the outer block device the hard way.
 821         */
 822        disk = get_gendisk(bdev->bd_dev, &partno);
 823        if (!disk)
 824                return ERR_PTR(-ENXIO);
 825
 826        /*
 827         * Normally, @bdev should equal what's returned from bdget_disk()
 828         * if partno is 0; however, some drivers (floppy) use multiple
 829         * bdev's for the same physical device and @bdev may be one of the
 830         * aliases.  Keep @bdev if partno is 0.  This means claimer
 831         * tracking is broken for those devices but it has always been that
 832         * way.
 833         */
 834        if (partno)
 835                whole = bdget_disk(disk, 0);
 836        else
 837                whole = bdgrab(bdev);
 838
 839        module_put(disk->fops->owner);
 840        put_disk(disk);
 841        if (!whole)
 842                return ERR_PTR(-ENOMEM);
 843
 844        /* prepare to claim, if successful, mark claiming in progress */
 845        spin_lock(&bdev_lock);
 846
 847        err = bd_prepare_to_claim(bdev, whole, holder);
 848        if (err == 0) {
 849                whole->bd_claiming = holder;
 850                spin_unlock(&bdev_lock);
 851                return whole;
 852        } else {
 853                spin_unlock(&bdev_lock);
 854                bdput(whole);
 855                return ERR_PTR(err);
 856        }
 857}
 858
 859#ifdef CONFIG_SYSFS
 860struct bd_holder_disk {
 861        struct list_head        list;
 862        struct gendisk          *disk;
 863        int                     refcnt;
 864};
 865
 866static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
 867                                                  struct gendisk *disk)
 868{
 869        struct bd_holder_disk *holder;
 870
 871        list_for_each_entry(holder, &bdev->bd_holder_disks, list)
 872                if (holder->disk == disk)
 873                        return holder;
 874        return NULL;
 875}
 876
 877static int add_symlink(struct kobject *from, struct kobject *to)
 878{
 879        return sysfs_create_link(from, to, kobject_name(to));
 880}
 881
 882static void del_symlink(struct kobject *from, struct kobject *to)
 883{
 884        sysfs_remove_link(from, kobject_name(to));
 885}
 886
 887/**
 888 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
 889 * @bdev: the claimed slave bdev
 890 * @disk: the holding disk
 891 *
 892 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
 893 *
 894 * This functions creates the following sysfs symlinks.
 895 *
 896 * - from "slaves" directory of the holder @disk to the claimed @bdev
 897 * - from "holders" directory of the @bdev to the holder @disk
 898 *
 899 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
 900 * passed to bd_link_disk_holder(), then:
 901 *
 902 *   /sys/block/dm-0/slaves/sda --> /sys/block/sda
 903 *   /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
 904 *
 905 * The caller must have claimed @bdev before calling this function and
 906 * ensure that both @bdev and @disk are valid during the creation and
 907 * lifetime of these symlinks.
 908 *
 909 * CONTEXT:
 910 * Might sleep.
 911 *
 912 * RETURNS:
 913 * 0 on success, -errno on failure.
 914 */
 915int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
 916{
 917        struct bd_holder_disk *holder;
 918        int ret = 0;
 919
 920        mutex_lock(&bdev->bd_mutex);
 921
 922        WARN_ON_ONCE(!bdev->bd_holder);
 923
 924        /* FIXME: remove the following once add_disk() handles errors */
 925        if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
 926                goto out_unlock;
 927
 928        holder = bd_find_holder_disk(bdev, disk);
 929        if (holder) {
 930                holder->refcnt++;
 931                goto out_unlock;
 932        }
 933
 934        holder = kzalloc(sizeof(*holder), GFP_KERNEL);
 935        if (!holder) {
 936                ret = -ENOMEM;
 937                goto out_unlock;
 938        }
 939
 940        INIT_LIST_HEAD(&holder->list);
 941        holder->disk = disk;
 942        holder->refcnt = 1;
 943
 944        ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
 945        if (ret)
 946                goto out_free;
 947
 948        ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
 949        if (ret)
 950                goto out_del;
 951        /*
 952         * bdev could be deleted beneath us which would implicitly destroy
 953         * the holder directory.  Hold on to it.
