linux/fs/btrfs/extent-tree.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18#include <linux/sched.h>
  19#include <linux/pagemap.h>
  20#include <linux/writeback.h>
  21#include <linux/blkdev.h>
  22#include <linux/sort.h>
  23#include <linux/rcupdate.h>
  24#include <linux/kthread.h>
  25#include <linux/slab.h>
  26#include <linux/ratelimit.h>
  27#include <linux/percpu_counter.h>
  28#include "hash.h"
  29#include "tree-log.h"
  30#include "disk-io.h"
  31#include "print-tree.h"
  32#include "volumes.h"
  33#include "raid56.h"
  34#include "locking.h"
  35#include "free-space-cache.h"
  36#include "math.h"
  37#include "sysfs.h"
  38#include "qgroup.h"
  39
  40#undef SCRAMBLE_DELAYED_REFS
  41
  42/*
  43 * control flags for do_chunk_alloc's force field
  44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
  45 * if we really need one.
  46 *
  47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
  48 * if we have very few chunks already allocated.  This is
  49 * used as part of the clustering code to help make sure
  50 * we have a good pool of storage to cluster in, without
  51 * filling the FS with empty chunks
  52 *
  53 * CHUNK_ALLOC_FORCE means it must try to allocate one
  54 *
  55 */
  56enum {
  57        CHUNK_ALLOC_NO_FORCE = 0,
  58        CHUNK_ALLOC_LIMITED = 1,
  59        CHUNK_ALLOC_FORCE = 2,
  60};
  61
  62/*
  63 * Control how reservations are dealt with.
  64 *
  65 * RESERVE_FREE - freeing a reservation.
  66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
  67 *   ENOSPC accounting
  68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
  69 *   bytes_may_use as the ENOSPC accounting is done elsewhere
  70 */
  71enum {
  72        RESERVE_FREE = 0,
  73        RESERVE_ALLOC = 1,
  74        RESERVE_ALLOC_NO_ACCOUNT = 2,
  75};
  76
  77static int update_block_group(struct btrfs_trans_handle *trans,
  78                              struct btrfs_root *root, u64 bytenr,
  79                              u64 num_bytes, int alloc);
  80static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  81                                struct btrfs_root *root,
  82                                u64 bytenr, u64 num_bytes, u64 parent,
  83                                u64 root_objectid, u64 owner_objectid,
  84                                u64 owner_offset, int refs_to_drop,
  85                                struct btrfs_delayed_extent_op *extra_op,
  86                                int no_quota);
  87static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  88                                    struct extent_buffer *leaf,
  89                                    struct btrfs_extent_item *ei);
  90static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  91                                      struct btrfs_root *root,
  92                                      u64 parent, u64 root_objectid,
  93                                      u64 flags, u64 owner, u64 offset,
  94                                      struct btrfs_key *ins, int ref_mod);
  95static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  96                                     struct btrfs_root *root,
  97                                     u64 parent, u64 root_objectid,
  98                                     u64 flags, struct btrfs_disk_key *key,
  99                                     int level, struct btrfs_key *ins,
 100                                     int no_quota);
 101static int do_chunk_alloc(struct btrfs_trans_handle *trans,
 102                          struct btrfs_root *extent_root, u64 flags,
 103                          int force);
 104static int find_next_key(struct btrfs_path *path, int level,
 105                         struct btrfs_key *key);
 106static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
 107                            int dump_block_groups);
 108static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
 109                                       u64 num_bytes, int reserve,
 110                                       int delalloc);
 111static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
 112                               u64 num_bytes);
 113int btrfs_pin_extent(struct btrfs_root *root,
 114                     u64 bytenr, u64 num_bytes, int reserved);
 115
 116static noinline int
 117block_group_cache_done(struct btrfs_block_group_cache *cache)
 118{
 119        smp_mb();
 120        return cache->cached == BTRFS_CACHE_FINISHED ||
 121                cache->cached == BTRFS_CACHE_ERROR;
 122}
 123
 124static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
 125{
 126        return (cache->flags & bits) == bits;
 127}
 128
 129static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
 130{
 131        atomic_inc(&cache->count);
 132}
 133
 134void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
 135{
 136        if (atomic_dec_and_test(&cache->count)) {
 137                WARN_ON(cache->pinned > 0);
 138                WARN_ON(cache->reserved > 0);
 139                kfree(cache->free_space_ctl);
 140                kfree(cache);
 141        }
 142}
 143
 144/*
 145 * this adds the block group to the fs_info rb tree for the block group
 146 * cache
 147 */
 148static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
 149                                struct btrfs_block_group_cache *block_group)
 150{
 151        struct rb_node **p;
 152        struct rb_node *parent = NULL;
 153        struct btrfs_block_group_cache *cache;
 154
 155        spin_lock(&info->block_group_cache_lock);
 156        p = &info->block_group_cache_tree.rb_node;
 157
 158        while (*p) {
 159                parent = *p;
 160                cache = rb_entry(parent, struct btrfs_block_group_cache,
 161                                 cache_node);
 162                if (block_group->key.objectid < cache->key.objectid) {
 163                        p = &(*p)->rb_left;
 164                } else if (block_group->key.objectid > cache->key.objectid) {
 165                        p = &(*p)->rb_right;
 166                } else {
 167                        spin_unlock(&info->block_group_cache_lock);
 168                        return -EEXIST;
 169                }
 170        }
 171
 172        rb_link_node(&block_group->cache_node, parent, p);
 173        rb_insert_color(&block_group->cache_node,
 174                        &info->block_group_cache_tree);
 175
 176        if (info->first_logical_byte > block_group->key.objectid)
 177                info->first_logical_byte = block_group->key.objectid;
 178
 179        spin_unlock(&info->block_group_cache_lock);
 180
 181        return 0;
 182}
 183
 184/*
 185 * This will return the block group at or after bytenr if contains is 0, else
 186 * it will return the block group that contains the bytenr
 187 */
 188static struct btrfs_block_group_cache *
 189block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
 190                              int contains)
 191{
 192        struct btrfs_block_group_cache *cache, *ret = NULL;
 193        struct rb_node *n;
 194        u64 end, start;
 195
 196        spin_lock(&info->block_group_cache_lock);
 197        n = info->block_group_cache_tree.rb_node;
 198
 199        while (n) {
 200                cache = rb_entry(n, struct btrfs_block_group_cache,
 201                                 cache_node);
 202                end = cache->key.objectid + cache->key.offset - 1;
 203                start = cache->key.objectid;
 204
 205                if (bytenr < start) {
 206                        if (!contains && (!ret || start < ret->key.objectid))
 207                                ret = cache;
 208                        n = n->rb_left;
 209                } else if (bytenr > start) {
 210                        if (contains && bytenr <= end) {
 211                                ret = cache;
 212                                break;
 213                        }
 214                        n = n->rb_right;
 215                } else {
 216                        ret = cache;
 217                        break;
 218                }
 219        }
 220        if (ret) {
 221                btrfs_get_block_group(ret);
 222                if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
 223                        info->first_logical_byte = ret->key.objectid;
 224        }
 225        spin_unlock(&info->block_group_cache_lock);
 226
 227        return ret;
 228}
 229
 230static int add_excluded_extent(struct btrfs_root *root,
 231                               u64 start, u64 num_bytes)
 232{
 233        u64 end = start + num_bytes - 1;
 234        set_extent_bits(&root->fs_info->freed_extents[0],
 235                        start, end, EXTENT_UPTODATE, GFP_NOFS);
 236        set_extent_bits(&root->fs_info->freed_extents[1],
 237                        start, end, EXTENT_UPTODATE, GFP_NOFS);
 238        return 0;
 239}
 240
 241static void free_excluded_extents(struct btrfs_root *root,
 242                                  struct btrfs_block_group_cache *cache)
 243{
 244        u64 start, end;
 245
 246        start = cache->key.objectid;
 247        end = start + cache->key.offset - 1;
 248
 249        clear_extent_bits(&root->fs_info->freed_extents[0],
 250                          start, end, EXTENT_UPTODATE, GFP_NOFS);
 251        clear_extent_bits(&root->fs_info->freed_extents[1],
 252                          start, end, EXTENT_UPTODATE, GFP_NOFS);
 253}
 254
 255static int exclude_super_stripes(struct btrfs_root *root,
 256                                 struct btrfs_block_group_cache *cache)
 257{
 258        u64 bytenr;
 259        u64 *logical;
 260        int stripe_len;
 261        int i, nr, ret;
 262
 263        if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
 264                stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
 265                cache->bytes_super += stripe_len;
 266                ret = add_excluded_extent(root, cache->key.objectid,
 267                                          stripe_len);
 268                if (ret)
 269                        return ret;
 270        }
 271
 272        for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
 273                bytenr = btrfs_sb_offset(i);
 274                ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
 275                                       cache->key.objectid, bytenr,
 276                                       0, &logical, &nr, &stripe_len);
 277                if (ret)
 278                        return ret;
 279
 280                while (nr--) {
 281                        u64 start, len;
 282
 283                        if (logical[nr] > cache->key.objectid +
 284                            cache->key.offset)
 285                                continue;
 286
 287                        if (logical[nr] + stripe_len <= cache->key.objectid)
 288                                continue;
 289
 290                        start = logical[nr];
 291                        if (start < cache->key.objectid) {
 292                                start = cache->key.objectid;
 293                                len = (logical[nr] + stripe_len) - start;
 294                        } else {
 295                                len = min_t(u64, stripe_len,
 296                                            cache->key.objectid +
 297                                            cache->key.offset - start);
 298                        }
 299
 300                        cache->bytes_super += len;
 301                        ret = add_excluded_extent(root, start, len);
 302                        if (ret) {
 303                                kfree(logical);
 304                                return ret;
 305                        }
 306                }
 307
 308                kfree(logical);
 309        }
 310        return 0;
 311}
 312
 313static struct btrfs_caching_control *
 314get_caching_control(struct btrfs_block_group_cache *cache)
 315{
 316        struct btrfs_caching_control *ctl;
 317
 318        spin_lock(&cache->lock);
 319        if (!cache->caching_ctl) {
 320                spin_unlock(&cache->lock);
 321                return NULL;
 322        }
 323
 324        ctl = cache->caching_ctl;
 325        atomic_inc(&ctl->count);
 326        spin_unlock(&cache->lock);
 327        return ctl;
 328}
 329
 330static void put_caching_control(struct btrfs_caching_control *ctl)
 331{
 332        if (atomic_dec_and_test(&ctl->count))
 333                kfree(ctl);
 334}
 335
 336/*
 337 * this is only called by cache_block_group, since we could have freed extents
 338 * we need to check the pinned_extents for any extents that can't be used yet
 339 * since their free space will be released as soon as the transaction commits.
