linux/fs/btrfs/disk-io.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/blkdev.h>
  21#include <linux/scatterlist.h>
  22#include <linux/swap.h>
  23#include <linux/radix-tree.h>
  24#include <linux/writeback.h>
  25#include <linux/buffer_head.h>
  26#include <linux/workqueue.h>
  27#include <linux/kthread.h>
  28#include <linux/freezer.h>
  29#include <linux/slab.h>
  30#include <linux/migrate.h>
  31#include <linux/ratelimit.h>
  32#include <linux/uuid.h>
  33#include <linux/semaphore.h>
  34#include <asm/unaligned.h>
  35#include "ctree.h"
  36#include "disk-io.h"
  37#include "hash.h"
  38#include "transaction.h"
  39#include "btrfs_inode.h"
  40#include "volumes.h"
  41#include "print-tree.h"
  42#include "locking.h"
  43#include "tree-log.h"
  44#include "free-space-cache.h"
  45#include "inode-map.h"
  46#include "check-integrity.h"
  47#include "rcu-string.h"
  48#include "dev-replace.h"
  49#include "raid56.h"
  50#include "sysfs.h"
  51#include "qgroup.h"
  52
  53#ifdef CONFIG_X86
  54#include <asm/cpufeature.h>
  55#endif
  56
  57static const struct extent_io_ops btree_extent_io_ops;
  58static void end_workqueue_fn(struct btrfs_work *work);
  59static void free_fs_root(struct btrfs_root *root);
  60static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  61                                    int read_only);
  62static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  63static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  64                                      struct btrfs_root *root);
  65static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  66static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  67                                        struct extent_io_tree *dirty_pages,
  68                                        int mark);
  69static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  70                                       struct extent_io_tree *pinned_extents);
  71static int btrfs_cleanup_transaction(struct btrfs_root *root);
  72static void btrfs_error_commit_super(struct btrfs_root *root);
  73
  74/*
  75 * btrfs_end_io_wq structs are used to do processing in task context when an IO
  76 * is complete.  This is used during reads to verify checksums, and it is used
  77 * by writes to insert metadata for new file extents after IO is complete.
  78 */
  79struct btrfs_end_io_wq {
  80        struct bio *bio;
  81        bio_end_io_t *end_io;
  82        void *private;
  83        struct btrfs_fs_info *info;
  84        int error;
  85        enum btrfs_wq_endio_type metadata;
  86        struct list_head list;
  87        struct btrfs_work work;
  88};
  89
  90static struct kmem_cache *btrfs_end_io_wq_cache;
  91
  92int __init btrfs_end_io_wq_init(void)
  93{
  94        btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  95                                        sizeof(struct btrfs_end_io_wq),
  96                                        0,
  97                                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  98                                        NULL);
  99        if (!btrfs_end_io_wq_cache)
 100                return -ENOMEM;
 101        return 0;
 102}
 103
 104void btrfs_end_io_wq_exit(void)
 105{
 106        if (btrfs_end_io_wq_cache)
 107                kmem_cache_destroy(btrfs_end_io_wq_cache);
 108}
 109
 110/*
 111 * async submit bios are used to offload expensive checksumming
 112 * onto the worker threads.  They checksum file and metadata bios
 113 * just before they are sent down the IO stack.
 114 */
 115struct async_submit_bio {
 116        struct inode *inode;
 117        struct bio *bio;
 118        struct list_head list;
 119        extent_submit_bio_hook_t *submit_bio_start;
 120        extent_submit_bio_hook_t *submit_bio_done;
 121        int rw;
 122        int mirror_num;
 123        unsigned long bio_flags;
 124        /*
 125         * bio_offset is optional, can be used if the pages in the bio
 126         * can't tell us where in the file the bio should go
 127         */
 128        u64 bio_offset;
 129        struct btrfs_work work;
 130        int error;
 131};
 132
 133/*
 134 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 135 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 136 * the level the eb occupies in the tree.
 137 *
 138 * Different roots are used for different purposes and may nest inside each
 139 * other and they require separate keysets.  As lockdep keys should be
 140 * static, assign keysets according to the purpose of the root as indicated
 141 * by btrfs_root->objectid.  This ensures that all special purpose roots
 142 * have separate keysets.
 143 *
 144 * Lock-nesting across peer nodes is always done with the immediate parent
 145 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 146 * subclass to avoid triggering lockdep warning in such cases.
 147 *
 148 * The key is set by the readpage_end_io_hook after the buffer has passed
 149 * csum validation but before the pages are unlocked.  It is also set by
 150 * btrfs_init_new_buffer on freshly allocated blocks.
 151 *
 152 * We also add a check to make sure the highest level of the tree is the
 153 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 154 * needs update as well.
 155 */
 156#ifdef CONFIG_DEBUG_LOCK_ALLOC
 157# if BTRFS_MAX_LEVEL != 8
 158#  error
 159# endif
 160
 161static struct btrfs_lockdep_keyset {
 162        u64                     id;             /* root objectid */
 163        const char              *name_stem;     /* lock name stem */
 164        char                    names[BTRFS_MAX_LEVEL + 1][20];
 165        struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
 166} btrfs_lockdep_keysets[] = {
 167        { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
 168        { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
 169        { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
 170        { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
 171        { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
 172        { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
 173        { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
 174        { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
 175        { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
 176        { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
 177        { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
 178        { .id = 0,                              .name_stem = "tree"     },
 179};
 180
 181void __init btrfs_init_lockdep(void)
 182{
 183        int i, j;
 184
 185        /* initialize lockdep class names */
 186        for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 187                struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 188
 189                for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 190                        snprintf(ks->names[j], sizeof(ks->names[j]),
 191                                 "btrfs-%s-%02d", ks->name_stem, j);
 192        }
 193}
 194
 195void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 196                                    int level)
 197{
 198        struct btrfs_lockdep_keyset *ks;
 199
 200        BUG_ON(level >= ARRAY_SIZE(ks->keys));
 201
 202        /* find the matching keyset, id 0 is the default entry */
 203        for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 204                if (ks->id == objectid)
 205                        break;
 206
 207        lockdep_set_class_and_name(&eb->lock,
 208                                   &ks->keys[level], ks->names[level]);
 209}
 210
 211#endif
 212
 213/*
 214 * extents on the btree inode are pretty simple, there's one extent
 215 * that covers the entire device
 216 */
 217static struct extent_map *btree_get_extent(struct inode *inode,
 218                struct page *page, size_t pg_offset, u64 start, u64 len,
 219                int create)
 220{
 221        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 222        struct extent_map *em;
 223        int ret;
 224
 225        read_lock(&em_tree->lock);
 226        em = lookup_extent_mapping(em_tree, start, len);
 227        if (em) {
 228                em->bdev =
 229                        BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 230                read_unlock(&em_tree->lock);
 231                goto out;
 232        }
 233        read_unlock(&em_tree->lock);
 234
 235        em = alloc_extent_map();
 236        if (!em) {
 237                em = ERR_PTR(-ENOMEM);
 238                goto out;
 239        }
 240        em->start = 0;
 241        em->len = (u64)-1;
 242        em->block_len = (u64)-1;
 243        em->block_start = 0;
 244        em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 245
 246        write_lock(&em_tree->lock);
 247        ret = add_extent_mapping(em_tree, em, 0);
 248        if (ret == -EEXIST) {
 249                free_extent_map(em);
 250                em = lookup_extent_mapping(em_tree, start, len);
 251                if (!em)
 252                        em = ERR_PTR(-EIO);
 253        } else if (ret) {
 254                free_extent_map(em);
 255                em = ERR_PTR(ret);
 256        }
 257        write_unlock(&em_tree->lock);
 258
 259out:
 260        return em;
 261}
 262
 263u32 btrfs_csum_data(char *data, u32 seed, size_t len)
 264{
 265        return btrfs_crc32c(seed, data, len);
 266}
 267
 268void btrfs_csum_final(u32 crc, char *result)
 269{
 270        put_unaligned_le32(~crc, result);
 271}
 272
 273/*
 274 * compute the csum for a btree block, and either verify it or write it
 275 * into the csum field of the block.
 276 */
 277static int csum_tree_block(struct btrfs_fs_info *fs_info,
 278                           struct extent_buffer *buf,
 279                           int verify)
 280{
 281        u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 282        char *result = NULL;
 283        unsigned long len;
 284        unsigned long cur_len;
 285        unsigned long offset = BTRFS_CSUM_SIZE;
 286        char *kaddr;
 287        unsigned long map_start;
 288        unsigned long map_len;
 289        int err;
 290        u32 crc = ~(u32)0;
 291        unsigned long inline_result;
 292
 293        len = buf->len - offset;
 294        while (len > 0) {
 295                err = map_private_extent_buffer(buf, offset, 32,
 296                                        &kaddr, &map_start, &map_len);
 297                if (err)
 298                        return 1;
 299                cur_len = min(len, map_len - (offset - map_start));
 300                crc = btrfs_csum_data(kaddr + offset - map_start,
 301                                      crc, cur_len);
 302                len -= cur_len;
 303                offset += cur_len;
 304        }
 305        if (csum_size > sizeof(inline_result)) {
 306                result = kzalloc(csum_size, GFP_NOFS);
 307                if (!result)
 308                        return 1;
 309        } else {
 310                result = (char *)&inline_result;
 311        }
 312
 313        btrfs_csum_final(crc, result);
 314
 315        if (verify) {
 316                if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
 317                        u32 val;
 318                        u32 found = 0;
 319                        memcpy(&found, result, csum_size);
 320
 321                        read_extent_buffer(buf, &val, 0, csum_size);
 322                        printk_ratelimited(KERN_WARNING
 323                                "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
 324                                "level %d\n",
 325                                fs_info->sb->s_id, buf->start,
 326                                val, found, btrfs_header_level(buf));
 327                        if (result != (char *)&inline_result)
 328                                kfree(result);
 329                        return 1;
 330                }
 331        } else {
 332                write_extent_buffer(buf, result, 0, csum_size);
 333        }
 334        if (result != (char *)&inline_result)
 335                kfree(result);
 336        return 0;
 337}
 338
 339/*
 340 * we can't consider a given block up to date unless the transid of the
 341 * block matches the transid in the parent node's pointer.  This is how we
 342 * detect blocks that either didn't get written at all or got written
 343 * in the wrong place.
 344 */
 345static int verify_parent_transid(struct extent_io_tree *io_tree,
 346                                 struct extent_buffer *eb, u64 parent_transid,
 347                                 int atomic)
 348{
 349        struct extent_state *cached_state = NULL;
 350        int ret;
 351        bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
 352
 353        if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 354                return 0;
 355
 356        if (atomic)
 357                return -EAGAIN;
 358
 359        if (need_lock) {
 360                btrfs_tree_read_lock(eb);
 361                btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
 362        }
 363
 364        lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 365                         0, &cached_state);
 366        if (extent_buffer_uptodate(eb) &&
 367            btrfs_header_generation(eb) == parent_transid) {
 368                ret = 0;
 369                goto out;
 370        }
 371        printk_ratelimited(KERN_ERR
 372            "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
 373                        eb->fs_info->sb->s_id, eb->start,
 374                        parent_transid, btrfs_header_generation(eb));
 375        ret = 1;
 376
 377        /*
 378         * Things reading via commit roots that don't have normal protection,
 379         * like send, can have a really old block in cache that may point at a
 380         * block that has been free'd and re-allocated.  So don't clear uptodate
 381         * if we find an eb that is under IO (dirty/writeback) because we could
 382         * end up reading in the stale data and then writing it back out and
 383         * making everybody very sad.
 384         */
 385        if (!extent_buffer_under_io(eb))
 386                clear_extent_buffer_uptodate(eb);
 387out:
 388        unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 389                             &cached_state, GFP_NOFS);
 390        if (need_lock)
 391                btrfs_tree_read_unlock_blocking(eb);
 392        return ret;
 393}
 394
 395/*
 396 * Return 0 if the superblock checksum type matches the checksum value of that
 397 * algorithm. Pass the raw disk superblock data.
 398 */
 399static int btrfs_check_super_csum(char *raw_disk_sb)
 400{
 401        struct btrfs_super_block *disk_sb =
 402                (struct btrfs_super_block *)raw_disk_sb;
 403        u16 csum_type = btrfs_super_csum_type(disk_sb);
 404        int ret = 0;
 405
 406        if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
 407                u32 crc = ~(u32)0;
 408                const int csum_size = sizeof(crc);
 409                char result[csum_size];
 410
 411                /*
 412                 * The super_block structure does not span the whole
 413                 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
 414                 * is filled with zeros and is included in the checkum.
 415                 */
 416                crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
 417                                crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
 418                btrfs_csum_final(crc, result);
 419
 420                if (memcmp(raw_disk_sb, result, csum_size))
 421                        ret = 1;
 422        }
 423
 424        if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
 425                printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
 426                                csum_type);
 427                ret = 1;
 428        }
 429
 430        return ret;
 431}
 432
 433/*
 434 * helper to read a given tree block, doing retries as required when
 435 * the checksums don't match and we have alternate mirrors to try.
 436 */
 437static int btree_read_extent_buffer_pages(struct btrfs_root *root,
 438                                          struct extent_buffer *eb,
 439                                          u64 start, u64 parent_transid)
 440{
 441        struct extent_io_tree *io_tree;
 442        int failed = 0;
 443        int ret;
 444        int num_copies = 0;
 445        int mirror_num = 0;
 446        int failed_mirror = 0;
 447
 448        clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 449        io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
 450        while (1) {
 451                ret = read_extent_buffer_pages(io_tree, eb, start,
 452                                               WAIT_COMPLETE,
 453                                               btree_get_extent, mirror_num);
 454                if (!ret) {
 455                        if (!verify_parent_transid(io_tree, eb,
 456                                                   parent_transid, 0))
 457                                break;
 458                        else
 459                                ret = -EIO;
 460                }
 461
 462                /*
 463                 * This buffer's crc is fine, but its contents are corrupted, so
 464                 * there is no reason to read the other copies, they won't be
 465                 * any less wrong.
 466                 */
 467                if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
 468                        break;
 469
 470                num_copies = btrfs_num_copies(root->fs_info,
 471                                              eb->start, eb->len);
 472                if (num_copies == 1)
 473                        break;
 474
 475                if (!failed_mirror) {
 476                        failed = 1;
 477                        failed_mirror = eb->read_mirror;
 478                }
 479
 480                mirror_num++;
 481                if (mirror_num == failed_mirror)
 482                        mirror_num++;
 483
 484                if (mirror_num > num_copies)
 485                        break;
 486        }
 487
 488        if (failed && !ret && failed_mirror)
 489                repair_eb_io_failure(root, eb, failed_mirror);
 490
 491        return ret;
 492}
 493
 494/*
 495 * checksum a dirty tree block before IO.  This has extra checks to make sure
 496 * we only fill in the checksum field in the first page of a multi-page block
 497 */
 498
 499static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
 500{
 501        u64 start = page_offset(page);
 502        u64 found_start;
 503        struct extent_buffer *eb;
 504
 505        eb = (struct extent_buffer *)page->private;
 506        if (page != eb->pages[0])
 507                return 0;
 508        found_start = btrfs_header_bytenr(eb);
 509        if (WARN_ON(found_start != start || !PageUptodate(page)))
 510                return 0;
 511        csum_tree_block(fs_info, eb, 0);
 512        return 0;
 513}
 514
 515static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
 516                                 struct extent_buffer *eb)
 517{
 518        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 519        u8 fsid[BTRFS_UUID_SIZE];
 520        int ret = 1;
 521
 522        read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
 523        while (fs_devices) {
 524                if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
 525                        ret = 0;
 526                        break;
 527                }
 528                fs_devices = fs_devices->seed;
 529        }
 530        return ret;
 531}
 532
 533#define CORRUPT(reason, eb, root, slot)                         \
 534        btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
 535                   "root=%llu, slot=%d", reason,                        \
 536               btrfs_header_bytenr(eb), root->objectid, slot)
 537
 538static noinline int check_leaf(struct btrfs_root *root,
 539                               struct extent_buffer *leaf)
 540{
 541        struct btrfs_key key;
 542        struct btrfs_key leaf_key;
 543        u32 nritems = btrfs_header_nritems(leaf);
 544        int slot;
 545
 546        if (nritems == 0)
 547                return 0;
 548
 549        /* Check the 0 item */
 550        if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
 551            BTRFS_LEAF_DATA_SIZE(root)) {
 552                CORRUPT("invalid item offset size pair", leaf, root, 0);
 553                return -EIO;
 554        }
 555
 556        /*
 557         * Check to make sure each items keys are in the correct order and their
 558         * offsets make sense.  We only have to loop through nritems-1 because
 559         * we check the current slot against the next slot, which verifies the
 560         * next slot's offset+size makes sense and that the current's slot
 561         * offset is correct.
 562         */
 563        for (slot = 0; slot < nritems - 1; slot++) {
 564                btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
 565                btrfs_item_key_to_cpu(leaf, &key, slot + 1);
 566
 567                /* Make sure the keys are in the right order */
 568                if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
 569                        CORRUPT("bad key order", leaf, root, slot);
 570                        return -EIO;
 571                }
 572
 573                /*
 574                 * Make sure the offset and ends are right, remember that the
 575                 * item data starts at the end of the leaf and grows towards the
 576                 * front.
