linux/fs/btrfs/check-integrity.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) STRATO AG 2011.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19/*
  20 * This module can be used to catch cases when the btrfs kernel
  21 * code executes write requests to the disk that bring the file
  22 * system in an inconsistent state. In such a state, a power-loss
  23 * or kernel panic event would cause that the data on disk is
  24 * lost or at least damaged.
  25 *
  26 * Code is added that examines all block write requests during
  27 * runtime (including writes of the super block). Three rules
  28 * are verified and an error is printed on violation of the
  29 * rules:
  30 * 1. It is not allowed to write a disk block which is
  31 *    currently referenced by the super block (either directly
  32 *    or indirectly).
  33 * 2. When a super block is written, it is verified that all
  34 *    referenced (directly or indirectly) blocks fulfill the
  35 *    following requirements:
  36 *    2a. All referenced blocks have either been present when
  37 *        the file system was mounted, (i.e., they have been
  38 *        referenced by the super block) or they have been
  39 *        written since then and the write completion callback
  40 *        was called and no write error was indicated and a
  41 *        FLUSH request to the device where these blocks are
  42 *        located was received and completed.
  43 *    2b. All referenced blocks need to have a generation
  44 *        number which is equal to the parent's number.
  45 *
  46 * One issue that was found using this module was that the log
  47 * tree on disk became temporarily corrupted because disk blocks
  48 * that had been in use for the log tree had been freed and
  49 * reused too early, while being referenced by the written super
  50 * block.
  51 *
  52 * The search term in the kernel log that can be used to filter
  53 * on the existence of detected integrity issues is
  54 * "btrfs: attempt".
  55 *
  56 * The integrity check is enabled via mount options. These
  57 * mount options are only supported if the integrity check
  58 * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
  59 *
  60 * Example #1, apply integrity checks to all metadata:
  61 * mount /dev/sdb1 /mnt -o check_int
  62 *
  63 * Example #2, apply integrity checks to all metadata and
  64 * to data extents:
  65 * mount /dev/sdb1 /mnt -o check_int_data
  66 *
  67 * Example #3, apply integrity checks to all metadata and dump
  68 * the tree that the super block references to kernel messages
  69 * each time after a super block was written:
  70 * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
  71 *
  72 * If the integrity check tool is included and activated in
  73 * the mount options, plenty of kernel memory is used, and
  74 * plenty of additional CPU cycles are spent. Enabling this
  75 * functionality is not intended for normal use. In most
  76 * cases, unless you are a btrfs developer who needs to verify
  77 * the integrity of (super)-block write requests, do not
  78 * enable the config option BTRFS_FS_CHECK_INTEGRITY to
  79 * include and compile the integrity check tool.
  80 *
  81 * Expect millions of lines of information in the kernel log with an
  82 * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the
  83 * kernel config to at least 26 (which is 64MB). Usually the value is
  84 * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be
  85 * changed like this before LOG_BUF_SHIFT can be set to a high value:
  86 * config LOG_BUF_SHIFT
  87 *       int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
  88 *       range 12 30
  89 */
  90
  91#include <linux/sched.h>
  92#include <linux/slab.h>
  93#include <linux/buffer_head.h>
  94#include <linux/mutex.h>
  95#include <linux/genhd.h>
  96#include <linux/blkdev.h>
  97#include <linux/vmalloc.h>
  98#include "ctree.h"
  99#include "disk-io.h"
 100#include "hash.h"
 101#include "transaction.h"
 102#include "extent_io.h"
 103#include "volumes.h"
 104#include "print-tree.h"
 105#include "locking.h"
 106#include "check-integrity.h"
 107#include "rcu-string.h"
 108
 109#define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
 110#define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
 111#define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
 112#define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
 113#define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
 114#define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
 115#define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
 116#define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6)    /* in characters,
 117                                                         * excluding " [...]" */
 118#define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
 119
 120/*
 121 * The definition of the bitmask fields for the print_mask.
 122 * They are specified with the mount option check_integrity_print_mask.
 123 */
 124#define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE                     0x00000001
 125#define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION         0x00000002
 126#define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE                  0x00000004
 127#define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE                 0x00000008
 128#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH                        0x00000010
 129#define BTRFSIC_PRINT_MASK_END_IO_BIO_BH                        0x00000020
 130#define BTRFSIC_PRINT_MASK_VERBOSE                              0x00000040
 131#define BTRFSIC_PRINT_MASK_VERY_VERBOSE                         0x00000080
 132#define BTRFSIC_PRINT_MASK_INITIAL_TREE                         0x00000100
 133#define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES                    0x00000200
 134#define BTRFSIC_PRINT_MASK_INITIAL_DATABASE                     0x00000400
 135#define BTRFSIC_PRINT_MASK_NUM_COPIES                           0x00000800
 136#define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS                0x00001000
 137#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE                0x00002000
 138
 139struct btrfsic_dev_state;
 140struct btrfsic_state;
 141
 142struct btrfsic_block {
 143        u32 magic_num;          /* only used for debug purposes */
 144        unsigned int is_metadata:1;     /* if it is meta-data, not data-data */
 145        unsigned int is_superblock:1;   /* if it is one of the superblocks */
 146        unsigned int is_iodone:1;       /* if is done by lower subsystem */
 147        unsigned int iodone_w_error:1;  /* error was indicated to endio */
 148        unsigned int never_written:1;   /* block was added because it was
 149                                         * referenced, not because it was
 150                                         * written */
 151        unsigned int mirror_num;        /* large enough to hold
 152                                         * BTRFS_SUPER_MIRROR_MAX */
 153        struct btrfsic_dev_state *dev_state;
 154        u64 dev_bytenr;         /* key, physical byte num on disk */
 155        u64 logical_bytenr;     /* logical byte num on disk */
 156        u64 generation;
 157        struct btrfs_disk_key disk_key; /* extra info to print in case of
 158                                         * issues, will not always be correct */
 159        struct list_head collision_resolving_node;      /* list node */
 160        struct list_head all_blocks_node;       /* list node */
 161
 162        /* the following two lists contain block_link items */
 163        struct list_head ref_to_list;   /* list */
 164        struct list_head ref_from_list; /* list */
 165        struct btrfsic_block *next_in_same_bio;
 166        void *orig_bio_bh_private;
 167        union {
 168                bio_end_io_t *bio;
 169                bh_end_io_t *bh;
 170        } orig_bio_bh_end_io;
 171        int submit_bio_bh_rw;
 172        u64 flush_gen; /* only valid if !never_written */
 173};
 174
 175/*
 176 * Elements of this type are allocated dynamically and required because
 177 * each block object can refer to and can be ref from multiple blocks.
 178 * The key to lookup them in the hashtable is the dev_bytenr of
 179 * the block ref to plus the one from the block refered from.
 180 * The fact that they are searchable via a hashtable and that a
 181 * ref_cnt is maintained is not required for the btrfs integrity
 182 * check algorithm itself, it is only used to make the output more
 183 * beautiful in case that an error is detected (an error is defined
 184 * as a write operation to a block while that block is still referenced).
 185 */
 186struct btrfsic_block_link {
 187        u32 magic_num;          /* only used for debug purposes */
 188        u32 ref_cnt;
 189        struct list_head node_ref_to;   /* list node */
 190        struct list_head node_ref_from; /* list node */
 191        struct list_head collision_resolving_node;      /* list node */
 192        struct btrfsic_block *block_ref_to;
 193        struct btrfsic_block *block_ref_from;
 194        u64 parent_generation;
 195};
 196
 197struct btrfsic_dev_state {
 198        u32 magic_num;          /* only used for debug purposes */
 199        struct block_device *bdev;
 200        struct btrfsic_state *state;
 201        struct list_head collision_resolving_node;      /* list node */
 202        struct btrfsic_block dummy_block_for_bio_bh_flush;
 203        u64 last_flush_gen;
 204        char name[BDEVNAME_SIZE];
 205};
 206
 207struct btrfsic_block_hashtable {
 208        struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
 209};
 210
 211struct btrfsic_block_link_hashtable {
 212        struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
 213};
 214
 215struct btrfsic_dev_state_hashtable {
 216        struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
 217};
 218
 219struct btrfsic_block_data_ctx {
 220        u64 start;              /* virtual bytenr */
 221        u64 dev_bytenr;         /* physical bytenr on device */
 222        u32 len;
 223        struct btrfsic_dev_state *dev;
 224        char **datav;
 225        struct page **pagev;
 226        void *mem_to_free;
 227};
 228
 229/* This structure is used to implement recursion without occupying
 230 * any stack space, refer to btrfsic_process_metablock() */
 231struct btrfsic_stack_frame {
 232        u32 magic;
 233        u32 nr;
 234        int error;
 235        int i;
 236        int limit_nesting;
 237        int num_copies;
 238        int mirror_num;
 239        struct btrfsic_block *block;
 240        struct btrfsic_block_data_ctx *block_ctx;
 241        struct btrfsic_block *next_block;
 242        struct btrfsic_block_data_ctx next_block_ctx;
 243        struct btrfs_header *hdr;
 244        struct btrfsic_stack_frame *prev;
 245};
 246
 247/* Some state per mounted filesystem */
 248struct btrfsic_state {
 249        u32 print_mask;
 250        int include_extent_data;
 251        int csum_size;
 252        struct list_head all_blocks_list;
 253        struct btrfsic_block_hashtable block_hashtable;
 254        struct btrfsic_block_link_hashtable block_link_hashtable;
 255        struct btrfs_root *root;
 256        u64 max_superblock_generation;
 257        struct btrfsic_block *latest_superblock;
 258        u32 metablock_size;
 259        u32 datablock_size;
 260};
 261
 262static void btrfsic_block_init(struct btrfsic_block *b);
 263static struct btrfsic_block *btrfsic_block_alloc(void);
 264static void btrfsic_block_free(struct btrfsic_block *b);
 265static void btrfsic_block_link_init(struct btrfsic_block_link *n);
 266static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
 267static void btrfsic_block_link_free(struct btrfsic_block_link *n);
 268static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
 269static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
 270static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
 271static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
 272static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
 273                                        struct btrfsic_block_hashtable *h);
 274static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
 275static struct btrfsic_block *btrfsic_block_hashtable_lookup(
 276                struct block_device *bdev,
 277                u64 dev_bytenr,
 278                struct btrfsic_block_hashtable *h);
 279static void btrfsic_block_link_hashtable_init(
 280                struct btrfsic_block_link_hashtable *h);
 281static void btrfsic_block_link_hashtable_add(
 282                struct btrfsic_block_link *l,
 283                struct btrfsic_block_link_hashtable *h);
 284static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
 285static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
 286                struct block_device *bdev_ref_to,
 287                u64 dev_bytenr_ref_to,
 288                struct block_device *bdev_ref_from,
 289                u64 dev_bytenr_ref_from,
 290                struct btrfsic_block_link_hashtable *h);
 291static void btrfsic_dev_state_hashtable_init(
 292                struct btrfsic_dev_state_hashtable *h);
 293static void btrfsic_dev_state_hashtable_add(
 294                struct btrfsic_dev_state *ds,
 295                struct btrfsic_dev_state_hashtable *h);
 296static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
 297static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
 298                struct block_device *bdev,
 299                struct btrfsic_dev_state_hashtable *h);
 300static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
 301static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
 302static int btrfsic_process_superblock(struct btrfsic_state *state,
 303                                      struct btrfs_fs_devices *fs_devices);
 304static int btrfsic_process_metablock(struct btrfsic_state *state,
 305                                     struct btrfsic_block *block,
 306                                     struct btrfsic_block_data_ctx *block_ctx,
 307                                     int limit_nesting, int force_iodone_flag);
 308static void btrfsic_read_from_block_data(
 309        struct btrfsic_block_data_ctx *block_ctx,
 310        void *dst, u32 offset, size_t len);
 311static int btrfsic_create_link_to_next_block(
 312                struct btrfsic_state *state,
 313                struct btrfsic_block *block,
 314                struct btrfsic_block_data_ctx
 315                *block_ctx, u64 next_bytenr,
 316                int limit_nesting,
 317                struct btrfsic_block_data_ctx *next_block_ctx,
 318                struct btrfsic_block **next_blockp,
 319                int force_iodone_flag,
 320                int *num_copiesp, int *mirror_nump,
 321                struct btrfs_disk_key *disk_key,
 322                u64 parent_generation);
 323static int btrfsic_handle_extent_data(struct btrfsic_state *state,
 324                                      struct btrfsic_block *block,
 325                                      struct btrfsic_block_data_ctx *block_ctx,
 326                                      u32 item_offset, int force_iodone_flag);
 327static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
 328                             struct btrfsic_block_data_ctx *block_ctx_out,
 329                             int mirror_num);
 330static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
 331static int btrfsic_read_block(struct btrfsic_state *state,
 332                              struct btrfsic_block_data_ctx *block_ctx);
 333static void btrfsic_dump_database(struct btrfsic_state *state);
 334static int btrfsic_test_for_metadata(struct btrfsic_state *state,
 335                                     char **datav, unsigned int num_pages);
 336static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
 337                                          u64 dev_bytenr, char **mapped_datav,
 338                                          unsigned int num_pages,
 339                                          struct bio *bio, int *bio_is_patched,
 340                                          struct buffer_head *bh,
 341                                          int submit_bio_bh_rw);
 342static int btrfsic_process_written_superblock(
 343                struct btrfsic_state *state,
 344                struct btrfsic_block *const block,
 345                struct btrfs_super_block *const super_hdr);
 346static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status);
 347static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
 348static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
 349                                              const struct btrfsic_block *block,
 350                                              int recursion_level);
 351static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
 352                                        struct btrfsic_block *const block,
 353                                        int recursion_level);
 354static void btrfsic_print_add_link(const struct btrfsic_state *state,
 355                                   const struct btrfsic_block_link *l);
 356static void btrfsic_print_rem_link(const struct btrfsic_state *state,
 357                                   const struct btrfsic_block_link *l);
 358static char btrfsic_get_block_type(const struct btrfsic_state *state,
 359                                   const struct btrfsic_block *block);
 360static void btrfsic_dump_tree(const struct btrfsic_state *state);
 361static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
 362                                  const struct btrfsic_block *block,
 363                                  int indent_level);
 364static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
 365                struct btrfsic_state *state,
 366                struct btrfsic_block_data_ctx *next_block_ctx,
 367                struct btrfsic_block *next_block,
 368                struct btrfsic_block *from_block,
 369                u64 parent_generation);
 370static struct btrfsic_block *btrfsic_block_lookup_or_add(
 371                struct btrfsic_state *state,
 372                struct btrfsic_block_data_ctx *block_ctx,
 373                const char *additional_string,
 374                int is_metadata,
 375                int is_iodone,
 376                int never_written,
 377                int mirror_num,
 378                int *was_created);
 379static int btrfsic_process_superblock_dev_mirror(
 380                struct btrfsic_state *state,
 381                struct btrfsic_dev_state *dev_state,
 382                struct btrfs_device *device,
 383                int superblock_mirror_num,
 384                struct btrfsic_dev_state **selected_dev_state,
 385                struct btrfs_super_block *selected_super);
 386static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
 387                struct block_device *bdev);
 388static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
 389                                           u64 bytenr,
 390                                           struct btrfsic_dev_state *dev_state,
 391                                           u64 dev_bytenr);
 392
 393static struct mutex btrfsic_mutex;
 394static int btrfsic_is_initialized;
 395static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
 396
 397
 398static void btrfsic_block_init(struct btrfsic_block *b)
 399{
 400        b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
 401        b->dev_state = NULL;
 402        b->dev_bytenr = 0;
 403        b->logical_bytenr = 0;
 404        b->generation = BTRFSIC_GENERATION_UNKNOWN;
 405        b->disk_key.objectid = 0;
 406        b->disk_key.type = 0;
 407        b->disk_key.offset = 0;
 408        b->is_metadata = 0;
 409        b->is_superblock = 0;
 410        b->is_iodone = 0;
 411        b->iodone_w_error = 0;
 412        b->never_written = 0;
 413        b->mirror_num = 0;
 414        b->next_in_same_bio = NULL;
 415        b->orig_bio_bh_private = NULL;
 416        b->orig_bio_bh_end_io.bio = NULL;
 417        INIT_LIST_HEAD(&b->collision_resolving_node);
 418        INIT_LIST_HEAD(&b->all_blocks_node);
 419        INIT_LIST_HEAD(&b->ref_to_list);
 420        INIT_LIST_HEAD(&b->ref_from_list);