 340 */
 341static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
 342                              struct btrfs_fs_info *info, u64 start, u64 end)
 343{
 344        u64 extent_start, extent_end, size, total_added = 0;
 345        int ret;
 346
 347        while (start < end) {
 348                ret = find_first_extent_bit(info->pinned_extents, start,
 349                                            &extent_start, &extent_end,
 350                                            EXTENT_DIRTY | EXTENT_UPTODATE,
 351                                            NULL);
 352                if (ret)
 353                        break;
 354
 355                if (extent_start <= start) {
 356                        start = extent_end + 1;
 357                } else if (extent_start > start && extent_start < end) {
 358                        size = extent_start - start;
 359                        total_added += size;
 360                        ret = btrfs_add_free_space(block_group, start,
 361                                                   size);
 362                        BUG_ON(ret); /* -ENOMEM or logic error */
 363                        start = extent_end + 1;
 364                } else {
 365                        break;
 366                }
 367        }
 368
 369        if (start < end) {
 370                size = end - start;
 371                total_added += size;
 372                ret = btrfs_add_free_space(block_group, start, size);
 373                BUG_ON(ret); /* -ENOMEM or logic error */
 374        }
 375
 376        return total_added;
 377}
 378
 379static noinline void caching_thread(struct btrfs_work *work)
 380{
 381        struct btrfs_block_group_cache *block_group;
 382        struct btrfs_fs_info *fs_info;
 383        struct btrfs_caching_control *caching_ctl;
 384        struct btrfs_root *extent_root;
 385        struct btrfs_path *path;
 386        struct extent_buffer *leaf;
 387        struct btrfs_key key;
 388        u64 total_found = 0;
 389        u64 last = 0;
 390        u32 nritems;
 391        int ret = -ENOMEM;
 392
 393        caching_ctl = container_of(work, struct btrfs_caching_control, work);
 394        block_group = caching_ctl->block_group;
 395        fs_info = block_group->fs_info;
 396        extent_root = fs_info->extent_root;
 397
 398        path = btrfs_alloc_path();
 399        if (!path)
 400                goto out;
 401
 402        last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
 403
 404        /*
 405         * We don't want to deadlock with somebody trying to allocate a new
 406         * extent for the extent root while also trying to search the extent
 407         * root to add free space.  So we skip locking and search the commit
 408         * root, since its read-only
 409         */
 410        path->skip_locking = 1;
 411        path->search_commit_root = 1;
 412        path->reada = 1;
 413
 414        key.objectid = last;
 415        key.offset = 0;
 416        key.type = BTRFS_EXTENT_ITEM_KEY;
 417again:
 418        mutex_lock(&caching_ctl->mutex);
 419        /* need to make sure the commit_root doesn't disappear */
 420        down_read(&fs_info->commit_root_sem);
 421
 422next:
 423        ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
 424        if (ret < 0)
 425                goto err;
 426
 427        leaf = path->nodes[0];
 428        nritems = btrfs_header_nritems(leaf);
 429
 430        while (1) {
 431                if (btrfs_fs_closing(fs_info) > 1) {
 432                        last = (u64)-1;
 433                        break;
 434                }
 435
 436                if (path->slots[0] < nritems) {
 437                        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 438                } else {
 439                        ret = find_next_key(path, 0, &key);
 440                        if (ret)
 441                                break;
 442
 443                        if (need_resched() ||
 444                            rwsem_is_contended(&fs_info->commit_root_sem)) {
 445                                caching_ctl->progress = last;
 446                                btrfs_release_path(path);
 447                                up_read(&fs_info->commit_root_sem);
 448                                mutex_unlock(&caching_ctl->mutex);
 449                                cond_resched();
 450                                goto again;
 451                        }
 452
 453                        ret = btrfs_next_leaf(extent_root, path);
 454                        if (ret < 0)
 455                                goto err;
 456                        if (ret)
 457                                break;
 458                        leaf = path->nodes[0];
 459                        nritems = btrfs_header_nritems(leaf);
 460                        continue;
 461                }
 462
 463                if (key.objectid < last) {
 464                        key.objectid = last;
 465                        key.offset = 0;
 466                        key.type = BTRFS_EXTENT_ITEM_KEY;
 467
 468                        caching_ctl->progress = last;
 469                        btrfs_release_path(path);
 470                        goto next;
 471                }
 472
 473                if (key.objectid < block_group->key.objectid) {
 474                        path->slots[0]++;
 475                        continue;
 476                }
 477
 478                if (key.objectid >= block_group->key.objectid +
 479                    block_group->key.offset)
 480                        break;
 481
 482                if (key.type == BTRFS_EXTENT_ITEM_KEY ||
 483                    key.type == BTRFS_METADATA_ITEM_KEY) {
 484                        total_found += add_new_free_space(block_group,
 485                                                          fs_info, last,
 486                                                          key.objectid);
 487                        if (key.type == BTRFS_METADATA_ITEM_KEY)
 488                                last = key.objectid +
 489                                        fs_info->tree_root->nodesize;
 490                        else
 491                                last = key.objectid + key.offset;
 492
 493                        if (total_found > (1024 * 1024 * 2)) {
 494                                total_found = 0;
 495                                wake_up(&caching_ctl->wait);
 496                        }
 497                }
 498                path->slots[0]++;
 499        }
 500        ret = 0;
 501
 502        total_found += add_new_free_space(block_group, fs_info, last,
 503                                          block_group->key.objectid +
 504                                          block_group->key.offset);
 505        caching_ctl->progress = (u64)-1;
 506
 507        spin_lock(&block_group->lock);
 508        block_group->caching_ctl = NULL;
 509        block_group->cached = BTRFS_CACHE_FINISHED;
 510        spin_unlock(&block_group->lock);
 511
 512err:
 513        btrfs_free_path(path);
 514        up_read(&fs_info->commit_root_sem);
 515
 516        free_excluded_extents(extent_root, block_group);
 517
 518        mutex_unlock(&caching_ctl->mutex);
 519out:
 520        if (ret) {
 521                spin_lock(&block_group->lock);
 522                block_group->caching_ctl = NULL;
 523                block_group->cached = BTRFS_CACHE_ERROR;
 524                spin_unlock(&block_group->lock);
 525        }
 526        wake_up(&caching_ctl->wait);
 527
 528        put_caching_control(caching_ctl);
 529        btrfs_put_block_group(block_group);
 530}
 531
 532static int cache_block_group(struct btrfs_block_group_cache *cache,
 533                             int load_cache_only)
 534{
 535        DEFINE_WAIT(wait);
 536        struct btrfs_fs_info *fs_info = cache->fs_info;
 537        struct btrfs_caching_control *caching_ctl;
 538        int ret = 0;
 539
 540        caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
 541        if (!caching_ctl)
 542                return -ENOMEM;
 543
 544        INIT_LIST_HEAD(&caching_ctl->list);
 545        mutex_init(&caching_ctl->mutex);
 546        init_waitqueue_head(&caching_ctl->wait);
 547        caching_ctl->block_group = cache;
 548        caching_ctl->progress = cache->key.objectid;
 549        atomic_set(&caching_ctl->count, 1);
 550        btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
 551                        caching_thread, NULL, NULL);
 552
 553        spin_lock(&cache->lock);
 554        /*
 555         * This should be a rare occasion, but this could happen I think in the
 556         * case where one thread starts to load the space cache info, and then
 557         * some other thread starts a transaction commit which tries to do an
 558         * allocation while the other thread is still loading the space cache
 559         * info.  The previous loop should have kept us from choosing this block
 560         * group, but if we've moved to the state where we will wait on caching
 561         * block groups we need to first check if we're doing a fast load here,
 562         * so we can wait for it to finish, otherwise we could end up allocating
 563         * from a block group who's cache gets evicted for one reason or
 564         * another.
 565         */
 566        while (cache->cached == BTRFS_CACHE_FAST) {
 567                struct btrfs_caching_control *ctl;
 568
 569                ctl = cache->caching_ctl;
 570                atomic_inc(&ctl->count);
 571                prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
 572                spin_unlock(&cache->lock);
 573
 574                schedule();
 575
 576                finish_wait(&ctl->wait, &wait);
 577                put_caching_control(ctl);
 578                spin_lock(&cache->lock);
 579        }
 580
 581        if (cache->cached != BTRFS_CACHE_NO) {
 582                spin_unlock(&cache->lock);
 583                kfree(caching_ctl);
 584                return 0;
 585        }
 586        WARN_ON(cache->caching_ctl);
 587        cache->caching_ctl = caching_ctl;
 588        cache->cached = BTRFS_CACHE_FAST;
 589        spin_unlock(&cache->lock);
 590
 591        if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
 592                mutex_lock(&caching_ctl->mutex);
 593                ret = load_free_space_cache(fs_info, cache);
 594
 595                spin_lock(&cache->lock);
 596                if (ret == 1) {
 597                        cache->caching_ctl = NULL;
 598                        cache->cached = BTRFS_CACHE_FINISHED;
 599                        cache->last_byte_to_unpin = (u64)-1;
 600                        caching_ctl->progress = (u64)-1;
 601                } else {
 602                        if (load_cache_only) {
 603                                cache->caching_ctl = NULL;
 604                                cache->cached = BTRFS_CACHE_NO;
 605                        } else {
 606                                cache->cached = BTRFS_CACHE_STARTED;
 607                                cache->has_caching_ctl = 1;
 608                        }
 609                }
 610                spin_unlock(&cache->lock);
 611                mutex_unlock(&caching_ctl->mutex);
 612
 613                wake_up(&caching_ctl->wait);
 614                if (ret == 1) {
 615                        put_caching_control(caching_ctl);
 616                        free_excluded_extents(fs_info->extent_root, cache);
 617                        return 0;
 618                }
 619        } else {
 620                /*
 621                 * We are not going to do the fast caching, set cached to the
 622                 * appropriate value and wakeup any waiters.
 623                 */
 624                spin_lock(&cache->lock);
 625                if (load_cache_only) {
 626                        cache->caching_ctl = NULL;
 627                        cache->cached = BTRFS_CACHE_NO;
 628                } else {
 629                        cache->cached = BTRFS_CACHE_STARTED;
 630                        cache->has_caching_ctl = 1;
 631                }
 632                spin_unlock(&cache->lock);
 633                wake_up(&caching_ctl->wait);
 634        }
 635
 636        if (load_cache_only) {
 637                put_caching_control(caching_ctl);
 638                return 0;
 639        }
 640
 641        down_write(&fs_info->commit_root_sem);
 642        atomic_inc(&caching_ctl->count);
 643        list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
 644        up_write(&fs_info->commit_root_sem);
 645
 646        btrfs_get_block_group(cache);
 647
 648        btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
 649
 650        return ret;
 651}
 652
 653/*
 654 * return the block group that starts at or after bytenr
 655 */
 656static struct btrfs_block_group_cache *
 657btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
 658{
 659        struct btrfs_block_group_cache *cache;
 660
 661        cache = block_group_cache_tree_search(info, bytenr, 0);
 662
 663        return cache;
 664}
 665
 666/*
 667 * return the block group that contains the given bytenr
 668 */
 669struct btrfs_block_group_cache *btrfs_lookup_block_group(
 670                                                 struct btrfs_fs_info *info,
 671                                                 u64 bytenr)
 672{
 673        struct btrfs_block_group_cache *cache;
 674
 675        cache = block_group_cache_tree_search(info, bytenr, 1);
 676
 677        return cache;
 678}
 679
 680static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
 681                                                  u64 flags)
 682{
 683        struct list_head *head = &info->space_info;
 684        struct btrfs_space_info *found;
 685
 686        flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
 687
 688        rcu_read_lock();
 689        list_for_each_entry_rcu(found, head, list) {
 690                if (found->flags & flags) {
 691                        rcu_read_unlock();
 692                        return found;
 693                }
 694        }
 695        rcu_read_unlock();
 696        return NULL;
 697}
 698
 699/*
 700 * after adding space to the filesystem, we need to clear the full flags
 701 * on all the space infos.
 702 */
 703void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
 704{
 705        struct list_head *head = &info->space_info;
 706        struct btrfs_space_info *found;
 707
 708        rcu_read_lock();
 709        list_for_each_entry_rcu(found, head, list)
 710                found->full = 0;
 711        rcu_read_unlock();
 712}
 713
 714/* simple helper to search for an existing data extent at a given offset */
 715int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
 716{
 717        int ret;
 718        struct btrfs_key key;
 719        struct btrfs_path *path;
 720
 721        path = btrfs_alloc_path();
 722        if (!path)
 723                return -ENOMEM;
 724
 725        key.objectid = start;
 726        key.offset = len;
 727        key.type = BTRFS_EXTENT_ITEM_KEY;
 728        ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
 729                                0, 0);
 730        btrfs_free_path(path);
 731        return ret;
 732}
 733
 734/*
 735 * helper function to lookup reference count and flags of a tree block.
 736 *
 737 * the head node for delayed ref is used to store the sum of all the
 738 * reference count modifications queued up in the rbtree. the head
 739 * node may also store the extent flags to set. This way you can check
 740 * to see what the reference count and extent flags would be if all of
 741 * the delayed refs are not processed.