 954         */
 955        kobject_get(bdev->bd_part->holder_dir);
 956
 957        list_add(&holder->list, &bdev->bd_holder_disks);
 958        goto out_unlock;
 959
 960out_del:
 961        del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
 962out_free:
 963        kfree(holder);
 964out_unlock:
 965        mutex_unlock(&bdev->bd_mutex);
 966        return ret;
 967}
 968EXPORT_SYMBOL_GPL(bd_link_disk_holder);
 969
 970/**
 971 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
 972 * @bdev: the calimed slave bdev
 973 * @disk: the holding disk
 974 *
 975 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
 976 *
 977 * CONTEXT:
 978 * Might sleep.
 979 */
 980void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
 981{
 982        struct bd_holder_disk *holder;
 983
 984        mutex_lock(&bdev->bd_mutex);
 985
 986        holder = bd_find_holder_disk(bdev, disk);
 987
 988        if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
 989                del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
 990                del_symlink(bdev->bd_part->holder_dir,
 991                            &disk_to_dev(disk)->kobj);
 992                kobject_put(bdev->bd_part->holder_dir);
 993                list_del_init(&holder->list);
 994                kfree(holder);
 995        }
 996
 997        mutex_unlock(&bdev->bd_mutex);
 998}
 999EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1000#endif
1001
1002/**
1003 * flush_disk - invalidates all buffer-cache entries on a disk
1004 *
1005 * @bdev:      struct block device to be flushed
1006 * @kill_dirty: flag to guide handling of dirty inodes
1007 *
1008 * Invalidates all buffer-cache entries on a disk. It should be called
1009 * when a disk has been changed -- either by a media change or online
1010 * resize.
1011 */
1012static void flush_disk(struct block_device *bdev, bool kill_dirty)
1013{
1014        if (__invalidate_device(bdev, kill_dirty)) {
1015                char name[BDEVNAME_SIZE] = "";
1016
1017                if (bdev->bd_disk)
1018                        disk_name(bdev->bd_disk, 0, name);
1019                printk(KERN_WARNING "VFS: busy inodes on changed media or "
1020                       "resized disk %s\n", name);
1021        }
1022
1023        if (!bdev->bd_disk)
1024                return;
1025        if (disk_part_scan_enabled(bdev->bd_disk))
1026                bdev->bd_invalidated = 1;
1027}
1028
1029/**
1030 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1031 * @disk: struct gendisk to check
1032 * @bdev: struct bdev to adjust.
1033 *
1034 * This routine checks to see if the bdev size does not match the disk size
1035 * and adjusts it if it differs.
1036 */
1037void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1038{
1039        loff_t disk_size, bdev_size;
1040
1041        disk_size = (loff_t)get_capacity(disk) << 9;
1042        bdev_size = i_size_read(bdev->bd_inode);
1043        if (disk_size != bdev_size) {
1044                char name[BDEVNAME_SIZE];
1045
1046                disk_name(disk, 0, name);
1047                printk(KERN_INFO
1048                       "%s: detected capacity change from %lld to %lld\n",
1049                       name, bdev_size, disk_size);
1050                i_size_write(bdev->bd_inode, disk_size);
1051                flush_disk(bdev, false);
1052        }
1053}
1054EXPORT_SYMBOL(check_disk_size_change);
1055
1056/**
1057 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1058 * @disk: struct gendisk to be revalidated
1059 *
1060 * This routine is a wrapper for lower-level driver's revalidate_disk
1061 * call-backs.  It is used to do common pre and post operations needed
1062 * for all revalidate_disk operations.