 421        b->submit_bio_bh_rw = 0;
 422        b->flush_gen = 0;
 423}
 424
 425static struct btrfsic_block *btrfsic_block_alloc(void)
 426{
 427        struct btrfsic_block *b;
 428
 429        b = kzalloc(sizeof(*b), GFP_NOFS);
 430        if (NULL != b)
 431                btrfsic_block_init(b);
 432
 433        return b;
 434}
 435
 436static void btrfsic_block_free(struct btrfsic_block *b)
 437{
 438        BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
 439        kfree(b);
 440}
 441
 442static void btrfsic_block_link_init(struct btrfsic_block_link *l)
 443{
 444        l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
 445        l->ref_cnt = 1;
 446        INIT_LIST_HEAD(&l->node_ref_to);
 447        INIT_LIST_HEAD(&l->node_ref_from);
 448        INIT_LIST_HEAD(&l->collision_resolving_node);
 449        l->block_ref_to = NULL;
 450        l->block_ref_from = NULL;
 451}
 452
 453static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
 454{
 455        struct btrfsic_block_link *l;
 456
 457        l = kzalloc(sizeof(*l), GFP_NOFS);
 458        if (NULL != l)
 459                btrfsic_block_link_init(l);
 460
 461        return l;
 462}
 463
 464static void btrfsic_block_link_free(struct btrfsic_block_link *l)
 465{
 466        BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
 467        kfree(l);
 468}
 469
 470static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
 471{
 472        ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
 473        ds->bdev = NULL;
 474        ds->state = NULL;
 475        ds->name[0] = '\0';
 476        INIT_LIST_HEAD(&ds->collision_resolving_node);
 477        ds->last_flush_gen = 0;
 478        btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
 479        ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
 480        ds->dummy_block_for_bio_bh_flush.dev_state = ds;
 481}
 482
 483static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
 484{
 485        struct btrfsic_dev_state *ds;
 486
 487        ds = kzalloc(sizeof(*ds), GFP_NOFS);
 488        if (NULL != ds)
 489                btrfsic_dev_state_init(ds);
 490
 491        return ds;
 492}
 493
 494static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
 495{
 496        BUG_ON(!(NULL == ds ||
 497                 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
 498        kfree(ds);
 499}
 500
 501static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
 502{
 503        int i;
 504
 505        for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
 506                INIT_LIST_HEAD(h->table + i);
 507}
 508
 509static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
 510                                        struct btrfsic_block_hashtable *h)
 511{
 512        const unsigned int hashval =
 513            (((unsigned int)(b->dev_bytenr >> 16)) ^
 514             ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
 515             (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
 516
 517        list_add(&b->collision_resolving_node, h->table + hashval);
 518}
 519
 520static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
 521{
 522        list_del(&b->collision_resolving_node);
 523}
 524
 525static struct btrfsic_block *btrfsic_block_hashtable_lookup(
 526                struct block_device *bdev,
 527                u64 dev_bytenr,
 528                struct btrfsic_block_hashtable *h)
 529{
 530        const unsigned int hashval =
 531            (((unsigned int)(dev_bytenr >> 16)) ^
 532             ((unsigned int)((uintptr_t)bdev))) &
 533             (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
 534        struct list_head *elem;
 535
 536        list_for_each(elem, h->table + hashval) {
 537                struct btrfsic_block *const b =
 538                    list_entry(elem, struct btrfsic_block,
 539                               collision_resolving_node);
 540
 541                if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
 542                        return b;
 543        }
 544
 545        return NULL;
 546}
 547
 548static void btrfsic_block_link_hashtable_init(
 549                struct btrfsic_block_link_hashtable *h)
 550{
 551        int i;
 552
 553        for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
 554                INIT_LIST_HEAD(h->table + i);
 555}
 556
 557static void btrfsic_block_link_hashtable_add(
 558                struct btrfsic_block_link *l,
 559                struct btrfsic_block_link_hashtable *h)
 560{
 561        const unsigned int hashval =
 562            (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
 563             ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
 564             ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
 565             ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
 566             & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
 567
 568        BUG_ON(NULL == l->block_ref_to);
 569        BUG_ON(NULL == l->block_ref_from);
 570        list_add(&l->collision_resolving_node, h->table + hashval);
 571}
 572
 573static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
 574{
 575        list_del(&l->collision_resolving_node);
 576}
 577
 578static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
 579                struct block_device *bdev_ref_to,
 580                u64 dev_bytenr_ref_to,
 581                struct block_device *bdev_ref_from,
 582                u64 dev_bytenr_ref_from,
 583                struct btrfsic_block_link_hashtable *h)
 584{
 585        const unsigned int hashval =
 586            (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
 587             ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
 588             ((unsigned int)((uintptr_t)bdev_ref_to)) ^
 589             ((unsigned int)((uintptr_t)bdev_ref_from))) &
 590             (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
 591        struct list_head *elem;
 592
 593        list_for_each(elem, h->table + hashval) {
 594                struct btrfsic_block_link *const l =
 595                    list_entry(elem, struct btrfsic_block_link,
 596                               collision_resolving_node);
 597
 598                BUG_ON(NULL == l->block_ref_to);
 599                BUG_ON(NULL == l->block_ref_from);
 600                if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
 601                    l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
 602                    l->block_ref_from->dev_state->bdev == bdev_ref_from &&
 603                    l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
 604                        return l;
 605        }
 606
 607        return NULL;
 608}
 609
 610static void btrfsic_dev_state_hashtable_init(
 611                struct btrfsic_dev_state_hashtable *h)
 612{
 613        int i;
 614
 615        for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
 616                INIT_LIST_HEAD(h->table + i);
 617}
 618
 619static void btrfsic_dev_state_hashtable_add(
 620                struct btrfsic_dev_state *ds,
 621                struct btrfsic_dev_state_hashtable *h)
 622{
 623        const unsigned int hashval =
 624            (((unsigned int)((uintptr_t)ds->bdev)) &
 625             (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
 626
 627        list_add(&ds->collision_resolving_node, h->table + hashval);
 628}
 629
 630static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
 631{
 632        list_del(&ds->collision_resolving_node);
 633}
 634
 635static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
 636                struct block_device *bdev,
 637                struct btrfsic_dev_state_hashtable *h)
 638{
 639        const unsigned int hashval =
 640            (((unsigned int)((uintptr_t)bdev)) &
 641             (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
 642        struct list_head *elem;
 643
 644        list_for_each(elem, h->table + hashval) {
 645                struct btrfsic_dev_state *const ds =
 646                    list_entry(elem, struct btrfsic_dev_state,
 647                               collision_resolving_node);
 648
 649                if (ds->bdev == bdev)
 650                        return ds;
 651        }
 652
 653        return NULL;
 654}
 655
 656static int btrfsic_process_superblock(struct btrfsic_state *state,
 657                                      struct btrfs_fs_devices *fs_devices)
 658{
 659        int ret = 0;
 660        struct btrfs_super_block *selected_super;
 661        struct list_head *dev_head = &fs_devices->devices;
 662        struct btrfs_device *device;
 663        struct btrfsic_dev_state *selected_dev_state = NULL;
 664        int pass;
 665
 666        BUG_ON(NULL == state);
 667        selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
 668        if (NULL == selected_super) {
 669                printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
 670                return -1;
 671        }
 672
 673        list_for_each_entry(device, dev_head, dev_list) {
 674                int i;
 675                struct btrfsic_dev_state *dev_state;
 676
 677                if (!device->bdev || !device->name)
 678                        continue;
 679
 680                dev_state = btrfsic_dev_state_lookup(device->bdev);
 681                BUG_ON(NULL == dev_state);
 682                for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
 683                        ret = btrfsic_process_superblock_dev_mirror(
 684                                        state, dev_state, device, i,
 685                                        &selected_dev_state, selected_super);
 686                        if (0 != ret && 0 == i) {
 687                                kfree(selected_super);
 688                                return ret;
 689                        }
 690                }
 691        }
 692
 693        if (NULL == state->latest_superblock) {
 694                printk(KERN_INFO "btrfsic: no superblock found!\n");
 695                kfree(selected_super);
 696                return -1;
 697        }
 698
 699        state->csum_size = btrfs_super_csum_size(selected_super);
 700
 701        for (pass = 0; pass < 3; pass++) {
 702                int num_copies;
 703                int mirror_num;
 704                u64 next_bytenr;
 705
 706                switch (pass) {
 707                case 0:
 708                        next_bytenr = btrfs_super_root(selected_super);
 709                        if (state->print_mask &
 710                            BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
 711                                printk(KERN_INFO "root@%llu\n", next_bytenr);
 712                        break;
 713                case 1:
 714                        next_bytenr = btrfs_super_chunk_root(selected_super);
 715                        if (state->print_mask &
 716                            BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
 717                                printk(KERN_INFO "chunk@%llu\n", next_bytenr);
 718                        break;
 719                case 2:
 720                        next_bytenr = btrfs_super_log_root(selected_super);
 721                        if (0 == next_bytenr)
 722                                continue;
 723                        if (state->print_mask &
 724                            BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
 725                                printk(KERN_INFO "log@%llu\n", next_bytenr);
 726                        break;
 727                }
 728
 729                num_copies =
 730                    btrfs_num_copies(state->root->fs_info,
 731                                     next_bytenr, state->metablock_size);
 732                if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
 733                        printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
 734                               next_bytenr, num_copies);
 735
 736                for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
 737                        struct btrfsic_block *next_block;
 738                        struct btrfsic_block_data_ctx tmp_next_block_ctx;
 739                        struct btrfsic_block_link *l;
 740
 741                        ret = btrfsic_map_block(state, next_bytenr,
 742                                                state->metablock_size,
 743                                                &tmp_next_block_ctx,
 744                                                mirror_num);
 745                        if (ret) {
 746                                printk(KERN_INFO "btrfsic:"
 747                                       " btrfsic_map_block(root @%llu,"
 748                                       " mirror %d) failed!\n",
 749                                       next_bytenr, mirror_num);
 750                                kfree(selected_super);
 751                                return -1;
 752                        }
 753
 754                        next_block = btrfsic_block_hashtable_lookup(
 755                                        tmp_next_block_ctx.dev->bdev,
 756                                        tmp_next_block_ctx.dev_bytenr,
 757                                        &state->block_hashtable);
 758                        BUG_ON(NULL == next_block);
 759
 760                        l = btrfsic_block_link_hashtable_lookup(
 761                                        tmp_next_block_ctx.dev->bdev,
 762                                        tmp_next_block_ctx.dev_bytenr,
 763                                        state->latest_superblock->dev_state->
 764                                        bdev,
 765                                        state->latest_superblock->dev_bytenr,
 766                                        &state->block_link_hashtable);
 767                        BUG_ON(NULL == l);
 768
 769                        ret = btrfsic_read_block(state, &tmp_next_block_ctx);
 770                        if (ret < (int)PAGE_CACHE_SIZE) {
 771                                printk(KERN_INFO
 772                                       "btrfsic: read @logical %llu failed!\n",
 773                                       tmp_next_block_ctx.start);
 774                                btrfsic_release_block_ctx(&tmp_next_block_ctx);
 775                                kfree(selected_super);
 776                                return -1;
 777                        }
 778
 779                        ret = btrfsic_process_metablock(state,
 780                                                        next_block,
 781                                                        &tmp_next_block_ctx,
 782                                                        BTRFS_MAX_LEVEL + 3, 1);
 783                        btrfsic_release_block_ctx(&tmp_next_block_ctx);
 784                }
 785        }
 786
 787        kfree(selected_super);
 788        return ret;
 789}
 790
 791static int btrfsic_process_superblock_dev_mirror(
 792                struct btrfsic_state *state,
 793                struct btrfsic_dev_state *dev_state,
 794                struct btrfs_device *device,
 795                int superblock_mirror_num,
 796                struct btrfsic_dev_state **selected_dev_state,
 797                struct btrfs_super_block *selected_super)
 798{
 799        struct btrfs_super_block *super_tmp;
 800        u64 dev_bytenr;
 801        struct buffer_head *bh;
 802        struct btrfsic_block *superblock_tmp;
 803        int pass;
 804        struct block_device *const superblock_bdev = device->bdev;
 805
 806        /* super block bytenr is always the unmapped device bytenr */
 807        dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
 808        if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->commit_total_bytes)
 809                return -1;
 810        bh = __bread(superblock_bdev, dev_bytenr / 4096,
 811                     BTRFS_SUPER_INFO_SIZE);
 812        if (NULL == bh)
 813                return -1;
 814        super_tmp = (struct btrfs_super_block *)
 815            (bh->b_data + (dev_bytenr & 4095));
 816
 817        if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
 818            btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
 819            memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
 820            btrfs_super_nodesize(super_tmp) != state->metablock_size ||
 821            btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
 822                brelse(bh);
 823                return 0;
 824        }
 825
 826        superblock_tmp =
 827            btrfsic_block_hashtable_lookup(superblock_bdev,
 828                                           dev_bytenr,
 829                                           &state->block_hashtable);
 830        if (NULL == superblock_tmp) {
 831                superblock_tmp = btrfsic_block_alloc();
 832                if (NULL == superblock_tmp) {
 833                        printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
 834                        brelse(bh);
 835                        return -1;
 836                }
 837                /* for superblock, only the dev_bytenr makes sense */
 838                superblock_tmp->dev_bytenr = dev_bytenr;
 839                superblock_tmp->dev_state = dev_state;
 840                superblock_tmp->logical_bytenr = dev_bytenr;
 841                superblock_tmp->generation = btrfs_super_generation(super_tmp);
 842                superblock_tmp->is_metadata = 1;
 843                superblock_tmp->is_superblock = 1;
 844                superblock_tmp->is_iodone = 1;
 845                superblock_tmp->never_written = 0;
 846                superblock_tmp->mirror_num = 1 + superblock_mirror_num;
 847                if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
 848                        printk_in_rcu(KERN_INFO "New initial S-block (bdev %p, %s)"
 849                                     " @%llu (%s/%llu/%d)\n",
 850                                     superblock_bdev,
 851                                     rcu_str_deref(device->name), dev_bytenr,
 852                                     dev_state->name, dev_bytenr,
 853                                     superblock_mirror_num);
 854                list_add(&superblock_tmp->all_blocks_node,
 855                         &state->all_blocks_list);
 856                btrfsic_block_hashtable_add(superblock_tmp,
 857                                            &state->block_hashtable);
 858        }
 859
 860        /* select the one with the highest generation field */
 861        if (btrfs_super_generation(super_tmp) >
 862            state->max_superblock_generation ||
 863            0 == state->max_superblock_generation) {
 864                memcpy(selected_super, super_tmp, sizeof(*selected_super));
 865                *selected_dev_state = dev_state;
 866                state->max_superblock_generation =
 867                    btrfs_super_generation(super_tmp);
 868                state->latest_superblock = superblock_tmp;
 869        }
 870
 871        for (pass = 0; pass < 3; pass++) {
 872                u64 next_bytenr;
 873                int num_copies;
 874                int mirror_num;
 875                const char *additional_string = NULL;
 876                struct btrfs_disk_key tmp_disk_key;
 877
 878                tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
 879                tmp_disk_key.offset = 0;
 880                switch (pass) {
 881                case 0:
 882                        btrfs_set_disk_key_objectid(&tmp_disk_key,
 883                                                    BTRFS_ROOT_TREE_OBJECTID);
 884                        additional_string = "initial root ";
 885                        next_bytenr = btrfs_super_root(super_tmp);
 886                        break;
 887                case 1:
 888                        btrfs_set_disk_key_objectid(&tmp_disk_key,
 889                                                    BTRFS_CHUNK_TREE_OBJECTID);
 890                        additional_string = "initial chunk ";
 891                        next_bytenr = btrfs_super_chunk_root(super_tmp);
 892                        break;
 893                case 2:
 894                        btrfs_set_disk_key_objectid(&tmp_disk_key,
 895                                                    BTRFS_TREE_LOG_OBJECTID);