 742 */
 743int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
 744                             struct btrfs_root *root, u64 bytenr,
 745                             u64 offset, int metadata, u64 *refs, u64 *flags)
 746{
 747        struct btrfs_delayed_ref_head *head;
 748        struct btrfs_delayed_ref_root *delayed_refs;
 749        struct btrfs_path *path;
 750        struct btrfs_extent_item *ei;
 751        struct extent_buffer *leaf;
 752        struct btrfs_key key;
 753        u32 item_size;
 754        u64 num_refs;
 755        u64 extent_flags;
 756        int ret;
 757
 758        /*
 759         * If we don't have skinny metadata, don't bother doing anything
 760         * different
 761         */
 762        if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
 763                offset = root->nodesize;
 764                metadata = 0;
 765        }
 766
 767        path = btrfs_alloc_path();
 768        if (!path)
 769                return -ENOMEM;
 770
 771        if (!trans) {
 772                path->skip_locking = 1;
 773                path->search_commit_root = 1;
 774        }
 775
 776search_again:
 777        key.objectid = bytenr;
 778        key.offset = offset;
 779        if (metadata)
 780                key.type = BTRFS_METADATA_ITEM_KEY;
 781        else
 782                key.type = BTRFS_EXTENT_ITEM_KEY;
 783
 784        ret = btrfs_search_slot(trans, root->fs_info->extent_root,
 785                                &key, path, 0, 0);
 786        if (ret < 0)
 787                goto out_free;
 788
 789        if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
 790                if (path->slots[0]) {
 791                        path->slots[0]--;
 792                        btrfs_item_key_to_cpu(path->nodes[0], &key,
 793                                              path->slots[0]);
 794                        if (key.objectid == bytenr &&
 795                            key.type == BTRFS_EXTENT_ITEM_KEY &&
 796                            key.offset == root->nodesize)
 797                                ret = 0;
 798                }
 799        }
 800
 801        if (ret == 0) {
 802                leaf = path->nodes[0];
 803                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 804                if (item_size >= sizeof(*ei)) {
 805                        ei = btrfs_item_ptr(leaf, path->slots[0],
 806                                            struct btrfs_extent_item);
 807                        num_refs = btrfs_extent_refs(leaf, ei);
 808                        extent_flags = btrfs_extent_flags(leaf, ei);
 809                } else {
 810#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 811                        struct btrfs_extent_item_v0 *ei0;
 812                        BUG_ON(item_size != sizeof(*ei0));
 813                        ei0 = btrfs_item_ptr(leaf, path->slots[0],
 814                                             struct btrfs_extent_item_v0);
 815                        num_refs = btrfs_extent_refs_v0(leaf, ei0);
 816                        /* FIXME: this isn't correct for data */
 817                        extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 818#else
 819                        BUG();
 820#endif
 821                }
 822                BUG_ON(num_refs == 0);
 823        } else {
 824                num_refs = 0;
 825                extent_flags = 0;
 826                ret = 0;
 827        }
 828
 829        if (!trans)
 830                goto out;
 831
 832        delayed_refs = &trans->transaction->delayed_refs;
 833        spin_lock(&delayed_refs->lock);
 834        head = btrfs_find_delayed_ref_head(trans, bytenr);
 835        if (head) {
 836                if (!mutex_trylock(&head->mutex)) {
 837                        atomic_inc(&head->node.refs);
 838                        spin_unlock(&delayed_refs->lock);
 839
 840                        btrfs_release_path(path);
 841
 842                        /*
 843                         * Mutex was contended, block until it's released and try
 844                         * again
 845                         */
 846                        mutex_lock(&head->mutex);
 847                        mutex_unlock(&head->mutex);
 848                        btrfs_put_delayed_ref(&head->node);
 849                        goto search_again;
 850                }
 851                spin_lock(&head->lock);
 852                if (head->extent_op && head->extent_op->update_flags)
 853                        extent_flags |= head->extent_op->flags_to_set;
 854                else
 855                        BUG_ON(num_refs == 0);
 856
 857                num_refs += head->node.ref_mod;
 858                spin_unlock(&head->lock);
 859                mutex_unlock(&head->mutex);
 860        }
 861        spin_unlock(&delayed_refs->lock);
 862out:
 863        WARN_ON(num_refs == 0);
 864        if (refs)
 865                *refs = num_refs;
 866        if (flags)
 867                *flags = extent_flags;
 868out_free:
 869        btrfs_free_path(path);
 870        return ret;
 871}
 872
 873/*
 874 * Back reference rules.  Back refs have three main goals:
 875 *
 876 * 1) differentiate between all holders of references to an extent so that
 877 *    when a reference is dropped we can make sure it was a valid reference
 878 *    before freeing the extent.
 879 *
 880 * 2) Provide enough information to quickly find the holders of an extent
 881 *    if we notice a given block is corrupted or bad.
 882 *
 883 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
 884 *    maintenance.  This is actually the same as #2, but with a slightly
 885 *    different use case.
 886 *
 887 * There are two kinds of back refs. The implicit back refs is optimized
 888 * for pointers in non-shared tree blocks. For a given pointer in a block,
 889 * back refs of this kind provide information about the block's owner tree
 890 * and the pointer's key. These information allow us to find the block by
 891 * b-tree searching. The full back refs is for pointers in tree blocks not
 892 * referenced by their owner trees. The location of tree block is recorded
 893 * in the back refs. Actually the full back refs is generic, and can be
 894 * used in all cases the implicit back refs is used. The major shortcoming
 895 * of the full back refs is its overhead. Every time a tree block gets
 896 * COWed, we have to update back refs entry for all pointers in it.
 897 *
 898 * For a newly allocated tree block, we use implicit back refs for
 899 * pointers in it. This means most tree related operations only involve
 900 * implicit back refs. For a tree block created in old transaction, the
 901 * only way to drop a reference to it is COW it. So we can detect the
 902 * event that tree block loses its owner tree's reference and do the
 903 * back refs conversion.
 904 *
 905 * When a tree block is COW'd through a tree, there are four cases:
 906 *
 907 * The reference count of the block is one and the tree is the block's
 908 * owner tree. Nothing to do in this case.
 909 *
 910 * The reference count of the block is one and the tree is not the
 911 * block's owner tree. In this case, full back refs is used for pointers
 912 * in the block. Remove these full back refs, add implicit back refs for
 913 * every pointers in the new block.
 914 *
 915 * The reference count of the block is greater than one and the tree is
 916 * the block's owner tree. In this case, implicit back refs is used for
 917 * pointers in the block. Add full back refs for every pointers in the
 918 * block, increase lower level extents' reference counts. The original
 919 * implicit back refs are entailed to the new block.
 920 *
 921 * The reference count of the block is greater than one and the tree is
 922 * not the block's owner tree. Add implicit back refs for every pointer in
 923 * the new block, increase lower level extents' reference count.
 924 *
 925 * Back Reference Key composing:
 926 *
 927 * The key objectid corresponds to the first byte in the extent,
 928 * The key type is used to differentiate between types of back refs.
 929 * There are different meanings of the key offset for different types
 930 * of back refs.
 931 *
 932 * File extents can be referenced by:
 933 *
 934 * - multiple snapshots, subvolumes, or different generations in one subvol
 935 * - different files inside a single subvolume
 936 * - different offsets inside a file (bookend extents in file.c)
 937 *
 938 * The extent ref structure for the implicit back refs has fields for:
 939 *
 940 * - Objectid of the subvolume root
 941 * - objectid of the file holding the reference
 942 * - original offset in the file
 943 * - how many bookend extents
 944 *
 945 * The key offset for the implicit back refs is hash of the first
 946 * three fields.
 947 *
 948 * The extent ref structure for the full back refs has field for:
 949 *
 950 * - number of pointers in the tree leaf
 951 *
 952 * The key offset for the implicit back refs is the first byte of
 953 * the tree leaf
 954 *
 955 * When a file extent is allocated, The implicit back refs is used.
 956 * the fields are filled in:
 957 *
 958 *     (root_key.objectid, inode objectid, offset in file, 1)
 959 *
 960 * When a file extent is removed file truncation, we find the
 961 * corresponding implicit back refs and check the following fields:
 962 *
 963 *     (btrfs_header_owner(leaf), inode objectid, offset in file)
 964 *
 965 * Btree extents can be referenced by:
 966 *
 967 * - Different subvolumes
 968 *
 969 * Both the implicit back refs and the full back refs for tree blocks
 970 * only consist of key. The key offset for the implicit back refs is
 971 * objectid of block's owner tree. The key offset for the full back refs
 972 * is the first byte of parent block.
 973 *
 974 * When implicit back refs is used, information about the lowest key and
 975 * level of the tree block are required. These information are stored in
 976 * tree block info structure.
 977 */
 978
 979#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 980static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
 981                                  struct btrfs_root *root,
 982                                  struct btrfs_path *path,
 983                                  u64 owner, u32 extra_size)
 984{
 985        struct btrfs_extent_item *item;
 986        struct btrfs_extent_item_v0 *ei0;
 987        struct btrfs_extent_ref_v0 *ref0;
 988        struct btrfs_tree_block_info *bi;
 989        struct extent_buffer *leaf;
 990        struct btrfs_key key;
 991        struct btrfs_key found_key;
 992        u32 new_size = sizeof(*item);
 993        u64 refs;
 994        int ret;
 995
 996        leaf = path->nodes[0];
 997        BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
 998
 999        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1000        ei0 = btrfs_item_ptr(leaf, path->slots[0],
1001                             struct btrfs_extent_item_v0);
1002        refs = btrfs_extent_refs_v0(leaf, ei0);
1003
1004        if (owner == (u64)-1) {
1005                while (1) {
1006                        if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1007                                ret = btrfs_next_leaf(root, path);
1008                                if (ret < 0)
1009                                        return ret;
1010                                BUG_ON(ret > 0); /* Corruption */
1011                                leaf = path->nodes[0];
1012                        }
1013                        btrfs_item_key_to_cpu(leaf, &found_key,
1014                                              path->slots[0]);
1015                        BUG_ON(key.objectid != found_key.objectid);
1016                        if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1017                                path->slots[0]++;
1018                                continue;
1019                        }
1020                        ref0 = btrfs_item_ptr(leaf, path->slots[0],
1021                                              struct btrfs_extent_ref_v0);
1022                        owner = btrfs_ref_objectid_v0(leaf, ref0);
1023                        break;
1024                }
1025        }
1026        btrfs_release_path(path);
1027
1028        if (owner < BTRFS_FIRST_FREE_OBJECTID)
1029                new_size += sizeof(*bi);
1030
1031        new_size -= sizeof(*ei0);
1032        ret = btrfs_search_slot(trans, root, &key, path,
1033                                new_size + extra_size, 1);
1034        if (ret < 0)
1035                return ret;
1036        BUG_ON(ret); /* Corruption */
1037
1038        btrfs_extend_item(root, path, new_size);
1039
1040        leaf = path->nodes[0];
1041        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1042        btrfs_set_extent_refs(leaf, item, refs);
1043        /* FIXME: get real generation */
1044        btrfs_set_extent_generation(leaf, item, 0);
1045        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1046                btrfs_set_extent_flags(leaf, item,
1047                                       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1048                                       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1049                bi = (struct btrfs_tree_block_info *)(item + 1);
1050                /* FIXME: get first key of the block */
1051                memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1052                btrfs_set_tree_block_level(leaf, bi, (int)owner);
1053        } else {
1054                btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1055        }
1056        btrfs_mark_buffer_dirty(leaf);
1057        return 0;
1058}
1059#endif
1060
1061static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1062{
1063        u32 high_crc = ~(u32)0;
1064        u32 low_crc = ~(u32)0;
1065        __le64 lenum;
1066
1067        lenum = cpu_to_le64(root_objectid);
1068        high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1069        lenum = cpu_to_le64(owner);
1070        low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1071        lenum = cpu_to_le64(offset);
1072        low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1073
1074        return ((u64)high_crc << 31) ^ (u64)low_crc;
1075}
1076
1077static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1078                                     struct btrfs_extent_data_ref *ref)
1079{
1080        return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1081                                    btrfs_extent_data_ref_objectid(leaf, ref),
1082                                    btrfs_extent_data_ref_offset(leaf, ref));
1083}
1084
1085static int match_extent_data_ref(struct extent_buffer *leaf,
1086                                 struct btrfs_extent_data_ref *ref,
1087                                 u64 root_objectid, u64 owner, u64 offset)
1088{
1089        if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1090            btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1091            btrfs_extent_data_ref_offset(leaf, ref) != offset)
1092                return 0;
1093        return 1;
1094}
1095
1096static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1097                                           struct btrfs_root *root,
1098                                           struct btrfs_path *path,
1099                                           u64 bytenr, u64 parent,
1100                                           u64 root_objectid,