 577                 */
 578                if (btrfs_item_offset_nr(leaf, slot) !=
 579                        btrfs_item_end_nr(leaf, slot + 1)) {
 580                        CORRUPT("slot offset bad", leaf, root, slot);
 581                        return -EIO;
 582                }
 583
 584                /*
 585                 * Check to make sure that we don't point outside of the leaf,
 586                 * just incase all the items are consistent to eachother, but
 587                 * all point outside of the leaf.
 588                 */
 589                if (btrfs_item_end_nr(leaf, slot) >
 590                    BTRFS_LEAF_DATA_SIZE(root)) {
 591                        CORRUPT("slot end outside of leaf", leaf, root, slot);
 592                        return -EIO;
 593                }
 594        }
 595
 596        return 0;
 597}
 598
 599static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
 600                                      u64 phy_offset, struct page *page,
 601                                      u64 start, u64 end, int mirror)
 602{
 603        u64 found_start;
 604        int found_level;
 605        struct extent_buffer *eb;
 606        struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 607        int ret = 0;
 608        int reads_done;
 609
 610        if (!page->private)
 611                goto out;
 612
 613        eb = (struct extent_buffer *)page->private;
 614
 615        /* the pending IO might have been the only thing that kept this buffer
 616         * in memory.  Make sure we have a ref for all this other checks
 617         */
 618        extent_buffer_get(eb);
 619
 620        reads_done = atomic_dec_and_test(&eb->io_pages);
 621        if (!reads_done)
 622                goto err;
 623
 624        eb->read_mirror = mirror;
 625        if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
 626                ret = -EIO;
 627                goto err;
 628        }
 629
 630        found_start = btrfs_header_bytenr(eb);
 631        if (found_start != eb->start) {
 632                printk_ratelimited(KERN_ERR "BTRFS (device %s): bad tree block start "
 633                               "%llu %llu\n",
 634                               eb->fs_info->sb->s_id, found_start, eb->start);
 635                ret = -EIO;
 636                goto err;
 637        }
 638        if (check_tree_block_fsid(root->fs_info, eb)) {
 639                printk_ratelimited(KERN_ERR "BTRFS (device %s): bad fsid on block %llu\n",
 640                               eb->fs_info->sb->s_id, eb->start);
 641                ret = -EIO;
 642                goto err;
 643        }
 644        found_level = btrfs_header_level(eb);
 645        if (found_level >= BTRFS_MAX_LEVEL) {
 646                btrfs_err(root->fs_info, "bad tree block level %d",
 647                           (int)btrfs_header_level(eb));
 648                ret = -EIO;
 649                goto err;
 650        }
 651
 652        btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 653                                       eb, found_level);
 654
 655        ret = csum_tree_block(root->fs_info, eb, 1);
 656        if (ret) {
 657                ret = -EIO;
 658                goto err;
 659        }
 660
 661        /*
 662         * If this is a leaf block and it is corrupt, set the corrupt bit so
 663         * that we don't try and read the other copies of this block, just
 664         * return -EIO.
 665         */
 666        if (found_level == 0 && check_leaf(root, eb)) {
 667                set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 668                ret = -EIO;
 669        }
 670
 671        if (!ret)
 672                set_extent_buffer_uptodate(eb);
 673err:
 674        if (reads_done &&
 675            test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 676                btree_readahead_hook(root, eb, eb->start, ret);
 677
 678        if (ret) {
 679                /*
 680                 * our io error hook is going to dec the io pages
 681                 * again, we have to make sure it has something
 682                 * to decrement
 683                 */
 684                atomic_inc(&eb->io_pages);
 685                clear_extent_buffer_uptodate(eb);
 686        }
 687        free_extent_buffer(eb);
 688out:
 689        return ret;
 690}
 691
 692static int btree_io_failed_hook(struct page *page, int failed_mirror)
 693{
 694        struct extent_buffer *eb;
 695        struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 696
 697        eb = (struct extent_buffer *)page->private;
 698        set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
 699        eb->read_mirror = failed_mirror;
 700        atomic_dec(&eb->io_pages);
 701        if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 702                btree_readahead_hook(root, eb, eb->start, -EIO);
 703        return -EIO;    /* we fixed nothing */
 704}
 705
 706static void end_workqueue_bio(struct bio *bio, int err)
 707{
 708        struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
 709        struct btrfs_fs_info *fs_info;
 710        struct btrfs_workqueue *wq;
 711        btrfs_work_func_t func;
 712
 713        fs_info = end_io_wq->info;
 714        end_io_wq->error = err;
 715
 716        if (bio->bi_rw & REQ_WRITE) {
 717                if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
 718                        wq = fs_info->endio_meta_write_workers;
 719                        func = btrfs_endio_meta_write_helper;
 720                } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
 721                        wq = fs_info->endio_freespace_worker;
 722                        func = btrfs_freespace_write_helper;
 723                } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 724                        wq = fs_info->endio_raid56_workers;
 725                        func = btrfs_endio_raid56_helper;
 726                } else {
 727                        wq = fs_info->endio_write_workers;
 728                        func = btrfs_endio_write_helper;
 729                }
 730        } else {
 731                if (unlikely(end_io_wq->metadata ==
 732                             BTRFS_WQ_ENDIO_DIO_REPAIR)) {
 733                        wq = fs_info->endio_repair_workers;
 734                        func = btrfs_endio_repair_helper;
 735                } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 736                        wq = fs_info->endio_raid56_workers;
 737                        func = btrfs_endio_raid56_helper;
 738                } else if (end_io_wq->metadata) {
 739                        wq = fs_info->endio_meta_workers;
 740                        func = btrfs_endio_meta_helper;
 741                } else {
 742                        wq = fs_info->endio_workers;
 743                        func = btrfs_endio_helper;
 744                }
 745        }
 746
 747        btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
 748        btrfs_queue_work(wq, &end_io_wq->work);
 749}
 750
 751int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 752                        enum btrfs_wq_endio_type metadata)
 753{
 754        struct btrfs_end_io_wq *end_io_wq;
 755
 756        end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
 757        if (!end_io_wq)
 758                return -ENOMEM;
 759
 760        end_io_wq->private = bio->bi_private;
 761        end_io_wq->end_io = bio->bi_end_io;
 762        end_io_wq->info = info;
 763        end_io_wq->error = 0;
 764        end_io_wq->bio = bio;
 765        end_io_wq->metadata = metadata;
 766
 767        bio->bi_private = end_io_wq;
 768        bio->bi_end_io = end_workqueue_bio;
 769        return 0;
 770}
 771
 772unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
 773{
 774        unsigned long limit = min_t(unsigned long,
 775                                    info->thread_pool_size,
 776                                    info->fs_devices->open_devices);
 777        return 256 * limit;
 778}
 779
 780static void run_one_async_start(struct btrfs_work *work)
 781{
 782        struct async_submit_bio *async;
 783        int ret;
 784
 785        async = container_of(work, struct  async_submit_bio, work);
 786        ret = async->submit_bio_start(async->inode, async->rw, async->bio,
 787                                      async->mirror_num, async->bio_flags,
 788                                      async->bio_offset);
 789        if (ret)
 790                async->error = ret;
 791}
 792
 793static void run_one_async_done(struct btrfs_work *work)
 794{
 795        struct btrfs_fs_info *fs_info;
 796        struct async_submit_bio *async;
 797        int limit;
 798
 799        async = container_of(work, struct  async_submit_bio, work);
 800        fs_info = BTRFS_I(async->inode)->root->fs_info;
 801
 802        limit = btrfs_async_submit_limit(fs_info);
 803        limit = limit * 2 / 3;
 804
 805        if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
 806            waitqueue_active(&fs_info->async_submit_wait))
 807                wake_up(&fs_info->async_submit_wait);
 808
 809        /* If an error occured we just want to clean up the bio and move on */
 810        if (async->error) {
 811                bio_endio(async->bio, async->error);
 812                return;
 813        }
 814
 815        async->submit_bio_done(async->inode, async->rw, async->bio,
 816                               async->mirror_num, async->bio_flags,
 817                               async->bio_offset);
 818}
 819
 820static void run_one_async_free(struct btrfs_work *work)
 821{
 822        struct async_submit_bio *async;
 823
 824        async = container_of(work, struct  async_submit_bio, work);
 825        kfree(async);
 826}
 827
 828int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
 829                        int rw, struct bio *bio, int mirror_num,
 830                        unsigned long bio_flags,
 831                        u64 bio_offset,
 832                        extent_submit_bio_hook_t *submit_bio_start,
 833                        extent_submit_bio_hook_t *submit_bio_done)
 834{
 835        struct async_submit_bio *async;
 836
 837        async = kmalloc(sizeof(*async), GFP_NOFS);
 838        if (!async)
 839                return -ENOMEM;
 840
 841        async->inode = inode;
 842        async->rw = rw;
 843        async->bio = bio;
 844        async->mirror_num = mirror_num;
 845        async->submit_bio_start = submit_bio_start;
 846        async->submit_bio_done = submit_bio_done;
 847
 848        btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
 849                        run_one_async_done, run_one_async_free);
 850
 851        async->bio_flags = bio_flags;
 852        async->bio_offset = bio_offset;
 853
 854        async->error = 0;
 855
 856        atomic_inc(&fs_info->nr_async_submits);
 857
 858        if (rw & REQ_SYNC)
 859                btrfs_set_work_high_priority(&async->work);
 860
 861        btrfs_queue_work(fs_info->workers, &async->work);
 862
 863        while (atomic_read(&fs_info->async_submit_draining) &&
 864              atomic_read(&fs_info->nr_async_submits)) {
 865                wait_event(fs_info->async_submit_wait,
 866                           (atomic_read(&fs_info->nr_async_submits) == 0));
 867        }
 868
 869        return 0;
 870}
 871
 872static int btree_csum_one_bio(struct bio *bio)
 873{
 874        struct bio_vec *bvec;
 875        struct btrfs_root *root;
 876        int i, ret = 0;
 877
 878        bio_for_each_segment_all(bvec, bio, i) {
 879                root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 880                ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
 881                if (ret)
 882                        break;
 883        }
 884
 885        return ret;
 886}
 887
 888static int __btree_submit_bio_start(struct inode *inode, int rw,
 889                                    struct bio *bio, int mirror_num,
 890                                    unsigned long bio_flags,
 891                                    u64 bio_offset)
 892{
 893        /*
 894         * when we're called for a write, we're already in the async
 895         * submission context.  Just jump into btrfs_map_bio
 896         */
 897        return btree_csum_one_bio(bio);
 898}
 899
 900static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
 901                                 int mirror_num, unsigned long bio_flags,
 902                                 u64 bio_offset)
 903{
 904        int ret;
 905
 906        /*
 907         * when we're called for a write, we're already in the async
 908         * submission context.  Just jump into btrfs_map_bio
 909         */
 910        ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
 911        if (ret)
 912                bio_endio(bio, ret);
 913        return ret;
 914}
 915
 916static int check_async_write(struct inode *inode, unsigned long bio_flags)
 917{
 918        if (bio_flags & EXTENT_BIO_TREE_LOG)
 919                return 0;
 920#ifdef CONFIG_X86
 921        if (cpu_has_xmm4_2)
 922                return 0;
 923#endif
 924        return 1;
 925}
 926
 927static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
 928                                 int mirror_num, unsigned long bio_flags,
 929                                 u64 bio_offset)
 930{
 931        int async = check_async_write(inode, bio_flags);
 932        int ret;
 933
 934        if (!(rw & REQ_WRITE)) {
 935                /*
 936                 * called for a read, do the setup so that checksum validation
 937                 * can happen in the async kernel threads
 938                 */
 939                ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
 940                                          bio, BTRFS_WQ_ENDIO_METADATA);
 941                if (ret)
 942                        goto out_w_error;
 943                ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
 944                                    mirror_num, 0);
 945        } else if (!async) {
 946                ret = btree_csum_one_bio(bio);
 947                if (ret)
 948                        goto out_w_error;
 949                ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
 950                                    mirror_num, 0);
 951        } else {
 952                /*
 953                 * kthread helpers are used to submit writes so that
 954                 * checksumming can happen in parallel across all CPUs
 955                 */
 956                ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
 957                                          inode, rw, bio, mirror_num, 0,
 958                                          bio_offset,
 959                                          __btree_submit_bio_start,
 960                                          __btree_submit_bio_done);
 961        }
 962
 963        if (ret) {
 964out_w_error:
 965                bio_endio(bio, ret);
 966        }
 967        return ret;
 968}
 969
 970#ifdef CONFIG_MIGRATION
 971static int btree_migratepage(struct address_space *mapping,
 972                        struct page *newpage, struct page *page,
 973                        enum migrate_mode mode)
 974{
 975        /*
 976         * we can't safely write a btree page from here,
 977         * we haven't done the locking hook
 978         */
 979        if (PageDirty(page))
 980                return -EAGAIN;
 981        /*
 982         * Buffers may be managed in a filesystem specific way.
 983         * We must have no buffers or drop them.