 896                        additional_string = "initial log ";
 897                        next_bytenr = btrfs_super_log_root(super_tmp);
 898                        if (0 == next_bytenr)
 899                                continue;
 900                        break;
 901                }
 902
 903                num_copies =
 904                    btrfs_num_copies(state->root->fs_info,
 905                                     next_bytenr, state->metablock_size);
 906                if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
 907                        printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
 908                               next_bytenr, num_copies);
 909                for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
 910                        struct btrfsic_block *next_block;
 911                        struct btrfsic_block_data_ctx tmp_next_block_ctx;
 912                        struct btrfsic_block_link *l;
 913
 914                        if (btrfsic_map_block(state, next_bytenr,
 915                                              state->metablock_size,
 916                                              &tmp_next_block_ctx,
 917                                              mirror_num)) {
 918                                printk(KERN_INFO "btrfsic: btrfsic_map_block("
 919                                       "bytenr @%llu, mirror %d) failed!\n",
 920                                       next_bytenr, mirror_num);
 921                                brelse(bh);
 922                                return -1;
 923                        }
 924
 925                        next_block = btrfsic_block_lookup_or_add(
 926                                        state, &tmp_next_block_ctx,
 927                                        additional_string, 1, 1, 0,
 928                                        mirror_num, NULL);
 929                        if (NULL == next_block) {
 930                                btrfsic_release_block_ctx(&tmp_next_block_ctx);
 931                                brelse(bh);
 932                                return -1;
 933                        }
 934
 935                        next_block->disk_key = tmp_disk_key;
 936                        next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
 937                        l = btrfsic_block_link_lookup_or_add(
 938                                        state, &tmp_next_block_ctx,
 939                                        next_block, superblock_tmp,
 940                                        BTRFSIC_GENERATION_UNKNOWN);
 941                        btrfsic_release_block_ctx(&tmp_next_block_ctx);
 942                        if (NULL == l) {
 943                                brelse(bh);
 944                                return -1;
 945                        }
 946                }
 947        }
 948        if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
 949                btrfsic_dump_tree_sub(state, superblock_tmp, 0);
 950
 951        brelse(bh);
 952        return 0;
 953}
 954
 955static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
 956{
 957        struct btrfsic_stack_frame *sf;
 958
 959        sf = kzalloc(sizeof(*sf), GFP_NOFS);
 960        if (NULL == sf)
 961                printk(KERN_INFO "btrfsic: alloc memory failed!\n");
 962        else
 963                sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
 964        return sf;
 965}
 966
 967static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
 968{
 969        BUG_ON(!(NULL == sf ||
 970                 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
 971        kfree(sf);
 972}
 973
 974static int btrfsic_process_metablock(
 975                struct btrfsic_state *state,
 976                struct btrfsic_block *const first_block,
 977                struct btrfsic_block_data_ctx *const first_block_ctx,
 978                int first_limit_nesting, int force_iodone_flag)
 979{
 980        struct btrfsic_stack_frame initial_stack_frame = { 0 };
 981        struct btrfsic_stack_frame *sf;
 982        struct btrfsic_stack_frame *next_stack;
 983        struct btrfs_header *const first_hdr =
 984                (struct btrfs_header *)first_block_ctx->datav[0];
 985
 986        BUG_ON(!first_hdr);
 987        sf = &initial_stack_frame;
 988        sf->error = 0;
 989        sf->i = -1;
 990        sf->limit_nesting = first_limit_nesting;
 991        sf->block = first_block;
 992        sf->block_ctx = first_block_ctx;
 993        sf->next_block = NULL;
 994        sf->hdr = first_hdr;
 995        sf->prev = NULL;
 996
 997continue_with_new_stack_frame:
 998        sf->block->generation = le64_to_cpu(sf->hdr->generation);
 999        if (0 == sf->hdr->level) {
1000                struct btrfs_leaf *const leafhdr =
1001                    (struct btrfs_leaf *)sf->hdr;
1002
1003                if (-1 == sf->i) {
1004                        sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
1005
1006                        if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1007                                printk(KERN_INFO
1008                                       "leaf %llu items %d generation %llu"
1009                                       " owner %llu\n",
1010                                       sf->block_ctx->start, sf->nr,
1011                                       btrfs_stack_header_generation(
1012                                               &leafhdr->header),
1013                                       btrfs_stack_header_owner(
1014                                               &leafhdr->header));
1015                }
1016
1017continue_with_current_leaf_stack_frame:
1018                if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1019                        sf->i++;
1020                        sf->num_copies = 0;
1021                }
1022
1023                if (sf->i < sf->nr) {
1024                        struct btrfs_item disk_item;
1025                        u32 disk_item_offset =
1026                                (uintptr_t)(leafhdr->items + sf->i) -
1027                                (uintptr_t)leafhdr;
1028                        struct btrfs_disk_key *disk_key;
1029                        u8 type;
1030                        u32 item_offset;
1031                        u32 item_size;
1032
1033                        if (disk_item_offset + sizeof(struct btrfs_item) >
1034                            sf->block_ctx->len) {
1035leaf_item_out_of_bounce_error:
1036                                printk(KERN_INFO
1037                                       "btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
1038                                       sf->block_ctx->start,
1039                                       sf->block_ctx->dev->name);
1040                                goto one_stack_frame_backwards;
1041                        }
1042                        btrfsic_read_from_block_data(sf->block_ctx,
1043                                                     &disk_item,
1044                                                     disk_item_offset,
1045                                                     sizeof(struct btrfs_item));
1046                        item_offset = btrfs_stack_item_offset(&disk_item);
1047                        item_size = btrfs_stack_item_size(&disk_item);
1048                        disk_key = &disk_item.key;
1049                        type = btrfs_disk_key_type(disk_key);
1050
1051                        if (BTRFS_ROOT_ITEM_KEY == type) {
1052                                struct btrfs_root_item root_item;
1053                                u32 root_item_offset;
1054                                u64 next_bytenr;
1055
1056                                root_item_offset = item_offset +
1057                                        offsetof(struct btrfs_leaf, items);
1058                                if (root_item_offset + item_size >
1059                                    sf->block_ctx->len)
1060                                        goto leaf_item_out_of_bounce_error;
1061                                btrfsic_read_from_block_data(
1062                                        sf->block_ctx, &root_item,
1063                                        root_item_offset,
1064                                        item_size);
1065                                next_bytenr = btrfs_root_bytenr(&root_item);
1066
1067                                sf->error =
1068                                    btrfsic_create_link_to_next_block(
1069                                                state,
1070                                                sf->block,
1071                                                sf->block_ctx,
1072                                                next_bytenr,
1073                                                sf->limit_nesting,
1074                                                &sf->next_block_ctx,
1075                                                &sf->next_block,
1076                                                force_iodone_flag,
1077                                                &sf->num_copies,
1078                                                &sf->mirror_num,
1079                                                disk_key,
1080                                                btrfs_root_generation(
1081                                                &root_item));
1082                                if (sf->error)
1083                                        goto one_stack_frame_backwards;
1084
1085                                if (NULL != sf->next_block) {
1086                                        struct btrfs_header *const next_hdr =
1087                                            (struct btrfs_header *)
1088                                            sf->next_block_ctx.datav[0];
1089
1090                                        next_stack =
1091                                            btrfsic_stack_frame_alloc();
1092                                        if (NULL == next_stack) {
1093                                                sf->error = -1;
1094                                                btrfsic_release_block_ctx(
1095                                                                &sf->
1096                                                                next_block_ctx);
1097                                                goto one_stack_frame_backwards;
1098                                        }
1099
1100                                        next_stack->i = -1;
1101                                        next_stack->block = sf->next_block;
1102                                        next_stack->block_ctx =
1103                                            &sf->next_block_ctx;
1104                                        next_stack->next_block = NULL;
1105                                        next_stack->hdr = next_hdr;
1106                                        next_stack->limit_nesting =
1107                                            sf->limit_nesting - 1;
1108                                        next_stack->prev = sf;
1109                                        sf = next_stack;
1110                                        goto continue_with_new_stack_frame;
1111                                }
1112                        } else if (BTRFS_EXTENT_DATA_KEY == type &&
1113                                   state->include_extent_data) {
1114                                sf->error = btrfsic_handle_extent_data(
1115                                                state,
1116                                                sf->block,
1117                                                sf->block_ctx,
1118                                                item_offset,
1119                                                force_iodone_flag);
1120                                if (sf->error)
1121                                        goto one_stack_frame_backwards;
1122                        }
1123
1124                        goto continue_with_current_leaf_stack_frame;
1125                }
1126        } else {
1127                struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1128
1129                if (-1 == sf->i) {
1130                        sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
1131
1132                        if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1133                                printk(KERN_INFO "node %llu level %d items %d"
1134                                       " generation %llu owner %llu\n",
1135                                       sf->block_ctx->start,
1136                                       nodehdr->header.level, sf->nr,
1137                                       btrfs_stack_header_generation(
1138                                       &nodehdr->header),
1139                                       btrfs_stack_header_owner(
1140                                       &nodehdr->header));
1141                }
1142
1143continue_with_current_node_stack_frame:
1144                if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1145                        sf->i++;
1146                        sf->num_copies = 0;
1147                }
1148
1149                if (sf->i < sf->nr) {
1150                        struct btrfs_key_ptr key_ptr;
1151                        u32 key_ptr_offset;
1152                        u64 next_bytenr;
1153
1154                        key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1155                                          (uintptr_t)nodehdr;
1156                        if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1157                            sf->block_ctx->len) {
1158                                printk(KERN_INFO
1159                                       "btrfsic: node item out of bounce at logical %llu, dev %s\n",
1160                                       sf->block_ctx->start,
1161                                       sf->block_ctx->dev->name);
1162                                goto one_stack_frame_backwards;
1163                        }
1164                        btrfsic_read_from_block_data(
1165                                sf->block_ctx, &key_ptr, key_ptr_offset,
1166                                sizeof(struct btrfs_key_ptr));
1167                        next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
1168
1169                        sf->error = btrfsic_create_link_to_next_block(
1170                                        state,
1171                                        sf->block,
1172                                        sf->block_ctx,
1173                                        next_bytenr,
1174                                        sf->limit_nesting,
1175                                        &sf->next_block_ctx,
1176                                        &sf->next_block,
1177                                        force_iodone_flag,
1178                                        &sf->num_copies,
1179                                        &sf->mirror_num,
1180                                        &key_ptr.key,
1181                                        btrfs_stack_key_generation(&key_ptr));
1182                        if (sf->error)
1183                                goto one_stack_frame_backwards;
1184
1185                        if (NULL != sf->next_block) {
1186                                struct btrfs_header *const next_hdr =
1187                                    (struct btrfs_header *)
1188                                    sf->next_block_ctx.datav[0];
1189
1190                                next_stack = btrfsic_stack_frame_alloc();
1191                                if (NULL == next_stack) {
1192                                        sf->error = -1;
1193                                        goto one_stack_frame_backwards;
1194                                }
1195
1196                                next_stack->i = -1;
1197                                next_stack->block = sf->next_block;
1198                                next_stack->block_ctx = &sf->next_block_ctx;
1199                                next_stack->next_block = NULL;
1200                                next_stack->hdr = next_hdr;
1201                                next_stack->limit_nesting =
1202                                    sf->limit_nesting - 1;
1203                                next_stack->prev = sf;
1204                                sf = next_stack;
1205                                goto continue_with_new_stack_frame;
1206                        }
1207
1208                        goto continue_with_current_node_stack_frame;
1209                }
1210        }
1211
1212one_stack_frame_backwards:
1213        if (NULL != sf->prev) {
1214                struct btrfsic_stack_frame *const prev = sf->prev;
1215
1216                /* the one for the initial block is freed in the caller */
1217                btrfsic_release_block_ctx(sf->block_ctx);
1218
1219                if (sf->error) {
1220                        prev->error = sf->error;
1221                        btrfsic_stack_frame_free(sf);
1222                        sf = prev;
1223                        goto one_stack_frame_backwards;
1224                }
1225
1226                btrfsic_stack_frame_free(sf);
1227                sf = prev;
1228                goto continue_with_new_stack_frame;
1229        } else {
1230                BUG_ON(&initial_stack_frame != sf);
1231        }
1232
1233        return sf->error;
1234}
1235
1236static void btrfsic_read_from_block_data(
1237        struct btrfsic_block_data_ctx *block_ctx,
1238        void *dstv, u32 offset, size_t len)
1239{
1240        size_t cur;
1241        size_t offset_in_page;
1242        char *kaddr;
1243        char *dst = (char *)dstv;
1244        size_t start_offset = block_ctx->start & ((u64)PAGE_CACHE_SIZE - 1);
1245        unsigned long i = (start_offset + offset) >> PAGE_CACHE_SHIFT;
1246
1247        WARN_ON(offset + len > block_ctx->len);
1248        offset_in_page = (start_offset + offset) & (PAGE_CACHE_SIZE - 1);
1249
1250        while (len > 0) {
1251                cur = min(len, ((size_t)PAGE_CACHE_SIZE - offset_in_page));
1252                BUG_ON(i >= DIV_ROUND_UP(block_ctx->len, PAGE_CACHE_SIZE));
1253                kaddr = block_ctx->datav[i];
1254                memcpy(dst, kaddr + offset_in_page, cur);
1255
1256                dst += cur;
1257                len -= cur;
1258                offset_in_page = 0;
1259                i++;
1260        }
1261}
1262
1263static int btrfsic_create_link_to_next_block(
1264                struct btrfsic_state *state,
1265                struct btrfsic_block *block,
1266                struct btrfsic_block_data_ctx *block_ctx,
1267                u64 next_bytenr,
1268                int limit_nesting,
1269                struct btrfsic_block_data_ctx *next_block_ctx,
1270                struct btrfsic_block **next_blockp,
1271                int force_iodone_flag,
1272                int *num_copiesp, int *mirror_nump,
1273                struct btrfs_disk_key *disk_key,
1274                u64 parent_generation)
1275{
1276        struct btrfsic_block *next_block = NULL;
1277        int ret;
1278        struct btrfsic_block_link *l;
1279        int did_alloc_block_link;
1280        int block_was_created;
1281
1282        *next_blockp = NULL;
1283        if (0 == *num_copiesp) {
1284                *num_copiesp =
1285                    btrfs_num_copies(state->root->fs_info,
1286                                     next_bytenr, state->metablock_size);
1287                if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1288                        printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1289                               next_bytenr, *num_copiesp);
1290                *mirror_nump = 1;
1291        }
1292
1293        if (*mirror_nump > *num_copiesp)
1294                return 0;
1295
1296        if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1297                printk(KERN_INFO
1298                       "btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1299                       *mirror_nump);
1300        ret = btrfsic_map_block(state, next_bytenr,
1301                                state->metablock_size,
1302                                next_block_ctx, *mirror_nump);
1303        if (ret) {
1304                printk(KERN_INFO