1101                                           u64 owner, u64 offset)
1102{
1103        struct btrfs_key key;
1104        struct btrfs_extent_data_ref *ref;
1105        struct extent_buffer *leaf;
1106        u32 nritems;
1107        int ret;
1108        int recow;
1109        int err = -ENOENT;
1110
1111        key.objectid = bytenr;
1112        if (parent) {
1113                key.type = BTRFS_SHARED_DATA_REF_KEY;
1114                key.offset = parent;
1115        } else {
1116                key.type = BTRFS_EXTENT_DATA_REF_KEY;
1117                key.offset = hash_extent_data_ref(root_objectid,
1118                                                  owner, offset);
1119        }
1120again:
1121        recow = 0;
1122        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1123        if (ret < 0) {
1124                err = ret;
1125                goto fail;
1126        }
1127
1128        if (parent) {
1129                if (!ret)
1130                        return 0;
1131#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1132                key.type = BTRFS_EXTENT_REF_V0_KEY;
1133                btrfs_release_path(path);
1134                ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1135                if (ret < 0) {
1136                        err = ret;
1137                        goto fail;
1138                }
1139                if (!ret)
1140                        return 0;
1141#endif
1142                goto fail;
1143        }
1144
1145        leaf = path->nodes[0];
1146        nritems = btrfs_header_nritems(leaf);
1147        while (1) {
1148                if (path->slots[0] >= nritems) {
1149                        ret = btrfs_next_leaf(root, path);
1150                        if (ret < 0)
1151                                err = ret;
1152                        if (ret)
1153                                goto fail;
1154
1155                        leaf = path->nodes[0];
1156                        nritems = btrfs_header_nritems(leaf);
1157                        recow = 1;
1158                }
1159
1160                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1161                if (key.objectid != bytenr ||
1162                    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1163                        goto fail;
1164
1165                ref = btrfs_item_ptr(leaf, path->slots[0],
1166                                     struct btrfs_extent_data_ref);
1167
1168                if (match_extent_data_ref(leaf, ref, root_objectid,
1169                                          owner, offset)) {
1170                        if (recow) {
1171                                btrfs_release_path(path);
1172                                goto again;
1173                        }
1174                        err = 0;
1175                        break;
1176                }
1177                path->slots[0]++;
1178        }
1179fail:
1180        return err;
1181}
1182
1183static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1184                                           struct btrfs_root *root,
1185                                           struct btrfs_path *path,
1186                                           u64 bytenr, u64 parent,
1187                                           u64 root_objectid, u64 owner,
1188                                           u64 offset, int refs_to_add)
1189{
1190        struct btrfs_key key;
1191        struct extent_buffer *leaf;
1192        u32 size;
1193        u32 num_refs;
1194        int ret;
1195
1196        key.objectid = bytenr;
1197        if (parent) {
1198                key.type = BTRFS_SHARED_DATA_REF_KEY;
1199                key.offset = parent;
1200                size = sizeof(struct btrfs_shared_data_ref);
1201        } else {
1202                key.type = BTRFS_EXTENT_DATA_REF_KEY;
1203                key.offset = hash_extent_data_ref(root_objectid,
1204                                                  owner, offset);
1205                size = sizeof(struct btrfs_extent_data_ref);
1206        }
1207
1208        ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1209        if (ret && ret != -EEXIST)
1210                goto fail;
1211
1212        leaf = path->nodes[0];
1213        if (parent) {
1214                struct btrfs_shared_data_ref *ref;
1215                ref = btrfs_item_ptr(leaf, path->slots[0],
1216                                     struct btrfs_shared_data_ref);
1217                if (ret == 0) {
1218                        btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1219                } else {
1220                        num_refs = btrfs_shared_data_ref_count(leaf, ref);
1221                        num_refs += refs_to_add;
1222                        btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1223                }
1224        } else {
1225                struct btrfs_extent_data_ref *ref;
1226                while (ret == -EEXIST) {
1227                        ref = btrfs_item_ptr(leaf, path->slots[0],
1228                                             struct btrfs_extent_data_ref);
1229                        if (match_extent_data_ref(leaf, ref, root_objectid,
1230                                                  owner, offset))
1231                                break;
1232                        btrfs_release_path(path);
1233                        key.offset++;
1234                        ret = btrfs_insert_empty_item(trans, root, path, &key,
1235                                                      size);
1236                        if (ret && ret != -EEXIST)
1237                                goto fail;
1238
1239                        leaf = path->nodes[0];
1240                }
1241                ref = btrfs_item_ptr(leaf, path->slots[0],
1242                                     struct btrfs_extent_data_ref);
1243                if (ret == 0) {
1244                        btrfs_set_extent_data_ref_root(leaf, ref,
1245                                                       root_objectid);
1246                        btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1247                        btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1248                        btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1249                } else {
1250                        num_refs = btrfs_extent_data_ref_count(leaf, ref);
1251                        num_refs += refs_to_add;
1252                        btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1253                }
1254        }
1255        btrfs_mark_buffer_dirty(leaf);
1256        ret = 0;
1257fail:
1258        btrfs_release_path(path);
1259        return ret;
1260}
1261
1262static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1263                                           struct btrfs_root *root,
1264                                           struct btrfs_path *path,
1265                                           int refs_to_drop, int *last_ref)
1266{
1267        struct btrfs_key key;
1268        struct btrfs_extent_data_ref *ref1 = NULL;
1269        struct btrfs_shared_data_ref *ref2 = NULL;
1270        struct extent_buffer *leaf;
1271        u32 num_refs = 0;
1272        int ret = 0;
1273
1274        leaf = path->nodes[0];
1275        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1276
1277        if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1278                ref1 = btrfs_item_ptr(leaf, path->slots[0],
1279                                      struct btrfs_extent_data_ref);
1280                num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1281        } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1282                ref2 = btrfs_item_ptr(leaf, path->slots[0],
1283                                      struct btrfs_shared_data_ref);
1284                num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1285#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1286        } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1287                struct btrfs_extent_ref_v0 *ref0;
1288                ref0 = btrfs_item_ptr(leaf, path->slots[0],
1289                                      struct btrfs_extent_ref_v0);
1290                num_refs = btrfs_ref_count_v0(leaf, ref0);
1291#endif
1292        } else {
1293                BUG();
1294        }
1295
1296        BUG_ON(num_refs < refs_to_drop);
1297        num_refs -= refs_to_drop;
1298
1299        if (num_refs == 0) {
1300                ret = btrfs_del_item(trans, root, path);
1301                *last_ref = 1;
1302        } else {
1303                if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1304                        btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1305                else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1306                        btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1307#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1308                else {
1309                        struct btrfs_extent_ref_v0 *ref0;
1310                        ref0 = btrfs_item_ptr(leaf, path->slots[0],
1311                                        struct btrfs_extent_ref_v0);
1312                        btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1313                }
1314#endif
1315                btrfs_mark_buffer_dirty(leaf);
1316        }
1317        return ret;
1318}
1319
1320static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1321                                          struct btrfs_path *path,
1322                                          struct btrfs_extent_inline_ref *iref)
1323{
1324        struct btrfs_key key;
1325        struct extent_buffer *leaf;
1326        struct btrfs_extent_data_ref *ref1;
1327        struct btrfs_shared_data_ref *ref2;
1328        u32 num_refs = 0;
1329
1330        leaf = path->nodes[0];
1331        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1332        if (iref) {
1333                if (btrfs_extent_inline_ref_type(leaf, iref) ==
1334                    BTRFS_EXTENT_DATA_REF_KEY) {
1335                        ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1336                        num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1337                } else {
1338                        ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1339                        num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1340                }
1341        } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1342                ref1 = btrfs_item_ptr(leaf, path->slots[0],
1343                                      struct btrfs_extent_data_ref);
1344                num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345        } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1346                ref2 = btrfs_item_ptr(leaf, path->slots[0],
1347                                      struct btrfs_shared_data_ref);
1348                num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1349#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1350        } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1351                struct btrfs_extent_ref_v0 *ref0;
1352                ref0 = btrfs_item_ptr(leaf, path->slots[0],
1353                                      struct btrfs_extent_ref_v0);
1354                num_refs = btrfs_ref_count_v0(leaf, ref0);
1355#endif
1356        } else {
1357                WARN_ON(1);
1358        }
1359        return num_refs;
1360}
1361
1362static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1363                                          struct btrfs_root *root,
1364                                          struct btrfs_path *path,
1365                                          u64 bytenr, u64 parent,
1366                                          u64 root_objectid)
1367{
1368        struct btrfs_key key;
1369        int ret;
1370
1371        key.objectid = bytenr;
1372        if (parent) {
1373                key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1374                key.offset = parent;
1375        } else {
1376                key.type = BTRFS_TREE_BLOCK_REF_KEY;
1377                key.offset = root_objectid;
1378        }
1379
1380        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1381        if (ret > 0)
1382                ret = -ENOENT;
1383#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1384        if (ret == -ENOENT && parent) {
1385                btrfs_release_path(path);
1386                key.type = BTRFS_EXTENT_REF_V0_KEY;
1387                ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388                if (ret > 0)
1389                        ret = -ENOENT;
1390        }
1391#endif
1392        return ret;
1393}
1394
1395static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1396                                          struct btrfs_root *root,
1397                                          struct btrfs_path *path,
1398                                          u64 bytenr, u64 parent,
1399                                          u64 root_objectid)
1400{
1401        struct btrfs_key key;
1402        int ret;
1403
1404        key.objectid = bytenr;
1405        if (parent) {
1406                key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1407                key.offset = parent;
1408        } else {
1409                key.type = BTRFS_TREE_BLOCK_REF_KEY;
1410                key.offset = root_objectid;
1411        }
1412
1413        ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1414        btrfs_release_path(path);
1415        return ret;
1416}
1417
1418static inline int extent_ref_type(u64 parent, u64 owner)
1419{
1420        int type;
1421        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1422                if (parent > 0)
1423                        type = BTRFS_SHARED_BLOCK_REF_KEY;
1424                else
1425                        type = BTRFS_TREE_BLOCK_REF_KEY;
1426        } else {
1427                if (parent > 0)
1428                        type = BTRFS_SHARED_DATA_REF_KEY;
1429                else
1430                        type = BTRFS_EXTENT_DATA_REF_KEY;
1431        }
1432        return type;
1433}
1434
1435static int find_next_key(struct btrfs_path *path, int level,
1436                         struct btrfs_key *key)
1437
1438{
1439        for (; level < BTRFS_MAX_LEVEL; level++) {
1440                if (!path->nodes[level])
1441                        break;
1442                if (path->slots[level] + 1 >=
1443                    btrfs_header_nritems(path->nodes[level]))
1444                        continue;
1445                if (level == 0)
1446                        btrfs_item_key_to_cpu(path->nodes[level], key,
1447                                              path->slots[level] + 1);
1448                else
1449                        btrfs_node_key_to_cpu(path->nodes[level], key,
1450                                              path->slots[level] + 1);
1451                return 0;
1452        }
1453        return 1;
1454}
1455
1456/*
1457 * look for inline back ref. if back ref is found, *ref_ret is set
1458 * to the address of inline back ref, and 0 is returned.
1459 *
1460 * if back ref isn't found, *ref_ret is set to the address where it
1461 * should be inserted, and -ENOENT is returned.
1462 *
1463 * if insert is true and there are too many inline back refs, the path
1464 * points to the extent item, and -EAGAIN is returned.
1465 *
1466 * NOTE: inline back refs are ordered in the same way that back ref
1467 *       items in the tree are ordered.