 984         */
 985        if (page_has_private(page) &&
 986            !try_to_release_page(page, GFP_KERNEL))
 987                return -EAGAIN;
 988        return migrate_page(mapping, newpage, page, mode);
 989}
 990#endif
 991
 992
 993static int btree_writepages(struct address_space *mapping,
 994                            struct writeback_control *wbc)
 995{
 996        struct btrfs_fs_info *fs_info;
 997        int ret;
 998
 999        if (wbc->sync_mode == WB_SYNC_NONE) {
1000
1001                if (wbc->for_kupdate)
1002                        return 0;
1003
1004                fs_info = BTRFS_I(mapping->host)->root->fs_info;
1005                /* this is a bit racy, but that's ok */
1006                ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1007                                             BTRFS_DIRTY_METADATA_THRESH);
1008                if (ret < 0)
1009                        return 0;
1010        }
1011        return btree_write_cache_pages(mapping, wbc);
1012}
1013
1014static int btree_readpage(struct file *file, struct page *page)
1015{
1016        struct extent_io_tree *tree;
1017        tree = &BTRFS_I(page->mapping->host)->io_tree;
1018        return extent_read_full_page(tree, page, btree_get_extent, 0);
1019}
1020
1021static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1022{
1023        if (PageWriteback(page) || PageDirty(page))
1024                return 0;
1025
1026        return try_release_extent_buffer(page);
1027}
1028
1029static void btree_invalidatepage(struct page *page, unsigned int offset,
1030                                 unsigned int length)
1031{
1032        struct extent_io_tree *tree;
1033        tree = &BTRFS_I(page->mapping->host)->io_tree;
1034        extent_invalidatepage(tree, page, offset);
1035        btree_releasepage(page, GFP_NOFS);
1036        if (PagePrivate(page)) {
1037                btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1038                           "page private not zero on page %llu",
1039                           (unsigned long long)page_offset(page));
1040                ClearPagePrivate(page);
1041                set_page_private(page, 0);
1042                page_cache_release(page);
1043        }
1044}
1045
1046static int btree_set_page_dirty(struct page *page)
1047{
1048#ifdef DEBUG
1049        struct extent_buffer *eb;
1050
1051        BUG_ON(!PagePrivate(page));
1052        eb = (struct extent_buffer *)page->private;
1053        BUG_ON(!eb);
1054        BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1055        BUG_ON(!atomic_read(&eb->refs));
1056        btrfs_assert_tree_locked(eb);
1057#endif
1058        return __set_page_dirty_nobuffers(page);
1059}
1060
1061static const struct address_space_operations btree_aops = {
1062        .readpage       = btree_readpage,
1063        .writepages     = btree_writepages,
1064        .releasepage    = btree_releasepage,
1065        .invalidatepage = btree_invalidatepage,
1066#ifdef CONFIG_MIGRATION
1067        .migratepage    = btree_migratepage,
1068#endif
1069        .set_page_dirty = btree_set_page_dirty,
1070};
1071
1072void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1073{
1074        struct extent_buffer *buf = NULL;
1075        struct inode *btree_inode = root->fs_info->btree_inode;
1076
1077        buf = btrfs_find_create_tree_block(root, bytenr);
1078        if (!buf)
1079                return;
1080        read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1081                                 buf, 0, WAIT_NONE, btree_get_extent, 0);
1082        free_extent_buffer(buf);
1083}
1084
1085int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1086                         int mirror_num, struct extent_buffer **eb)
1087{
1088        struct extent_buffer *buf = NULL;
1089        struct inode *btree_inode = root->fs_info->btree_inode;
1090        struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1091        int ret;
1092
1093        buf = btrfs_find_create_tree_block(root, bytenr);
1094        if (!buf)
1095                return 0;
1096
1097        set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1098
1099        ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1100                                       btree_get_extent, mirror_num);
1101        if (ret) {
1102                free_extent_buffer(buf);
1103                return ret;
1104        }
1105
1106        if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1107                free_extent_buffer(buf);
1108                return -EIO;
1109        } else if (extent_buffer_uptodate(buf)) {
1110                *eb = buf;
1111        } else {
1112                free_extent_buffer(buf);
1113        }
1114        return 0;
1115}
1116
1117struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1118                                            u64 bytenr)
1119{
1120        return find_extent_buffer(fs_info, bytenr);
1121}
1122
1123struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1124                                                 u64 bytenr)
1125{
1126        if (btrfs_test_is_dummy_root(root))
1127                return alloc_test_extent_buffer(root->fs_info, bytenr);
1128        return alloc_extent_buffer(root->fs_info, bytenr);
1129}
1130
1131
1132int btrfs_write_tree_block(struct extent_buffer *buf)
1133{
1134        return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1135                                        buf->start + buf->len - 1);
1136}
1137
1138int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1139{
1140        return filemap_fdatawait_range(buf->pages[0]->mapping,
1141                                       buf->start, buf->start + buf->len - 1);
1142}
1143
1144struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1145                                      u64 parent_transid)
1146{
1147        struct extent_buffer *buf = NULL;
1148        int ret;
1149
1150        buf = btrfs_find_create_tree_block(root, bytenr);
1151        if (!buf)
1152                return NULL;
1153
1154        ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1155        if (ret) {
1156                free_extent_buffer(buf);
1157                return NULL;
1158        }
1159        return buf;
1160
1161}
1162
1163void clean_tree_block(struct btrfs_trans_handle *trans,
1164                      struct btrfs_fs_info *fs_info,
1165                      struct extent_buffer *buf)
1166{
1167        if (btrfs_header_generation(buf) ==
1168            fs_info->running_transaction->transid) {
1169                btrfs_assert_tree_locked(buf);
1170
1171                if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1172                        __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1173                                             -buf->len,
1174                                             fs_info->dirty_metadata_batch);
1175                        /* ugh, clear_extent_buffer_dirty needs to lock the page */
1176                        btrfs_set_lock_blocking(buf);
1177                        clear_extent_buffer_dirty(buf);
1178                }
1179        }
1180}
1181
1182static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1183{
1184        struct btrfs_subvolume_writers *writers;
1185        int ret;
1186
1187        writers = kmalloc(sizeof(*writers), GFP_NOFS);
1188        if (!writers)
1189                return ERR_PTR(-ENOMEM);
1190
1191        ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1192        if (ret < 0) {
1193                kfree(writers);
1194                return ERR_PTR(ret);
1195        }
1196
1197        init_waitqueue_head(&writers->wait);
1198        return writers;
1199}
1200
1201static void
1202btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1203{
1204        percpu_counter_destroy(&writers->counter);
1205        kfree(writers);
1206}
1207
1208static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1209                         struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1210                         u64 objectid)
1211{
1212        root->node = NULL;
1213        root->commit_root = NULL;
1214        root->sectorsize = sectorsize;
1215        root->nodesize = nodesize;
1216        root->stripesize = stripesize;
1217        root->state = 0;
1218        root->orphan_cleanup_state = 0;
1219
1220        root->objectid = objectid;
1221        root->last_trans = 0;
1222        root->highest_objectid = 0;
1223        root->nr_delalloc_inodes = 0;
1224        root->nr_ordered_extents = 0;
1225        root->name = NULL;
1226        root->inode_tree = RB_ROOT;
1227        INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1228        root->block_rsv = NULL;
1229        root->orphan_block_rsv = NULL;
1230
1231        INIT_LIST_HEAD(&root->dirty_list);
1232        INIT_LIST_HEAD(&root->root_list);
1233        INIT_LIST_HEAD(&root->delalloc_inodes);
1234        INIT_LIST_HEAD(&root->delalloc_root);
1235        INIT_LIST_HEAD(&root->ordered_extents);
1236        INIT_LIST_HEAD(&root->ordered_root);
1237        INIT_LIST_HEAD(&root->logged_list[0]);
1238        INIT_LIST_HEAD(&root->logged_list[1]);
1239        spin_lock_init(&root->orphan_lock);
1240        spin_lock_init(&root->inode_lock);
1241        spin_lock_init(&root->delalloc_lock);
1242        spin_lock_init(&root->ordered_extent_lock);
1243        spin_lock_init(&root->accounting_lock);
1244        spin_lock_init(&root->log_extents_lock[0]);
1245        spin_lock_init(&root->log_extents_lock[1]);
1246        mutex_init(&root->objectid_mutex);
1247        mutex_init(&root->log_mutex);
1248        mutex_init(&root->ordered_extent_mutex);
1249        mutex_init(&root->delalloc_mutex);
1250        init_waitqueue_head(&root->log_writer_wait);
1251        init_waitqueue_head(&root->log_commit_wait[0]);
1252        init_waitqueue_head(&root->log_commit_wait[1]);
1253        INIT_LIST_HEAD(&root->log_ctxs[0]);
1254        INIT_LIST_HEAD(&root->log_ctxs[1]);
1255        atomic_set(&root->log_commit[0], 0);
1256        atomic_set(&root->log_commit[1], 0);
1257        atomic_set(&root->log_writers, 0);
1258        atomic_set(&root->log_batch, 0);
1259        atomic_set(&root->orphan_inodes, 0);
1260        atomic_set(&root->refs, 1);
1261        atomic_set(&root->will_be_snapshoted, 0);
1262        root->log_transid = 0;
1263        root->log_transid_committed = -1;
1264        root->last_log_commit = 0;
1265        if (fs_info)
1266                extent_io_tree_init(&root->dirty_log_pages,
1267                                     fs_info->btree_inode->i_mapping);
1268
1269        memset(&root->root_key, 0, sizeof(root->root_key));
1270        memset(&root->root_item, 0, sizeof(root->root_item));
1271        memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1272        if (fs_info)
1273                root->defrag_trans_start = fs_info->generation;
1274        else
1275                root->defrag_trans_start = 0;
1276        root->root_key.objectid = objectid;
1277        root->anon_dev = 0;
1278
1279        spin_lock_init(&root->root_item_lock);
1280}
1281
1282static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1283{
1284        struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1285        if (root)
1286                root->fs_info = fs_info;
1287        return root;
1288}
1289
1290#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1291/* Should only be used by the testing infrastructure */
1292struct btrfs_root *btrfs_alloc_dummy_root(void)
1293{
1294        struct btrfs_root *root;
1295
1296        root = btrfs_alloc_root(NULL);
1297        if (!root)
1298                return ERR_PTR(-ENOMEM);
1299        __setup_root(4096, 4096, 4096, root, NULL, 1);
1300        set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1301        root->alloc_bytenr = 0;
1302
1303        return root;
1304}
1305#endif
1306
1307struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1308                                     struct btrfs_fs_info *fs_info,
1309                                     u64 objectid)
1310{
1311        struct extent_buffer *leaf;
1312        struct btrfs_root *tree_root = fs_info->tree_root;
1313        struct btrfs_root *root;
1314        struct btrfs_key key;
1315        int ret = 0;
1316        uuid_le uuid;
1317
1318        root = btrfs_alloc_root(fs_info);
1319        if (!root)
1320                return ERR_PTR(-ENOMEM);
1321
1322        __setup_root(tree_root->nodesize, tree_root->sectorsize,
1323                tree_root->stripesize, root, fs_info, objectid);
1324        root->root_key.objectid = objectid;
1325        root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1326        root->root_key.offset = 0;
1327
1328        leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1329        if (IS_ERR(leaf)) {
1330                ret = PTR_ERR(leaf);
1331                leaf = NULL;
1332                goto fail;
1333        }
1334
1335        memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1336        btrfs_set_header_bytenr(leaf, leaf->start);
1337        btrfs_set_header_generation(leaf, trans->transid);
1338        btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1339        btrfs_set_header_owner(leaf, objectid);
1340        root->node = leaf;
1341
1342        write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1343                            BTRFS_FSID_SIZE);
1344        write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1345                            btrfs_header_chunk_tree_uuid(leaf),
1346                            BTRFS_UUID_SIZE);
1347        btrfs_mark_buffer_dirty(leaf);
1348
1349        root->commit_root = btrfs_root_node(root);
1350        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1351
1352        root->root_item.flags = 0;
1353        root->root_item.byte_limit = 0;
1354        btrfs_set_root_bytenr(&root->root_item, leaf->start);
1355        btrfs_set_root_generation(&root->root_item, trans->transid);
1356        btrfs_set_root_level(&root->root_item, 0);
1357        btrfs_set_root_refs(&root->root_item, 1);
1358        btrfs_set_root_used(&root->root_item, leaf->len);
1359        btrfs_set_root_last_snapshot(&root->root_item, 0);
1360        btrfs_set_root_dirid(&root->root_item, 0);
1361        uuid_le_gen(&uuid);
1362        memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1363        root->root_item.drop_level = 0;
1364
1365        key.objectid = objectid;
1366        key.type = BTRFS_ROOT_ITEM_KEY;
1367        key.offset = 0;
1368        ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1369        if (ret)
1370                goto fail;
1371
1372        btrfs_tree_unlock(leaf);
1373
1374        return root;
1375
1376fail:
1377        if (leaf) {
1378                btrfs_tree_unlock(leaf);
1379                free_extent_buffer(root->commit_root);
1380                free_extent_buffer(leaf);
1381        }
1382        kfree(root);
1383
1384        return ERR_PTR(ret);
1385}
1386
1387static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1388                                         struct btrfs_fs_info *fs_info)
1389{
1390        struct btrfs_root *root;
1391        struct btrfs_root *tree_root = fs_info->tree_root;
1392        struct extent_buffer *leaf;
1393
1394        root = btrfs_alloc_root(fs_info);
1395        if (!root)
1396                return ERR_PTR(-ENOMEM);
1397
1398        __setup_root(tree_root->nodesize, tree_root->sectorsize,
1399                     tree_root->stripesize, root, fs_info,
1400                     BTRFS_TREE_LOG_OBJECTID);
1401
1402        root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1403        root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1404        root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1405
1406        /*
1407         * DON'T set REF_COWS for log trees
1408         *
1409         * log trees do not get reference counted because they go away
1410         * before a real commit is actually done.  They do store pointers
1411         * to file data extents, and those reference counts still get
1412         * updated (along with back refs to the log tree).
1413         */
1414
1415        leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1416                        NULL, 0, 0, 0);
1417        if (IS_ERR(leaf)) {
1418                kfree(root);
1419                return ERR_CAST(leaf);
1420        }
1421
1422        memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1423        btrfs_set_header_bytenr(leaf, leaf->start);
1424        btrfs_set_header_generation(leaf, trans->transid);
1425        btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1426        btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1427        root->node = leaf;
1428
1429        write_extent_buffer(root->node, root->fs_info->fsid,
1430                            btrfs_header_fsid(), BTRFS_FSID_SIZE);
1431        btrfs_mark_buffer_dirty(root->node);
1432        btrfs_tree_unlock(root->node);
1433        return root;
1434}
1435
1436int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1437                             struct btrfs_fs_info *fs_info)
1438{
1439        struct btrfs_root *log_root;
1440
1441        log_root = alloc_log_tree(trans, fs_info);
1442        if (IS_ERR(log_root))
1443                return PTR_ERR(log_root);
1444        WARN_ON(fs_info->log_root_tree);
1445        fs_info->log_root_tree = log_root;
1446        return 0;
1447}
1448
1449int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1450                       struct btrfs_root *root)
1451{
1452        struct btrfs_root *log_root;
1453        struct btrfs_inode_item *inode_item;
1454
1455        log_root = alloc_log_tree(trans, root->fs_info);
1456        if (IS_ERR(log_root))
1457                return PTR_ERR(log_root);
1458
1459        log_root->last_trans = trans->transid;
1460        log_root->root_key.offset = root->root_key.objectid;
1461
1462        inode_item = &log_root->root_item.inode;
1463        btrfs_set_stack_inode_generation(inode_item, 1);
1464        btrfs_set_stack_inode_size(inode_item, 3);
1465        btrfs_set_stack_inode_nlink(inode_item, 1);
1466        btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1467        btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1468
1469        btrfs_set_root_node(&log_root->root_item, log_root->node);
1470
1471        WARN_ON(root->log_root);
1472        root->log_root = log_root;
1473        root->log_transid = 0;
1474        root->log_transid_committed = -1;
1475        root->last_log_commit = 0;
1476        return 0;
1477}
1478
1479static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1480                                               struct btrfs_key *key)
1481{
1482        struct btrfs_root *root;
1483        struct btrfs_fs_info *fs_info = tree_root->fs_info;
1484        struct btrfs_path *path;
1485        u64 generation;
1486        int ret;
1487
1488        path = btrfs_alloc_path();
1489        if (!path)
1490                return ERR_PTR(-ENOMEM);
1491
1492        root = btrfs_alloc_root(fs_info);
1493        if (!root) {
1494                ret = -ENOMEM;
1495                goto alloc_fail;
1496        }
1497
1498        __setup_root(tree_root->nodesize, tree_root->sectorsize,
1499                tree_root->stripesize, root, fs_info, key->objectid);
1500
1501        ret = btrfs_find_root(tree_root, key, path,
1502                              &root->root_item, &root->root_key);
1503        if (ret) {
1504                if (ret > 0)
1505                        ret = -ENOENT;
1506                goto find_fail;
1507        }
1508
1509        generation = btrfs_root_generation(&root->root_item);
1510        root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1511                                     generation);
1512        if (!root->node) {
1513                ret = -ENOMEM;
1514                goto find_fail;
1515        } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1516                ret = -EIO;
1517                goto read_fail;
1518        }
1519        root->commit_root = btrfs_root_node(root);
1520out:
1521        btrfs_free_path(path);
1522        return root;
1523
1524read_fail:
1525        free_extent_buffer(root->node);
1526find_fail:
1527        kfree(root);
1528alloc_fail:
1529        root = ERR_PTR(ret);
1530        goto out;
1531}
1532
1533struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1534                                      struct btrfs_key *location)
1535{
1536        struct btrfs_root *root;
1537
1538        root = btrfs_read_tree_root(tree_root, location);
1539        if (IS_ERR(root))
1540                return root;
1541
1542        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1543                set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1544                btrfs_check_and_init_root_item(&root->root_item);
1545        }
1546
1547        return root;
1548}
1549
1550int btrfs_init_fs_root(struct btrfs_root *root)
1551{
1552        int ret;
1553        struct btrfs_subvolume_writers *writers;
1554
1555        root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1556        root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1557                                        GFP_NOFS);
1558        if (!root->free_ino_pinned || !root->free_ino_ctl) {
1559                ret = -ENOMEM;
1560                goto fail;
1561        }
1562
1563        writers = btrfs_alloc_subvolume_writers();
1564        if (IS_ERR(writers)) {
1565                ret = PTR_ERR(writers);
1566                goto fail;
1567        }
1568        root->subv_writers = writers;
1569
1570        btrfs_init_free_ino_ctl(root);
1571        spin_lock_init(&root->ino_cache_lock);
1572        init_waitqueue_head(&root->ino_cache_wait);
1573
1574        ret = get_anon_bdev(&root->anon_dev);
1575        if (ret)
1576                goto free_writers;
1577        return 0;
1578
1579free_writers:
1580        btrfs_free_subvolume_writers(root->subv_writers);
1581fail:
1582        kfree(root->free_ino_ctl);
1583        kfree(root->free_ino_pinned);
1584        return ret;
1585}
1586
1587static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1588                                               u64 root_id)
1589{
1590        struct btrfs_root *root;
1591
1592        spin_lock(&fs_info->fs_roots_radix_lock);
1593        root = radix_tree_lookup(&fs_info->fs_roots_radix,
1594                                 (unsigned long)root_id);
1595        spin_unlock(&fs_info->fs_roots_radix_lock);
1596        return root;
1597}
1598
1599int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1600                         struct btrfs_root *root)
1601{
1602        int ret;
1603
1604        ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1605        if (ret)
1606                return ret;
1607
1608        spin_lock(&fs_info->fs_roots_radix_lock);
1609        ret = radix_tree_insert(&fs_info->fs_roots_radix,
1610                                (unsigned long)root->root_key.objectid,
1611                                root);
1612        if (ret == 0)
1613                set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1614        spin_unlock(&fs_info->fs_roots_radix_lock);
1615        radix_tree_preload_end();
1616
1617        return ret;
1618}
1619
1620struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1621                                     struct btrfs_key *location,
1622                                     bool check_ref)
1623{
1624        struct btrfs_root *root;
1625        struct btrfs_path *path;
1626        struct btrfs_key key;
1627        int ret;
1628
1629        if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1630                return fs_info->tree_root;
1631        if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1632                return fs_info->extent_root;
1633        if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1634                return fs_info->chunk_root;
1635        if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1636                return fs_info->dev_root;
1637        if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1638                return fs_info->csum_root;
1639        if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1640                return fs_info->quota_root ? fs_info->quota_root :
1641                                             ERR_PTR(-ENOENT);
1642        if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1643                return fs_info->uuid_root ? fs_info->uuid_root :
1644                                            ERR_PTR(-ENOENT);
1645again:
1646        root = btrfs_lookup_fs_root(fs_info, location->objectid);
1647        if (root) {
1648                if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1649                        return ERR_PTR(-ENOENT);
1650                return root;
1651        }
1652
1653        root = btrfs_read_fs_root(fs_info->tree_root, location);
1654        if (IS_ERR(root))
1655                return root;
1656
1657        if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1658                ret = -ENOENT;
1659                goto fail;
1660        }
1661
1662        ret = btrfs_init_fs_root(root);
1663        if (ret)
1664                goto fail;
1665
1666        path = btrfs_alloc_path();
1667        if (!path) {
1668                ret = -ENOMEM;
1669                goto fail;
1670        }
1671        key.objectid = BTRFS_ORPHAN_OBJECTID;
1672        key.type = BTRFS_ORPHAN_ITEM_KEY;
1673        key.offset = location->objectid;
1674
1675        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1676        btrfs_free_path(path);
1677        if (ret < 0)
1678                goto fail;
1679        if (ret == 0)
1680                set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1681
1682        ret = btrfs_insert_fs_root(fs_info, root);
1683        if (ret) {
1684                if (ret == -EEXIST) {
1685                        free_fs_root(root);
1686                        goto again;
1687                }
1688                goto fail;
1689        }
1690        return root;
1691fail:
1692        free_fs_root(root);
1693        return ERR_PTR(ret);
1694}
1695
1696static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1697{
1698        struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1699        int ret = 0;
1700        struct btrfs_device *device;
1701        struct backing_dev_info *bdi;
1702
1703        rcu_read_lock();
1704        list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1705                if (!device->bdev)
1706                        continue;
1707                bdi = blk_get_backing_dev_info(device->bdev);
1708                if (bdi_congested(bdi, bdi_bits)) {
1709                        ret = 1;
1710                        break;
1711                }
1712        }
1713        rcu_read_unlock();
1714        return ret;
1715}
1716
1717static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1718{
1719        int err;
1720
1721        err = bdi_setup_and_register(bdi, "btrfs");
1722        if (err)
1723                return err;
1724
1725        bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
1726        bdi->congested_fn       = btrfs_congested_fn;
1727        bdi->congested_data     = info;
1728        return 0;
1729}
1730
1731/*
1732 * called by the kthread helper functions to finally call the bio end_io
1733 * functions.  This is where read checksum verification actually happens
1734 */
1735static void end_workqueue_fn(struct btrfs_work *work)
1736{
1737        struct bio *bio;
1738        struct btrfs_end_io_wq *end_io_wq;
1739        int error;
1740
1741        end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1742        bio = end_io_wq->bio;
1743
1744        error = end_io_wq->error;
1745        bio->bi_private = end_io_wq->private;
1746        bio->bi_end_io = end_io_wq->end_io;
1747        kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1748        bio_endio_nodec(bio, error);
1749}
1750
1751static int cleaner_kthread(void *arg)
1752{
1753        struct btrfs_root *root = arg;
1754        int again;
1755
1756        do {
1757                again = 0;
1758
1759                /* Make the cleaner go to sleep early. */
1760                if (btrfs_need_cleaner_sleep(root))
1761                        goto sleep;
1762
1763                if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1764                        goto sleep;
1765
1766                /*
1767                 * Avoid the problem that we change the status of the fs
1768                 * during the above check and trylock.