1305                       "btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1306                       next_bytenr, *mirror_nump);
1307                btrfsic_release_block_ctx(next_block_ctx);
1308                *next_blockp = NULL;
1309                return -1;
1310        }
1311
1312        next_block = btrfsic_block_lookup_or_add(state,
1313                                                 next_block_ctx, "referenced ",
1314                                                 1, force_iodone_flag,
1315                                                 !force_iodone_flag,
1316                                                 *mirror_nump,
1317                                                 &block_was_created);
1318        if (NULL == next_block) {
1319                btrfsic_release_block_ctx(next_block_ctx);
1320                *next_blockp = NULL;
1321                return -1;
1322        }
1323        if (block_was_created) {
1324                l = NULL;
1325                next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1326        } else {
1327                if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1328                        if (next_block->logical_bytenr != next_bytenr &&
1329                            !(!next_block->is_metadata &&
1330                              0 == next_block->logical_bytenr))
1331                                printk(KERN_INFO
1332                                       "Referenced block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1333                                       next_bytenr, next_block_ctx->dev->name,
1334                                       next_block_ctx->dev_bytenr, *mirror_nump,
1335                                       btrfsic_get_block_type(state,
1336                                                              next_block),
1337                                       next_block->logical_bytenr);
1338                        else
1339                                printk(KERN_INFO
1340                                       "Referenced block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1341                                       next_bytenr, next_block_ctx->dev->name,
1342                                       next_block_ctx->dev_bytenr, *mirror_nump,
1343                                       btrfsic_get_block_type(state,
1344                                                              next_block));
1345                }
1346                next_block->logical_bytenr = next_bytenr;
1347
1348                next_block->mirror_num = *mirror_nump;
1349                l = btrfsic_block_link_hashtable_lookup(
1350                                next_block_ctx->dev->bdev,
1351                                next_block_ctx->dev_bytenr,
1352                                block_ctx->dev->bdev,
1353                                block_ctx->dev_bytenr,
1354                                &state->block_link_hashtable);
1355        }
1356
1357        next_block->disk_key = *disk_key;
1358        if (NULL == l) {
1359                l = btrfsic_block_link_alloc();
1360                if (NULL == l) {
1361                        printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
1362                        btrfsic_release_block_ctx(next_block_ctx);
1363                        *next_blockp = NULL;
1364                        return -1;
1365                }
1366
1367                did_alloc_block_link = 1;
1368                l->block_ref_to = next_block;
1369                l->block_ref_from = block;
1370                l->ref_cnt = 1;
1371                l->parent_generation = parent_generation;
1372
1373                if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1374                        btrfsic_print_add_link(state, l);
1375
1376                list_add(&l->node_ref_to, &block->ref_to_list);
1377                list_add(&l->node_ref_from, &next_block->ref_from_list);
1378
1379                btrfsic_block_link_hashtable_add(l,
1380                                                 &state->block_link_hashtable);
1381        } else {
1382                did_alloc_block_link = 0;
1383                if (0 == limit_nesting) {
1384                        l->ref_cnt++;
1385                        l->parent_generation = parent_generation;
1386                        if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1387                                btrfsic_print_add_link(state, l);
1388                }
1389        }
1390
1391        if (limit_nesting > 0 && did_alloc_block_link) {
1392                ret = btrfsic_read_block(state, next_block_ctx);
1393                if (ret < (int)next_block_ctx->len) {
1394                        printk(KERN_INFO
1395                               "btrfsic: read block @logical %llu failed!\n",
1396                               next_bytenr);
1397                        btrfsic_release_block_ctx(next_block_ctx);
1398                        *next_blockp = NULL;
1399                        return -1;
1400                }
1401
1402                *next_blockp = next_block;
1403        } else {
1404                *next_blockp = NULL;
1405        }
1406        (*mirror_nump)++;
1407
1408        return 0;
1409}
1410
1411static int btrfsic_handle_extent_data(
1412                struct btrfsic_state *state,
1413                struct btrfsic_block *block,
1414                struct btrfsic_block_data_ctx *block_ctx,
1415                u32 item_offset, int force_iodone_flag)
1416{
1417        int ret;
1418        struct btrfs_file_extent_item file_extent_item;
1419        u64 file_extent_item_offset;
1420        u64 next_bytenr;
1421        u64 num_bytes;
1422        u64 generation;
1423        struct btrfsic_block_link *l;
1424
1425        file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1426                                  item_offset;
1427        if (file_extent_item_offset +
1428            offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1429            block_ctx->len) {
1430                printk(KERN_INFO
1431                       "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1432                       block_ctx->start, block_ctx->dev->name);
1433                return -1;
1434        }
1435
1436        btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1437                file_extent_item_offset,
1438                offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1439        if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1440            btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
1441                if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1442                        printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu\n",
1443                               file_extent_item.type,
1444                               btrfs_stack_file_extent_disk_bytenr(
1445                               &file_extent_item));
1446                return 0;
1447        }
1448
1449        if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1450            block_ctx->len) {
1451                printk(KERN_INFO
1452                       "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1453                       block_ctx->start, block_ctx->dev->name);
1454                return -1;
1455        }
1456        btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1457                                     file_extent_item_offset,
1458                                     sizeof(struct btrfs_file_extent_item));
1459        next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item);
1460        if (btrfs_stack_file_extent_compression(&file_extent_item) ==
1461            BTRFS_COMPRESS_NONE) {
1462                next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item);
1463                num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
1464        } else {
1465                num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item);
1466        }
1467        generation = btrfs_stack_file_extent_generation(&file_extent_item);
1468
1469        if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1470                printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu,"
1471                       " offset = %llu, num_bytes = %llu\n",
1472                       file_extent_item.type,
1473                       btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
1474                       btrfs_stack_file_extent_offset(&file_extent_item),
1475                       num_bytes);
1476        while (num_bytes > 0) {
1477                u32 chunk_len;
1478                int num_copies;
1479                int mirror_num;
1480
1481                if (num_bytes > state->datablock_size)
1482                        chunk_len = state->datablock_size;
1483                else
1484                        chunk_len = num_bytes;
1485
1486                num_copies =
1487                    btrfs_num_copies(state->root->fs_info,
1488                                     next_bytenr, state->datablock_size);
1489                if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1490                        printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1491                               next_bytenr, num_copies);
1492                for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1493                        struct btrfsic_block_data_ctx next_block_ctx;
1494                        struct btrfsic_block *next_block;
1495                        int block_was_created;
1496
1497                        if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1498                                printk(KERN_INFO "btrfsic_handle_extent_data("
1499                                       "mirror_num=%d)\n", mirror_num);
1500                        if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1501                                printk(KERN_INFO
1502                                       "\tdisk_bytenr = %llu, num_bytes %u\n",
1503                                       next_bytenr, chunk_len);
1504                        ret = btrfsic_map_block(state, next_bytenr,
1505                                                chunk_len, &next_block_ctx,
1506                                                mirror_num);
1507                        if (ret) {
1508                                printk(KERN_INFO
1509                                       "btrfsic: btrfsic_map_block(@%llu,"
1510                                       " mirror=%d) failed!\n",
1511                                       next_bytenr, mirror_num);
1512                                return -1;
1513                        }
1514
1515                        next_block = btrfsic_block_lookup_or_add(
1516                                        state,
1517                                        &next_block_ctx,
1518                                        "referenced ",
1519                                        0,
1520                                        force_iodone_flag,
1521                                        !force_iodone_flag,
1522                                        mirror_num,
1523                                        &block_was_created);
1524                        if (NULL == next_block) {
1525                                printk(KERN_INFO
1526                                       "btrfsic: error, kmalloc failed!\n");
1527                                btrfsic_release_block_ctx(&next_block_ctx);
1528                                return -1;
1529                        }
1530                        if (!block_was_created) {
1531                                if ((state->print_mask &
1532                                     BTRFSIC_PRINT_MASK_VERBOSE) &&
1533                                    next_block->logical_bytenr != next_bytenr &&
1534                                    !(!next_block->is_metadata &&
1535                                      0 == next_block->logical_bytenr)) {
1536                                        printk(KERN_INFO
1537                                               "Referenced block"
1538                                               " @%llu (%s/%llu/%d)"
1539                                               " found in hash table, D,"
1540                                               " bytenr mismatch"
1541                                               " (!= stored %llu).\n",
1542                                               next_bytenr,
1543                                               next_block_ctx.dev->name,
1544                                               next_block_ctx.dev_bytenr,
1545                                               mirror_num,
1546                                               next_block->logical_bytenr);
1547                                }
1548                                next_block->logical_bytenr = next_bytenr;
1549                                next_block->mirror_num = mirror_num;
1550                        }
1551
1552                        l = btrfsic_block_link_lookup_or_add(state,
1553                                                             &next_block_ctx,
1554                                                             next_block, block,
1555                                                             generation);
1556                        btrfsic_release_block_ctx(&next_block_ctx);
1557                        if (NULL == l)
1558                                return -1;
1559                }
1560
1561                next_bytenr += chunk_len;
1562                num_bytes -= chunk_len;
1563        }
1564
1565        return 0;
1566}
1567
1568static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1569                             struct btrfsic_block_data_ctx *block_ctx_out,
1570                             int mirror_num)
1571{
1572        int ret;
1573        u64 length;
1574        struct btrfs_bio *multi = NULL;
1575        struct btrfs_device *device;
1576
1577        length = len;
1578        ret = btrfs_map_block(state->root->fs_info, READ,
1579                              bytenr, &length, &multi, mirror_num);
1580
1581        if (ret) {
1582                block_ctx_out->start = 0;
1583                block_ctx_out->dev_bytenr = 0;
1584                block_ctx_out->len = 0;
1585                block_ctx_out->dev = NULL;
1586                block_ctx_out->datav = NULL;
1587                block_ctx_out->pagev = NULL;
1588                block_ctx_out->mem_to_free = NULL;
1589
1590                return ret;
1591        }
1592
1593        device = multi->stripes[0].dev;
1594        block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev);
1595        block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1596        block_ctx_out->start = bytenr;
1597        block_ctx_out->len = len;
1598        block_ctx_out->datav = NULL;
1599        block_ctx_out->pagev = NULL;
1600        block_ctx_out->mem_to_free = NULL;
1601
1602        kfree(multi);
1603        if (NULL == block_ctx_out->dev) {
1604                ret = -ENXIO;
1605                printk(KERN_INFO "btrfsic: error, cannot lookup dev (#1)!\n");
1606        }
1607
1608        return ret;
1609}
1610
1611static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1612{
1613        if (block_ctx->mem_to_free) {
1614                unsigned int num_pages;
1615
1616                BUG_ON(!block_ctx->datav);
1617                BUG_ON(!block_ctx->pagev);
1618                num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1619                            PAGE_CACHE_SHIFT;
1620                while (num_pages > 0) {
1621                        num_pages--;
1622                        if (block_ctx->datav[num_pages]) {
1623                                kunmap(block_ctx->pagev[num_pages]);
1624                                block_ctx->datav[num_pages] = NULL;
1625                        }
1626                        if (block_ctx->pagev[num_pages]) {
1627                                __free_page(block_ctx->pagev[num_pages]);
1628                                block_ctx->pagev[num_pages] = NULL;
1629                        }
1630                }
1631
1632                kfree(block_ctx->mem_to_free);
1633                block_ctx->mem_to_free = NULL;
1634                block_ctx->pagev = NULL;
1635                block_ctx->datav = NULL;
1636        }
1637}
1638
1639static int btrfsic_read_block(struct btrfsic_state *state,
1640                              struct btrfsic_block_data_ctx *block_ctx)
1641{
1642        unsigned int num_pages;
1643        unsigned int i;
1644        u64 dev_bytenr;
1645        int ret;
1646
1647        BUG_ON(block_ctx->datav);
1648        BUG_ON(block_ctx->pagev);
1649        BUG_ON(block_ctx->mem_to_free);
1650        if (block_ctx->dev_bytenr & ((u64)PAGE_CACHE_SIZE - 1)) {
1651                printk(KERN_INFO
1652                       "btrfsic: read_block() with unaligned bytenr %llu\n",
1653                       block_ctx->dev_bytenr);
1654                return -1;
1655        }
1656
1657        num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1658                    PAGE_CACHE_SHIFT;
1659        block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) +
1660                                          sizeof(*block_ctx->pagev)) *
1661                                         num_pages, GFP_NOFS);
1662        if (!block_ctx->mem_to_free)
1663                return -1;
1664        block_ctx->datav = block_ctx->mem_to_free;
1665        block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1666        for (i = 0; i < num_pages; i++) {
1667                block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1668                if (!block_ctx->pagev[i])
1669                        return -1;
1670        }
1671
1672        dev_bytenr = block_ctx->dev_bytenr;
1673        for (i = 0; i < num_pages;) {
1674                struct bio *bio;
1675                unsigned int j;
1676
1677                bio = btrfs_io_bio_alloc(GFP_NOFS, num_pages - i);
1678                if (!bio) {
1679                        printk(KERN_INFO
1680                               "btrfsic: bio_alloc() for %u pages failed!\n",
1681                               num_pages - i);
1682                        return -1;
1683                }
1684                bio->bi_bdev = block_ctx->dev->bdev;
1685                bio->bi_iter.bi_sector = dev_bytenr >> 9;
1686
1687                for (j = i; j < num_pages; j++) {
1688                        ret = bio_add_page(bio, block_ctx->pagev[j],
1689                                           PAGE_CACHE_SIZE, 0);
1690                        if (PAGE_CACHE_SIZE != ret)
1691                                break;
1692                }
1693                if (j == i) {
1694                        printk(KERN_INFO
1695                               "btrfsic: error, failed to add a single page!\n");
1696                        return -1;
1697                }
1698                if (submit_bio_wait(READ, bio)) {
1699                        printk(KERN_INFO
1700                               "btrfsic: read error at logical %llu dev %s!\n",
1701                               block_ctx->start, block_ctx->dev->name);
1702                        bio_put(bio);
1703                        return -1;
1704                }
1705                bio_put(bio);
1706                dev_bytenr += (j - i) * PAGE_CACHE_SIZE;
1707                i = j;
1708        }
1709        for (i = 0; i < num_pages; i++) {
1710                block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
1711                if (!block_ctx->datav[i]) {
1712                        printk(KERN_INFO "btrfsic: kmap() failed (dev %s)!\n",
1713                               block_ctx->dev->name);
1714                        return -1;
1715                }
1716        }
1717
1718        return block_ctx->len;
1719}
1720
1721static void btrfsic_dump_database(struct btrfsic_state *state)
1722{
1723        struct list_head *elem_all;
1724
1725        BUG_ON(NULL == state);
1726
1727        printk(KERN_INFO "all_blocks_list:\n");
1728        list_for_each(elem_all, &state->all_blocks_list) {
1729                const struct btrfsic_block *const b_all =
1730                    list_entry(elem_all, struct btrfsic_block,
1731                               all_blocks_node);
1732                struct list_head *elem_ref_to;
1733                struct list_head *elem_ref_from;