1468 */
1469static noinline_for_stack
1470int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1471                                 struct btrfs_root *root,
1472                                 struct btrfs_path *path,
1473                                 struct btrfs_extent_inline_ref **ref_ret,
1474                                 u64 bytenr, u64 num_bytes,
1475                                 u64 parent, u64 root_objectid,
1476                                 u64 owner, u64 offset, int insert)
1477{
1478        struct btrfs_key key;
1479        struct extent_buffer *leaf;
1480        struct btrfs_extent_item *ei;
1481        struct btrfs_extent_inline_ref *iref;
1482        u64 flags;
1483        u64 item_size;
1484        unsigned long ptr;
1485        unsigned long end;
1486        int extra_size;
1487        int type;
1488        int want;
1489        int ret;
1490        int err = 0;
1491        bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1492                                                 SKINNY_METADATA);
1493
1494        key.objectid = bytenr;
1495        key.type = BTRFS_EXTENT_ITEM_KEY;
1496        key.offset = num_bytes;
1497
1498        want = extent_ref_type(parent, owner);
1499        if (insert) {
1500                extra_size = btrfs_extent_inline_ref_size(want);
1501                path->keep_locks = 1;
1502        } else
1503                extra_size = -1;
1504
1505        /*
1506         * Owner is our parent level, so we can just add one to get the level
1507         * for the block we are interested in.
1508         */
1509        if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1510                key.type = BTRFS_METADATA_ITEM_KEY;
1511                key.offset = owner;
1512        }
1513
1514again:
1515        ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1516        if (ret < 0) {
1517                err = ret;
1518                goto out;
1519        }
1520
1521        /*
1522         * We may be a newly converted file system which still has the old fat
1523         * extent entries for metadata, so try and see if we have one of those.
1524         */
1525        if (ret > 0 && skinny_metadata) {
1526                skinny_metadata = false;
1527                if (path->slots[0]) {
1528                        path->slots[0]--;
1529                        btrfs_item_key_to_cpu(path->nodes[0], &key,
1530                                              path->slots[0]);
1531                        if (key.objectid == bytenr &&
1532                            key.type == BTRFS_EXTENT_ITEM_KEY &&
1533                            key.offset == num_bytes)
1534                                ret = 0;
1535                }
1536                if (ret) {
1537                        key.objectid = bytenr;
1538                        key.type = BTRFS_EXTENT_ITEM_KEY;
1539                        key.offset = num_bytes;
1540                        btrfs_release_path(path);
1541                        goto again;
1542                }
1543        }
1544
1545        if (ret && !insert) {
1546                err = -ENOENT;
1547                goto out;
1548        } else if (WARN_ON(ret)) {
1549                err = -EIO;
1550                goto out;
1551        }
1552
1553        leaf = path->nodes[0];
1554        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1555#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1556        if (item_size < sizeof(*ei)) {
1557                if (!insert) {
1558                        err = -ENOENT;
1559                        goto out;
1560                }
1561                ret = convert_extent_item_v0(trans, root, path, owner,
1562                                             extra_size);
1563                if (ret < 0) {
1564                        err = ret;
1565                        goto out;
1566                }
1567                leaf = path->nodes[0];
1568                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1569        }
1570#endif
1571        BUG_ON(item_size < sizeof(*ei));
1572
1573        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1574        flags = btrfs_extent_flags(leaf, ei);
1575
1576        ptr = (unsigned long)(ei + 1);
1577        end = (unsigned long)ei + item_size;
1578
1579        if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1580                ptr += sizeof(struct btrfs_tree_block_info);
1581                BUG_ON(ptr > end);
1582        }
1583
1584        err = -ENOENT;
1585        while (1) {
1586                if (ptr >= end) {
1587                        WARN_ON(ptr > end);
1588                        break;
1589                }
1590                iref = (struct btrfs_extent_inline_ref *)ptr;
1591                type = btrfs_extent_inline_ref_type(leaf, iref);
1592                if (want < type)
1593                        break;
1594                if (want > type) {
1595                        ptr += btrfs_extent_inline_ref_size(type);
1596                        continue;
1597                }
1598
1599                if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1600                        struct btrfs_extent_data_ref *dref;
1601                        dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1602                        if (match_extent_data_ref(leaf, dref, root_objectid,
1603                                                  owner, offset)) {
1604                                err = 0;
1605                                break;
1606                        }
1607                        if (hash_extent_data_ref_item(leaf, dref) <
1608                            hash_extent_data_ref(root_objectid, owner, offset))
1609                                break;
1610                } else {
1611                        u64 ref_offset;
1612                        ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1613                        if (parent > 0) {
1614                                if (parent == ref_offset) {
1615                                        err = 0;
1616                                        break;
1617                                }
1618                                if (ref_offset < parent)
1619                                        break;
1620                        } else {
1621                                if (root_objectid == ref_offset) {
1622                                        err = 0;
1623                                        break;
1624                                }
1625                                if (ref_offset < root_objectid)
1626                                        break;
1627                        }
1628                }
1629                ptr += btrfs_extent_inline_ref_size(type);
1630        }
1631        if (err == -ENOENT && insert) {
1632                if (item_size + extra_size >=
1633                    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1634                        err = -EAGAIN;
1635                        goto out;
1636                }
1637                /*
1638                 * To add new inline back ref, we have to make sure
1639                 * there is no corresponding back ref item.
1640                 * For simplicity, we just do not add new inline back
1641                 * ref if there is any kind of item for this block
1642                 */
1643                if (find_next_key(path, 0, &key) == 0 &&
1644                    key.objectid == bytenr &&
1645                    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1646                        err = -EAGAIN;
1647                        goto out;
1648                }
1649        }
1650        *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1651out:
1652        if (insert) {
1653                path->keep_locks = 0;
1654                btrfs_unlock_up_safe(path, 1);
1655        }
1656        return err;
1657}
1658
1659/*
1660 * helper to add new inline back ref
1661 */
1662static noinline_for_stack
1663void setup_inline_extent_backref(struct btrfs_root *root,
1664                                 struct btrfs_path *path,
1665                                 struct btrfs_extent_inline_ref *iref,
1666                                 u64 parent, u64 root_objectid,
1667                                 u64 owner, u64 offset, int refs_to_add,
1668                                 struct btrfs_delayed_extent_op *extent_op)
1669{
1670        struct extent_buffer *leaf;
1671        struct btrfs_extent_item *ei;
1672        unsigned long ptr;
1673        unsigned long end;
1674        unsigned long item_offset;
1675        u64 refs;
1676        int size;
1677        int type;
1678
1679        leaf = path->nodes[0];
1680        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1681        item_offset = (unsigned long)iref - (unsigned long)ei;
1682
1683        type = extent_ref_type(parent, owner);
1684        size = btrfs_extent_inline_ref_size(type);
1685
1686        btrfs_extend_item(root, path, size);
1687
1688        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1689        refs = btrfs_extent_refs(leaf, ei);
1690        refs += refs_to_add;
1691        btrfs_set_extent_refs(leaf, ei, refs);
1692        if (extent_op)
1693                __run_delayed_extent_op(extent_op, leaf, ei);
1694
1695        ptr = (unsigned long)ei + item_offset;
1696        end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1697        if (ptr < end - size)
1698                memmove_extent_buffer(leaf, ptr + size, ptr,
1699                                      end - size - ptr);
1700
1701        iref = (struct btrfs_extent_inline_ref *)ptr;
1702        btrfs_set_extent_inline_ref_type(leaf, iref, type);
1703        if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1704                struct btrfs_extent_data_ref *dref;
1705                dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1706                btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1707                btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1708                btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1709                btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1710        } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1711                struct btrfs_shared_data_ref *sref;
1712                sref = (struct btrfs_shared_data_ref *)(iref + 1);
1713                btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1714                btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715        } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1716                btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1717        } else {
1718                btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1719        }
1720        btrfs_mark_buffer_dirty(leaf);
1721}
1722
1723static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1724                                 struct btrfs_root *root,
1725                                 struct btrfs_path *path,
1726                                 struct btrfs_extent_inline_ref **ref_ret,
1727                                 u64 bytenr, u64 num_bytes, u64 parent,
1728                                 u64 root_objectid, u64 owner, u64 offset)
1729{
1730        int ret;
1731
1732        ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1733                                           bytenr, num_bytes, parent,
1734                                           root_objectid, owner, offset, 0);
1735        if (ret != -ENOENT)
1736                return ret;
1737
1738        btrfs_release_path(path);
1739        *ref_ret = NULL;
1740
1741        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1742                ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1743                                            root_objectid);
1744        } else {
1745                ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1746                                             root_objectid, owner, offset);
1747        }
1748        return ret;
1749}
1750
1751/*
1752 * helper to update/remove inline back ref
1753 */
1754static noinline_for_stack
1755void update_inline_extent_backref(struct btrfs_root *root,
1756                                  struct btrfs_path *path,
1757                                  struct btrfs_extent_inline_ref *iref,
1758                                  int refs_to_mod,
1759                                  struct btrfs_delayed_extent_op *extent_op,
1760                                  int *last_ref)
1761{
1762        struct extent_buffer *leaf;
1763        struct btrfs_extent_item *ei;
1764        struct btrfs_extent_data_ref *dref = NULL;
1765        struct btrfs_shared_data_ref *sref = NULL;
1766        unsigned long ptr;
1767        unsigned long end;
1768        u32 item_size;
1769        int size;
1770        int type;
1771        u64 refs;
1772
1773        leaf = path->nodes[0];
1774        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1775        refs = btrfs_extent_refs(leaf, ei);
1776        WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1777        refs += refs_to_mod;
1778        btrfs_set_extent_refs(leaf, ei, refs);
1779        if (extent_op)
1780                __run_delayed_extent_op(extent_op, leaf, ei);
1781
1782        type = btrfs_extent_inline_ref_type(leaf, iref);
1783
1784        if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1785                dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1786                refs = btrfs_extent_data_ref_count(leaf, dref);
1787        } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788                sref = (struct btrfs_shared_data_ref *)(iref + 1);
1789                refs = btrfs_shared_data_ref_count(leaf, sref);
1790        } else {
1791                refs = 1;
1792                BUG_ON(refs_to_mod != -1);
1793        }
1794
1795        BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1796        refs += refs_to_mod;
1797
1798        if (refs > 0) {
1799                if (type == BTRFS_EXTENT_DATA_REF_KEY)
1800                        btrfs_set_extent_data_ref_count(leaf, dref, refs);
1801                else
1802                        btrfs_set_shared_data_ref_count(leaf, sref, refs);
1803        } else {
1804                *last_ref = 1;
1805                size =  btrfs_extent_inline_ref_size(type);
1806                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1807                ptr = (unsigned long)iref;
1808                end = (unsigned long)ei + item_size;
1809                if (ptr + size < end)
1810                        memmove_extent_buffer(leaf, ptr, ptr + size,
1811                                              end - ptr - size);
1812                item_size -= size;
1813                btrfs_truncate_item(root, path, item_size, 1);
1814        }
1815        btrfs_mark_buffer_dirty(leaf);
1816}
1817
1818static noinline_for_stack
1819int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1820                                 struct btrfs_root *root,
1821                                 struct btrfs_path *path,
1822                                 u64 bytenr, u64 num_bytes, u64 parent,
1823                                 u64 root_objectid, u64 owner,
1824                                 u64 offset, int refs_to_add,
1825                                 struct btrfs_delayed_extent_op *extent_op)
1826{
1827        struct btrfs_extent_inline_ref *iref;
1828        int ret;
1829
1830        ret = lookup_inline_extent_backref(trans, root, path, &iref,
1831                                           bytenr, num_bytes, parent,
1832                                           root_objectid, owner, offset, 1);
1833        if (ret == 0) {
1834                BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1835                update_inline_extent_backref(root, path, iref,
1836                                             refs_to_add, extent_op, NULL);
1837        } else if (ret == -ENOENT) {
1838                setup_inline_extent_backref(root, path, iref, parent,
1839                                            root_objectid, owner, offset,
1840                                            refs_to_add, extent_op);
1841                ret = 0;
1842        }
1843        return ret;
1844}
1845
1846static int insert_extent_backref(struct btrfs_trans_handle *trans,
1847                                 struct btrfs_root *root,
1848                                 struct btrfs_path *path,
1849                                 u64 bytenr, u64 parent, u64 root_objectid,
1850                                 u64 owner, u64 offset, int refs_to_add)
1851{
1852        int ret;
1853        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1854                BUG_ON(refs_to_add != 1);
1855                ret = insert_tree_block_ref(trans, root, path, bytenr,
1856                                            parent, root_objectid);
1857        } else {
1858                ret = insert_extent_data_ref(trans, root, path, bytenr,
1859                                             parent, root_objectid,
1860                                             owner, offset, refs_to_add);
1861        }
1862        return ret;
1863}
1864
1865static int remove_extent_backref(struct btrfs_trans_handle *trans,
1866                                 struct btrfs_root *root,
1867                                 struct btrfs_path *path,
1868                                 struct btrfs_extent_inline_ref *iref,
1869                                 int refs_to_drop, int is_data, int *last_ref)
1870{
1871        int ret = 0;
1872
1873        BUG_ON(!is_data && refs_to_drop != 1);
1874        if (iref) {
1875                update_inline_extent_backref(root, path, iref,
1876                                             -refs_to_drop, NULL, last_ref);
1877        } else if (is_data) {
1878                ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1879                                             last_ref);
1880        } else {
1881                *last_ref = 1;
1882                ret = btrfs_del_item(trans, root, path);
1883        }
1884        return ret;
1885}
1886
1887static int btrfs_issue_discard(struct block_device *bdev,
1888                                u64 start, u64 len)
1889{
1890        return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1891}
1892
1893int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1894                         u64 num_bytes, u64 *actual_bytes)
1895{
1896        int ret;
1897        u64 discarded_bytes = 0;
1898        struct btrfs_bio *bbio = NULL;
1899
1900
1901        /* Tell the block device(s) that the sectors can be discarded */
1902        ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1903                              bytenr, &num_bytes, &bbio, 0);
1904        /* Error condition is -ENOMEM */
1905        if (!ret) {
1906                struct btrfs_bio_stripe *stripe = bbio->stripes;
1907                int i;
1908
1909
1910                for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1911                        if (!stripe->dev->can_discard)
1912                                continue;
1913
1914                        ret = btrfs_issue_discard(stripe->dev->bdev,
1915                                                  stripe->physical,
1916                                                  stripe->length);
1917                        if (!ret)
1918                                discarded_bytes += stripe->length;
1919                        else if (ret != -EOPNOTSUPP)
1920                                break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1921
1922                        /*
1923                         * Just in case we get back EOPNOTSUPP for some reason,
1924                         * just ignore the return value so we don't screw up
1925                         * people calling discard_extent.