1769                 */
1770                if (btrfs_need_cleaner_sleep(root)) {
1771                        mutex_unlock(&root->fs_info->cleaner_mutex);
1772                        goto sleep;
1773                }
1774
1775                btrfs_run_delayed_iputs(root);
1776                btrfs_delete_unused_bgs(root->fs_info);
1777                again = btrfs_clean_one_deleted_snapshot(root);
1778                mutex_unlock(&root->fs_info->cleaner_mutex);
1779
1780                /*
1781                 * The defragger has dealt with the R/O remount and umount,
1782                 * needn't do anything special here.
1783                 */
1784                btrfs_run_defrag_inodes(root->fs_info);
1785sleep:
1786                if (!try_to_freeze() && !again) {
1787                        set_current_state(TASK_INTERRUPTIBLE);
1788                        if (!kthread_should_stop())
1789                                schedule();
1790                        __set_current_state(TASK_RUNNING);
1791                }
1792        } while (!kthread_should_stop());
1793        return 0;
1794}
1795
1796static int transaction_kthread(void *arg)
1797{
1798        struct btrfs_root *root = arg;
1799        struct btrfs_trans_handle *trans;
1800        struct btrfs_transaction *cur;
1801        u64 transid;
1802        unsigned long now;
1803        unsigned long delay;
1804        bool cannot_commit;
1805
1806        do {
1807                cannot_commit = false;
1808                delay = HZ * root->fs_info->commit_interval;
1809                mutex_lock(&root->fs_info->transaction_kthread_mutex);
1810
1811                spin_lock(&root->fs_info->trans_lock);
1812                cur = root->fs_info->running_transaction;
1813                if (!cur) {
1814                        spin_unlock(&root->fs_info->trans_lock);
1815                        goto sleep;
1816                }
1817
1818                now = get_seconds();
1819                if (cur->state < TRANS_STATE_BLOCKED &&
1820                    (now < cur->start_time ||
1821                     now - cur->start_time < root->fs_info->commit_interval)) {
1822                        spin_unlock(&root->fs_info->trans_lock);
1823                        delay = HZ * 5;
1824                        goto sleep;
1825                }
1826                transid = cur->transid;
1827                spin_unlock(&root->fs_info->trans_lock);
1828
1829                /* If the file system is aborted, this will always fail. */
1830                trans = btrfs_attach_transaction(root);
1831                if (IS_ERR(trans)) {
1832                        if (PTR_ERR(trans) != -ENOENT)
1833                                cannot_commit = true;
1834                        goto sleep;
1835                }
1836                if (transid == trans->transid) {
1837                        btrfs_commit_transaction(trans, root);
1838                } else {
1839                        btrfs_end_transaction(trans, root);
1840                }
1841sleep:
1842                wake_up_process(root->fs_info->cleaner_kthread);
1843                mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1844
1845                if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1846                                      &root->fs_info->fs_state)))
1847                        btrfs_cleanup_transaction(root);
1848                if (!try_to_freeze()) {
1849                        set_current_state(TASK_INTERRUPTIBLE);
1850                        if (!kthread_should_stop() &&
1851                            (!btrfs_transaction_blocked(root->fs_info) ||
1852                             cannot_commit))
1853                                schedule_timeout(delay);
1854                        __set_current_state(TASK_RUNNING);
1855                }
1856        } while (!kthread_should_stop());
1857        return 0;
1858}
1859
1860/*
1861 * this will find the highest generation in the array of
1862 * root backups.  The index of the highest array is returned,
1863 * or -1 if we can't find anything.
1864 *
1865 * We check to make sure the array is valid by comparing the
1866 * generation of the latest  root in the array with the generation
1867 * in the super block.  If they don't match we pitch it.
1868 */
1869static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1870{
1871        u64 cur;
1872        int newest_index = -1;
1873        struct btrfs_root_backup *root_backup;
1874        int i;
1875
1876        for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1877                root_backup = info->super_copy->super_roots + i;
1878                cur = btrfs_backup_tree_root_gen(root_backup);
1879                if (cur == newest_gen)
1880                        newest_index = i;
1881        }
1882
1883        /* check to see if we actually wrapped around */
1884        if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1885                root_backup = info->super_copy->super_roots;
1886                cur = btrfs_backup_tree_root_gen(root_backup);
1887                if (cur == newest_gen)
1888                        newest_index = 0;
1889        }
1890        return newest_index;
1891}
1892
1893
1894/*
1895 * find the oldest backup so we know where to store new entries
1896 * in the backup array.  This will set the backup_root_index
1897 * field in the fs_info struct
1898 */
1899static void find_oldest_super_backup(struct btrfs_fs_info *info,
1900                                     u64 newest_gen)
1901{
1902        int newest_index = -1;
1903
1904        newest_index = find_newest_super_backup(info, newest_gen);
1905        /* if there was garbage in there, just move along */
1906        if (newest_index == -1) {
1907                info->backup_root_index = 0;
1908        } else {
1909                info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1910        }
1911}
1912
1913/*
1914 * copy all the root pointers into the super backup array.
1915 * this will bump the backup pointer by one when it is
1916 * done
1917 */
1918static void backup_super_roots(struct btrfs_fs_info *info)
1919{
1920        int next_backup;
1921        struct btrfs_root_backup *root_backup;
1922        int last_backup;
1923
1924        next_backup = info->backup_root_index;
1925        last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1926                BTRFS_NUM_BACKUP_ROOTS;
1927
1928        /*
1929         * just overwrite the last backup if we're at the same generation
1930         * this happens only at umount
1931         */
1932        root_backup = info->super_for_commit->super_roots + last_backup;
1933        if (btrfs_backup_tree_root_gen(root_backup) ==
1934            btrfs_header_generation(info->tree_root->node))
1935                next_backup = last_backup;
1936
1937        root_backup = info->super_for_commit->super_roots + next_backup;
1938
1939        /*
1940         * make sure all of our padding and empty slots get zero filled
1941         * regardless of which ones we use today
1942         */
1943        memset(root_backup, 0, sizeof(*root_backup));
1944
1945        info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1946
1947        btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1948        btrfs_set_backup_tree_root_gen(root_backup,
1949                               btrfs_header_generation(info->tree_root->node));
1950
1951        btrfs_set_backup_tree_root_level(root_backup,
1952                               btrfs_header_level(info->tree_root->node));
1953
1954        btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1955        btrfs_set_backup_chunk_root_gen(root_backup,
1956                               btrfs_header_generation(info->chunk_root->node));
1957        btrfs_set_backup_chunk_root_level(root_backup,
1958                               btrfs_header_level(info->chunk_root->node));
1959
1960        btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1961        btrfs_set_backup_extent_root_gen(root_backup,
1962                               btrfs_header_generation(info->extent_root->node));
1963        btrfs_set_backup_extent_root_level(root_backup,
1964                               btrfs_header_level(info->extent_root->node));
1965
1966        /*
1967         * we might commit during log recovery, which happens before we set
1968         * the fs_root.  Make sure it is valid before we fill it in.
1969         */
1970        if (info->fs_root && info->fs_root->node) {
1971                btrfs_set_backup_fs_root(root_backup,
1972                                         info->fs_root->node->start);
1973                btrfs_set_backup_fs_root_gen(root_backup,
1974                               btrfs_header_generation(info->fs_root->node));
1975                btrfs_set_backup_fs_root_level(root_backup,
1976                               btrfs_header_level(info->fs_root->node));
1977        }
1978
1979        btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1980        btrfs_set_backup_dev_root_gen(root_backup,
1981                               btrfs_header_generation(info->dev_root->node));
1982        btrfs_set_backup_dev_root_level(root_backup,
1983                                       btrfs_header_level(info->dev_root->node));
1984
1985        btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1986        btrfs_set_backup_csum_root_gen(root_backup,
1987                               btrfs_header_generation(info->csum_root->node));
1988        btrfs_set_backup_csum_root_level(root_backup,
1989                               btrfs_header_level(info->csum_root->node));
1990
1991        btrfs_set_backup_total_bytes(root_backup,
1992                             btrfs_super_total_bytes(info->super_copy));
1993        btrfs_set_backup_bytes_used(root_backup,
1994                             btrfs_super_bytes_used(info->super_copy));
1995        btrfs_set_backup_num_devices(root_backup,
1996                             btrfs_super_num_devices(info->super_copy));
1997
1998        /*
1999         * if we don't copy this out to the super_copy, it won't get remembered
2000         * for the next commit
2001         */
2002        memcpy(&info->super_copy->super_roots,
2003               &info->super_for_commit->super_roots,
2004               sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2005}
2006
2007/*
2008 * this copies info out of the root backup array and back into
2009 * the in-memory super block.  It is meant to help iterate through
2010 * the array, so you send it the number of backups you've already
2011 * tried and the last backup index you used.
2012 *
2013 * this returns -1 when it has tried all the backups
2014 */
2015static noinline int next_root_backup(struct btrfs_fs_info *info,
2016                                     struct btrfs_super_block *super,
2017                                     int *num_backups_tried, int *backup_index)
2018{
2019        struct btrfs_root_backup *root_backup;
2020        int newest = *backup_index;
2021
2022        if (*num_backups_tried == 0) {
2023                u64 gen = btrfs_super_generation(super);
2024
2025                newest = find_newest_super_backup(info, gen);
2026                if (newest == -1)
2027                        return -1;
2028
2029                *backup_index = newest;
2030                *num_backups_tried = 1;
2031        } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2032                /* we've tried all the backups, all done */
2033                return -1;
2034        } else {
2035                /* jump to the next oldest backup */
2036                newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2037                        BTRFS_NUM_BACKUP_ROOTS;
2038                *backup_index = newest;
2039                *num_backups_tried += 1;
2040        }
2041        root_backup = super->super_roots + newest;
2042
2043        btrfs_set_super_generation(super,
2044                                   btrfs_backup_tree_root_gen(root_backup));
2045        btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2046        btrfs_set_super_root_level(super,
2047                                   btrfs_backup_tree_root_level(root_backup));
2048        btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2049
2050        /*
2051         * fixme: the total bytes and num_devices need to match or we should
2052         * need a fsck
2053         */
2054        btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2055        btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2056        return 0;
2057}
2058
2059/* helper to cleanup workers */
2060static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2061{
2062        btrfs_destroy_workqueue(fs_info->fixup_workers);
2063        btrfs_destroy_workqueue(fs_info->delalloc_workers);
2064        btrfs_destroy_workqueue(fs_info->workers);
2065        btrfs_destroy_workqueue(fs_info->endio_workers);
2066        btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2067        btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2068        btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2069        btrfs_destroy_workqueue(fs_info->rmw_workers);
2070        btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2071        btrfs_destroy_workqueue(fs_info->endio_write_workers);
2072        btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2073        btrfs_destroy_workqueue(fs_info->submit_workers);
2074        btrfs_destroy_workqueue(fs_info->delayed_workers);
2075        btrfs_destroy_workqueue(fs_info->caching_workers);
2076        btrfs_destroy_workqueue(fs_info->readahead_workers);
2077        btrfs_destroy_workqueue(fs_info->flush_workers);
2078        btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2079        btrfs_destroy_workqueue(fs_info->extent_workers);
2080}
2081
2082static void free_root_extent_buffers(struct btrfs_root *root)
2083{
2084        if (root) {
2085                free_extent_buffer(root->node);
2086                free_extent_buffer(root->commit_root);
2087                root->node = NULL;
2088                root->commit_root = NULL;
2089        }
2090}
2091
2092/* helper to cleanup tree roots */
2093static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2094{
2095        free_root_extent_buffers(info->tree_root);
2096
2097        free_root_extent_buffers(info->dev_root);
2098        free_root_extent_buffers(info->extent_root);
2099        free_root_extent_buffers(info->csum_root);
2100        free_root_extent_buffers(info->quota_root);
2101        free_root_extent_buffers(info->uuid_root);
2102        if (chunk_root)
2103                free_root_extent_buffers(info->chunk_root);
2104}
2105
2106void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2107{
2108        int ret;
2109        struct btrfs_root *gang[8];
2110        int i;
2111
2112        while (!list_empty(&fs_info->dead_roots)) {
2113                gang[0] = list_entry(fs_info->dead_roots.next,
2114                                     struct btrfs_root, root_list);
2115                list_del(&gang[0]->root_list);
2116
2117                if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2118                        btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2119                } else {
2120                        free_extent_buffer(gang[0]->node);
2121                        free_extent_buffer(gang[0]->commit_root);
2122                        btrfs_put_fs_root(gang[0]);
2123                }
2124        }
2125
2126        while (1) {
2127                ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2128                                             (void **)gang, 0,
2129                                             ARRAY_SIZE(gang));
2130                if (!ret)
2131                        break;
2132                for (i = 0; i < ret; i++)
2133                        btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2134        }
2135
2136        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2137                btrfs_free_log_root_tree(NULL, fs_info);
2138                btrfs_destroy_pinned_extent(fs_info->tree_root,
2139                                            fs_info->pinned_extents);
2140        }
2141}
2142
2143static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2144{
2145        mutex_init(&fs_info->scrub_lock);
2146        atomic_set(&fs_info->scrubs_running, 0);
2147        atomic_set(&fs_info->scrub_pause_req, 0);
2148        atomic_set(&fs_info->scrubs_paused, 0);
2149        atomic_set(&fs_info->scrub_cancel_req, 0);
2150        init_waitqueue_head(&fs_info->scrub_pause_wait);
2151        fs_info->scrub_workers_refcnt = 0;
2152}
2153
2154static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2155{
2156        spin_lock_init(&fs_info->balance_lock);
2157        mutex_init(&fs_info->balance_mutex);
2158        atomic_set(&fs_info->balance_running, 0);
2159        atomic_set(&fs_info->balance_pause_req, 0);
2160        atomic_set(&fs_info->balance_cancel_req, 0);
2161        fs_info->balance_ctl = NULL;
2162        init_waitqueue_head(&fs_info->balance_wait_q);
2163}
2164
2165static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2166                                   struct btrfs_root *tree_root)
2167{
2168        fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2169        set_nlink(fs_info->btree_inode, 1);
2170        /*
2171         * we set the i_size on the btree inode to the max possible int.