1063 */
1064int revalidate_disk(struct gendisk *disk)
1065{
1066        struct block_device *bdev;
1067        int ret = 0;
1068
1069        if (disk->fops->revalidate_disk)
1070                ret = disk->fops->revalidate_disk(disk);
1071
1072        bdev = bdget_disk(disk, 0);
1073        if (!bdev)
1074                return ret;
1075
1076        mutex_lock(&bdev->bd_mutex);
1077        check_disk_size_change(disk, bdev);
1078        bdev->bd_invalidated = 0;
1079        mutex_unlock(&bdev->bd_mutex);
1080        bdput(bdev);
1081        return ret;
1082}
1083EXPORT_SYMBOL(revalidate_disk);
1084
1085/*
1086 * This routine checks whether a removable media has been changed,
1087 * and invalidates all buffer-cache-entries in that case. This
1088 * is a relatively slow routine, so we have to try to minimize using
1089 * it. Thus it is called only upon a 'mount' or 'open'. This
1090 * is the best way of combining speed and utility, I think.
1091 * People changing diskettes in the middle of an operation deserve
1092 * to lose :-)
1093 */
1094int check_disk_change(struct block_device *bdev)
1095{
1096        struct gendisk *disk = bdev->bd_disk;
1097        const struct block_device_operations *bdops = disk->fops;
1098        unsigned int events;
1099
1100        events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1101                                   DISK_EVENT_EJECT_REQUEST);
1102        if (!(events & DISK_EVENT_MEDIA_CHANGE))
1103                return 0;
1104
1105        flush_disk(bdev, true);
1106        if (bdops->revalidate_disk)
1107                bdops->revalidate_disk(bdev->bd_disk);
1108        return 1;
1109}
1110
1111EXPORT_SYMBOL(check_disk_change);
1112
1113void bd_set_size(struct block_device *bdev, loff_t size)
1114{
1115        unsigned bsize = bdev_logical_block_size(bdev);
1116
1117        mutex_lock(&bdev->bd_inode->i_mutex);
1118        i_size_write(bdev->bd_inode, size);
1119        mutex_unlock(&bdev->bd_inode->i_mutex);
1120        while (bsize < PAGE_CACHE_SIZE) {
1121                if (size & bsize)
1122                        break;
1123                bsize <<= 1;
1124        }
1125        bdev->bd_block_size = bsize;
1126        bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1127}
1128EXPORT_SYMBOL(bd_set_size);
1129
1130static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1131
1132/*
1133 * bd_mutex locking:
1134 *
1135 *  mutex_lock(part->bd_mutex)
1136 *    mutex_lock_nested(whole->bd_mutex, 1)
1137 */
1138
1139static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1140{
1141        struct gendisk *disk;
1142        struct module *owner;
1143        int ret;
1144        int partno;
1145        int perm = 0;
1146
1147        if (mode & FMODE_READ)
1148                perm |= MAY_READ;
1149        if (mode & FMODE_WRITE)
1150                perm |= MAY_WRITE;
1151        /*
1152         * hooks: /n/, see "layering violations".
1153         */
1154        if (!for_part) {
1155                ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1156                if (ret != 0) {
1157                        bdput(bdev);
1158                        return ret;
1159                }
1160        }
1161
1162 restart:
1163
1164        ret = -ENXIO;
1165        disk = get_gendisk(bdev->bd_dev, &partno);
1166        if (!disk)
1167                goto out;
1168        owner = disk->fops->owner;
1169
1170        disk_block_events(disk);
1171        mutex_lock_nested(&bdev->bd_mutex, for_part);
1172        if (!bdev->bd_openers) {
1173                bdev->bd_disk = disk;
1174                bdev->bd_queue = disk->queue;
1175                bdev->bd_contains = bdev;
1176                if (!partno) {
1177                        ret = -ENXIO;
1178                        bdev->bd_part = disk_get_part(disk, partno);
1179                        if (!bdev->bd_part)
1180                                goto out_clear;
1181
1182                        ret = 0;
1183                        if (disk->fops->open) {
1184                                ret = disk->fops->open(bdev, mode);
1185                                if (ret == -ERESTARTSYS) {
1186                                        /* Lost a race with 'disk' being
1187                                         * deleted, try again.