1926                         */
1927                        ret = 0;
1928                }
1929                btrfs_put_bbio(bbio);
1930        }
1931
1932        if (actual_bytes)
1933                *actual_bytes = discarded_bytes;
1934
1935
1936        if (ret == -EOPNOTSUPP)
1937                ret = 0;
1938        return ret;
1939}
1940
1941/* Can return -ENOMEM */
1942int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1943                         struct btrfs_root *root,
1944                         u64 bytenr, u64 num_bytes, u64 parent,
1945                         u64 root_objectid, u64 owner, u64 offset,
1946                         int no_quota)
1947{
1948        int ret;
1949        struct btrfs_fs_info *fs_info = root->fs_info;
1950
1951        BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1952               root_objectid == BTRFS_TREE_LOG_OBJECTID);
1953
1954        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1955                ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1956                                        num_bytes,
1957                                        parent, root_objectid, (int)owner,
1958                                        BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1959        } else {
1960                ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1961                                        num_bytes,
1962                                        parent, root_objectid, owner, offset,
1963                                        BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1964        }
1965        return ret;
1966}
1967
1968static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1969                                  struct btrfs_root *root,
1970                                  u64 bytenr, u64 num_bytes,
1971                                  u64 parent, u64 root_objectid,
1972                                  u64 owner, u64 offset, int refs_to_add,
1973                                  int no_quota,
1974                                  struct btrfs_delayed_extent_op *extent_op)
1975{
1976        struct btrfs_fs_info *fs_info = root->fs_info;
1977        struct btrfs_path *path;
1978        struct extent_buffer *leaf;
1979        struct btrfs_extent_item *item;
1980        struct btrfs_key key;
1981        u64 refs;
1982        int ret;
1983        enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1984
1985        path = btrfs_alloc_path();
1986        if (!path)
1987                return -ENOMEM;
1988
1989        if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1990                no_quota = 1;
1991
1992        path->reada = 1;
1993        path->leave_spinning = 1;
1994        /* this will setup the path even if it fails to insert the back ref */
1995        ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1996                                           bytenr, num_bytes, parent,
1997                                           root_objectid, owner, offset,
1998                                           refs_to_add, extent_op);
1999        if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
2000                goto out;
2001        /*
2002         * Ok we were able to insert an inline extent and it appears to be a new
2003         * reference, deal with the qgroup accounting.
2004         */
2005        if (!ret && !no_quota) {
2006                ASSERT(root->fs_info->quota_enabled);
2007                leaf = path->nodes[0];
2008                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2009                item = btrfs_item_ptr(leaf, path->slots[0],
2010                                      struct btrfs_extent_item);
2011                if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2012                        type = BTRFS_QGROUP_OPER_ADD_SHARED;
2013                btrfs_release_path(path);
2014
2015                ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2016                                              bytenr, num_bytes, type, 0);
2017                goto out;
2018        }
2019
2020        /*
2021         * Ok we had -EAGAIN which means we didn't have space to insert and
2022         * inline extent ref, so just update the reference count and add a
2023         * normal backref.
2024         */
2025        leaf = path->nodes[0];
2026        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2027        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2028        refs = btrfs_extent_refs(leaf, item);
2029        if (refs)
2030                type = BTRFS_QGROUP_OPER_ADD_SHARED;
2031        btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2032        if (extent_op)
2033                __run_delayed_extent_op(extent_op, leaf, item);
2034
2035        btrfs_mark_buffer_dirty(leaf);
2036        btrfs_release_path(path);
2037
2038        if (!no_quota) {
2039                ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2040                                              bytenr, num_bytes, type, 0);
2041                if (ret)
2042                        goto out;
2043        }
2044
2045        path->reada = 1;
2046        path->leave_spinning = 1;
2047        /* now insert the actual backref */
2048        ret = insert_extent_backref(trans, root->fs_info->extent_root,
2049                                    path, bytenr, parent, root_objectid,
2050                                    owner, offset, refs_to_add);
2051        if (ret)
2052                btrfs_abort_transaction(trans, root, ret);
2053out:
2054        btrfs_free_path(path);
2055        return ret;
2056}
2057
2058static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2059                                struct btrfs_root *root,
2060                                struct btrfs_delayed_ref_node *node,
2061                                struct btrfs_delayed_extent_op *extent_op,
2062                                int insert_reserved)
2063{
2064        int ret = 0;
2065        struct btrfs_delayed_data_ref *ref;
2066        struct btrfs_key ins;
2067        u64 parent = 0;
2068        u64 ref_root = 0;
2069        u64 flags = 0;
2070
2071        ins.objectid = node->bytenr;
2072        ins.offset = node->num_bytes;
2073        ins.type = BTRFS_EXTENT_ITEM_KEY;
2074
2075        ref = btrfs_delayed_node_to_data_ref(node);
2076        trace_run_delayed_data_ref(node, ref, node->action);
2077
2078        if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2079                parent = ref->parent;
2080        ref_root = ref->root;
2081
2082        if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2083                if (extent_op)
2084                        flags |= extent_op->flags_to_set;
2085                ret = alloc_reserved_file_extent(trans, root,
2086                                                 parent, ref_root, flags,
2087                                                 ref->objectid, ref->offset,
2088                                                 &ins, node->ref_mod);
2089        } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2090                ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2091                                             node->num_bytes, parent,
2092                                             ref_root, ref->objectid,
2093                                             ref->offset, node->ref_mod,
2094                                             node->no_quota, extent_op);
2095        } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2096                ret = __btrfs_free_extent(trans, root, node->bytenr,
2097                                          node->num_bytes, parent,
2098                                          ref_root, ref->objectid,
2099                                          ref->offset, node->ref_mod,
2100                                          extent_op, node->no_quota);
2101        } else {
2102                BUG();
2103        }
2104        return ret;
2105}
2106
2107static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2108                                    struct extent_buffer *leaf,
2109                                    struct btrfs_extent_item *ei)
2110{
2111        u64 flags = btrfs_extent_flags(leaf, ei);
2112        if (extent_op->update_flags) {
2113                flags |= extent_op->flags_to_set;
2114                btrfs_set_extent_flags(leaf, ei, flags);
2115        }
2116
2117        if (extent_op->update_key) {
2118                struct btrfs_tree_block_info *bi;
2119                BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2120                bi = (struct btrfs_tree_block_info *)(ei + 1);
2121                btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2122        }
2123}
2124
2125static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2126                                 struct btrfs_root *root,
2127                                 struct btrfs_delayed_ref_node *node,
2128                                 struct btrfs_delayed_extent_op *extent_op)
2129{
2130        struct btrfs_key key;
2131        struct btrfs_path *path;
2132        struct btrfs_extent_item *ei;
2133        struct extent_buffer *leaf;
2134        u32 item_size;
2135        int ret;
2136        int err = 0;
2137        int metadata = !extent_op->is_data;
2138
2139        if (trans->aborted)
2140                return 0;
2141
2142        if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2143                metadata = 0;
2144
2145        path = btrfs_alloc_path();
2146        if (!path)
2147                return -ENOMEM;
2148
2149        key.objectid = node->bytenr;
2150
2151        if (metadata) {
2152                key.type = BTRFS_METADATA_ITEM_KEY;
2153                key.offset = extent_op->level;
2154        } else {
2155                key.type = BTRFS_EXTENT_ITEM_KEY;
2156                key.offset = node->num_bytes;
2157        }
2158
2159again:
2160        path->reada = 1;
2161        path->leave_spinning = 1;
2162        ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2163                                path, 0, 1);
2164        if (ret < 0) {
2165                err = ret;
2166                goto out;
2167        }
2168        if (ret > 0) {
2169                if (metadata) {
2170                        if (path->slots[0] > 0) {
2171                                path->slots[0]--;
2172                                btrfs_item_key_to_cpu(path->nodes[0], &key,
2173                                                      path->slots[0]);
2174                                if (key.objectid == node->bytenr &&
2175                                    key.type == BTRFS_EXTENT_ITEM_KEY &&
2176                                    key.offset == node->num_bytes)
2177                                        ret = 0;
2178                        }
2179                        if (ret > 0) {
2180                                btrfs_release_path(path);
2181                                metadata = 0;
2182
2183                                key.objectid = node->bytenr;
2184                                key.offset = node->num_bytes;
2185                                key.type = BTRFS_EXTENT_ITEM_KEY;
2186                                goto again;
2187                        }
2188                } else {
2189                        err = -EIO;
2190                        goto out;
2191                }
2192        }
2193
2194        leaf = path->nodes[0];
2195        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2196#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2197        if (item_size < sizeof(*ei)) {
2198                ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2199                                             path, (u64)-1, 0);
2200                if (ret < 0) {
2201                        err = ret;
2202                        goto out;
2203                }
2204                leaf = path->nodes[0];
2205                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2206        }
2207#endif
2208        BUG_ON(item_size < sizeof(*ei));
2209        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2210        __run_delayed_extent_op(extent_op, leaf, ei);
2211
2212        btrfs_mark_buffer_dirty(leaf);
2213out:
2214        btrfs_free_path(path);
2215        return err;
2216}
2217
2218static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2219                                struct btrfs_root *root,
2220                                struct btrfs_delayed_ref_node *node,
2221                                struct btrfs_delayed_extent_op *extent_op,
2222                                int insert_reserved)
2223{
2224        int ret = 0;
2225        struct btrfs_delayed_tree_ref *ref;
2226        struct btrfs_key ins;
2227        u64 parent = 0;
2228        u64 ref_root = 0;
2229        bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2230                                                 SKINNY_METADATA);
2231
2232        ref = btrfs_delayed_node_to_tree_ref(node);
2233        trace_run_delayed_tree_ref(node, ref, node->action);
2234
2235        if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2236                parent = ref->parent;
2237        ref_root = ref->root;
2238
2239        ins.objectid = node->bytenr;
2240        if (skinny_metadata) {
2241                ins.offset = ref->level;
2242                ins.type = BTRFS_METADATA_ITEM_KEY;
2243        } else {
2244                ins.offset = node->num_bytes;
2245                ins.type = BTRFS_EXTENT_ITEM_KEY;
2246        }
2247
2248        BUG_ON(node->ref_mod != 1);
2249        if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2250                BUG_ON(!extent_op || !extent_op->update_flags);
2251                ret = alloc_reserved_tree_block(trans, root,
2252                                                parent, ref_root,
2253                                                extent_op->flags_to_set,
2254                                                &extent_op->key,
2255                                                ref->level, &ins,
2256                                                node->no_quota);
2257        } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2258                ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2259                                             node->num_bytes, parent, ref_root,
2260                                             ref->level, 0, 1, node->no_quota,
2261                                             extent_op);
2262        } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2263                ret = __btrfs_free_extent(trans, root, node->bytenr,
2264                                          node->num_bytes, parent, ref_root,
2265                                          ref->level, 0, 1, extent_op,
2266                                          node->no_quota);
2267        } else {
2268                BUG();
2269        }
2270        return ret;
2271}
2272
2273/* helper function to actually process a single delayed ref entry */
2274static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2275                               struct btrfs_root *root,
2276                               struct btrfs_delayed_ref_node *node,
2277                               struct btrfs_delayed_extent_op *extent_op,
2278                               int insert_reserved)
2279{
2280        int ret = 0;
2281
2282        if (trans->aborted) {
2283                if (insert_reserved)
2284                        btrfs_pin_extent(root, node->bytenr,
2285                                         node->num_bytes, 1);
2286                return 0;
2287        }
2288
2289        if (btrfs_delayed_ref_is_head(node)) {
2290                struct btrfs_delayed_ref_head *head;
2291                /*
2292                 * we've hit the end of the chain and we were supposed
2293                 * to insert this extent into the tree.  But, it got
2294                 * deleted before we ever needed to insert it, so all
2295                 * we have to do is clean up the accounting
2296                 */
2297                BUG_ON(extent_op);
2298                head = btrfs_delayed_node_to_head(node);
2299                trace_run_delayed_ref_head(node, head, node->action);
2300
2301                if (insert_reserved) {
2302                        btrfs_pin_extent(root, node->bytenr,
2303                                         node->num_bytes, 1);
2304                        if (head->is_data) {
2305                                ret = btrfs_del_csums(trans, root,
2306                                                      node->bytenr,
2307                                                      node->num_bytes);
2308                        }
2309                }
2310                return ret;
2311        }
2312
2313        if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2314            node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2315                ret = run_delayed_tree_ref(trans, root, node, extent_op,
2316                                           insert_reserved);
2317        else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2318                 node->type == BTRFS_SHARED_DATA_REF_KEY)
2319                ret = run_delayed_data_ref(trans, root, node, extent_op,
2320                                           insert_reserved);
2321        else
2322                BUG();
2323        return ret;
2324}
2325
2326static noinline struct btrfs_delayed_ref_node *
2327select_delayed_ref(struct btrfs_delayed_ref_head *head)
2328{
2329        struct rb_node *node;
2330        struct btrfs_delayed_ref_node *ref, *last = NULL;;
2331
2332        /*
2333         * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2334         * this prevents ref count from going down to zero when
2335         * there still are pending delayed ref.