2172         * the real end of the address space is determined by all of
2173         * the devices in the system
2174         */
2175        fs_info->btree_inode->i_size = OFFSET_MAX;
2176        fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2177
2178        RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2179        extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2180                             fs_info->btree_inode->i_mapping);
2181        BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2182        extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2183
2184        BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2185
2186        BTRFS_I(fs_info->btree_inode)->root = tree_root;
2187        memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2188               sizeof(struct btrfs_key));
2189        set_bit(BTRFS_INODE_DUMMY,
2190                &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2191        btrfs_insert_inode_hash(fs_info->btree_inode);
2192}
2193
2194static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2195{
2196        fs_info->dev_replace.lock_owner = 0;
2197        atomic_set(&fs_info->dev_replace.nesting_level, 0);
2198        mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2199        mutex_init(&fs_info->dev_replace.lock_management_lock);
2200        mutex_init(&fs_info->dev_replace.lock);
2201        init_waitqueue_head(&fs_info->replace_wait);
2202}
2203
2204static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2205{
2206        spin_lock_init(&fs_info->qgroup_lock);
2207        mutex_init(&fs_info->qgroup_ioctl_lock);
2208        fs_info->qgroup_tree = RB_ROOT;
2209        fs_info->qgroup_op_tree = RB_ROOT;
2210        INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2211        fs_info->qgroup_seq = 1;
2212        fs_info->quota_enabled = 0;
2213        fs_info->pending_quota_state = 0;
2214        fs_info->qgroup_ulist = NULL;
2215        mutex_init(&fs_info->qgroup_rescan_lock);
2216}
2217
2218static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2219                struct btrfs_fs_devices *fs_devices)
2220{
2221        int max_active = fs_info->thread_pool_size;
2222        unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2223
2224        fs_info->workers =
2225                btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2226                                      max_active, 16);
2227
2228        fs_info->delalloc_workers =
2229                btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2230
2231        fs_info->flush_workers =
2232                btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2233
2234        fs_info->caching_workers =
2235                btrfs_alloc_workqueue("cache", flags, max_active, 0);
2236
2237        /*
2238         * a higher idle thresh on the submit workers makes it much more
2239         * likely that bios will be send down in a sane order to the
2240         * devices
2241         */
2242        fs_info->submit_workers =
2243                btrfs_alloc_workqueue("submit", flags,
2244                                      min_t(u64, fs_devices->num_devices,
2245                                            max_active), 64);
2246
2247        fs_info->fixup_workers =
2248                btrfs_alloc_workqueue("fixup", flags, 1, 0);
2249
2250        /*
2251         * endios are largely parallel and should have a very
2252         * low idle thresh
2253         */
2254        fs_info->endio_workers =
2255                btrfs_alloc_workqueue("endio", flags, max_active, 4);
2256        fs_info->endio_meta_workers =
2257                btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2258        fs_info->endio_meta_write_workers =
2259                btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2260        fs_info->endio_raid56_workers =
2261                btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2262        fs_info->endio_repair_workers =
2263                btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2264        fs_info->rmw_workers =
2265                btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2266        fs_info->endio_write_workers =
2267                btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2268        fs_info->endio_freespace_worker =
2269                btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2270        fs_info->delayed_workers =
2271                btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2272        fs_info->readahead_workers =
2273                btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2274        fs_info->qgroup_rescan_workers =
2275                btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2276        fs_info->extent_workers =
2277                btrfs_alloc_workqueue("extent-refs", flags,
2278                                      min_t(u64, fs_devices->num_devices,
2279                                            max_active), 8);
2280
2281        if (!(fs_info->workers && fs_info->delalloc_workers &&
2282              fs_info->submit_workers && fs_info->flush_workers &&
2283              fs_info->endio_workers && fs_info->endio_meta_workers &&
2284              fs_info->endio_meta_write_workers &&
2285              fs_info->endio_repair_workers &&
2286              fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2287              fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2288              fs_info->caching_workers && fs_info->readahead_workers &&
2289              fs_info->fixup_workers && fs_info->delayed_workers &&
2290              fs_info->extent_workers &&
2291              fs_info->qgroup_rescan_workers)) {
2292                return -ENOMEM;
2293        }
2294
2295        return 0;
2296}
2297
2298static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2299                            struct btrfs_fs_devices *fs_devices)
2300{
2301        int ret;
2302        struct btrfs_root *tree_root = fs_info->tree_root;
2303        struct btrfs_root *log_tree_root;
2304        struct btrfs_super_block *disk_super = fs_info->super_copy;
2305        u64 bytenr = btrfs_super_log_root(disk_super);
2306
2307        if (fs_devices->rw_devices == 0) {
2308                printk(KERN_WARNING "BTRFS: log replay required "
2309                       "on RO media\n");
2310                return -EIO;
2311        }
2312
2313        log_tree_root = btrfs_alloc_root(fs_info);
2314        if (!log_tree_root)
2315                return -ENOMEM;
2316
2317        __setup_root(tree_root->nodesize, tree_root->sectorsize,
2318                        tree_root->stripesize, log_tree_root, fs_info,
2319                        BTRFS_TREE_LOG_OBJECTID);
2320
2321        log_tree_root->node = read_tree_block(tree_root, bytenr,
2322                        fs_info->generation + 1);
2323        if (!log_tree_root->node ||
2324            !extent_buffer_uptodate(log_tree_root->node)) {
2325                printk(KERN_ERR "BTRFS: failed to read log tree\n");
2326                free_extent_buffer(log_tree_root->node);
2327                kfree(log_tree_root);
2328                return -EIO;
2329        }
2330        /* returns with log_tree_root freed on success */
2331        ret = btrfs_recover_log_trees(log_tree_root);
2332        if (ret) {
2333                btrfs_error(tree_root->fs_info, ret,
2334                            "Failed to recover log tree");
2335                free_extent_buffer(log_tree_root->node);
2336                kfree(log_tree_root);
2337                return ret;
2338        }
2339
2340        if (fs_info->sb->s_flags & MS_RDONLY) {
2341                ret = btrfs_commit_super(tree_root);
2342                if (ret)
2343                        return ret;
2344        }
2345
2346        return 0;
2347}
2348
2349static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2350                            struct btrfs_root *tree_root)
2351{
2352        struct btrfs_root *root;
2353        struct btrfs_key location;
2354        int ret;
2355
2356        location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2357        location.type = BTRFS_ROOT_ITEM_KEY;
2358        location.offset = 0;
2359
2360        root = btrfs_read_tree_root(tree_root, &location);
2361        if (IS_ERR(root))
2362                return PTR_ERR(root);
2363        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2364        fs_info->extent_root = root;
2365
2366        location.objectid = BTRFS_DEV_TREE_OBJECTID;
2367        root = btrfs_read_tree_root(tree_root, &location);
2368        if (IS_ERR(root))
2369                return PTR_ERR(root);
2370        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2371        fs_info->dev_root = root;
2372        btrfs_init_devices_late(fs_info);
2373
2374        location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2375        root = btrfs_read_tree_root(tree_root, &location);
2376        if (IS_ERR(root))
2377                return PTR_ERR(root);
2378        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2379        fs_info->csum_root = root;
2380
2381        location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2382        root = btrfs_read_tree_root(tree_root, &location);
2383        if (!IS_ERR(root)) {
2384                set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2385                fs_info->quota_enabled = 1;
2386                fs_info->pending_quota_state = 1;
2387                fs_info->quota_root = root;
2388        }
2389
2390        location.objectid = BTRFS_UUID_TREE_OBJECTID;
2391        root = btrfs_read_tree_root(tree_root, &location);
2392        if (IS_ERR(root)) {
2393                ret = PTR_ERR(root);
2394                if (ret != -ENOENT)
2395                        return ret;
2396        } else {
2397                set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2398                fs_info->uuid_root = root;
2399        }
2400
2401        return 0;
2402}
2403
2404int open_ctree(struct super_block *sb,
2405               struct btrfs_fs_devices *fs_devices,
2406               char *options)
2407{
2408        u32 sectorsize;
2409        u32 nodesize;
2410        u32 stripesize;
2411        u64 generation;
2412        u64 features;
2413        struct btrfs_key location;
2414        struct buffer_head *bh;
2415        struct btrfs_super_block *disk_super;
2416        struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2417        struct btrfs_root *tree_root;
2418        struct btrfs_root *chunk_root;
2419        int ret;
2420        int err = -EINVAL;
2421        int num_backups_tried = 0;
2422        int backup_index = 0;
2423        int max_active;
2424
2425        tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2426        chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2427        if (!tree_root || !chunk_root) {
2428                err = -ENOMEM;
2429                goto fail;
2430        }
2431
2432        ret = init_srcu_struct(&fs_info->subvol_srcu);
2433        if (ret) {
2434                err = ret;
2435                goto fail;
2436        }
2437
2438        ret = setup_bdi(fs_info, &fs_info->bdi);
2439        if (ret) {
2440                err = ret;
2441                goto fail_srcu;
2442        }
2443
2444        ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2445        if (ret) {
2446                err = ret;
2447                goto fail_bdi;
2448        }
2449        fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2450                                        (1 + ilog2(nr_cpu_ids));
2451
2452        ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2453        if (ret) {
2454                err = ret;
2455                goto fail_dirty_metadata_bytes;
2456        }
2457
2458        ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2459        if (ret) {
2460                err = ret;
2461                goto fail_delalloc_bytes;
2462        }
2463
2464        fs_info->btree_inode = new_inode(sb);
2465        if (!fs_info->btree_inode) {
2466                err = -ENOMEM;
2467                goto fail_bio_counter;
2468        }
2469
2470        mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2471
2472        INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2473        INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2474        INIT_LIST_HEAD(&fs_info->trans_list);
2475        INIT_LIST_HEAD(&fs_info->dead_roots);
2476        INIT_LIST_HEAD(&fs_info->delayed_iputs);
2477        INIT_LIST_HEAD(&fs_info->delalloc_roots);
2478        INIT_LIST_HEAD(&fs_info->caching_block_groups);
2479        spin_lock_init(&fs_info->delalloc_root_lock);
2480        spin_lock_init(&fs_info->trans_lock);
2481        spin_lock_init(&fs_info->fs_roots_radix_lock);
2482        spin_lock_init(&fs_info->delayed_iput_lock);
2483        spin_lock_init(&fs_info->defrag_inodes_lock);
2484        spin_lock_init(&fs_info->free_chunk_lock);
2485        spin_lock_init(&fs_info->tree_mod_seq_lock);
2486        spin_lock_init(&fs_info->super_lock);
2487        spin_lock_init(&fs_info->qgroup_op_lock);
2488        spin_lock_init(&fs_info->buffer_lock);
2489        spin_lock_init(&fs_info->unused_bgs_lock);
2490        rwlock_init(&fs_info->tree_mod_log_lock);
2491        mutex_init(&fs_info->unused_bg_unpin_mutex);
2492        mutex_init(&fs_info->reloc_mutex);
2493        mutex_init(&fs_info->delalloc_root_mutex);
2494        seqlock_init(&fs_info->profiles_lock);
2495        init_rwsem(&fs_info->delayed_iput_sem);
2496
2497        init_completion(&fs_info->kobj_unregister);
2498        INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2499        INIT_LIST_HEAD(&fs_info->space_info);
2500        INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2501        INIT_LIST_HEAD(&fs_info->unused_bgs);
2502        btrfs_mapping_init(&fs_info->mapping_tree);
2503        btrfs_init_block_rsv(&fs_info->global_block_rsv,
2504                             BTRFS_BLOCK_RSV_GLOBAL);
2505        btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2506                             BTRFS_BLOCK_RSV_DELALLOC);
2507        btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2508        btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2509        btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2510        btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2511                             BTRFS_BLOCK_RSV_DELOPS);
2512        atomic_set(&fs_info->nr_async_submits, 0);
2513        atomic_set(&fs_info->async_delalloc_pages, 0);
2514        atomic_set(&fs_info->async_submit_draining, 0);
2515        atomic_set(&fs_info->nr_async_bios, 0);
2516        atomic_set(&fs_info->defrag_running, 0);
2517        atomic_set(&fs_info->qgroup_op_seq, 0);
2518        atomic64_set(&fs_info->tree_mod_seq, 0);
2519        fs_info->sb = sb;
2520        fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2521        fs_info->metadata_ratio = 0;
2522        fs_info->defrag_inodes = RB_ROOT;
2523        fs_info->free_chunk_space = 0;
2524        fs_info->tree_mod_log = RB_ROOT;
2525        fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2526        fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2527        /* readahead state */
2528        INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2529        spin_lock_init(&fs_info->reada_lock);
2530
2531        fs_info->thread_pool_size = min_t(unsigned long,
2532                                          num_online_cpus() + 2, 8);
2533
2534        INIT_LIST_HEAD(&fs_info->ordered_roots);
2535        spin_lock_init(&fs_info->ordered_root_lock);
2536        fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2537                                        GFP_NOFS);
2538        if (!fs_info->delayed_root) {
2539                err = -ENOMEM;
2540                goto fail_iput;
2541        }
2542        btrfs_init_delayed_root(fs_info->delayed_root);
2543
2544        btrfs_init_scrub(fs_info);
2545#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2546        fs_info->check_integrity_print_mask = 0;
2547#endif
2548        btrfs_init_balance(fs_info);
2549        btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2550
2551        sb->s_blocksize = 4096;
2552        sb->s_blocksize_bits = blksize_bits(4096);
2553        sb->s_bdi = &fs_info->bdi;
2554
2555        btrfs_init_btree_inode(fs_info, tree_root);
2556
2557        spin_lock_init(&fs_info->block_group_cache_lock);
2558        fs_info->block_group_cache_tree = RB_ROOT;
2559        fs_info->first_logical_byte = (u64)-1;
2560
2561        extent_io_tree_init(&fs_info->freed_extents[0],
2562                             fs_info->btree_inode->i_mapping);
2563        extent_io_tree_init(&fs_info->freed_extents[1],
2564                             fs_info->btree_inode->i_mapping);
2565        fs_info->pinned_extents = &fs_info->freed_extents[0];
2566        fs_info->do_barriers = 1;
2567
2568
2569        mutex_init(&fs_info->ordered_operations_mutex);
2570        mutex_init(&fs_info->ordered_extent_flush_mutex);
2571        mutex_init(&fs_info->tree_log_mutex);
2572        mutex_init(&fs_info->chunk_mutex);
2573        mutex_init(&fs_info->transaction_kthread_mutex);
2574        mutex_init(&fs_info->cleaner_mutex);
2575        mutex_init(&fs_info->volume_mutex);
2576        mutex_init(&fs_info->ro_block_group_mutex);
2577        init_rwsem(&fs_info->commit_root_sem);
2578        init_rwsem(&fs_info->cleanup_work_sem);
2579        init_rwsem(&fs_info->subvol_sem);
2580        sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2581
2582        btrfs_init_dev_replace_locks(fs_info);
2583        btrfs_init_qgroup(fs_info);
2584
2585        btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2586        btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2587
2588        init_waitqueue_head(&fs_info->transaction_throttle);
2589        init_waitqueue_head(&fs_info->transaction_wait);
2590        init_waitqueue_head(&fs_info->transaction_blocked_wait);
2591        init_waitqueue_head(&fs_info->async_submit_wait);
2592
2593        INIT_LIST_HEAD(&fs_info->pinned_chunks);
2594
2595        ret = btrfs_alloc_stripe_hash_table(fs_info);
2596        if (ret) {
2597                err = ret;
2598                goto fail_alloc;
2599        }
2600
2601        __setup_root(4096, 4096, 4096, tree_root,
2602                     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2603
2604        invalidate_bdev(fs_devices->latest_bdev);
2605
2606        /*
2607         * Read super block and check the signature bytes only
2608         */
2609        bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2610        if (!bh) {
2611                err = -EINVAL;
2612                goto fail_alloc;
2613        }
2614
2615        /*
2616         * We want to check superblock checksum, the type is stored inside.
2617         * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2618         */
2619        if (btrfs_check_super_csum(bh->b_data)) {
2620                printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2621                err = -EINVAL;
2622                goto fail_alloc;
2623        }
2624
2625        /*
2626         * super_copy is zeroed at allocation time and we never touch the
2627         * following bytes up to INFO_SIZE, the checksum is calculated from
2628         * the whole block of INFO_SIZE
2629         */
2630        memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2631        memcpy(fs_info->super_for_commit, fs_info->super_copy,
2632               sizeof(*fs_info->super_for_commit));
2633        brelse(bh);
2634
2635        memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2636
2637        ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2638        if (ret) {
2639                printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2640                err = -EINVAL;
2641                goto fail_alloc;
2642        }
2643
2644        disk_super = fs_info->super_copy;
2645        if (!btrfs_super_root(disk_super))
2646                goto fail_alloc;
2647
2648        /* check FS state, whether FS is broken. */
2649        if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2650                set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2651
2652        /*
2653         * run through our array of backup supers and setup
2654         * our ring pointer to the oldest one
2655         */
2656        generation = btrfs_super_generation(disk_super);
2657        find_oldest_super_backup(fs_info, generation);
2658
2659        /*
2660         * In the long term, we'll store the compression type in the super
2661         * block, and it'll be used for per file compression control.
2662         */
2663        fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2664
2665        ret = btrfs_parse_options(tree_root, options);
2666        if (ret) {
2667                err = ret;
2668                goto fail_alloc;
2669        }
2670
2671        features = btrfs_super_incompat_flags(disk_super) &
2672                ~BTRFS_FEATURE_INCOMPAT_SUPP;
2673        if (features) {
2674                printk(KERN_ERR "BTRFS: couldn't mount because of "
2675                       "unsupported optional features (%Lx).\n",
2676                       features);
2677                err = -EINVAL;
2678                goto fail_alloc;
2679        }
2680
2681        /*
2682         * Leafsize and nodesize were always equal, this is only a sanity check.
2683         */
2684        if (le32_to_cpu(disk_super->__unused_leafsize) !=
2685            btrfs_super_nodesize(disk_super)) {
2686                printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2687                       "blocksizes don't match.  node %d leaf %d\n",
2688                       btrfs_super_nodesize(disk_super),
2689                       le32_to_cpu(disk_super->__unused_leafsize));
2690                err = -EINVAL;
2691                goto fail_alloc;
2692        }
2693        if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2694                printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2695                       "blocksize (%d) was too large\n",
2696                       btrfs_super_nodesize(disk_super));
2697                err = -EINVAL;
2698                goto fail_alloc;
2699        }
2700
2701        features = btrfs_super_incompat_flags(disk_super);
2702        features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2703        if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2704                features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2705
2706        if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2707                printk(KERN_INFO "BTRFS: has skinny extents\n");
2708
2709        /*
2710         * flag our filesystem as having big metadata blocks if
2711         * they are bigger than the page size
2712         */
2713        if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2714                if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2715                        printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2716                features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2717        }
2718
2719        nodesize = btrfs_super_nodesize(disk_super);
2720        sectorsize = btrfs_super_sectorsize(disk_super);
2721        stripesize = btrfs_super_stripesize(disk_super);
2722        fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2723        fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2724
2725        /*
2726         * mixed block groups end up with duplicate but slightly offset
2727         * extent buffers for the same range.  It leads to corruptions
2728         */
2729        if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2730            (sectorsize != nodesize)) {
2731                printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2732                                "are not allowed for mixed block groups on %s\n",
2733                                sb->s_id);
2734                goto fail_alloc;
2735        }
2736
2737        /*
2738         * Needn't use the lock because there is no other task which will
2739         * update the flag.