1734
1735                printk(KERN_INFO "%c-block @%llu (%s/%llu/%d)\n",
1736                       btrfsic_get_block_type(state, b_all),
1737                       b_all->logical_bytenr, b_all->dev_state->name,
1738                       b_all->dev_bytenr, b_all->mirror_num);
1739
1740                list_for_each(elem_ref_to, &b_all->ref_to_list) {
1741                        const struct btrfsic_block_link *const l =
1742                            list_entry(elem_ref_to,
1743                                       struct btrfsic_block_link,
1744                                       node_ref_to);
1745
1746                        printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1747                               " refers %u* to"
1748                               " %c @%llu (%s/%llu/%d)\n",
1749                               btrfsic_get_block_type(state, b_all),
1750                               b_all->logical_bytenr, b_all->dev_state->name,
1751                               b_all->dev_bytenr, b_all->mirror_num,
1752                               l->ref_cnt,
1753                               btrfsic_get_block_type(state, l->block_ref_to),
1754                               l->block_ref_to->logical_bytenr,
1755                               l->block_ref_to->dev_state->name,
1756                               l->block_ref_to->dev_bytenr,
1757                               l->block_ref_to->mirror_num);
1758                }
1759
1760                list_for_each(elem_ref_from, &b_all->ref_from_list) {
1761                        const struct btrfsic_block_link *const l =
1762                            list_entry(elem_ref_from,
1763                                       struct btrfsic_block_link,
1764                                       node_ref_from);
1765
1766                        printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1767                               " is ref %u* from"
1768                               " %c @%llu (%s/%llu/%d)\n",
1769                               btrfsic_get_block_type(state, b_all),
1770                               b_all->logical_bytenr, b_all->dev_state->name,
1771                               b_all->dev_bytenr, b_all->mirror_num,
1772                               l->ref_cnt,
1773                               btrfsic_get_block_type(state, l->block_ref_from),
1774                               l->block_ref_from->logical_bytenr,
1775                               l->block_ref_from->dev_state->name,
1776                               l->block_ref_from->dev_bytenr,
1777                               l->block_ref_from->mirror_num);
1778                }
1779
1780                printk(KERN_INFO "\n");
1781        }
1782}
1783
1784/*
1785 * Test whether the disk block contains a tree block (leaf or node)
1786 * (note that this test fails for the super block)
1787 */
1788static int btrfsic_test_for_metadata(struct btrfsic_state *state,
1789                                     char **datav, unsigned int num_pages)
1790{
1791        struct btrfs_header *h;
1792        u8 csum[BTRFS_CSUM_SIZE];
1793        u32 crc = ~(u32)0;
1794        unsigned int i;
1795
1796        if (num_pages * PAGE_CACHE_SIZE < state->metablock_size)
1797                return 1; /* not metadata */
1798        num_pages = state->metablock_size >> PAGE_CACHE_SHIFT;
1799        h = (struct btrfs_header *)datav[0];
1800
1801        if (memcmp(h->fsid, state->root->fs_info->fsid, BTRFS_UUID_SIZE))
1802                return 1;
1803
1804        for (i = 0; i < num_pages; i++) {
1805                u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1806                size_t sublen = i ? PAGE_CACHE_SIZE :
1807                                    (PAGE_CACHE_SIZE - BTRFS_CSUM_SIZE);
1808
1809                crc = btrfs_crc32c(crc, data, sublen);
1810        }
1811        btrfs_csum_final(crc, csum);
1812        if (memcmp(csum, h->csum, state->csum_size))
1813                return 1;
1814
1815        return 0; /* is metadata */
1816}
1817
1818static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1819                                          u64 dev_bytenr, char **mapped_datav,
1820                                          unsigned int num_pages,
1821                                          struct bio *bio, int *bio_is_patched,
1822                                          struct buffer_head *bh,
1823                                          int submit_bio_bh_rw)
1824{
1825        int is_metadata;
1826        struct btrfsic_block *block;
1827        struct btrfsic_block_data_ctx block_ctx;
1828        int ret;
1829        struct btrfsic_state *state = dev_state->state;
1830        struct block_device *bdev = dev_state->bdev;
1831        unsigned int processed_len;
1832
1833        if (NULL != bio_is_patched)
1834                *bio_is_patched = 0;
1835
1836again:
1837        if (num_pages == 0)
1838                return;
1839
1840        processed_len = 0;
1841        is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1842                                                      num_pages));
1843
1844        block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1845                                               &state->block_hashtable);
1846        if (NULL != block) {
1847                u64 bytenr = 0;
1848                struct list_head *elem_ref_to;
1849                struct list_head *tmp_ref_to;
1850
1851                if (block->is_superblock) {
1852                        bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
1853                                                    mapped_datav[0]);
1854                        if (num_pages * PAGE_CACHE_SIZE <
1855                            BTRFS_SUPER_INFO_SIZE) {
1856                                printk(KERN_INFO
1857                                       "btrfsic: cannot work with too short bios!\n");
1858                                return;
1859                        }
1860                        is_metadata = 1;
1861                        BUG_ON(BTRFS_SUPER_INFO_SIZE & (PAGE_CACHE_SIZE - 1));
1862                        processed_len = BTRFS_SUPER_INFO_SIZE;
1863                        if (state->print_mask &
1864                            BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1865                                printk(KERN_INFO
1866                                       "[before new superblock is written]:\n");
1867                                btrfsic_dump_tree_sub(state, block, 0);
1868                        }
1869                }
1870                if (is_metadata) {
1871                        if (!block->is_superblock) {
1872                                if (num_pages * PAGE_CACHE_SIZE <
1873                                    state->metablock_size) {
1874                                        printk(KERN_INFO
1875                                               "btrfsic: cannot work with too short bios!\n");
1876                                        return;
1877                                }
1878                                processed_len = state->metablock_size;
1879                                bytenr = btrfs_stack_header_bytenr(
1880                                                (struct btrfs_header *)
1881                                                mapped_datav[0]);
1882                                btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1883                                                               dev_state,
1884                                                               dev_bytenr);
1885                        }
1886                        if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1887                                if (block->logical_bytenr != bytenr &&
1888                                    !(!block->is_metadata &&
1889                                      block->logical_bytenr == 0))
1890                                        printk(KERN_INFO
1891                                               "Written block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1892                                               bytenr, dev_state->name,
1893                                               dev_bytenr,
1894                                               block->mirror_num,
1895                                               btrfsic_get_block_type(state,
1896                                                                      block),
1897                                               block->logical_bytenr);
1898                                else
1899                                        printk(KERN_INFO
1900                                               "Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1901                                               bytenr, dev_state->name,
1902                                               dev_bytenr, block->mirror_num,
1903                                               btrfsic_get_block_type(state,
1904                                                                      block));
1905                        }
1906                        block->logical_bytenr = bytenr;
1907                } else {
1908                        if (num_pages * PAGE_CACHE_SIZE <
1909                            state->datablock_size) {
1910                                printk(KERN_INFO
1911                                       "btrfsic: cannot work with too short bios!\n");
1912                                return;
1913                        }
1914                        processed_len = state->datablock_size;
1915                        bytenr = block->logical_bytenr;
1916                        if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1917                                printk(KERN_INFO
1918                                       "Written block @%llu (%s/%llu/%d)"
1919                                       " found in hash table, %c.\n",
1920                                       bytenr, dev_state->name, dev_bytenr,
1921                                       block->mirror_num,
1922                                       btrfsic_get_block_type(state, block));
1923                }
1924
1925                if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1926                        printk(KERN_INFO
1927                               "ref_to_list: %cE, ref_from_list: %cE\n",
1928                               list_empty(&block->ref_to_list) ? ' ' : '!',
1929                               list_empty(&block->ref_from_list) ? ' ' : '!');
1930                if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1931                        printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1932                               " @%llu (%s/%llu/%d), old(gen=%llu,"
1933                               " objectid=%llu, type=%d, offset=%llu),"
1934                               " new(gen=%llu),"
1935                               " which is referenced by most recent superblock"
1936                               " (superblockgen=%llu)!\n",
1937                               btrfsic_get_block_type(state, block), bytenr,
1938                               dev_state->name, dev_bytenr, block->mirror_num,
1939                               block->generation,
1940                               btrfs_disk_key_objectid(&block->disk_key),
1941                               block->disk_key.type,
1942                               btrfs_disk_key_offset(&block->disk_key),
1943                               btrfs_stack_header_generation(
1944                                       (struct btrfs_header *) mapped_datav[0]),
1945                               state->max_superblock_generation);
1946                        btrfsic_dump_tree(state);
1947                }
1948
1949                if (!block->is_iodone && !block->never_written) {
1950                        printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1951                               " @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu,"
1952                               " which is not yet iodone!\n",
1953                               btrfsic_get_block_type(state, block), bytenr,
1954                               dev_state->name, dev_bytenr, block->mirror_num,
1955                               block->generation,
1956                               btrfs_stack_header_generation(
1957                                       (struct btrfs_header *)
1958                                       mapped_datav[0]));
1959                        /* it would not be safe to go on */
1960                        btrfsic_dump_tree(state);
1961                        goto continue_loop;
1962                }
1963
1964                /*
1965                 * Clear all references of this block. Do not free
1966                 * the block itself even if is not referenced anymore
1967                 * because it still carries valueable information
1968                 * like whether it was ever written and IO completed.
1969                 */
1970                list_for_each_safe(elem_ref_to, tmp_ref_to,
1971                                   &block->ref_to_list) {
1972                        struct btrfsic_block_link *const l =
1973                            list_entry(elem_ref_to,
1974                                       struct btrfsic_block_link,
1975                                       node_ref_to);
1976
1977                        if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1978                                btrfsic_print_rem_link(state, l);
1979                        l->ref_cnt--;
1980                        if (0 == l->ref_cnt) {
1981                                list_del(&l->node_ref_to);
1982                                list_del(&l->node_ref_from);
1983                                btrfsic_block_link_hashtable_remove(l);
1984                                btrfsic_block_link_free(l);
1985                        }
1986                }
1987
1988                block_ctx.dev = dev_state;
1989                block_ctx.dev_bytenr = dev_bytenr;
1990                block_ctx.start = bytenr;
1991                block_ctx.len = processed_len;
1992                block_ctx.pagev = NULL;
1993                block_ctx.mem_to_free = NULL;
1994                block_ctx.datav = mapped_datav;
1995
1996                if (is_metadata || state->include_extent_data) {
1997                        block->never_written = 0;
1998                        block->iodone_w_error = 0;
1999                        if (NULL != bio) {
2000                                block->is_iodone = 0;
2001                                BUG_ON(NULL == bio_is_patched);
2002                                if (!*bio_is_patched) {
2003                                        block->orig_bio_bh_private =
2004                                            bio->bi_private;
2005                                        block->orig_bio_bh_end_io.bio =
2006                                            bio->bi_end_io;
2007                                        block->next_in_same_bio = NULL;
2008                                        bio->bi_private = block;
2009                                        bio->bi_end_io = btrfsic_bio_end_io;
2010                                        *bio_is_patched = 1;
2011                                } else {
2012                                        struct btrfsic_block *chained_block =
2013                                            (struct btrfsic_block *)
2014                                            bio->bi_private;
2015
2016                                        BUG_ON(NULL == chained_block);
2017                                        block->orig_bio_bh_private =
2018                                            chained_block->orig_bio_bh_private;
2019                                        block->orig_bio_bh_end_io.bio =
2020                                            chained_block->orig_bio_bh_end_io.
2021                                            bio;
2022                                        block->next_in_same_bio = chained_block;
2023                                        bio->bi_private = block;
2024                                }
2025                        } else if (NULL != bh) {
2026                                block->is_iodone = 0;
2027                                block->orig_bio_bh_private = bh->b_private;
2028                                block->orig_bio_bh_end_io.bh = bh->b_end_io;
2029                                block->next_in_same_bio = NULL;
2030                                bh->b_private = block;
2031                                bh->b_end_io = btrfsic_bh_end_io;
2032                        } else {
2033                                block->is_iodone = 1;
2034                                block->orig_bio_bh_private = NULL;
2035                                block->orig_bio_bh_end_io.bio = NULL;
2036                                block->next_in_same_bio = NULL;
2037                        }
2038                }
2039
2040                block->flush_gen = dev_state->last_flush_gen + 1;
2041                block->submit_bio_bh_rw = submit_bio_bh_rw;
2042                if (is_metadata) {
2043                        block->logical_bytenr = bytenr;
2044                        block->is_metadata = 1;
2045                        if (block->is_superblock) {
2046                                BUG_ON(PAGE_CACHE_SIZE !=
2047                                       BTRFS_SUPER_INFO_SIZE);
2048                                ret = btrfsic_process_written_superblock(
2049                                                state,
2050                                                block,
2051                                                (struct btrfs_super_block *)
2052                                                mapped_datav[0]);
2053                                if (state->print_mask &
2054                                    BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
2055                                        printk(KERN_INFO
2056                                        "[after new superblock is written]:\n");
2057                                        btrfsic_dump_tree_sub(state, block, 0);
2058                                }
2059                        } else {
2060                                block->mirror_num = 0;  /* unknown */
2061                                ret = btrfsic_process_metablock(
2062                                                state,
2063                                                block,
2064                                                &block_ctx,
2065                                                0, 0);
2066                        }
2067                        if (ret)
2068                                printk(KERN_INFO
2069                                       "btrfsic: btrfsic_process_metablock"
2070                                       "(root @%llu) failed!\n",
2071                                       dev_bytenr);
2072                } else {
2073                        block->is_metadata = 0;
2074                        block->mirror_num = 0;  /* unknown */
2075                        block->generation = BTRFSIC_GENERATION_UNKNOWN;
2076                        if (!state->include_extent_data
2077                            && list_empty(&block->ref_from_list)) {
2078                                /*
2079                                 * disk block is overwritten with extent
2080                                 * data (not meta data) and we are configured
2081                                 * to not include extent data: take the
2082                                 * chance and free the block's memory
2083                                 */
2084                                btrfsic_block_hashtable_remove(block);
2085                                list_del(&block->all_blocks_node);
2086                                btrfsic_block_free(block);
2087                        }
2088                }
2089                btrfsic_release_block_ctx(&block_ctx);
2090        } else {
2091                /* block has not been found in hash table */
2092                u64 bytenr;
2093
2094                if (!is_metadata) {
2095                        processed_len = state->datablock_size;
2096                        if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2097                                printk(KERN_INFO "Written block (%s/%llu/?)"