2336         */
2337        node = rb_first(&head->ref_root);
2338        while (node) {
2339                ref = rb_entry(node, struct btrfs_delayed_ref_node,
2340                                rb_node);
2341                if (ref->action == BTRFS_ADD_DELAYED_REF)
2342                        return ref;
2343                else if (last == NULL)
2344                        last = ref;
2345                node = rb_next(node);
2346        }
2347        return last;
2348}
2349
2350/*
2351 * Returns 0 on success or if called with an already aborted transaction.
2352 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2353 */
2354static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2355                                             struct btrfs_root *root,
2356                                             unsigned long nr)
2357{
2358        struct btrfs_delayed_ref_root *delayed_refs;
2359        struct btrfs_delayed_ref_node *ref;
2360        struct btrfs_delayed_ref_head *locked_ref = NULL;
2361        struct btrfs_delayed_extent_op *extent_op;
2362        struct btrfs_fs_info *fs_info = root->fs_info;
2363        ktime_t start = ktime_get();
2364        int ret;
2365        unsigned long count = 0;
2366        unsigned long actual_count = 0;
2367        int must_insert_reserved = 0;
2368
2369        delayed_refs = &trans->transaction->delayed_refs;
2370        while (1) {
2371                if (!locked_ref) {
2372                        if (count >= nr)
2373                                break;
2374
2375                        spin_lock(&delayed_refs->lock);
2376                        locked_ref = btrfs_select_ref_head(trans);
2377                        if (!locked_ref) {
2378                                spin_unlock(&delayed_refs->lock);
2379                                break;
2380                        }
2381
2382                        /* grab the lock that says we are going to process
2383                         * all the refs for this head */
2384                        ret = btrfs_delayed_ref_lock(trans, locked_ref);
2385                        spin_unlock(&delayed_refs->lock);
2386                        /*
2387                         * we may have dropped the spin lock to get the head
2388                         * mutex lock, and that might have given someone else
2389                         * time to free the head.  If that's true, it has been
2390                         * removed from our list and we can move on.
2391                         */
2392                        if (ret == -EAGAIN) {
2393                                locked_ref = NULL;
2394                                count++;
2395                                continue;
2396                        }
2397                }
2398
2399                /*
2400                 * We need to try and merge add/drops of the same ref since we
2401                 * can run into issues with relocate dropping the implicit ref
2402                 * and then it being added back again before the drop can
2403                 * finish.  If we merged anything we need to re-loop so we can
2404                 * get a good ref.
2405                 */
2406                spin_lock(&locked_ref->lock);
2407                btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2408                                         locked_ref);
2409
2410                /*
2411                 * locked_ref is the head node, so we have to go one
2412                 * node back for any delayed ref updates
2413                 */
2414                ref = select_delayed_ref(locked_ref);
2415
2416                if (ref && ref->seq &&
2417                    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2418                        spin_unlock(&locked_ref->lock);
2419                        btrfs_delayed_ref_unlock(locked_ref);
2420                        spin_lock(&delayed_refs->lock);
2421                        locked_ref->processing = 0;
2422                        delayed_refs->num_heads_ready++;
2423                        spin_unlock(&delayed_refs->lock);
2424                        locked_ref = NULL;
2425                        cond_resched();
2426                        count++;
2427                        continue;
2428                }
2429
2430                /*
2431                 * record the must insert reserved flag before we
2432                 * drop the spin lock.
2433                 */
2434                must_insert_reserved = locked_ref->must_insert_reserved;
2435                locked_ref->must_insert_reserved = 0;
2436
2437                extent_op = locked_ref->extent_op;
2438                locked_ref->extent_op = NULL;
2439
2440                if (!ref) {
2441
2442
2443                        /* All delayed refs have been processed, Go ahead
2444                         * and send the head node to run_one_delayed_ref,
2445                         * so that any accounting fixes can happen
2446                         */
2447                        ref = &locked_ref->node;
2448
2449                        if (extent_op && must_insert_reserved) {
2450                                btrfs_free_delayed_extent_op(extent_op);
2451                                extent_op = NULL;
2452                        }
2453
2454                        if (extent_op) {
2455                                spin_unlock(&locked_ref->lock);
2456                                ret = run_delayed_extent_op(trans, root,
2457                                                            ref, extent_op);
2458                                btrfs_free_delayed_extent_op(extent_op);
2459
2460                                if (ret) {
2461                                        /*
2462                                         * Need to reset must_insert_reserved if
2463                                         * there was an error so the abort stuff
2464                                         * can cleanup the reserved space
2465                                         * properly.
2466                                         */
2467                                        if (must_insert_reserved)
2468                                                locked_ref->must_insert_reserved = 1;
2469                                        locked_ref->processing = 0;
2470                                        btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2471                                        btrfs_delayed_ref_unlock(locked_ref);
2472                                        return ret;
2473                                }
2474                                continue;
2475                        }
2476
2477                        /*
2478                         * Need to drop our head ref lock and re-aqcuire the
2479                         * delayed ref lock and then re-check to make sure
2480                         * nobody got added.
2481                         */
2482                        spin_unlock(&locked_ref->lock);
2483                        spin_lock(&delayed_refs->lock);
2484                        spin_lock(&locked_ref->lock);
2485                        if (rb_first(&locked_ref->ref_root) ||
2486                            locked_ref->extent_op) {
2487                                spin_unlock(&locked_ref->lock);
2488                                spin_unlock(&delayed_refs->lock);
2489                                continue;
2490                        }
2491                        ref->in_tree = 0;
2492                        delayed_refs->num_heads--;
2493                        rb_erase(&locked_ref->href_node,
2494                                 &delayed_refs->href_root);
2495                        spin_unlock(&delayed_refs->lock);
2496                } else {
2497                        actual_count++;
2498                        ref->in_tree = 0;
2499                        rb_erase(&ref->rb_node, &locked_ref->ref_root);
2500                }
2501                atomic_dec(&delayed_refs->num_entries);
2502
2503                if (!btrfs_delayed_ref_is_head(ref)) {
2504                        /*
2505                         * when we play the delayed ref, also correct the
2506                         * ref_mod on head
2507                         */
2508                        switch (ref->action) {
2509                        case BTRFS_ADD_DELAYED_REF:
2510                        case BTRFS_ADD_DELAYED_EXTENT:
2511                                locked_ref->node.ref_mod -= ref->ref_mod;
2512                                break;
2513                        case BTRFS_DROP_DELAYED_REF:
2514                                locked_ref->node.ref_mod += ref->ref_mod;
2515                                break;
2516                        default:
2517                                WARN_ON(1);
2518                        }
2519                }
2520                spin_unlock(&locked_ref->lock);
2521
2522                ret = run_one_delayed_ref(trans, root, ref, extent_op,
2523                                          must_insert_reserved);
2524
2525                btrfs_free_delayed_extent_op(extent_op);
2526                if (ret) {
2527                        locked_ref->processing = 0;
2528                        btrfs_delayed_ref_unlock(locked_ref);
2529                        btrfs_put_delayed_ref(ref);
2530                        btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2531                        return ret;
2532                }
2533
2534                /*
2535                 * If this node is a head, that means all the refs in this head
2536                 * have been dealt with, and we will pick the next head to deal
2537                 * with, so we must unlock the head and drop it from the cluster
2538                 * list before we release it.
2539                 */
2540                if (btrfs_delayed_ref_is_head(ref)) {
2541                        if (locked_ref->is_data &&
2542                            locked_ref->total_ref_mod < 0) {
2543                                spin_lock(&delayed_refs->lock);
2544                                delayed_refs->pending_csums -= ref->num_bytes;
2545                                spin_unlock(&delayed_refs->lock);
2546                        }
2547                        btrfs_delayed_ref_unlock(locked_ref);
2548                        locked_ref = NULL;
2549                }
2550                btrfs_put_delayed_ref(ref);
2551                count++;
2552                cond_resched();
2553        }
2554
2555        /*
2556         * We don't want to include ref heads since we can have empty ref heads
2557         * and those will drastically skew our runtime down since we just do
2558         * accounting, no actual extent tree updates.
2559         */
2560        if (actual_count > 0) {
2561                u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2562                u64 avg;
2563
2564                /*
2565                 * We weigh the current average higher than our current runtime
2566                 * to avoid large swings in the average.
2567                 */
2568                spin_lock(&delayed_refs->lock);
2569                avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2570                fs_info->avg_delayed_ref_runtime = avg >> 2;    /* div by 4 */
2571                spin_unlock(&delayed_refs->lock);
2572        }
2573        return 0;
2574}
2575
2576#ifdef SCRAMBLE_DELAYED_REFS
2577/*
2578 * Normally delayed refs get processed in ascending bytenr order. This
2579 * correlates in most cases to the order added. To expose dependencies on this
2580 * order, we start to process the tree in the middle instead of the beginning
2581 */
2582static u64 find_middle(struct rb_root *root)
2583{
2584        struct rb_node *n = root->rb_node;
2585        struct btrfs_delayed_ref_node *entry;
2586        int alt = 1;
2587        u64 middle;
2588        u64 first = 0, last = 0;
2589
2590        n = rb_first(root);
2591        if (n) {
2592                entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2593                first = entry->bytenr;
2594        }
2595        n = rb_last(root);
2596        if (n) {
2597                entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2598                last = entry->bytenr;
2599        }
2600        n = root->rb_node;
2601
2602        while (n) {
2603                entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2604                WARN_ON(!entry->in_tree);
2605
2606                middle = entry->bytenr;
2607
2608                if (alt)
2609                        n = n->rb_left;
2610                else
2611                        n = n->rb_right;
2612
2613                alt = 1 - alt;
2614        }
2615        return middle;
2616}
2617#endif
2618
2619static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2620{
2621        u64 num_bytes;
2622
2623        num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2624                             sizeof(struct btrfs_extent_inline_ref));
2625        if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2626                num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2627
2628        /*
2629         * We don't ever fill up leaves all the way so multiply by 2 just to be
2630         * closer to what we're really going to want to ouse.