2740         */
2741        btrfs_set_super_incompat_flags(disk_super, features);
2742
2743        features = btrfs_super_compat_ro_flags(disk_super) &
2744                ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2745        if (!(sb->s_flags & MS_RDONLY) && features) {
2746                printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2747                       "unsupported option features (%Lx).\n",
2748                       features);
2749                err = -EINVAL;
2750                goto fail_alloc;
2751        }
2752
2753        max_active = fs_info->thread_pool_size;
2754
2755        ret = btrfs_init_workqueues(fs_info, fs_devices);
2756        if (ret) {
2757                err = ret;
2758                goto fail_sb_buffer;
2759        }
2760
2761        fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2762        fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2763                                    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2764
2765        tree_root->nodesize = nodesize;
2766        tree_root->sectorsize = sectorsize;
2767        tree_root->stripesize = stripesize;
2768
2769        sb->s_blocksize = sectorsize;
2770        sb->s_blocksize_bits = blksize_bits(sectorsize);
2771
2772        if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2773                printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
2774                goto fail_sb_buffer;
2775        }
2776
2777        if (sectorsize != PAGE_SIZE) {
2778                printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
2779                       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2780                goto fail_sb_buffer;
2781        }
2782
2783        mutex_lock(&fs_info->chunk_mutex);
2784        ret = btrfs_read_sys_array(tree_root);
2785        mutex_unlock(&fs_info->chunk_mutex);
2786        if (ret) {
2787                printk(KERN_ERR "BTRFS: failed to read the system "
2788                       "array on %s\n", sb->s_id);
2789                goto fail_sb_buffer;
2790        }
2791
2792        generation = btrfs_super_chunk_root_generation(disk_super);
2793
2794        __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2795                     fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2796
2797        chunk_root->node = read_tree_block(chunk_root,
2798                                           btrfs_super_chunk_root(disk_super),
2799                                           generation);
2800        if (!chunk_root->node ||
2801            !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2802                printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2803                       sb->s_id);
2804                goto fail_tree_roots;
2805        }
2806        btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2807        chunk_root->commit_root = btrfs_root_node(chunk_root);
2808
2809        read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2810           btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2811
2812        ret = btrfs_read_chunk_tree(chunk_root);
2813        if (ret) {
2814                printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2815                       sb->s_id);
2816                goto fail_tree_roots;
2817        }
2818
2819        /*
2820         * keep the device that is marked to be the target device for the
2821         * dev_replace procedure
2822         */
2823        btrfs_close_extra_devices(fs_devices, 0);
2824
2825        if (!fs_devices->latest_bdev) {
2826                printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2827                       sb->s_id);
2828                goto fail_tree_roots;
2829        }
2830
2831retry_root_backup:
2832        generation = btrfs_super_generation(disk_super);
2833
2834        tree_root->node = read_tree_block(tree_root,
2835                                          btrfs_super_root(disk_super),
2836                                          generation);
2837        if (!tree_root->node ||
2838            !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2839                printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2840                       sb->s_id);
2841
2842                goto recovery_tree_root;
2843        }
2844
2845        btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2846        tree_root->commit_root = btrfs_root_node(tree_root);
2847        btrfs_set_root_refs(&tree_root->root_item, 1);
2848
2849        ret = btrfs_read_roots(fs_info, tree_root);
2850        if (ret)
2851                goto recovery_tree_root;
2852
2853        fs_info->generation = generation;
2854        fs_info->last_trans_committed = generation;
2855
2856        ret = btrfs_recover_balance(fs_info);
2857        if (ret) {
2858                printk(KERN_ERR "BTRFS: failed to recover balance\n");
2859                goto fail_block_groups;
2860        }
2861
2862        ret = btrfs_init_dev_stats(fs_info);
2863        if (ret) {
2864                printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2865                       ret);
2866                goto fail_block_groups;
2867        }
2868
2869        ret = btrfs_init_dev_replace(fs_info);
2870        if (ret) {
2871                pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2872                goto fail_block_groups;
2873        }
2874
2875        btrfs_close_extra_devices(fs_devices, 1);
2876
2877        ret = btrfs_sysfs_add_one(fs_info);
2878        if (ret) {
2879                pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2880                goto fail_block_groups;
2881        }
2882
2883        ret = btrfs_init_space_info(fs_info);
2884        if (ret) {
2885                printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2886                goto fail_sysfs;
2887        }
2888
2889        ret = btrfs_read_block_groups(fs_info->extent_root);
2890        if (ret) {
2891                printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2892                goto fail_sysfs;
2893        }
2894        fs_info->num_tolerated_disk_barrier_failures =
2895                btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2896        if (fs_info->fs_devices->missing_devices >
2897             fs_info->num_tolerated_disk_barrier_failures &&
2898            !(sb->s_flags & MS_RDONLY)) {
2899                printk(KERN_WARNING "BTRFS: "
2900                        "too many missing devices, writeable mount is not allowed\n");
2901                goto fail_sysfs;
2902        }
2903
2904        fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2905                                               "btrfs-cleaner");
2906        if (IS_ERR(fs_info->cleaner_kthread))
2907                goto fail_sysfs;
2908
2909        fs_info->transaction_kthread = kthread_run(transaction_kthread,
2910                                                   tree_root,
2911                                                   "btrfs-transaction");
2912        if (IS_ERR(fs_info->transaction_kthread))
2913                goto fail_cleaner;
2914
2915        if (!btrfs_test_opt(tree_root, SSD) &&
2916            !btrfs_test_opt(tree_root, NOSSD) &&
2917            !fs_info->fs_devices->rotating) {
2918                printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2919                       "mode\n");
2920                btrfs_set_opt(fs_info->mount_opt, SSD);
2921        }
2922
2923        /*
2924         * Mount does not set all options immediatelly, we can do it now and do
2925         * not have to wait for transaction commit
2926         */
2927        btrfs_apply_pending_changes(fs_info);
2928
2929#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2930        if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2931                ret = btrfsic_mount(tree_root, fs_devices,
2932                                    btrfs_test_opt(tree_root,
2933                                        CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2934                                    1 : 0,
2935                                    fs_info->check_integrity_print_mask);
2936                if (ret)
2937                        printk(KERN_WARNING "BTRFS: failed to initialize"
2938                               " integrity check module %s\n", sb->s_id);
2939        }
2940#endif
2941        ret = btrfs_read_qgroup_config(fs_info);
2942        if (ret)
2943                goto fail_trans_kthread;
2944
2945        /* do not make disk changes in broken FS */
2946        if (btrfs_super_log_root(disk_super) != 0) {
2947                ret = btrfs_replay_log(fs_info, fs_devices);
2948                if (ret) {
2949                        err = ret;
2950                        goto fail_qgroup;
2951                }
2952        }
2953
2954        ret = btrfs_find_orphan_roots(tree_root);
2955        if (ret)
2956                goto fail_qgroup;
2957
2958        if (!(sb->s_flags & MS_RDONLY)) {
2959                ret = btrfs_cleanup_fs_roots(fs_info);
2960                if (ret)
2961                        goto fail_qgroup;
2962
2963                mutex_lock(&fs_info->cleaner_mutex);
2964                ret = btrfs_recover_relocation(tree_root);
2965                mutex_unlock(&fs_info->cleaner_mutex);
2966                if (ret < 0) {
2967                        printk(KERN_WARNING
2968                               "BTRFS: failed to recover relocation\n");
2969                        err = -EINVAL;
2970                        goto fail_qgroup;
2971                }
2972        }
2973
2974        location.objectid = BTRFS_FS_TREE_OBJECTID;
2975        location.type = BTRFS_ROOT_ITEM_KEY;
2976        location.offset = 0;
2977
2978        fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2979        if (IS_ERR(fs_info->fs_root)) {
2980                err = PTR_ERR(fs_info->fs_root);
2981                goto fail_qgroup;
2982        }
2983
2984        if (sb->s_flags & MS_RDONLY)
2985                return 0;
2986
2987        down_read(&fs_info->cleanup_work_sem);
2988        if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2989            (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2990                up_read(&fs_info->cleanup_work_sem);
2991                close_ctree(tree_root);
2992                return ret;
2993        }
2994        up_read(&fs_info->cleanup_work_sem);
2995
2996        ret = btrfs_resume_balance_async(fs_info);
2997        if (ret) {
2998                printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2999                close_ctree(tree_root);
3000                return ret;
3001        }
3002
3003        ret = btrfs_resume_dev_replace_async(fs_info);
3004        if (ret) {
3005                pr_warn("BTRFS: failed to resume dev_replace\n");
3006                close_ctree(tree_root);
3007                return ret;
3008        }
3009
3010        btrfs_qgroup_rescan_resume(fs_info);
3011
3012        if (!fs_info->uuid_root) {
3013                pr_info("BTRFS: creating UUID tree\n");
3014                ret = btrfs_create_uuid_tree(fs_info);
3015                if (ret) {
3016                        pr_warn("BTRFS: failed to create the UUID tree %d\n",
3017                                ret);
3018                        close_ctree(tree_root);
3019                        return ret;
3020                }
3021        } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3022                   fs_info->generation !=
3023                                btrfs_super_uuid_tree_generation(disk_super)) {
3024                pr_info("BTRFS: checking UUID tree\n");
3025                ret = btrfs_check_uuid_tree(fs_info);
3026                if (ret) {
3027                        pr_warn("BTRFS: failed to check the UUID tree %d\n",
3028                                ret);
3029                        close_ctree(tree_root);
3030                        return ret;
3031                }
3032        } else {
3033                fs_info->update_uuid_tree_gen = 1;
3034        }
3035
3036        fs_info->open = 1;
3037
3038        return 0;
3039
3040fail_qgroup:
3041        btrfs_free_qgroup_config(fs_info);
3042fail_trans_kthread:
3043        kthread_stop(fs_info->transaction_kthread);
3044        btrfs_cleanup_transaction(fs_info->tree_root);
3045        btrfs_free_fs_roots(fs_info);
3046fail_cleaner:
3047        kthread_stop(fs_info->cleaner_kthread);
3048
3049        /*
3050         * make sure we're done with the btree inode before we stop our
3051         * kthreads
3052         */
3053        filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3054
3055fail_sysfs:
3056        btrfs_sysfs_remove_one(fs_info);
3057
3058fail_block_groups:
3059        btrfs_put_block_group_cache(fs_info);
3060        btrfs_free_block_groups(fs_info);
3061
3062fail_tree_roots:
3063        free_root_pointers(fs_info, 1);
3064        invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3065
3066fail_sb_buffer:
3067        btrfs_stop_all_workers(fs_info);
3068fail_alloc:
3069fail_iput:
3070        btrfs_mapping_tree_free(&fs_info->mapping_tree);
3071
3072        iput(fs_info->btree_inode);
3073fail_bio_counter:
3074        percpu_counter_destroy(&fs_info->bio_counter);
3075fail_delalloc_bytes:
3076        percpu_counter_destroy(&fs_info->delalloc_bytes);
3077fail_dirty_metadata_bytes:
3078        percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3079fail_bdi:
3080        bdi_destroy(&fs_info->bdi);
3081fail_srcu:
3082        cleanup_srcu_struct(&fs_info->subvol_srcu);
3083fail:
3084        btrfs_free_stripe_hash_table(fs_info);
3085        btrfs_close_devices(fs_info->fs_devices);
3086        return err;
3087
3088recovery_tree_root:
3089        if (!btrfs_test_opt(tree_root, RECOVERY))
3090                goto fail_tree_roots;
3091
3092        free_root_pointers(fs_info, 0);
3093
3094        /* don't use the log in recovery mode, it won't be valid */
3095        btrfs_set_super_log_root(disk_super, 0);
3096
3097        /* we can't trust the free space cache either */
3098        btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3099
3100        ret = next_root_backup(fs_info, fs_info->super_copy,
3101                               &num_backups_tried, &backup_index);
3102        if (ret == -1)
3103                goto fail_block_groups;
3104        goto retry_root_backup;
3105}
3106
3107static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3108{
3109        if (uptodate) {
3110                set_buffer_uptodate(bh);
3111        } else {
3112                struct btrfs_device *device = (struct btrfs_device *)
3113                        bh->b_private;
3114
3115                printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3116                                          "I/O error on %s\n",
3117                                          rcu_str_deref(device->name));
3118                /* note, we dont' set_buffer_write_io_error because we have
3119                 * our own ways of dealing with the IO errors
3120                 */
3121                clear_buffer_uptodate(bh);
3122                btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3123        }
3124        unlock_buffer(bh);
3125        put_bh(bh);
3126}
3127
3128struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3129{
3130        struct buffer_head *bh;
3131        struct buffer_head *latest = NULL;
3132        struct btrfs_super_block *super;
3133        int i;
3134        u64 transid = 0;
3135        u64 bytenr;
3136
3137        /* we would like to check all the supers, but that would make
3138         * a btrfs mount succeed after a mkfs from a different FS.
3139         * So, we need to add a special mount option to scan for
3140         * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3141         */
3142        for (i = 0; i < 1; i++) {
3143                bytenr = btrfs_sb_offset(i);
3144                if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3145                                        i_size_read(bdev->bd_inode))
3146                        break;
3147                bh = __bread(bdev, bytenr / 4096,
3148                                        BTRFS_SUPER_INFO_SIZE);
3149                if (!bh)
3150                        continue;
3151
3152                super = (struct btrfs_super_block *)bh->b_data;
3153                if (btrfs_super_bytenr(super) != bytenr ||
3154                    btrfs_super_magic(super) != BTRFS_MAGIC) {
3155                        brelse(bh);
3156                        continue;
3157                }
3158
3159                if (!latest || btrfs_super_generation(super) > transid) {
3160                        brelse(latest);
3161                        latest = bh;
3162                        transid = btrfs_super_generation(super);
3163                } else {
3164                        brelse(bh);
3165                }
3166        }
3167        return latest;
3168}
3169
3170/*
3171 * this should be called twice, once with wait == 0 and
3172 * once with wait == 1.  When wait == 0 is done, all the buffer heads
3173 * we write are pinned.
3174 *
3175 * They are released when wait == 1 is done.
3176 * max_mirrors must be the same for both runs, and it indicates how
3177 * many supers on this one device should be written.
3178 *
3179 * max_mirrors == 0 means to write them all.
3180 */
3181static int write_dev_supers(struct btrfs_device *device,
3182                            struct btrfs_super_block *sb,
3183                            int do_barriers, int wait, int max_mirrors)
3184{
3185        struct buffer_head *bh;
3186        int i;
3187        int ret;
3188        int errors = 0;
3189        u32 crc;
3190        u64 bytenr;
3191
3192        if (max_mirrors == 0)
3193                max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3194
3195        for (i = 0; i < max_mirrors; i++) {
3196                bytenr = btrfs_sb_offset(i);
3197                if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3198                    device->commit_total_bytes)
3199                        break;
3200
3201                if (wait) {
3202                        bh = __find_get_block(device->bdev, bytenr / 4096,
3203                                              BTRFS_SUPER_INFO_SIZE);
3204                        if (!bh) {
3205                                errors++;
3206                                continue;
3207                        }
3208                        wait_on_buffer(bh);
3209                        if (!buffer_uptodate(bh))
3210                                errors++;
3211
3212                        /* drop our reference */
3213                        brelse(bh);
3214
3215                        /* drop the reference from the wait == 0 run */
3216                        brelse(bh);
3217                        continue;
3218                } else {
3219                        btrfs_set_super_bytenr(sb, bytenr);
3220
3221                        crc = ~(u32)0;
3222                        crc = btrfs_csum_data((char *)sb +
3223                                              BTRFS_CSUM_SIZE, crc,
3224                                              BTRFS_SUPER_INFO_SIZE -
3225                                              BTRFS_CSUM_SIZE);
3226                        btrfs_csum_final(crc, sb->csum);
3227
3228                        /*
3229                         * one reference for us, and we leave it for the
3230                         * caller
3231                         */
3232                        bh = __getblk(device->bdev, bytenr / 4096,
3233                                      BTRFS_SUPER_INFO_SIZE);
3234                        if (!bh) {
3235                                printk(KERN_ERR "BTRFS: couldn't get super "
3236                                       "buffer head for bytenr %Lu\n", bytenr);
3237                                errors++;
3238                                continue;
3239                        }
3240
3241                        memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3242
3243                        /* one reference for submit_bh */
3244                        get_bh(bh);
3245
3246                        set_buffer_uptodate(bh);
3247                        lock_buffer(bh);
3248                        bh->b_end_io = btrfs_end_buffer_write_sync;
3249                        bh->b_private = device;
3250                }
3251
3252                /*
3253                 * we fua the first super.  The others we allow
3254                 * to go down lazy.