2098                                       " !found in hash table, D.\n",
2099                                       dev_state->name, dev_bytenr);
2100                        if (!state->include_extent_data) {
2101                                /* ignore that written D block */
2102                                goto continue_loop;
2103                        }
2104
2105                        /* this is getting ugly for the
2106                         * include_extent_data case... */
2107                        bytenr = 0;     /* unknown */
2108                } else {
2109                        processed_len = state->metablock_size;
2110                        bytenr = btrfs_stack_header_bytenr(
2111                                        (struct btrfs_header *)
2112                                        mapped_datav[0]);
2113                        btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
2114                                                       dev_bytenr);
2115                        if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2116                                printk(KERN_INFO
2117                                       "Written block @%llu (%s/%llu/?)"
2118                                       " !found in hash table, M.\n",
2119                                       bytenr, dev_state->name, dev_bytenr);
2120                }
2121
2122                block_ctx.dev = dev_state;
2123                block_ctx.dev_bytenr = dev_bytenr;
2124                block_ctx.start = bytenr;
2125                block_ctx.len = processed_len;
2126                block_ctx.pagev = NULL;
2127                block_ctx.mem_to_free = NULL;
2128                block_ctx.datav = mapped_datav;
2129
2130                block = btrfsic_block_alloc();
2131                if (NULL == block) {
2132                        printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2133                        btrfsic_release_block_ctx(&block_ctx);
2134                        goto continue_loop;
2135                }
2136                block->dev_state = dev_state;
2137                block->dev_bytenr = dev_bytenr;
2138                block->logical_bytenr = bytenr;
2139                block->is_metadata = is_metadata;
2140                block->never_written = 0;
2141                block->iodone_w_error = 0;
2142                block->mirror_num = 0;  /* unknown */
2143                block->flush_gen = dev_state->last_flush_gen + 1;
2144                block->submit_bio_bh_rw = submit_bio_bh_rw;
2145                if (NULL != bio) {
2146                        block->is_iodone = 0;
2147                        BUG_ON(NULL == bio_is_patched);
2148                        if (!*bio_is_patched) {
2149                                block->orig_bio_bh_private = bio->bi_private;
2150                                block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2151                                block->next_in_same_bio = NULL;
2152                                bio->bi_private = block;
2153                                bio->bi_end_io = btrfsic_bio_end_io;
2154                                *bio_is_patched = 1;
2155                        } else {
2156                                struct btrfsic_block *chained_block =
2157                                    (struct btrfsic_block *)
2158                                    bio->bi_private;
2159
2160                                BUG_ON(NULL == chained_block);
2161                                block->orig_bio_bh_private =
2162                                    chained_block->orig_bio_bh_private;
2163                                block->orig_bio_bh_end_io.bio =
2164                                    chained_block->orig_bio_bh_end_io.bio;
2165                                block->next_in_same_bio = chained_block;
2166                                bio->bi_private = block;
2167                        }
2168                } else if (NULL != bh) {
2169                        block->is_iodone = 0;
2170                        block->orig_bio_bh_private = bh->b_private;
2171                        block->orig_bio_bh_end_io.bh = bh->b_end_io;
2172                        block->next_in_same_bio = NULL;
2173                        bh->b_private = block;
2174                        bh->b_end_io = btrfsic_bh_end_io;
2175                } else {
2176                        block->is_iodone = 1;
2177                        block->orig_bio_bh_private = NULL;
2178                        block->orig_bio_bh_end_io.bio = NULL;
2179                        block->next_in_same_bio = NULL;
2180                }
2181                if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2182                        printk(KERN_INFO
2183                               "New written %c-block @%llu (%s/%llu/%d)\n",
2184                               is_metadata ? 'M' : 'D',
2185                               block->logical_bytenr, block->dev_state->name,
2186                               block->dev_bytenr, block->mirror_num);
2187                list_add(&block->all_blocks_node, &state->all_blocks_list);
2188                btrfsic_block_hashtable_add(block, &state->block_hashtable);
2189
2190                if (is_metadata) {
2191                        ret = btrfsic_process_metablock(state, block,
2192                                                        &block_ctx, 0, 0);
2193                        if (ret)
2194                                printk(KERN_INFO
2195                                       "btrfsic: process_metablock(root @%llu)"
2196                                       " failed!\n",
2197                                       dev_bytenr);
2198                }
2199                btrfsic_release_block_ctx(&block_ctx);
2200        }
2201
2202continue_loop:
2203        BUG_ON(!processed_len);
2204        dev_bytenr += processed_len;
2205        mapped_datav += processed_len >> PAGE_CACHE_SHIFT;
2206        num_pages -= processed_len >> PAGE_CACHE_SHIFT;
2207        goto again;
2208}
2209
2210static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status)
2211{
2212        struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2213        int iodone_w_error;
2214
2215        /* mutex is not held! This is not save if IO is not yet completed
2216         * on umount */
2217        iodone_w_error = 0;
2218        if (bio_error_status)
2219                iodone_w_error = 1;
2220
2221        BUG_ON(NULL == block);
2222        bp->bi_private = block->orig_bio_bh_private;
2223        bp->bi_end_io = block->orig_bio_bh_end_io.bio;
2224
2225        do {
2226                struct btrfsic_block *next_block;
2227                struct btrfsic_dev_state *const dev_state = block->dev_state;
2228
2229                if ((dev_state->state->print_mask &
2230                     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2231                        printk(KERN_INFO
2232                               "bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2233                               bio_error_status,
2234                               btrfsic_get_block_type(dev_state->state, block),
2235                               block->logical_bytenr, dev_state->name,
2236                               block->dev_bytenr, block->mirror_num);
2237                next_block = block->next_in_same_bio;
2238                block->iodone_w_error = iodone_w_error;
2239                if (block->submit_bio_bh_rw & REQ_FLUSH) {
2240                        dev_state->last_flush_gen++;
2241                        if ((dev_state->state->print_mask &
2242                             BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2243                                printk(KERN_INFO
2244                                       "bio_end_io() new %s flush_gen=%llu\n",
2245                                       dev_state->name,
2246                                       dev_state->last_flush_gen);
2247                }
2248                if (block->submit_bio_bh_rw & REQ_FUA)
2249                        block->flush_gen = 0; /* FUA completed means block is
2250                                               * on disk */
2251                block->is_iodone = 1; /* for FLUSH, this releases the block */
2252                block = next_block;
2253        } while (NULL != block);
2254
2255        bp->bi_end_io(bp, bio_error_status);
2256}
2257
2258static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
2259{
2260        struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
2261        int iodone_w_error = !uptodate;
2262        struct btrfsic_dev_state *dev_state;
2263
2264        BUG_ON(NULL == block);
2265        dev_state = block->dev_state;
2266        if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2267                printk(KERN_INFO
2268                       "bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
2269                       iodone_w_error,
2270                       btrfsic_get_block_type(dev_state->state, block),
2271                       block->logical_bytenr, block->dev_state->name,
2272                       block->dev_bytenr, block->mirror_num);
2273
2274        block->iodone_w_error = iodone_w_error;
2275        if (block->submit_bio_bh_rw & REQ_FLUSH) {
2276                dev_state->last_flush_gen++;
2277                if ((dev_state->state->print_mask &
2278                     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2279                        printk(KERN_INFO
2280                               "bh_end_io() new %s flush_gen=%llu\n",
2281                               dev_state->name, dev_state->last_flush_gen);
2282        }
2283        if (block->submit_bio_bh_rw & REQ_FUA)
2284                block->flush_gen = 0; /* FUA completed means block is on disk */
2285
2286        bh->b_private = block->orig_bio_bh_private;
2287        bh->b_end_io = block->orig_bio_bh_end_io.bh;
2288        block->is_iodone = 1; /* for FLUSH, this releases the block */
2289        bh->b_end_io(bh, uptodate);
2290}
2291
2292static int btrfsic_process_written_superblock(
2293                struct btrfsic_state *state,
2294                struct btrfsic_block *const superblock,
2295                struct btrfs_super_block *const super_hdr)
2296{
2297        int pass;
2298
2299        superblock->generation = btrfs_super_generation(super_hdr);
2300        if (!(superblock->generation > state->max_superblock_generation ||
2301              0 == state->max_superblock_generation)) {
2302                if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2303                        printk(KERN_INFO
2304                               "btrfsic: superblock @%llu (%s/%llu/%d)"
2305                               " with old gen %llu <= %llu\n",
2306                               superblock->logical_bytenr,
2307                               superblock->dev_state->name,
2308                               superblock->dev_bytenr, superblock->mirror_num,
2309                               btrfs_super_generation(super_hdr),
2310                               state->max_superblock_generation);
2311        } else {
2312                if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2313                        printk(KERN_INFO
2314                               "btrfsic: got new superblock @%llu (%s/%llu/%d)"
2315                               " with new gen %llu > %llu\n",
2316                               superblock->logical_bytenr,
2317                               superblock->dev_state->name,
2318                               superblock->dev_bytenr, superblock->mirror_num,
2319                               btrfs_super_generation(super_hdr),
2320                               state->max_superblock_generation);
2321
2322                state->max_superblock_generation =
2323                    btrfs_super_generation(super_hdr);
2324                state->latest_superblock = superblock;
2325        }
2326
2327        for (pass = 0; pass < 3; pass++) {
2328                int ret;
2329                u64 next_bytenr;
2330                struct btrfsic_block *next_block;
2331                struct btrfsic_block_data_ctx tmp_next_block_ctx;
2332                struct btrfsic_block_link *l;
2333                int num_copies;
2334                int mirror_num;
2335                const char *additional_string = NULL;
2336                struct btrfs_disk_key tmp_disk_key = {0};
2337
2338                btrfs_set_disk_key_objectid(&tmp_disk_key,
2339                                            BTRFS_ROOT_ITEM_KEY);
2340                btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
2341
2342                switch (pass) {
2343                case 0:
2344                        btrfs_set_disk_key_objectid(&tmp_disk_key,
2345                                                    BTRFS_ROOT_TREE_OBJECTID);
2346                        additional_string = "root ";
2347                        next_bytenr = btrfs_super_root(super_hdr);
2348                        if (state->print_mask &
2349                            BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2350                                printk(KERN_INFO "root@%llu\n", next_bytenr);
2351                        break;
2352                case 1:
2353                        btrfs_set_disk_key_objectid(&tmp_disk_key,
2354                                                    BTRFS_CHUNK_TREE_OBJECTID);
2355                        additional_string = "chunk ";
2356                        next_bytenr = btrfs_super_chunk_root(super_hdr);
2357                        if (state->print_mask &
2358                            BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2359                                printk(KERN_INFO "chunk@%llu\n", next_bytenr);
2360                        break;
2361                case 2:
2362                        btrfs_set_disk_key_objectid(&tmp_disk_key,
2363                                                    BTRFS_TREE_LOG_OBJECTID);
2364                        additional_string = "log ";
2365                        next_bytenr = btrfs_super_log_root(super_hdr);
2366                        if (0 == next_bytenr)
2367                                continue;
2368                        if (state->print_mask &
2369                            BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2370                                printk(KERN_INFO "log@%llu\n", next_bytenr);
2371                        break;
2372                }
2373
2374                num_copies =
2375                    btrfs_num_copies(state->root->fs_info,
2376                                     next_bytenr, BTRFS_SUPER_INFO_SIZE);
2377                if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2378                        printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
2379                               next_bytenr, num_copies);
2380                for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2381                        int was_created;
2382
2383                        if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2384                                printk(KERN_INFO
2385                                       "btrfsic_process_written_superblock("
2386                                       "mirror_num=%d)\n", mirror_num);
2387                        ret = btrfsic_map_block(state, next_bytenr,
2388                                                BTRFS_SUPER_INFO_SIZE,
2389                                                &tmp_next_block_ctx,
2390                                                mirror_num);
2391                        if (ret) {
2392                                printk(KERN_INFO
2393                                       "btrfsic: btrfsic_map_block(@%llu,"
2394                                       " mirror=%d) failed!\n",
2395                                       next_bytenr, mirror_num);
2396                                return -1;
2397                        }
2398
2399                        next_block = btrfsic_block_lookup_or_add(
2400                                        state,
2401                                        &tmp_next_block_ctx,
2402                                        additional_string,
2403                                        1, 0, 1,
2404                                        mirror_num,
2405                                        &was_created);
2406                        if (NULL == next_block) {
2407                                printk(KERN_INFO
2408                                       "btrfsic: error, kmalloc failed!\n");
2409                                btrfsic_release_block_ctx(&tmp_next_block_ctx);
2410                                return -1;
2411                        }
2412
2413                        next_block->disk_key = tmp_disk_key;
2414                        if (was_created)
2415                                next_block->generation =
2416                                    BTRFSIC_GENERATION_UNKNOWN;
2417                        l = btrfsic_block_link_lookup_or_add(
2418                                        state,
2419                                        &tmp_next_block_ctx,
2420                                        next_block,
2421                                        superblock,
2422                                        BTRFSIC_GENERATION_UNKNOWN);
2423                        btrfsic_release_block_ctx(&tmp_next_block_ctx);
2424                        if (NULL == l)
2425                                return -1;
2426                }
2427        }
2428
2429        if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)))
2430                btrfsic_dump_tree(state);
2431
2432        return 0;
2433}
2434
2435static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2436                                        struct btrfsic_block *const block,
2437                                        int recursion_level)
2438{
2439        struct list_head *elem_ref_to;
2440        int ret = 0;
2441
2442        if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2443                /*
2444                 * Note that this situation can happen and does not
2445                 * indicate an error in regular cases. It happens
2446                 * when disk blocks are freed and later reused.
2447                 * The check-integrity module is not aware of any
2448                 * block free operations, it just recognizes block
2449                 * write operations. Therefore it keeps the linkage
2450                 * information for a block until a block is
2451                 * rewritten. This can temporarily cause incorrect
2452                 * and even circular linkage informations. This
2453                 * causes no harm unless such blocks are referenced
2454                 * by the most recent super block.