1188                                         * See md.c
1189                                         */
1190                                        disk_put_part(bdev->bd_part);
1191                                        bdev->bd_part = NULL;
1192                                        bdev->bd_disk = NULL;
1193                                        bdev->bd_queue = NULL;
1194                                        mutex_unlock(&bdev->bd_mutex);
1195                                        disk_unblock_events(disk);
1196                                        put_disk(disk);
1197                                        module_put(owner);
1198                                        goto restart;
1199                                }
1200                        }
1201
1202                        if (!ret)
1203                                bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1204
1205                        /*
1206                         * If the device is invalidated, rescan partition
1207                         * if open succeeded or failed with -ENOMEDIUM.
1208                         * The latter is necessary to prevent ghost
1209                         * partitions on a removed medium.
1210                         */
1211                        if (bdev->bd_invalidated) {
1212                                if (!ret)
1213                                        rescan_partitions(disk, bdev);
1214                                else if (ret == -ENOMEDIUM)
1215                                        invalidate_partitions(disk, bdev);
1216                        }
1217                        if (ret)
1218                                goto out_clear;
1219                } else {
1220                        struct block_device *whole;
1221                        whole = bdget_disk(disk, 0);
1222                        ret = -ENOMEM;
1223                        if (!whole)
1224                                goto out_clear;
1225                        BUG_ON(for_part);
1226                        ret = __blkdev_get(whole, mode, 1);
1227                        if (ret)
1228                                goto out_clear;
1229                        bdev->bd_contains = whole;
1230                        bdev->bd_part = disk_get_part(disk, partno);
1231                        if (!(disk->flags & GENHD_FL_UP) ||
1232                            !bdev->bd_part || !bdev->bd_part->nr_sects) {
1233                                ret = -ENXIO;
1234                                goto out_clear;
1235                        }
1236                        bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1237                }
1238        } else {
1239                if (bdev->bd_contains == bdev) {
1240                        ret = 0;
1241                        if (bdev->bd_disk->fops->open)
1242                                ret = bdev->bd_disk->fops->open(bdev, mode);
1243                        /* the same as first opener case, read comment there */
1244                        if (bdev->bd_invalidated) {
1245                                if (!ret)
1246                                        rescan_partitions(bdev->bd_disk, bdev);
1247                                else if (ret == -ENOMEDIUM)
1248                                        invalidate_partitions(bdev->bd_disk, bdev);
1249                        }
1250                        if (ret)
1251                                goto out_unlock_bdev;
1252                }
1253                /* only one opener holds refs to the module and disk */
1254                put_disk(disk);
1255                module_put(owner);
1256        }
1257        bdev->bd_openers++;
1258        if (for_part)
1259                bdev->bd_part_count++;
1260        mutex_unlock(&bdev->bd_mutex);
1261        disk_unblock_events(disk);
1262        return 0;
1263
1264 out_clear:
1265        disk_put_part(bdev->bd_part);
1266        bdev->bd_disk = NULL;
1267        bdev->bd_part = NULL;
1268        bdev->bd_queue = NULL;
1269        if (bdev != bdev->bd_contains)
1270                __blkdev_put(bdev->bd_contains, mode, 1);
1271        bdev->bd_contains = NULL;
1272 out_unlock_bdev:
1273        mutex_unlock(&bdev->bd_mutex);
1274        disk_unblock_events(disk);
1275        put_disk(disk);
1276        module_put(owner);
1277 out:
1278        bdput(bdev);
1279
1280        return ret;
1281}
1282
1283/**
1284 * blkdev_get - open a block device
1285 * @bdev: block_device to open
1286 * @mode: FMODE_* mask
1287 * @holder: exclusive holder identifier
1288 *
1289 * Open @bdev with @mode.  If @mode includes %FMODE_EXCL, @bdev is
1290 * open with exclusive access.  Specifying %FMODE_EXCL with %NULL
1291 * @holder is invalid.  Exclusive opens may nest for the same @holder.
1292 *
1293 * On success, the reference count of @bdev is unchanged.  On failure,
1294 * @bdev is put.
1295 *
1296 * CONTEXT:
1297 * Might sleep.
1298 *
1299 * RETURNS:
1300 * 0 on success, -errno on failure.