3255                 */
3256                if (i == 0)
3257                        ret = btrfsic_submit_bh(WRITE_FUA, bh);
3258                else
3259                        ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3260                if (ret)
3261                        errors++;
3262        }
3263        return errors < i ? 0 : -1;
3264}
3265
3266/*
3267 * endio for the write_dev_flush, this will wake anyone waiting
3268 * for the barrier when it is done
3269 */
3270static void btrfs_end_empty_barrier(struct bio *bio, int err)
3271{
3272        if (err) {
3273                if (err == -EOPNOTSUPP)
3274                        set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3275                clear_bit(BIO_UPTODATE, &bio->bi_flags);
3276        }
3277        if (bio->bi_private)
3278                complete(bio->bi_private);
3279        bio_put(bio);
3280}
3281
3282/*
3283 * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3284 * sent down.  With wait == 1, it waits for the previous flush.
3285 *
3286 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3287 * capable
3288 */
3289static int write_dev_flush(struct btrfs_device *device, int wait)
3290{
3291        struct bio *bio;
3292        int ret = 0;
3293
3294        if (device->nobarriers)
3295                return 0;
3296
3297        if (wait) {
3298                bio = device->flush_bio;
3299                if (!bio)
3300                        return 0;
3301
3302                wait_for_completion(&device->flush_wait);
3303
3304                if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3305                        printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3306                                      rcu_str_deref(device->name));
3307                        device->nobarriers = 1;
3308                } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3309                        ret = -EIO;
3310                        btrfs_dev_stat_inc_and_print(device,
3311                                BTRFS_DEV_STAT_FLUSH_ERRS);
3312                }
3313
3314                /* drop the reference from the wait == 0 run */
3315                bio_put(bio);
3316                device->flush_bio = NULL;
3317
3318                return ret;
3319        }
3320
3321        /*
3322         * one reference for us, and we leave it for the
3323         * caller
3324         */
3325        device->flush_bio = NULL;
3326        bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3327        if (!bio)
3328                return -ENOMEM;
3329
3330        bio->bi_end_io = btrfs_end_empty_barrier;
3331        bio->bi_bdev = device->bdev;
3332        init_completion(&device->flush_wait);
3333        bio->bi_private = &device->flush_wait;
3334        device->flush_bio = bio;
3335
3336        bio_get(bio);
3337        btrfsic_submit_bio(WRITE_FLUSH, bio);
3338
3339        return 0;
3340}
3341
3342/*
3343 * send an empty flush down to each device in parallel,
3344 * then wait for them
3345 */
3346static int barrier_all_devices(struct btrfs_fs_info *info)
3347{
3348        struct list_head *head;
3349        struct btrfs_device *dev;
3350        int errors_send = 0;
3351        int errors_wait = 0;
3352        int ret;
3353
3354        /* send down all the barriers */
3355        head = &info->fs_devices->devices;
3356        list_for_each_entry_rcu(dev, head, dev_list) {
3357                if (dev->missing)
3358                        continue;
3359                if (!dev->bdev) {
3360                        errors_send++;
3361                        continue;
3362                }
3363                if (!dev->in_fs_metadata || !dev->writeable)
3364                        continue;
3365
3366                ret = write_dev_flush(dev, 0);
3367                if (ret)
3368                        errors_send++;
3369        }
3370
3371        /* wait for all the barriers */
3372        list_for_each_entry_rcu(dev, head, dev_list) {
3373                if (dev->missing)
3374                        continue;
3375                if (!dev->bdev) {
3376                        errors_wait++;
3377                        continue;
3378                }
3379                if (!dev->in_fs_metadata || !dev->writeable)
3380                        continue;
3381
3382                ret = write_dev_flush(dev, 1);
3383                if (ret)
3384                        errors_wait++;
3385        }
3386        if (errors_send > info->num_tolerated_disk_barrier_failures ||
3387            errors_wait > info->num_tolerated_disk_barrier_failures)
3388                return -EIO;
3389        return 0;
3390}
3391
3392int btrfs_calc_num_tolerated_disk_barrier_failures(
3393        struct btrfs_fs_info *fs_info)
3394{
3395        struct btrfs_ioctl_space_info space;
3396        struct btrfs_space_info *sinfo;
3397        u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3398                       BTRFS_BLOCK_GROUP_SYSTEM,
3399                       BTRFS_BLOCK_GROUP_METADATA,
3400                       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3401        int num_types = 4;
3402        int i;
3403        int c;
3404        int num_tolerated_disk_barrier_failures =
3405                (int)fs_info->fs_devices->num_devices;
3406
3407        for (i = 0; i < num_types; i++) {
3408                struct btrfs_space_info *tmp;
3409
3410                sinfo = NULL;
3411                rcu_read_lock();
3412                list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3413                        if (tmp->flags == types[i]) {
3414                                sinfo = tmp;
3415                                break;
3416                        }
3417                }
3418                rcu_read_unlock();
3419
3420                if (!sinfo)
3421                        continue;
3422
3423                down_read(&sinfo->groups_sem);
3424                for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3425                        if (!list_empty(&sinfo->block_groups[c])) {
3426                                u64 flags;
3427
3428                                btrfs_get_block_group_info(
3429                                        &sinfo->block_groups[c], &space);
3430                                if (space.total_bytes == 0 ||
3431                                    space.used_bytes == 0)
3432                                        continue;
3433                                flags = space.flags;
3434                                /*
3435                                 * return
3436                                 * 0: if dup, single or RAID0 is configured for
3437                                 *    any of metadata, system or data, else
3438                                 * 1: if RAID5 is configured, or if RAID1 or
3439                                 *    RAID10 is configured and only two mirrors
3440                                 *    are used, else
3441                                 * 2: if RAID6 is configured, else
3442                                 * num_mirrors - 1: if RAID1 or RAID10 is
3443                                 *                  configured and more than
3444                                 *                  2 mirrors are used.
3445                                 */
3446                                if (num_tolerated_disk_barrier_failures > 0 &&
3447                                    ((flags & (BTRFS_BLOCK_GROUP_DUP |
3448                                               BTRFS_BLOCK_GROUP_RAID0)) ||
3449                                     ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3450                                      == 0)))
3451                                        num_tolerated_disk_barrier_failures = 0;
3452                                else if (num_tolerated_disk_barrier_failures > 1) {
3453                                        if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3454                                            BTRFS_BLOCK_GROUP_RAID5 |
3455                                            BTRFS_BLOCK_GROUP_RAID10)) {
3456                                                num_tolerated_disk_barrier_failures = 1;
3457                                        } else if (flags &
3458                                                   BTRFS_BLOCK_GROUP_RAID6) {
3459                                                num_tolerated_disk_barrier_failures = 2;
3460                                        }
3461                                }
3462                        }
3463                }
3464                up_read(&sinfo->groups_sem);
3465        }
3466
3467        return num_tolerated_disk_barrier_failures;
3468}
3469
3470static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3471{
3472        struct list_head *head;
3473        struct btrfs_device *dev;
3474        struct btrfs_super_block *sb;
3475        struct btrfs_dev_item *dev_item;
3476        int ret;
3477        int do_barriers;
3478        int max_errors;
3479        int total_errors = 0;
3480        u64 flags;
3481
3482        do_barriers = !btrfs_test_opt(root, NOBARRIER);
3483        backup_super_roots(root->fs_info);
3484
3485        sb = root->fs_info->super_for_commit;
3486        dev_item = &sb->dev_item;
3487
3488        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3489        head = &root->fs_info->fs_devices->devices;
3490        max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3491
3492        if (do_barriers) {
3493                ret = barrier_all_devices(root->fs_info);
3494                if (ret) {
3495                        mutex_unlock(
3496                                &root->fs_info->fs_devices->device_list_mutex);
3497                        btrfs_error(root->fs_info, ret,
3498                                    "errors while submitting device barriers.");
3499                        return ret;
3500                }
3501        }
3502
3503        list_for_each_entry_rcu(dev, head, dev_list) {
3504                if (!dev->bdev) {
3505                        total_errors++;
3506                        continue;
3507                }
3508                if (!dev->in_fs_metadata || !dev->writeable)
3509                        continue;
3510
3511                btrfs_set_stack_device_generation(dev_item, 0);
3512                btrfs_set_stack_device_type(dev_item, dev->type);
3513                btrfs_set_stack_device_id(dev_item, dev->devid);
3514                btrfs_set_stack_device_total_bytes(dev_item,
3515                                                   dev->commit_total_bytes);
3516                btrfs_set_stack_device_bytes_used(dev_item,
3517                                                  dev->commit_bytes_used);
3518                btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3519                btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3520                btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3521                memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3522                memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3523
3524                flags = btrfs_super_flags(sb);
3525                btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3526
3527                ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3528                if (ret)
3529                        total_errors++;
3530        }
3531        if (total_errors > max_errors) {
3532                btrfs_err(root->fs_info, "%d errors while writing supers",
3533                       total_errors);
3534                mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3535
3536                /* FUA is masked off if unsupported and can't be the reason */
3537                btrfs_error(root->fs_info, -EIO,
3538                            "%d errors while writing supers", total_errors);
3539                return -EIO;
3540        }
3541
3542        total_errors = 0;
3543        list_for_each_entry_rcu(dev, head, dev_list) {
3544                if (!dev->bdev)
3545                        continue;
3546                if (!dev->in_fs_metadata || !dev->writeable)
3547                        continue;
3548
3549                ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3550                if (ret)
3551                        total_errors++;
3552        }
3553        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3554        if (total_errors > max_errors) {
3555                btrfs_error(root->fs_info, -EIO,
3556                            "%d errors while writing supers", total_errors);
3557                return -EIO;
3558        }
3559        return 0;
3560}
3561
3562int write_ctree_super(struct btrfs_trans_handle *trans,
3563                      struct btrfs_root *root, int max_mirrors)
3564{
3565        return write_all_supers(root, max_mirrors);
3566}
3567
3568/* Drop a fs root from the radix tree and free it. */
3569void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3570                                  struct btrfs_root *root)
3571{
3572        spin_lock(&fs_info->fs_roots_radix_lock);
3573        radix_tree_delete(&fs_info->fs_roots_radix,
3574                          (unsigned long)root->root_key.objectid);
3575        spin_unlock(&fs_info->fs_roots_radix_lock);
3576
3577        if (btrfs_root_refs(&root->root_item) == 0)
3578                synchronize_srcu(&fs_info->subvol_srcu);
3579
3580        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3581                btrfs_free_log(NULL, root);
3582
3583        if (root->free_ino_pinned)
3584                __btrfs_remove_free_space_cache(root->free_ino_pinned);
3585        if (root->free_ino_ctl)
3586                __btrfs_remove_free_space_cache(root->free_ino_ctl);
3587        free_fs_root(root);
3588}
3589
3590static void free_fs_root(struct btrfs_root *root)
3591{
3592        iput(root->ino_cache_inode);
3593        WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3594        btrfs_free_block_rsv(root, root->orphan_block_rsv);
3595        root->orphan_block_rsv = NULL;
3596        if (root->anon_dev)
3597                free_anon_bdev(root->anon_dev);
3598        if (root->subv_writers)
3599                btrfs_free_subvolume_writers(root->subv_writers);
3600        free_extent_buffer(root->node);
3601        free_extent_buffer(root->commit_root);
3602        kfree(root->free_ino_ctl);
3603        kfree(root->free_ino_pinned);
3604        kfree(root->name);
3605        btrfs_put_fs_root(root);
3606}
3607
3608void btrfs_free_fs_root(struct btrfs_root *root)
3609{
3610        free_fs_root(root);
3611}
3612
3613int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3614{
3615        u64 root_objectid = 0;
3616        struct btrfs_root *gang[8];
3617        int i = 0;
3618        int err = 0;
3619        unsigned int ret = 0;
3620        int index;
3621
3622        while (1) {
3623                index = srcu_read_lock(&fs_info->subvol_srcu);
3624                ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3625                                             (void **)gang, root_objectid,
3626                                             ARRAY_SIZE(gang));
3627                if (!ret) {
3628                        srcu_read_unlock(&fs_info->subvol_srcu, index);
3629                        break;
3630                }
3631                root_objectid = gang[ret - 1]->root_key.objectid + 1;
3632
3633                for (i = 0; i < ret; i++) {
3634                        /* Avoid to grab roots in dead_roots */
3635                        if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3636                                gang[i] = NULL;
3637                                continue;
3638                        }
3639                        /* grab all the search result for later use */
3640                        gang[i] = btrfs_grab_fs_root(gang[i]);
3641                }
3642                srcu_read_unlock(&fs_info->subvol_srcu, index);
3643
3644                for (i = 0; i < ret; i++) {
3645                        if (!gang[i])
3646                                continue;
3647                        root_objectid = gang[i]->root_key.objectid;
3648                        err = btrfs_orphan_cleanup(gang[i]);
3649                        if (err)
3650                                break;
3651                        btrfs_put_fs_root(gang[i]);
3652                }
3653                root_objectid++;
3654        }
3655
3656        /* release the uncleaned roots due to error */
3657        for (; i < ret; i++) {
3658                if (gang[i])
3659                        btrfs_put_fs_root(gang[i]);
3660        }
3661        return err;
3662}
3663
3664int btrfs_commit_super(struct btrfs_root *root)
3665{
3666        struct btrfs_trans_handle *trans;
3667
3668        mutex_lock(&root->fs_info->cleaner_mutex);
3669        btrfs_run_delayed_iputs(root);
3670        mutex_unlock(&root->fs_info->cleaner_mutex);
3671        wake_up_process(root->fs_info->cleaner_kthread);
3672
3673        /* wait until ongoing cleanup work done */
3674        down_write(&root->fs_info->cleanup_work_sem);
3675        up_write(&root->fs_info->cleanup_work_sem);
3676
3677        trans = btrfs_join_transaction(root);
3678        if (IS_ERR(trans))
3679                return PTR_ERR(trans);
3680        return btrfs_commit_transaction(trans, root);
3681}
3682
3683void close_ctree(struct btrfs_root *root)
3684{
3685        struct btrfs_fs_info *fs_info = root->fs_info;
3686        int ret;
3687
3688        fs_info->closing = 1;
3689        smp_mb();
3690
3691        /* wait for the uuid_scan task to finish */
3692        down(&fs_info->uuid_tree_rescan_sem);
3693        /* avoid complains from lockdep et al., set sem back to initial state */
3694        up(&fs_info->uuid_tree_rescan_sem);
3695
3696        /* pause restriper - we want to resume on mount */
3697        btrfs_pause_balance(fs_info);
3698
3699        btrfs_dev_replace_suspend_for_unmount(fs_info);
3700
3701        btrfs_scrub_cancel(fs_info);
3702
3703        /* wait for any defraggers to finish */
3704        wait_event(fs_info->transaction_wait,
3705                   (atomic_read(&fs_info->defrag_running) == 0));
3706
3707        /* clear out the rbtree of defraggable inodes */
3708        btrfs_cleanup_defrag_inodes(fs_info);
3709
3710        cancel_work_sync(&fs_info->async_reclaim_work);
3711
3712        if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3713                ret = btrfs_commit_super(root);
3714                if (ret)
3715                        btrfs_err(fs_info, "commit super ret %d", ret);
3716        }
3717
3718        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3719                btrfs_error_commit_super(root);
3720
3721        kthread_stop(fs_info->transaction_kthread);
3722        kthread_stop(fs_info->cleaner_kthread);
3723
3724        fs_info->closing = 2;
3725        smp_mb();
3726
3727        btrfs_free_qgroup_config(fs_info);
3728
3729        if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3730                btrfs_info(fs_info, "at unmount delalloc count %lld",
3731                       percpu_counter_sum(&fs_info->delalloc_bytes));
3732        }
3733
3734        btrfs_sysfs_remove_one(fs_info);
3735
3736        btrfs_free_fs_roots(fs_info);
3737
3738        btrfs_put_block_group_cache(fs_info);
3739
3740        btrfs_free_block_groups(fs_info);
3741
3742        /*
3743         * we must make sure there is not any read request to
3744         * submit after we stopping all workers.
3745         */
3746        invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3747        btrfs_stop_all_workers(fs_info);
3748
3749        fs_info->open = 0;
3750        free_root_pointers(fs_info, 1);
3751
3752        iput(fs_info->btree_inode);
3753
3754#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3755        if (btrfs_test_opt(root, CHECK_INTEGRITY))
3756                btrfsic_unmount(root, fs_info->fs_devices);
3757#endif
3758
3759        btrfs_close_devices(fs_info->fs_devices);
3760        btrfs_mapping_tree_free(&fs_info->mapping_tree);
3761
3762        percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3763        percpu_counter_destroy(&fs_info->delalloc_bytes);
3764        percpu_counter_destroy(&fs_info->bio_counter);
3765        bdi_destroy(&fs_info->bdi);
3766        cleanup_srcu_struct(&fs_info->subvol_srcu);
3767
3768        btrfs_free_stripe_hash_table(fs_info);
3769
3770        __btrfs_free_block_rsv(root->orphan_block_rsv);
3771        root->orphan_block_rsv = NULL;
3772
3773        lock_chunks(root);
3774        while (!list_empty(&fs_info->pinned_chunks)) {
3775                struct extent_map *em;
3776
3777                em = list_first_entry(&fs_info->pinned_chunks,
3778                                      struct extent_map, list);
3779                list_del_init(&em->list);
3780                free_extent_map(em);
3781        }
3782        unlock_chunks(root);
3783}
3784
3785int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3786                          int atomic)
3787{
3788        int ret;
3789        struct inode *btree_inode = buf->pages[0]->mapping->host;
3790
3791        ret = extent_buffer_uptodate(buf);
3792        if (!ret)
3793                return ret;
3794
3795        ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3796                                    parent_transid, atomic);
3797        if (ret == -EAGAIN)
3798                return ret;
3799        return !ret;
3800}
3801
3802int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3803{
3804        return set_extent_buffer_uptodate(buf);
3805}
3806
3807void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3808{
3809        struct btrfs_root *root;
3810        u64 transid = btrfs_header_generation(buf);
3811        int was_dirty;
3812
3813#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3814        /*
3815         * This is a fast path so only do this check if we have sanity tests
3816         * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3817         * outside of the sanity tests.