2455                 */
2456                if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2457                        printk(KERN_INFO
2458                               "btrfsic: abort cyclic linkage (case 1).\n");
2459
2460                return ret;
2461        }
2462
2463        /*
2464         * This algorithm is recursive because the amount of used stack
2465         * space is very small and the max recursion depth is limited.
2466         */
2467        list_for_each(elem_ref_to, &block->ref_to_list) {
2468                const struct btrfsic_block_link *const l =
2469                    list_entry(elem_ref_to, struct btrfsic_block_link,
2470                               node_ref_to);
2471
2472                if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2473                        printk(KERN_INFO
2474                               "rl=%d, %c @%llu (%s/%llu/%d)"
2475                               " %u* refers to %c @%llu (%s/%llu/%d)\n",
2476                               recursion_level,
2477                               btrfsic_get_block_type(state, block),
2478                               block->logical_bytenr, block->dev_state->name,
2479                               block->dev_bytenr, block->mirror_num,
2480                               l->ref_cnt,
2481                               btrfsic_get_block_type(state, l->block_ref_to),
2482                               l->block_ref_to->logical_bytenr,
2483                               l->block_ref_to->dev_state->name,
2484                               l->block_ref_to->dev_bytenr,
2485                               l->block_ref_to->mirror_num);
2486                if (l->block_ref_to->never_written) {
2487                        printk(KERN_INFO "btrfs: attempt to write superblock"
2488                               " which references block %c @%llu (%s/%llu/%d)"
2489                               " which is never written!\n",
2490                               btrfsic_get_block_type(state, l->block_ref_to),
2491                               l->block_ref_to->logical_bytenr,
2492                               l->block_ref_to->dev_state->name,
2493                               l->block_ref_to->dev_bytenr,
2494                               l->block_ref_to->mirror_num);
2495                        ret = -1;
2496                } else if (!l->block_ref_to->is_iodone) {
2497                        printk(KERN_INFO "btrfs: attempt to write superblock"
2498                               " which references block %c @%llu (%s/%llu/%d)"
2499                               " which is not yet iodone!\n",
2500                               btrfsic_get_block_type(state, l->block_ref_to),
2501                               l->block_ref_to->logical_bytenr,
2502                               l->block_ref_to->dev_state->name,
2503                               l->block_ref_to->dev_bytenr,
2504                               l->block_ref_to->mirror_num);
2505                        ret = -1;
2506                } else if (l->block_ref_to->iodone_w_error) {
2507                        printk(KERN_INFO "btrfs: attempt to write superblock"
2508                               " which references block %c @%llu (%s/%llu/%d)"
2509                               " which has write error!\n",
2510                               btrfsic_get_block_type(state, l->block_ref_to),
2511                               l->block_ref_to->logical_bytenr,
2512                               l->block_ref_to->dev_state->name,
2513                               l->block_ref_to->dev_bytenr,
2514                               l->block_ref_to->mirror_num);
2515                        ret = -1;
2516                } else if (l->parent_generation !=
2517                           l->block_ref_to->generation &&
2518                           BTRFSIC_GENERATION_UNKNOWN !=
2519                           l->parent_generation &&
2520                           BTRFSIC_GENERATION_UNKNOWN !=
2521                           l->block_ref_to->generation) {
2522                        printk(KERN_INFO "btrfs: attempt to write superblock"
2523                               " which references block %c @%llu (%s/%llu/%d)"
2524                               " with generation %llu !="
2525                               " parent generation %llu!\n",
2526                               btrfsic_get_block_type(state, l->block_ref_to),
2527                               l->block_ref_to->logical_bytenr,
2528                               l->block_ref_to->dev_state->name,
2529                               l->block_ref_to->dev_bytenr,
2530                               l->block_ref_to->mirror_num,
2531                               l->block_ref_to->generation,
2532                               l->parent_generation);
2533                        ret = -1;
2534                } else if (l->block_ref_to->flush_gen >
2535                           l->block_ref_to->dev_state->last_flush_gen) {
2536                        printk(KERN_INFO "btrfs: attempt to write superblock"
2537                               " which references block %c @%llu (%s/%llu/%d)"
2538                               " which is not flushed out of disk's write cache"
2539                               " (block flush_gen=%llu,"
2540                               " dev->flush_gen=%llu)!\n",
2541                               btrfsic_get_block_type(state, l->block_ref_to),
2542                               l->block_ref_to->logical_bytenr,
2543                               l->block_ref_to->dev_state->name,
2544                               l->block_ref_to->dev_bytenr,
2545                               l->block_ref_to->mirror_num, block->flush_gen,
2546                               l->block_ref_to->dev_state->last_flush_gen);
2547                        ret = -1;
2548                } else if (-1 == btrfsic_check_all_ref_blocks(state,
2549                                                              l->block_ref_to,
2550                                                              recursion_level +
2551                                                              1)) {
2552                        ret = -1;
2553                }
2554        }
2555
2556        return ret;
2557}
2558
2559static int btrfsic_is_block_ref_by_superblock(
2560                const struct btrfsic_state *state,
2561                const struct btrfsic_block *block,
2562                int recursion_level)
2563{
2564        struct list_head *elem_ref_from;
2565
2566        if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2567                /* refer to comment at "abort cyclic linkage (case 1)" */
2568                if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2569                        printk(KERN_INFO
2570                               "btrfsic: abort cyclic linkage (case 2).\n");
2571
2572                return 0;
2573        }
2574
2575        /*
2576         * This algorithm is recursive because the amount of used stack space
2577         * is very small and the max recursion depth is limited.
2578         */
2579        list_for_each(elem_ref_from, &block->ref_from_list) {
2580                const struct btrfsic_block_link *const l =
2581                    list_entry(elem_ref_from, struct btrfsic_block_link,
2582                               node_ref_from);
2583
2584                if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2585                        printk(KERN_INFO
2586                               "rl=%d, %c @%llu (%s/%llu/%d)"
2587                               " is ref %u* from %c @%llu (%s/%llu/%d)\n",
2588                               recursion_level,
2589                               btrfsic_get_block_type(state, block),
2590                               block->logical_bytenr, block->dev_state->name,
2591                               block->dev_bytenr, block->mirror_num,
2592                               l->ref_cnt,
2593                               btrfsic_get_block_type(state, l->block_ref_from),
2594                               l->block_ref_from->logical_bytenr,
2595                               l->block_ref_from->dev_state->name,
2596                               l->block_ref_from->dev_bytenr,
2597                               l->block_ref_from->mirror_num);
2598                if (l->block_ref_from->is_superblock &&
2599                    state->latest_superblock->dev_bytenr ==
2600                    l->block_ref_from->dev_bytenr &&
2601                    state->latest_superblock->dev_state->bdev ==
2602                    l->block_ref_from->dev_state->bdev)
2603                        return 1;
2604                else if (btrfsic_is_block_ref_by_superblock(state,
2605                                                            l->block_ref_from,
2606                                                            recursion_level +
2607                                                            1))
2608                        return 1;
2609        }
2610
2611        return 0;
2612}
2613
2614static void btrfsic_print_add_link(const struct btrfsic_state *state,
2615                                   const struct btrfsic_block_link *l)
2616{
2617        printk(KERN_INFO
2618               "Add %u* link from %c @%llu (%s/%llu/%d)"
2619               " to %c @%llu (%s/%llu/%d).\n",
2620               l->ref_cnt,
2621               btrfsic_get_block_type(state, l->block_ref_from),
2622               l->block_ref_from->logical_bytenr,
2623               l->block_ref_from->dev_state->name,
2624               l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2625               btrfsic_get_block_type(state, l->block_ref_to),
2626               l->block_ref_to->logical_bytenr,
2627               l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2628               l->block_ref_to->mirror_num);
2629}
2630
2631static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2632                                   const struct btrfsic_block_link *l)
2633{
2634        printk(KERN_INFO
2635               "Rem %u* link from %c @%llu (%s/%llu/%d)"
2636               " to %c @%llu (%s/%llu/%d).\n",
2637               l->ref_cnt,
2638               btrfsic_get_block_type(state, l->block_ref_from),
2639               l->block_ref_from->logical_bytenr,
2640               l->block_ref_from->dev_state->name,
2641               l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2642               btrfsic_get_block_type(state, l->block_ref_to),
2643               l->block_ref_to->logical_bytenr,
2644               l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2645               l->block_ref_to->mirror_num);
2646}
2647
2648static char btrfsic_get_block_type(const struct btrfsic_state *state,
2649                                   const struct btrfsic_block *block)
2650{
2651        if (block->is_superblock &&
2652            state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2653            state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2654                return 'S';
2655        else if (block->is_superblock)
2656                return 's';
2657        else if (block->is_metadata)
2658                return 'M';
2659        else
2660                return 'D';
2661}
2662
2663static void btrfsic_dump_tree(const struct btrfsic_state *state)
2664{
2665        btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2666}
2667
2668static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2669                                  const struct btrfsic_block *block,
2670                                  int indent_level)
2671{
2672        struct list_head *elem_ref_to;
2673        int indent_add;
2674        static char buf[80];
2675        int cursor_position;
2676
2677        /*
2678         * Should better fill an on-stack buffer with a complete line and
2679         * dump it at once when it is time to print a newline character.
2680         */
2681
2682        /*
2683         * This algorithm is recursive because the amount of used stack space
2684         * is very small and the max recursion depth is limited.
2685         */
2686        indent_add = sprintf(buf, "%c-%llu(%s/%llu/%d)",
2687                             btrfsic_get_block_type(state, block),
2688                             block->logical_bytenr, block->dev_state->name,
2689                             block->dev_bytenr, block->mirror_num);
2690        if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2691                printk("[...]\n");
2692                return;
2693        }
2694        printk(buf);
2695        indent_level += indent_add;
2696        if (list_empty(&block->ref_to_list)) {
2697                printk("\n");
2698                return;
2699        }
2700        if (block->mirror_num > 1 &&
2701            !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2702                printk(" [...]\n");
2703                return;
2704        }
2705
2706        cursor_position = indent_level;
2707        list_for_each(elem_ref_to, &block->ref_to_list) {
2708                const struct btrfsic_block_link *const l =
2709                    list_entry(elem_ref_to, struct btrfsic_block_link,
2710                               node_ref_to);
2711
2712                while (cursor_position < indent_level) {
2713                        printk(" ");
2714                        cursor_position++;
2715                }
2716                if (l->ref_cnt > 1)
2717                        indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2718                else
2719                        indent_add = sprintf(buf, " --> ");
2720                if (indent_level + indent_add >
2721                    BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2722                        printk("[...]\n");
2723                        cursor_position = 0;
2724                        continue;
2725                }
2726
2727                printk(buf);
2728
2729                btrfsic_dump_tree_sub(state, l->block_ref_to,
2730                                      indent_level + indent_add);
2731                cursor_position = 0;
2732        }
2733}
2734
2735static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2736                struct btrfsic_state *state,
2737                struct btrfsic_block_data_ctx *next_block_ctx,
2738                struct btrfsic_block *next_block,
2739                struct btrfsic_block *from_block,
2740                u64 parent_generation)
2741{
2742        struct btrfsic_block_link *l;
2743
2744        l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2745                                                next_block_ctx->dev_bytenr,
2746                                                from_block->dev_state->bdev,
2747                                                from_block->dev_bytenr,
2748                                                &state->block_link_hashtable);
2749        if (NULL == l) {
2750                l = btrfsic_block_link_alloc();
2751                if (NULL == l) {
2752                        printk(KERN_INFO
2753                               "btrfsic: error, kmalloc" " failed!\n");
2754                        return NULL;
2755                }
2756
2757                l->block_ref_to = next_block;
2758                l->block_ref_from = from_block;
2759                l->ref_cnt = 1;
2760                l->parent_generation = parent_generation;
2761
2762                if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2763                        btrfsic_print_add_link(state, l);
2764
2765                list_add(&l->node_ref_to, &from_block->ref_to_list);
2766                list_add(&l->node_ref_from, &next_block->ref_from_list);
2767
2768                btrfsic_block_link_hashtable_add(l,
2769                                                 &state->block_link_hashtable);
2770        } else {
2771                l->ref_cnt++;
2772                l->parent_generation = parent_generation;
2773                if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2774                        btrfsic_print_add_link(state, l);
2775        }
2776
2777        return l;
2778}
2779
2780static struct btrfsic_block *btrfsic_block_lookup_or_add(
2781                struct btrfsic_state *state,
2782                struct btrfsic_block_data_ctx *block_ctx,
2783                const char *additional_string,
2784                int is_metadata,
2785                int is_iodone,
2786                int never_written,
2787                int mirror_num,
2788                int *was_created)
2789{
2790        struct btrfsic_block *block;
2791
2792        block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2793                                               block_ctx->dev_bytenr,
2794                                               &state->block_hashtable);
2795        if (NULL == block) {
2796                struct btrfsic_dev_state *dev_state;
2797
2798                block = btrfsic_block_alloc();
2799                if (NULL == block) {
2800                        printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2801                        return NULL;
2802                }
2803                dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev);
2804                if (NULL == dev_state) {
2805                        printk(KERN_INFO
2806                               "btrfsic: error, lookup dev_state failed!\n");
2807                        btrfsic_block_free(block);
2808                        return NULL;
2809                }
2810                block->dev_state = dev_state;
2811                block->dev_bytenr = block_ctx->dev_bytenr;
2812                block->logical_bytenr = block_ctx->start;
2813                block->is_metadata = is_metadata;
2814                block->is_iodone = is_iodone;
2815                block->never_written = never_written;
2816                block->mirror_num = mirror_num;
2817                if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2818                        printk(KERN_INFO
2819                               "New %s%c-block @%llu (%s/%llu/%d)\n",
2820                               additional_string,
2821                               btrfsic_get_block_type(state, block),
2822                               block->logical_bytenr, dev_state->name,
2823                               block->dev_bytenr, mirror_num);
2824                list_add(&block->all_blocks_node, &state->all_blocks_list);
2825                btrfsic_block_hashtable_add(block, &state->block_hashtable);
2826                if (NULL != was_created)
2827                        *was_created = 1;
2828        } else {
2829                if (NULL != was_created)
2830                        *was_created = 0;
2831        }
2832
2833        return block;
2834}
2835