1301 */
1302int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1303{
1304        struct block_device *whole = NULL;
1305        int res;
1306
1307        WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1308
1309        if ((mode & FMODE_EXCL) && holder) {
1310                whole = bd_start_claiming(bdev, holder);
1311                if (IS_ERR(whole)) {
1312                        bdput(bdev);
1313                        return PTR_ERR(whole);
1314                }
1315        }
1316
1317        res = __blkdev_get(bdev, mode, 0);
1318
1319        if (whole) {
1320                struct gendisk *disk = whole->bd_disk;
1321
1322                /* finish claiming */
1323                mutex_lock(&bdev->bd_mutex);
1324                spin_lock(&bdev_lock);
1325
1326                if (!res) {
1327                        BUG_ON(!bd_may_claim(bdev, whole, holder));
1328                        /*
1329                         * Note that for a whole device bd_holders
1330                         * will be incremented twice, and bd_holder
1331                         * will be set to bd_may_claim before being
1332                         * set to holder
1333                         */
1334                        whole->bd_holders++;
1335                        whole->bd_holder = bd_may_claim;
1336                        bdev->bd_holders++;
1337                        bdev->bd_holder = holder;
1338                }
1339
1340                /* tell others that we're done */
1341                BUG_ON(whole->bd_claiming != holder);
1342                whole->bd_claiming = NULL;
1343                wake_up_bit(&whole->bd_claiming, 0);
1344
1345                spin_unlock(&bdev_lock);
1346
1347                /*
1348                 * Block event polling for write claims if requested.  Any
1349                 * write holder makes the write_holder state stick until
1350                 * all are released.  This is good enough and tracking
1351                 * individual writeable reference is too fragile given the
1352                 * way @mode is used in blkdev_get/put().
1353                 */
1354                if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1355                    (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1356                        bdev->bd_write_holder = true;
1357                        disk_block_events(disk);
1358                }
1359
1360                mutex_unlock(&bdev->bd_mutex);
1361                bdput(whole);
1362        }
1363
1364        return res;
1365}
1366EXPORT_SYMBOL(blkdev_get);
1367
1368/**
1369 * blkdev_get_by_path - open a block device by name
1370 * @path: path to the block device to open
1371 * @mode: FMODE_* mask
1372 * @holder: exclusive holder identifier
1373 *
1374 * Open the blockdevice described by the device file at @path.  @mode
1375 * and @holder are identical to blkdev_get().
1376 *
1377 * On success, the returned block_device has reference count of one.
1378 *
1379 * CONTEXT:
1380 * Might sleep.
1381 *
1382 * RETURNS:
1383 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1384 */
1385struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1386                                        void *holder)
1387{
1388        struct block_device *bdev;
1389        int err;
1390
1391        bdev = lookup_bdev(path);
1392        if (IS_ERR(bdev))
1393                return bdev;
1394
1395        err = blkdev_get(bdev, mode, holder);
1396        if (err)
1397                return ERR_PTR(err);
1398
1399        if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1400                blkdev_put(bdev, mode);
1401                return ERR_PTR(-EACCES);
1402        }
1403
1404        return bdev;
1405}
1406EXPORT_SYMBOL(blkdev_get_by_path);
1407
1408/**
1409 * blkdev_get_by_dev - open a block device by device number
1410 * @dev: device number of block device to open
1411 * @mode: FMODE_* mask
1412 * @holder: exclusive holder identifier
1413 *
1414 * Open the blockdevice described by device number @dev.  @mode and
1415 * @holder are identical to blkdev_get().
1416 *
1417 * Use it ONLY if you really do not have anything better - i.e. when
1418 * you are behind a truly sucky interface and all you are given is a
1419 * device number.  _Never_ to be used for internal purposes.  If you
1420 * ever need it - reconsider your API.
1421 *
1422 * On success, the returned block_device has reference count of one.
1423 *
1424 * CONTEXT:
1425 * Might sleep.