3818         */
3819        if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3820                return;
3821#endif
3822        root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3823        btrfs_assert_tree_locked(buf);
3824        if (transid != root->fs_info->generation)
3825                WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3826                       "found %llu running %llu\n",
3827                        buf->start, transid, root->fs_info->generation);
3828        was_dirty = set_extent_buffer_dirty(buf);
3829        if (!was_dirty)
3830                __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3831                                     buf->len,
3832                                     root->fs_info->dirty_metadata_batch);
3833#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3834        if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3835                btrfs_print_leaf(root, buf);
3836                ASSERT(0);
3837        }
3838#endif
3839}
3840
3841static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3842                                        int flush_delayed)
3843{
3844        /*
3845         * looks as though older kernels can get into trouble with
3846         * this code, they end up stuck in balance_dirty_pages forever
3847         */
3848        int ret;
3849
3850        if (current->flags & PF_MEMALLOC)
3851                return;
3852
3853        if (flush_delayed)
3854                btrfs_balance_delayed_items(root);
3855
3856        ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3857                                     BTRFS_DIRTY_METADATA_THRESH);
3858        if (ret > 0) {
3859                balance_dirty_pages_ratelimited(
3860                                   root->fs_info->btree_inode->i_mapping);
3861        }
3862        return;
3863}
3864
3865void btrfs_btree_balance_dirty(struct btrfs_root *root)
3866{
3867        __btrfs_btree_balance_dirty(root, 1);
3868}
3869
3870void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3871{
3872        __btrfs_btree_balance_dirty(root, 0);
3873}
3874
3875int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3876{
3877        struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3878        return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3879}
3880
3881static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3882                              int read_only)
3883{
3884        struct btrfs_super_block *sb = fs_info->super_copy;
3885        int ret = 0;
3886
3887        if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3888                printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
3889                                btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3890                ret = -EINVAL;
3891        }
3892        if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3893                printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
3894                                btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
3895                ret = -EINVAL;
3896        }
3897        if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3898                printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
3899                                btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
3900                ret = -EINVAL;
3901        }
3902
3903        /*
3904         * The common minimum, we don't know if we can trust the nodesize/sectorsize
3905         * items yet, they'll be verified later. Issue just a warning.
3906         */
3907        if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
3908                printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
3909                                btrfs_super_root(sb));
3910        if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
3911                printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
3912                                btrfs_super_chunk_root(sb));
3913        if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
3914                printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
3915                                btrfs_super_log_root(sb));
3916
3917        /*
3918         * Check the lower bound, the alignment and other constraints are
3919         * checked later.
3920         */
3921        if (btrfs_super_nodesize(sb) < 4096) {
3922                printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
3923                                btrfs_super_nodesize(sb));
3924                ret = -EINVAL;
3925        }
3926        if (btrfs_super_sectorsize(sb) < 4096) {
3927                printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
3928                                btrfs_super_sectorsize(sb));
3929                ret = -EINVAL;
3930        }
3931
3932        if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
3933                printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
3934                                fs_info->fsid, sb->dev_item.fsid);
3935                ret = -EINVAL;
3936        }
3937
3938        /*
3939         * Hint to catch really bogus numbers, bitflips or so, more exact checks are
3940         * done later
3941         */
3942        if (btrfs_super_num_devices(sb) > (1UL << 31))
3943                printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
3944                                btrfs_super_num_devices(sb));
3945        if (btrfs_super_num_devices(sb) == 0) {
3946                printk(KERN_ERR "BTRFS: number of devices is 0\n");
3947                ret = -EINVAL;
3948        }
3949
3950        if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
3951                printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
3952                                btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
3953                ret = -EINVAL;
3954        }
3955
3956        /*
3957         * Obvious sys_chunk_array corruptions, it must hold at least one key
3958         * and one chunk
3959         */
3960        if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
3961                printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
3962                                btrfs_super_sys_array_size(sb),
3963                                BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
3964                ret = -EINVAL;
3965        }
3966        if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
3967                        + sizeof(struct btrfs_chunk)) {
3968                printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
3969                                btrfs_super_sys_array_size(sb),
3970                                sizeof(struct btrfs_disk_key)
3971                                + sizeof(struct btrfs_chunk));
3972                ret = -EINVAL;
3973        }
3974
3975        /*
3976         * The generation is a global counter, we'll trust it more than the others
3977         * but it's still possible that it's the one that's wrong.
3978         */
3979        if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
3980                printk(KERN_WARNING
3981                        "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
3982                        btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
3983        if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
3984            && btrfs_super_cache_generation(sb) != (u64)-1)
3985                printk(KERN_WARNING
3986                        "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
3987                        btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
3988
3989        return ret;
3990}
3991
3992static void btrfs_error_commit_super(struct btrfs_root *root)
3993{
3994        mutex_lock(&root->fs_info->cleaner_mutex);
3995        btrfs_run_delayed_iputs(root);
3996        mutex_unlock(&root->fs_info->cleaner_mutex);
3997
3998        down_write(&root->fs_info->cleanup_work_sem);
3999        up_write(&root->fs_info->cleanup_work_sem);
4000
4001        /* cleanup FS via transaction */
4002        btrfs_cleanup_transaction(root);
4003}
4004
4005static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4006{
4007        struct btrfs_ordered_extent *ordered;
4008
4009        spin_lock(&root->ordered_extent_lock);
4010        /*
4011         * This will just short circuit the ordered completion stuff which will
4012         * make sure the ordered extent gets properly cleaned up.
4013         */
4014        list_for_each_entry(ordered, &root->ordered_extents,
4015                            root_extent_list)
4016                set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4017        spin_unlock(&root->ordered_extent_lock);
4018}
4019
4020static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4021{
4022        struct btrfs_root *root;
4023        struct list_head splice;
4024
4025        INIT_LIST_HEAD(&splice);
4026
4027        spin_lock(&fs_info->ordered_root_lock);
4028        list_splice_init(&fs_info->ordered_roots, &splice);
4029        while (!list_empty(&splice)) {
4030                root = list_first_entry(&splice, struct btrfs_root,
4031                                        ordered_root);
4032                list_move_tail(&root->ordered_root,
4033                               &fs_info->ordered_roots);
4034
4035                spin_unlock(&fs_info->ordered_root_lock);
4036                btrfs_destroy_ordered_extents(root);
4037
4038                cond_resched();
4039                spin_lock(&fs_info->ordered_root_lock);
4040        }
4041        spin_unlock(&fs_info->ordered_root_lock);
4042}
4043
4044static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4045                                      struct btrfs_root *root)
4046{
4047        struct rb_node *node;
4048        struct btrfs_delayed_ref_root *delayed_refs;
4049        struct btrfs_delayed_ref_node *ref;
4050        int ret = 0;
4051
4052        delayed_refs = &trans->delayed_refs;
4053
4054        spin_lock(&delayed_refs->lock);
4055        if (atomic_read(&delayed_refs->num_entries) == 0) {
4056                spin_unlock(&delayed_refs->lock);
4057                btrfs_info(root->fs_info, "delayed_refs has NO entry");
4058                return ret;
4059        }
4060
4061        while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4062                struct btrfs_delayed_ref_head *head;
4063                bool pin_bytes = false;
4064
4065                head = rb_entry(node, struct btrfs_delayed_ref_head,
4066                                href_node);
4067                if (!mutex_trylock(&head->mutex)) {
4068                        atomic_inc(&head->node.refs);
4069                        spin_unlock(&delayed_refs->lock);
4070
4071                        mutex_lock(&head->mutex);
4072                        mutex_unlock(&head->mutex);
4073                        btrfs_put_delayed_ref(&head->node);
4074                        spin_lock(&delayed_refs->lock);
4075                        continue;
4076                }
4077                spin_lock(&head->lock);
4078                while ((node = rb_first(&head->ref_root)) != NULL) {
4079                        ref = rb_entry(node, struct btrfs_delayed_ref_node,
4080                                       rb_node);
4081                        ref->in_tree = 0;
4082                        rb_erase(&ref->rb_node, &head->ref_root);
4083                        atomic_dec(&delayed_refs->num_entries);
4084                        btrfs_put_delayed_ref(ref);
4085                }
4086                if (head->must_insert_reserved)
4087                        pin_bytes = true;
4088                btrfs_free_delayed_extent_op(head->extent_op);
4089                delayed_refs->num_heads--;
4090                if (head->processing == 0)
4091                        delayed_refs->num_heads_ready--;
4092                atomic_dec(&delayed_refs->num_entries);
4093                head->node.in_tree = 0;
4094                rb_erase(&head->href_node, &delayed_refs->href_root);
4095                spin_unlock(&head->lock);
4096                spin_unlock(&delayed_refs->lock);
4097                mutex_unlock(&head->mutex);
4098
4099                if (pin_bytes)
4100                        btrfs_pin_extent(root, head->node.bytenr,
4101                                         head->node.num_bytes, 1);
4102                btrfs_put_delayed_ref(&head->node);
4103                cond_resched();
4104                spin_lock(&delayed_refs->lock);
4105        }
4106
4107        spin_unlock(&delayed_refs->lock);
4108
4109        return ret;
4110}
4111
4112static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4113{
4114        struct btrfs_inode *btrfs_inode;
4115        struct list_head splice;
4116
4117        INIT_LIST_HEAD(&splice);
4118
4119        spin_lock(&root->delalloc_lock);
4120        list_splice_init(&root->delalloc_inodes, &splice);
4121
4122        while (!list_empty(&splice)) {
4123                btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4124                                               delalloc_inodes);
4125
4126                list_del_init(&btrfs_inode->delalloc_inodes);
4127                clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4128                          &btrfs_inode->runtime_flags);
4129                spin_unlock(&root->delalloc_lock);
4130
4131                btrfs_invalidate_inodes(btrfs_inode->root);
4132
4133                spin_lock(&root->delalloc_lock);
4134        }
4135
4136        spin_unlock(&root->delalloc_lock);
4137}
4138
4139static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4140{
4141        struct btrfs_root *root;
4142        struct list_head splice;
4143
4144        INIT_LIST_HEAD(&splice);
4145
4146        spin_lock(&fs_info->delalloc_root_lock);
4147        list_splice_init(&fs_info->delalloc_roots, &splice);
4148        while (!list_empty(&splice)) {
4149                root = list_first_entry(&splice, struct btrfs_root,
4150                                         delalloc_root);
4151                list_del_init(&root->delalloc_root);
4152                root = btrfs_grab_fs_root(root);
4153                BUG_ON(!root);
4154                spin_unlock(&fs_info->delalloc_root_lock);
4155
4156                btrfs_destroy_delalloc_inodes(root);
4157                btrfs_put_fs_root(root);
4158
4159                spin_lock(&fs_info->delalloc_root_lock);
4160        }
4161        spin_unlock(&fs_info->delalloc_root_lock);
4162}
4163
4164static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4165                                        struct extent_io_tree *dirty_pages,
4166                                        int mark)
4167{
4168        int ret;
4169        struct extent_buffer *eb;
4170        u64 start = 0;
4171        u64 end;
4172
4173        while (1) {
4174                ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4175                                            mark, NULL);
4176                if (ret)
4177                        break;
4178
4179                clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4180                while (start <= end) {
4181                        eb = btrfs_find_tree_block(root->fs_info, start);
4182                        start += root->nodesize;
4183                        if (!eb)
4184                                continue;
4185                        wait_on_extent_buffer_writeback(eb);
4186
4187                        if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4188                                               &eb->bflags))
4189                                clear_extent_buffer_dirty(eb);
4190                        free_extent_buffer_stale(eb);
4191                }
4192        }
4193
4194        return ret;
4195}
4196
4197static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4198                                       struct extent_io_tree *pinned_extents)
4199{
4200        struct extent_io_tree *unpin;
4201        u64 start;
4202        u64 end;
4203        int ret;
4204        bool loop = true;
4205
4206        unpin = pinned_extents;
4207again:
4208        while (1) {
4209                ret = find_first_extent_bit(unpin, 0, &start, &end,
4210                                            EXTENT_DIRTY, NULL);
4211                if (ret)
4212                        break;
4213
4214                clear_extent_dirty(unpin, start, end, GFP_NOFS);
4215                btrfs_error_unpin_extent_range(root, start, end);
4216                cond_resched();
4217        }
4218
4219        if (loop) {
4220                if (unpin == &root->fs_info->freed_extents[0])
4221                        unpin = &root->fs_info->freed_extents[1];
4222                else
4223                        unpin = &root->fs_info->freed_extents[0];
4224                loop = false;
4225                goto again;
4226        }
4227
4228        return 0;
4229}
4230
4231static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans,
4232                                       struct btrfs_fs_info *fs_info)
4233{
4234        struct btrfs_ordered_extent *ordered;
4235
4236        spin_lock(&fs_info->trans_lock);
4237        while (!list_empty(&cur_trans->pending_ordered)) {
4238                ordered = list_first_entry(&cur_trans->pending_ordered,
4239                                           struct btrfs_ordered_extent,
4240                                           trans_list);
4241                list_del_init(&ordered->trans_list);
4242                spin_unlock(&fs_info->trans_lock);
4243
4244                btrfs_put_ordered_extent(ordered);
4245                spin_lock(&fs_info->trans_lock);
4246        }
4247        spin_unlock(&fs_info->trans_lock);
4248}
4249
4250void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4251                                   struct btrfs_root *root)
4252{
4253        btrfs_destroy_delayed_refs(cur_trans, root);
4254
4255        cur_trans->state = TRANS_STATE_COMMIT_START;
4256        wake_up(&root->fs_info->transaction_blocked_wait);
4257
4258        cur_trans->state = TRANS_STATE_UNBLOCKED;
4259        wake_up(&root->fs_info->transaction_wait);
4260
4261        btrfs_free_pending_ordered(cur_trans, root->fs_info);
4262        btrfs_destroy_delayed_inodes(root);
4263        btrfs_assert_delayed_root_empty(root);
4264
4265        btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4266                                     EXTENT_DIRTY);
4267        btrfs_destroy_pinned_extent(root,
4268                                    root->fs_info->pinned_extents);
4269
4270        cur_trans->state =TRANS_STATE_COMPLETED;
4271        wake_up(&cur_trans->commit_wait);
4272
4273        /*
4274        memset(cur_trans, 0, sizeof(*cur_trans));
4275        kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4276        */
4277}
4278
4279static int btrfs_cleanup_transaction(struct btrfs_root *root)
4280{
4281        struct btrfs_transaction *t;
4282
4283        mutex_lock(&root->fs_info->transaction_kthread_mutex);
4284
4285        spin_lock(&root->fs_info->trans_lock);
4286        while (!list_empty(&root->fs_info->trans_list)) {
4287                t = list_first_entry(&root->fs_info->trans_list,
4288                                     struct btrfs_transaction, list);
4289                if (t->state >= TRANS_STATE_COMMIT_START) {
4290                        atomic_inc(&t->use_count);
4291                        spin_unlock(&root->fs_info->trans_lock);
4292                        btrfs_wait_for_commit(root, t->transid);
4293                        btrfs_put_transaction(t);
4294                        spin_lock(&root->fs_info->trans_lock);
4295                        continue;
4296                }
4297                if (t == root->fs_info->running_transaction) {
4298                        t->state = TRANS_STATE_COMMIT_DOING;
4299                        spin_unlock(&root->fs_info->trans_lock);
4300                        /*
4301                         * We wait for 0 num_writers since we don't hold a trans
4302                         * handle open currently for this transaction.
4303                         */
4304                        wait_event(t->writer_wait,
4305                                   atomic_read(&t->num_writers) == 0);
4306                } else {
4307                        spin_unlock(&root->fs_info->trans_lock);
4308                }
4309                btrfs_cleanup_one_transaction(t, root);
4310
4311                spin_lock(&root->fs_info->trans_lock);
4312                if (t == root->fs_info->running_transaction)
4313                        root->fs_info->running_transaction = NULL;
4314                list_del_init(&t->list);
4315                spin_unlock(&root->fs_info->trans_lock);
4316
4317                btrfs_put_transaction(t);
4318                trace_btrfs_transaction_commit(root);
4319                spin_lock(&root->fs_info->trans_lock);
4320        }
4321        spin_unlock(&root->fs_info->trans_lock);
4322        btrfs_destroy_all_ordered_extents(root->fs_info);
4323        btrfs_destroy_delayed_inodes(root);
4324        btrfs_assert_delayed_root_empty(root);
4325        btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4326        btrfs_destroy_all_delalloc_inodes(root->fs_info);
4327        mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4328
4329        return 0;
4330}
4331
4332static const struct extent_io_ops btree_extent_io_ops = {
4333        .readpage_end_io_hook = btree_readpage_end_io_hook,
4334        .readpage_io_failed_hook = btree_io_failed_hook,
4335        .submit_bio_hook = btree_submit_bio_hook,
4336        /* note we're sharing with inode.c for the merge bio hook */
4337        .merge_bio_hook = btrfs_merge_bio_hook,
4338};
4339