2836static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2837                                           u64 bytenr,
2838                                           struct btrfsic_dev_state *dev_state,
2839                                           u64 dev_bytenr)
2840{
2841        int num_copies;
2842        int mirror_num;
2843        int ret;
2844        struct btrfsic_block_data_ctx block_ctx;
2845        int match = 0;
2846
2847        num_copies = btrfs_num_copies(state->root->fs_info,
2848                                      bytenr, state->metablock_size);
2849
2850        for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2851                ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2852                                        &block_ctx, mirror_num);
2853                if (ret) {
2854                        printk(KERN_INFO "btrfsic:"
2855                               " btrfsic_map_block(logical @%llu,"
2856                               " mirror %d) failed!\n",
2857                               bytenr, mirror_num);
2858                        continue;
2859                }
2860
2861                if (dev_state->bdev == block_ctx.dev->bdev &&
2862                    dev_bytenr == block_ctx.dev_bytenr) {
2863                        match++;
2864                        btrfsic_release_block_ctx(&block_ctx);
2865                        break;
2866                }
2867                btrfsic_release_block_ctx(&block_ctx);
2868        }
2869
2870        if (WARN_ON(!match)) {
2871                printk(KERN_INFO "btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio,"
2872                       " buffer->log_bytenr=%llu, submit_bio(bdev=%s,"
2873                       " phys_bytenr=%llu)!\n",
2874                       bytenr, dev_state->name, dev_bytenr);
2875                for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2876                        ret = btrfsic_map_block(state, bytenr,
2877                                                state->metablock_size,
2878                                                &block_ctx, mirror_num);
2879                        if (ret)
2880                                continue;
2881
2882                        printk(KERN_INFO "Read logical bytenr @%llu maps to"
2883                               " (%s/%llu/%d)\n",
2884                               bytenr, block_ctx.dev->name,
2885                               block_ctx.dev_bytenr, mirror_num);
2886                }
2887        }
2888}
2889
2890static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
2891                struct block_device *bdev)
2892{
2893        struct btrfsic_dev_state *ds;
2894
2895        ds = btrfsic_dev_state_hashtable_lookup(bdev,
2896                                                &btrfsic_dev_state_hashtable);
2897        return ds;
2898}
2899
2900int btrfsic_submit_bh(int rw, struct buffer_head *bh)
2901{
2902        struct btrfsic_dev_state *dev_state;
2903
2904        if (!btrfsic_is_initialized)
2905                return submit_bh(rw, bh);
2906
2907        mutex_lock(&btrfsic_mutex);
2908        /* since btrfsic_submit_bh() might also be called before
2909         * btrfsic_mount(), this might return NULL */
2910        dev_state = btrfsic_dev_state_lookup(bh->b_bdev);
2911
2912        /* Only called to write the superblock (incl. FLUSH/FUA) */
2913        if (NULL != dev_state &&
2914            (rw & WRITE) && bh->b_size > 0) {
2915                u64 dev_bytenr;
2916
2917                dev_bytenr = 4096 * bh->b_blocknr;
2918                if (dev_state->state->print_mask &
2919                    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2920                        printk(KERN_INFO
2921                               "submit_bh(rw=0x%x, blocknr=%llu (bytenr %llu),"
2922                               " size=%zu, data=%p, bdev=%p)\n",
2923                               rw, (unsigned long long)bh->b_blocknr,
2924                               dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev);
2925                btrfsic_process_written_block(dev_state, dev_bytenr,
2926                                              &bh->b_data, 1, NULL,
2927                                              NULL, bh, rw);
2928        } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
2929                if (dev_state->state->print_mask &
2930                    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2931                        printk(KERN_INFO
2932                               "submit_bh(rw=0x%x FLUSH, bdev=%p)\n",
2933                               rw, bh->b_bdev);
2934                if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2935                        if ((dev_state->state->print_mask &
2936                             (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2937                              BTRFSIC_PRINT_MASK_VERBOSE)))
2938                                printk(KERN_INFO
2939                                       "btrfsic_submit_bh(%s) with FLUSH"
2940                                       " but dummy block already in use"
2941                                       " (ignored)!\n",
2942                                       dev_state->name);
2943                } else {
2944                        struct btrfsic_block *const block =
2945                                &dev_state->dummy_block_for_bio_bh_flush;
2946
2947                        block->is_iodone = 0;
2948                        block->never_written = 0;
2949                        block->iodone_w_error = 0;
2950                        block->flush_gen = dev_state->last_flush_gen + 1;
2951                        block->submit_bio_bh_rw = rw;
2952                        block->orig_bio_bh_private = bh->b_private;
2953                        block->orig_bio_bh_end_io.bh = bh->b_end_io;
2954                        block->next_in_same_bio = NULL;
2955                        bh->b_private = block;
2956                        bh->b_end_io = btrfsic_bh_end_io;
2957                }
2958        }
2959        mutex_unlock(&btrfsic_mutex);
2960        return submit_bh(rw, bh);
2961}
2962
2963static void __btrfsic_submit_bio(int rw, struct bio *bio)
2964{
2965        struct btrfsic_dev_state *dev_state;
2966
2967        if (!btrfsic_is_initialized)
2968                return;
2969
2970        mutex_lock(&btrfsic_mutex);
2971        /* since btrfsic_submit_bio() is also called before
2972         * btrfsic_mount(), this might return NULL */
2973        dev_state = btrfsic_dev_state_lookup(bio->bi_bdev);
2974        if (NULL != dev_state &&
2975            (rw & WRITE) && NULL != bio->bi_io_vec) {
2976                unsigned int i;
2977                u64 dev_bytenr;
2978                u64 cur_bytenr;
2979                int bio_is_patched;
2980                char **mapped_datav;
2981
2982                dev_bytenr = 512 * bio->bi_iter.bi_sector;
2983                bio_is_patched = 0;
2984                if (dev_state->state->print_mask &
2985                    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2986                        printk(KERN_INFO
2987                               "submit_bio(rw=0x%x, bi_vcnt=%u,"
2988                               " bi_sector=%llu (bytenr %llu), bi_bdev=%p)\n",
2989                               rw, bio->bi_vcnt,
2990                               (unsigned long long)bio->bi_iter.bi_sector,
2991                               dev_bytenr, bio->bi_bdev);
2992
2993                mapped_datav = kmalloc_array(bio->bi_vcnt,
2994                                             sizeof(*mapped_datav), GFP_NOFS);
2995                if (!mapped_datav)
2996                        goto leave;
2997                cur_bytenr = dev_bytenr;
2998                for (i = 0; i < bio->bi_vcnt; i++) {
2999                        BUG_ON(bio->bi_io_vec[i].bv_len != PAGE_CACHE_SIZE);
3000                        mapped_datav[i] = kmap(bio->bi_io_vec[i].bv_page);
3001                        if (!mapped_datav[i]) {
3002                                while (i > 0) {
3003                                        i--;
3004                                        kunmap(bio->bi_io_vec[i].bv_page);
3005                                }
3006                                kfree(mapped_datav);
3007                                goto leave;
3008                        }
3009                        if (dev_state->state->print_mask &
3010                            BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE)
3011                                printk(KERN_INFO
3012                                       "#%u: bytenr=%llu, len=%u, offset=%u\n",
3013                                       i, cur_bytenr, bio->bi_io_vec[i].bv_len,
3014                                       bio->bi_io_vec[i].bv_offset);
3015                        cur_bytenr += bio->bi_io_vec[i].bv_len;
3016                }
3017                btrfsic_process_written_block(dev_state, dev_bytenr,
3018                                              mapped_datav, bio->bi_vcnt,
3019                                              bio, &bio_is_patched,
3020                                              NULL, rw);
3021                while (i > 0) {
3022                        i--;
3023                        kunmap(bio->bi_io_vec[i].bv_page);
3024                }
3025                kfree(mapped_datav);
3026        } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
3027                if (dev_state->state->print_mask &
3028                    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3029                        printk(KERN_INFO
3030                               "submit_bio(rw=0x%x FLUSH, bdev=%p)\n",
3031                               rw, bio->bi_bdev);
3032                if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
3033                        if ((dev_state->state->print_mask &
3034                             (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
3035                              BTRFSIC_PRINT_MASK_VERBOSE)))
3036                                printk(KERN_INFO
3037                                       "btrfsic_submit_bio(%s) with FLUSH"
3038                                       " but dummy block already in use"
3039                                       " (ignored)!\n",
3040                                       dev_state->name);
3041                } else {
3042                        struct btrfsic_block *const block =
3043                                &dev_state->dummy_block_for_bio_bh_flush;
3044
3045                        block->is_iodone = 0;
3046                        block->never_written = 0;
3047                        block->iodone_w_error = 0;
3048                        block->flush_gen = dev_state->last_flush_gen + 1;
3049                        block->submit_bio_bh_rw = rw;
3050                        block->orig_bio_bh_private = bio->bi_private;
3051                        block->orig_bio_bh_end_io.bio = bio->bi_end_io;
3052                        block->next_in_same_bio = NULL;
3053                        bio->bi_private = block;
3054                        bio->bi_end_io = btrfsic_bio_end_io;
3055                }
3056        }
3057leave:
3058        mutex_unlock(&btrfsic_mutex);
3059}
3060
3061void btrfsic_submit_bio(int rw, struct bio *bio)
3062{
3063        __btrfsic_submit_bio(rw, bio);
3064        submit_bio(rw, bio);
3065}
3066
3067int btrfsic_submit_bio_wait(int rw, struct bio *bio)
3068{
3069        __btrfsic_submit_bio(rw, bio);
3070        return submit_bio_wait(rw, bio);
3071}
3072
3073int btrfsic_mount(struct btrfs_root *root,
3074                  struct btrfs_fs_devices *fs_devices,
3075                  int including_extent_data, u32 print_mask)
3076{
3077        int ret;
3078        struct btrfsic_state *state;
3079        struct list_head *dev_head = &fs_devices->devices;
3080        struct btrfs_device *device;
3081
3082        if (root->nodesize & ((u64)PAGE_CACHE_SIZE - 1)) {
3083                printk(KERN_INFO
3084                       "btrfsic: cannot handle nodesize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3085                       root->nodesize, PAGE_CACHE_SIZE);
3086                return -1;
3087        }
3088        if (root->sectorsize & ((u64)PAGE_CACHE_SIZE - 1)) {
3089                printk(KERN_INFO
3090                       "btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3091                       root->sectorsize, PAGE_CACHE_SIZE);
3092                return -1;
3093        }
3094        state = kzalloc(sizeof(*state), GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
3095        if (!state) {
3096                state = vzalloc(sizeof(*state));
3097                if (!state) {
3098                        printk(KERN_INFO "btrfs check-integrity: vzalloc() failed!\n");
3099                        return -1;
3100                }
3101        }
3102
3103        if (!btrfsic_is_initialized) {
3104                mutex_init(&btrfsic_mutex);
3105                btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
3106                btrfsic_is_initialized = 1;
3107        }
3108        mutex_lock(&btrfsic_mutex);
3109        state->root = root;
3110        state->print_mask = print_mask;
3111        state->include_extent_data = including_extent_data;
3112        state->csum_size = 0;
3113        state->metablock_size = root->nodesize;
3114        state->datablock_size = root->sectorsize;
3115        INIT_LIST_HEAD(&state->all_blocks_list);
3116        btrfsic_block_hashtable_init(&state->block_hashtable);
3117        btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
3118        state->max_superblock_generation = 0;
3119        state->latest_superblock = NULL;
3120
3121        list_for_each_entry(device, dev_head, dev_list) {
3122                struct btrfsic_dev_state *ds;
3123                char *p;
3124
3125                if (!device->bdev || !device->name)
3126                        continue;
3127
3128                ds = btrfsic_dev_state_alloc();
3129                if (NULL == ds) {
3130                        printk(KERN_INFO
3131                               "btrfs check-integrity: kmalloc() failed!\n");
3132                        mutex_unlock(&btrfsic_mutex);
3133                        return -1;
3134                }
3135                ds->bdev = device->bdev;
3136                ds->state = state;
3137                bdevname(ds->bdev, ds->name);
3138                ds->name[BDEVNAME_SIZE - 1] = '\0';
3139                for (p = ds->name; *p != '\0'; p++);
3140                while (p > ds->name && *p != '/')
3141                        p--;
3142                if (*p == '/')
3143                        p++;
3144                strlcpy(ds->name, p, sizeof(ds->name));
3145                btrfsic_dev_state_hashtable_add(ds,
3146                                                &btrfsic_dev_state_hashtable);
3147        }
3148
3149        ret = btrfsic_process_superblock(state, fs_devices);
3150        if (0 != ret) {
3151                mutex_unlock(&btrfsic_mutex);
3152                btrfsic_unmount(root, fs_devices);
3153                return ret;
3154        }
3155
3156        if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
3157                btrfsic_dump_database(state);
3158        if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
3159                btrfsic_dump_tree(state);
3160
3161        mutex_unlock(&btrfsic_mutex);
3162        return 0;
3163}
3164
3165void btrfsic_unmount(struct btrfs_root *root,
3166                     struct btrfs_fs_devices *fs_devices)
3167{
3168        struct list_head *elem_all;
3169        struct list_head *tmp_all;
3170        struct btrfsic_state *state;
3171        struct list_head *dev_head = &fs_devices->devices;
3172        struct btrfs_device *device;
3173
3174        if (!btrfsic_is_initialized)
3175                return;
3176
3177        mutex_lock(&btrfsic_mutex);
3178
3179        state = NULL;
3180        list_for_each_entry(device, dev_head, dev_list) {
3181                struct btrfsic_dev_state *ds;
3182
3183                if (!device->bdev || !device->name)
3184                        continue;
3185
3186                ds = btrfsic_dev_state_hashtable_lookup(
3187                                device->bdev,
3188                                &btrfsic_dev_state_hashtable);
3189                if (NULL != ds) {
3190                        state = ds->state;
3191                        btrfsic_dev_state_hashtable_remove(ds);
3192                        btrfsic_dev_state_free(ds);
3193                }
3194        }
3195
3196        if (NULL == state) {
3197                printk(KERN_INFO
3198                       "btrfsic: error, cannot find state information"
3199                       " on umount!\n");
3200                mutex_unlock(&btrfsic_mutex);
3201                return;
3202        }
3203
3204        /*
3205         * Don't care about keeping the lists' state up to date,
3206         * just free all memory that was allocated dynamically.
3207         * Free the blocks and the block_links.
3208         */
3209        list_for_each_safe(elem_all, tmp_all, &state->all_blocks_list) {
3210                struct btrfsic_block *const b_all =
3211                    list_entry(elem_all, struct btrfsic_block,
3212                               all_blocks_node);
3213                struct list_head *elem_ref_to;
3214                struct list_head *tmp_ref_to;
3215
3216                list_for_each_safe(elem_ref_to, tmp_ref_to,
3217                                   &b_all->ref_to_list) {
3218                        struct btrfsic_block_link *const l =
3219                            list_entry(elem_ref_to,
3220                                       struct btrfsic_block_link,
3221                                       node_ref_to);
3222
3223                        if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
3224                                btrfsic_print_rem_link(state, l);
3225
3226                        l->ref_cnt--;
3227                        if (0 == l->ref_cnt)
3228                                btrfsic_block_link_free(l);
3229                }
3230
3231                if (b_all->is_iodone || b_all->never_written)
3232                        btrfsic_block_free(b_all);
3233                else
3234                        printk(KERN_INFO "btrfs: attempt to free %c-block"
3235                               " @%llu (%s/%llu/%d) on umount which is"
3236                               " not yet iodone!\n",
3237                               btrfsic_get_block_type(state, b_all),
3238                               b_all->logical_bytenr, b_all->dev_state->name,
3239                               b_all->dev_bytenr, b_all->mirror_num);
3240        }
3241
3242        mutex_unlock(&btrfsic_mutex);
3243
3244        kvfree(state);
3245}
3246