1426 *
1427 * RETURNS:
1428 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1429 */
1430struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1431{
1432        struct block_device *bdev;
1433        int err;
1434
1435        bdev = bdget(dev);
1436        if (!bdev)
1437                return ERR_PTR(-ENOMEM);
1438
1439        err = blkdev_get(bdev, mode, holder);
1440        if (err)
1441                return ERR_PTR(err);
1442
1443        return bdev;
1444}
1445EXPORT_SYMBOL(blkdev_get_by_dev);
1446
1447static int blkdev_open(struct inode * inode, struct file * filp)
1448{
1449        struct block_device *bdev;
1450
1451        /*
1452         * Preserve backwards compatibility and allow large file access
1453         * even if userspace doesn't ask for it explicitly. Some mkfs
1454         * binary needs it. We might want to drop this workaround
1455         * during an unstable branch.
1456         */
1457        filp->f_flags |= O_LARGEFILE;
1458
1459        if (filp->f_flags & O_NDELAY)
1460                filp->f_mode |= FMODE_NDELAY;
1461        if (filp->f_flags & O_EXCL)
1462                filp->f_mode |= FMODE_EXCL;
1463        if ((filp->f_flags & O_ACCMODE) == 3)
1464                filp->f_mode |= FMODE_WRITE_IOCTL;
1465
1466        bdev = bd_acquire(inode);
1467        if (bdev == NULL)
1468                return -ENOMEM;
1469
1470        filp->f_mapping = bdev->bd_inode->i_mapping;
1471
1472        return blkdev_get(bdev, filp->f_mode, filp);
1473}
1474
1475static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1476{
1477        struct gendisk *disk = bdev->bd_disk;
1478        struct block_device *victim = NULL;
1479
1480        mutex_lock_nested(&bdev->bd_mutex, for_part);
1481        if (for_part)
1482                bdev->bd_part_count--;
1483
1484        if (!--bdev->bd_openers) {
1485                WARN_ON_ONCE(bdev->bd_holders);
1486                sync_blockdev(bdev);
1487                kill_bdev(bdev);
1488                /*
1489                 * ->release can cause the queue to disappear, so flush all
1490                 * dirty data before.
1491                 */
1492                bdev_write_inode(bdev->bd_inode);
1493        }
1494        if (bdev->bd_contains == bdev) {
1495                if (disk->fops->release)
1496                        disk->fops->release(disk, mode);
1497        }
1498        if (!bdev->bd_openers) {
1499                struct module *owner = disk->fops->owner;
1500
1501                disk_put_part(bdev->bd_part);
1502                bdev->bd_part = NULL;
1503                bdev->bd_disk = NULL;
1504                if (bdev != bdev->bd_contains)
1505                        victim = bdev->bd_contains;
1506                bdev->bd_contains = NULL;
1507
1508                put_disk(disk);
1509                module_put(owner);
1510        }
1511        mutex_unlock(&bdev->bd_mutex);
1512        bdput(bdev);
1513        if (victim)
1514                __blkdev_put(victim, mode, 1);
1515}
1516
1517void blkdev_put(struct block_device *bdev, fmode_t mode)
1518{
1519        mutex_lock(&bdev->bd_mutex);
1520
1521        if (mode & FMODE_EXCL) {
1522                bool bdev_free;
1523
1524                /*
1525                 * Release a claim on the device.  The holder fields
1526                 * are protected with bdev_lock.  bd_mutex is to
1527                 * synchronize disk_holder unlinking.
1528                 */
1529                spin_lock(&bdev_lock);
1530
1531                WARN_ON_ONCE(--bdev->bd_holders < 0);
1532                WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1533
1534                /* bd_contains might point to self, check in a separate step */
1535                if ((bdev_free = !bdev->bd_holders))
1536                        bdev->bd_holder = NULL;
1537                if (!bdev->bd_contains->bd_holders)
1538                        bdev->bd_contains->bd_holder = NULL;
1539
1540                spin_unlock(&bdev_lock);
1541
1542                /*
1543                 * If this was the last claim, remove holder link and
1544                 * unblock evpoll if it was a write holder.
1545                 */
1546                if (bdev_free && bdev->bd_write_holder) {
1547                        disk_unblock_events(bdev->bd_disk);
1548                        bdev->bd_write_holder = false;
1549                }
1550        }
1551
1552        /*
1553         * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1554         * event.  This is to ensure detection of media removal commanded
1555         * from userland - e.g. eject(1).
1556         */
1557        disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1558
1559        mutex_unlock(&bdev->bd_mutex);
1560
1561        __blkdev_put(bdev, mode, 0);
1562}
1563EXPORT_SYMBOL(blkdev_put);
1564
1565static int blkdev_close(struct inode * inode, struct file * filp)
1566{
1567        struct block_device *bdev = I_BDEV(filp->f_mapping->host);
1568        blkdev_put(bdev, filp->f_mode);
1569        return 0;
1570}
1571
1572static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1573{
1574        struct block_device *bdev = I_BDEV(file->f_mapping->host);
1575        fmode_t mode = file->f_mode;
1576
1577        /*
1578         * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1579         * to updated it before every ioctl.
1580         */
1581        if (file->f_flags & O_NDELAY)
1582                mode |= FMODE_NDELAY;
1583        else
1584                mode &= ~FMODE_NDELAY;
1585
1586        return blkdev_ioctl(bdev, mode, cmd, arg);
1587}
1588
1589/*
1590 * Write data to the block device.  Only intended for the block device itself
1591 * and the raw driver which basically is a fake block device.
1592 *
1593 * Does not take i_mutex for the write and thus is not for general purpose
1594 * use.
1595 */
1596ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1597{
1598        struct file *file = iocb->ki_filp;
1599        struct inode *bd_inode = file->f_mapping->host;
1600        loff_t size = i_size_read(bd_inode);
1601        struct blk_plug plug;
1602        ssize_t ret;
1603
1604        if (bdev_read_only(I_BDEV(bd_inode)))
1605                return -EPERM;
1606
1607        if (!iov_iter_count(from))
1608                return 0;
1609
1610        if (iocb->ki_pos >= size)
1611                return -ENOSPC;
1612
1613        iov_iter_truncate(from, size - iocb->ki_pos);
1614
1615        blk_start_plug(&plug);
1616        ret = __generic_file_write_iter(iocb, from);
1617        if (ret > 0) {
1618                ssize_t err;
1619                err = generic_write_sync(file, iocb->ki_pos - ret, ret);
1620                if (err < 0)
1621                        ret = err;
1622        }
1623        blk_finish_plug(&plug);
1624        return ret;
1625}
1626EXPORT_SYMBOL_GPL(blkdev_write_iter);
1627
1628ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1629{
1630        struct file *file = iocb->ki_filp;
1631        struct inode *bd_inode = file->f_mapping->host;
1632        loff_t size = i_size_read(bd_inode);
1633        loff_t pos = iocb->ki_pos;
1634
1635        if (pos >= size)
1636                return 0;
1637
1638        size -= pos;
1639        iov_iter_truncate(to, size);
1640        return generic_file_read_iter(iocb, to);
1641}
1642EXPORT_SYMBOL_GPL(blkdev_read_iter);
1643
1644/*
1645 * Try to release a page associated with block device when the system
1646 * is under memory pressure.
1647 */
1648static int blkdev_releasepage(struct page *page, gfp_t wait)
1649{
1650        struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1651
1652        if (super && super->s_op->bdev_try_to_free_page)
1653                return super->s_op->bdev_try_to_free_page(super, page, wait);
1654
1655        return try_to_free_buffers(page);
1656}
1657
1658static const struct address_space_operations def_blk_aops = {
1659        .readpage       = blkdev_readpage,
1660        .readpages      = blkdev_readpages,
1661        .writepage      = blkdev_writepage,
1662        .write_begin    = blkdev_write_begin,
1663        .write_end      = blkdev_write_end,
1664        .writepages     = generic_writepages,
1665        .releasepage    = blkdev_releasepage,
1666        .direct_IO      = blkdev_direct_IO,
1667        .is_dirty_writeback = buffer_check_dirty_writeback,
1668};
1669
1670const struct file_operations def_blk_fops = {
1671        .open           = blkdev_open,
1672        .release        = blkdev_close,
1673        .llseek         = block_llseek,
1674        .read_iter      = blkdev_read_iter,
1675        .write_iter     = blkdev_write_iter,
1676        .mmap           = generic_file_mmap,
1677        .fsync          = blkdev_fsync,
1678        .unlocked_ioctl = block_ioctl,
1679#ifdef CONFIG_COMPAT
1680        .compat_ioctl   = compat_blkdev_ioctl,
1681#endif
1682        .splice_read    = generic_file_splice_read,
1683        .splice_write   = iter_file_splice_write,
1684};
1685
1686int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1687{
1688        int res;
1689        mm_segment_t old_fs = get_fs();
1690        set_fs(KERNEL_DS);
1691        res = blkdev_ioctl(bdev, 0, cmd, arg);
1692        set_fs(old_fs);
1693        return res;
1694}
1695
1696EXPORT_SYMBOL(ioctl_by_bdev);
1697
1698/**
1699 * lookup_bdev  - lookup a struct block_device by name
1700 * @pathname:   special file representing the block device
1701 *
1702 * Get a reference to the blockdevice at @pathname in the current
1703 * namespace if possible and return it.  Return ERR_PTR(error)
1704 * otherwise.
1705 */
1706struct block_device *lookup_bdev(const char *pathname)
1707{
1708        struct block_device *bdev;
1709        struct inode *inode;
1710        struct path path;
1711        int error;
1712
1713        if (!pathname || !*pathname)
1714                return ERR_PTR(-EINVAL);
1715
1716        error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1717        if (error)
1718                return ERR_PTR(error);
1719
1720        inode = d_backing_inode(path.dentry);
1721        error = -ENOTBLK;
1722        if (!S_ISBLK(inode->i_mode))
1723                goto fail;
1724        error = -EACCES;
1725        if (path.mnt->mnt_flags & MNT_NODEV)
1726                goto fail;
1727        error = -ENOMEM;
1728        bdev = bd_acquire(inode);
1729        if (!bdev)
1730                goto fail;
1731out:
1732        path_put(&path);
1733        return bdev;
1734fail:
1735        bdev = ERR_PTR(error);
1736        goto out;
1737}
1738EXPORT_SYMBOL(lookup_bdev);
1739
1740int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1741{
1742        struct super_block *sb = get_super(bdev);
1743        int res = 0;
1744
1745        if (sb) {
1746                /*
1747                 * no need to lock the super, get_super holds the
1748                 * read mutex so the filesystem cannot go away
1749                 * under us (->put_super runs with the write lock
1750                 * hold).
1751                 */
1752                shrink_dcache_sb(sb);
1753                res = invalidate_inodes(sb, kill_dirty);
1754                drop_super(sb);
1755        }
1756        invalidate_bdev(bdev);
1757        return res;
1758}
1759EXPORT_SYMBOL(__invalidate_device);
1760
1761void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1762{
1763        struct inode *inode, *old_inode = NULL;
1764
1765        spin_lock(&inode_sb_list_lock);
1766        list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1767                struct address_space *mapping = inode->i_mapping;
1768
1769                spin_lock(&inode->i_lock);
1770                if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1771                    mapping->nrpages == 0) {
1772                        spin_unlock(&inode->i_lock);
1773                        continue;
1774                }
1775                __iget(inode);
1776                spin_unlock(&inode->i_lock);
1777                spin_unlock(&inode_sb_list_lock);
1778                /*
1779                 * We hold a reference to 'inode' so it couldn't have been
1780                 * removed from s_inodes list while we dropped the
1781                 * inode_sb_list_lock.  We cannot iput the inode now as we can
1782                 * be holding the last reference and we cannot iput it under
1783                 * inode_sb_list_lock. So we keep the reference and iput it
1784                 * later.
1785                 */
1786                iput(old_inode);
1787                old_inode = inode;
1788
1789                func(I_BDEV(inode), arg);
1790
1791                spin_lock(&inode_sb_list_lock);
1792        }
1793        spin_unlock(&inode_sb_list_lock);
1794        iput(old_inode);
1795}
1796