2631         */
2632        return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2633}
2634
2635/*
2636 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2637 * would require to store the csums for that many bytes.
2638 */
2639u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2640{
2641        u64 csum_size;
2642        u64 num_csums_per_leaf;
2643        u64 num_csums;
2644
2645        csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2646        num_csums_per_leaf = div64_u64(csum_size,
2647                        (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2648        num_csums = div64_u64(csum_bytes, root->sectorsize);
2649        num_csums += num_csums_per_leaf - 1;
2650        num_csums = div64_u64(num_csums, num_csums_per_leaf);
2651        return num_csums;
2652}
2653
2654int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2655                                       struct btrfs_root *root)
2656{
2657        struct btrfs_block_rsv *global_rsv;
2658        u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2659        u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2660        u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2661        u64 num_bytes, num_dirty_bgs_bytes;
2662        int ret = 0;
2663
2664        num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2665        num_heads = heads_to_leaves(root, num_heads);
2666        if (num_heads > 1)
2667                num_bytes += (num_heads - 1) * root->nodesize;
2668        num_bytes <<= 1;
2669        num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2670        num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2671                                                             num_dirty_bgs);
2672        global_rsv = &root->fs_info->global_block_rsv;
2673
2674        /*
2675         * If we can't allocate any more chunks lets make sure we have _lots_ of
2676         * wiggle room since running delayed refs can create more delayed refs.
2677         */
2678        if (global_rsv->space_info->full) {
2679                num_dirty_bgs_bytes <<= 1;
2680                num_bytes <<= 1;
2681        }
2682
2683        spin_lock(&global_rsv->lock);
2684        if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2685                ret = 1;
2686        spin_unlock(&global_rsv->lock);
2687        return ret;
2688}
2689
2690int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2691                                       struct btrfs_root *root)
2692{
2693        struct btrfs_fs_info *fs_info = root->fs_info;
2694        u64 num_entries =
2695                atomic_read(&trans->transaction->delayed_refs.num_entries);
2696        u64 avg_runtime;
2697        u64 val;
2698
2699        smp_mb();
2700        avg_runtime = fs_info->avg_delayed_ref_runtime;
2701        val = num_entries * avg_runtime;
2702        if (num_entries * avg_runtime >= NSEC_PER_SEC)
2703                return 1;
2704        if (val >= NSEC_PER_SEC / 2)
2705                return 2;
2706
2707        return btrfs_check_space_for_delayed_refs(trans, root);
2708}
2709
2710struct async_delayed_refs {
2711        struct btrfs_root *root;
2712        int count;
2713        int error;
2714        int sync;
2715        struct completion wait;
2716        struct btrfs_work work;
2717};
2718
2719static void delayed_ref_async_start(struct btrfs_work *work)
2720{
2721        struct async_delayed_refs *async;
2722        struct btrfs_trans_handle *trans;
2723        int ret;
2724
2725        async = container_of(work, struct async_delayed_refs, work);
2726
2727        trans = btrfs_join_transaction(async->root);
2728        if (IS_ERR(trans)) {
2729                async->error = PTR_ERR(trans);
2730                goto done;
2731        }
2732
2733        /*
2734         * trans->sync means that when we call end_transaciton, we won't
2735         * wait on delayed refs
2736         */
2737        trans->sync = true;
2738        ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2739        if (ret)
2740                async->error = ret;
2741
2742        ret = btrfs_end_transaction(trans, async->root);
2743        if (ret && !async->error)
2744                async->error = ret;
2745done:
2746        if (async->sync)
2747                complete(&async->wait);
2748        else
2749                kfree(async);
2750}
2751
2752int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2753                                 unsigned long count, int wait)
2754{
2755        struct async_delayed_refs *async;
2756        int ret;
2757
2758        async = kmalloc(sizeof(*async), GFP_NOFS);
2759        if (!async)
2760                return -ENOMEM;
2761
2762        async->root = root->fs_info->tree_root;
2763        async->count = count;
2764        async->error = 0;
2765        if (wait)
2766                async->sync = 1;
2767        else
2768                async->sync = 0;
2769        init_completion(&async->wait);
2770
2771        btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2772                        delayed_ref_async_start, NULL, NULL);
2773
2774        btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2775
2776        if (wait) {
2777                wait_for_completion(&async->wait);
2778                ret = async->error;
2779                kfree(async);
2780                return ret;
2781        }
2782        return 0;
2783}
2784
2785/*
2786 * this starts processing the delayed reference count updates and
2787 * extent insertions we have queued up so far.  count can be
2788 * 0, which means to process everything in the tree at the start
2789 * of the run (but not newly added entries), or it can be some target
2790 * number you'd like to process.
2791 *
2792 * Returns 0 on success or if called with an aborted transaction
2793 * Returns <0 on error and aborts the transaction
2794 */
2795int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2796                           struct btrfs_root *root, unsigned long count)
2797{
2798        struct rb_node *node;
2799        struct btrfs_delayed_ref_root *delayed_refs;
2800        struct btrfs_delayed_ref_head *head;
2801        int ret;
2802        int run_all = count == (unsigned long)-1;
2803
2804        /* We'll clean this up in btrfs_cleanup_transaction */
2805        if (trans->aborted)
2806                return 0;
2807
2808        if (root == root->fs_info->extent_root)
2809                root = root->fs_info->tree_root;
2810
2811        delayed_refs = &trans->transaction->delayed_refs;
2812        if (count == 0)
2813                count = atomic_read(&delayed_refs->num_entries) * 2;
2814
2815again:
2816#ifdef SCRAMBLE_DELAYED_REFS
2817        delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2818#endif
2819        ret = __btrfs_run_delayed_refs(trans, root, count);
2820        if (ret < 0) {
2821                btrfs_abort_transaction(trans, root, ret);
2822                return ret;
2823        }
2824
2825        if (run_all) {
2826                if (!list_empty(&trans->new_bgs))
2827                        btrfs_create_pending_block_groups(trans, root);
2828
2829                spin_lock(&delayed_refs->lock);
2830                node = rb_first(&delayed_refs->href_root);
2831                if (!node) {
2832                        spin_unlock(&delayed_refs->lock);
2833                        goto out;
2834                }
2835                count = (unsigned long)-1;
2836
2837                while (node) {
2838                        head = rb_entry(node, struct btrfs_delayed_ref_head,
2839                                        href_node);
2840                        if (btrfs_delayed_ref_is_head(&head->node)) {
2841                                struct btrfs_delayed_ref_node *ref;
2842
2843                                ref = &head->node;
2844                                atomic_inc(&ref->refs);
2845
2846                                spin_unlock(&delayed_refs->lock);
2847                                /*
2848                                 * Mutex was contended, block until it's
2849                                 * released and try again
2850                                 */
2851                                mutex_lock(&head->mutex);
2852                                mutex_unlock(&head->mutex);
2853
2854                                btrfs_put_delayed_ref(ref);
2855                                cond_resched();
2856                                goto again;
2857                        } else {
2858                                WARN_ON(1);
2859                        }
2860                        node = rb_next(node);
2861                }
2862                spin_unlock(&delayed_refs->lock);
2863                cond_resched();
2864                goto again;
2865        }
2866out:
2867        ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2868        if (ret)
2869                return ret;
2870        assert_qgroups_uptodate(trans);
2871        return 0;
2872}
2873
2874int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2875                                struct btrfs_root *root,
2876                                u64 bytenr, u64 num_bytes, u64 flags,
2877                                int level, int is_data)
2878{
2879        struct btrfs_delayed_extent_op *extent_op;
2880        int ret;
2881
2882        extent_op = btrfs_alloc_delayed_extent_op();
2883        if (!extent_op)
2884                return -ENOMEM;
2885
2886        extent_op->flags_to_set = flags;
2887        extent_op->update_flags = 1;
2888        extent_op->update_key = 0;
2889        extent_op->is_data = is_data ? 1 : 0;
2890        extent_op->level = level;
2891
2892        ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2893                                          num_bytes, extent_op);
2894        if (ret)
2895                btrfs_free_delayed_extent_op(extent_op);
2896        return ret;
2897}
2898
2899static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2900                                      struct btrfs_root *root,
2901                                      struct btrfs_path *path,
2902                                      u64 objectid, u64 offset, u64 bytenr)
2903{
2904        struct btrfs_delayed_ref_head *head;
2905        struct btrfs_delayed_ref_node *ref;
2906        struct btrfs_delayed_data_ref *data_ref;
2907        struct btrfs_delayed_ref_root *delayed_refs;
2908        struct rb_node *node;
2909        int ret = 0;
2910
2911        delayed_refs = &trans->transaction->delayed_refs;
2912        spin_lock(&delayed_refs->lock);
2913        head = btrfs_find_delayed_ref_head(trans, bytenr);
2914        if (!head) {
2915                spin_unlock(&delayed_refs->lock);
2916                return 0;
2917        }
2918
2919        if (!mutex_trylock(&head->mutex)) {
2920                atomic_inc(&head->node.refs);
2921                spin_unlock(&delayed_refs->lock);
2922
2923                btrfs_release_path(path);
2924
2925                /*
2926                 * Mutex was contended, block until it's released and let
2927                 * caller try again
2928                 */
2929                mutex_lock(&head->mutex);
2930                mutex_unlock(&head->mutex);
2931                btrfs_put_delayed_ref(&head->node);
2932                return -EAGAIN;
2933        }
2934        spin_unlock(&delayed_refs->lock);
2935
2936        spin_lock(&head->lock);
2937        node = rb_first(&head->ref_root);
2938        while (node) {
2939                ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2940                node = rb_next(node);
2941
2942                /* If it's a shared ref we know a cross reference exists */
2943                if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2944                        ret = 1;
2945                        break;
2946                }
2947
2948                data_ref = btrfs_delayed_node_to_data_ref(ref);
2949
2950                /*
2951                 * If our ref doesn't match the one we're currently looking at
2952                 * then we have a cross reference.
2953                 */
2954                if (data_ref->root != root->root_key.objectid ||
2955                    data_ref->objectid != objectid ||
2956                    data_ref->offset != offset) {
2957                        ret = 1;
2958                        break;
2959                }
2960        }
2961        spin_unlock(&head->lock);
2962        mutex_unlock(&head->mutex);
2963        return ret;
2964}
2965
2966static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2967                                        struct btrfs_root *root,
2968                                        struct btrfs_path *path,
2969                                        u64 objectid, u64 offset, u64 bytenr)
2970{
2971        struct btrfs_root *extent_root = root->fs_info->extent_root;
2972        struct extent_buffer *leaf;
2973        struct btrfs_extent_data_ref *ref;
2974        struct btrfs_extent_inline_ref *iref;
2975        struct btrfs_extent_item *ei;
2976        struct btrfs_key key;
2977        u32 item_size;
2978        int ret;
2979
2980        key.objectid = bytenr;
2981        key.offset = (u64)-1;
2982        key.type = BTRFS_EXTENT_ITEM_KEY;
2983
2984        ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2985        if (ret < 0)
2986                goto out;
2987        BUG_ON(ret == 0); /* Corruption */
2988
2989        ret = -ENOENT;
2990        if (path->slots[0] == 0)
2991                goto out;
2992
2993        path->slots[0]--;
2994        leaf = path->nodes[0];
2995        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2996
2997        if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2998                goto out;
2999
3000        ret = 1;
3001        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3002#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3003        if (item_size < sizeof(*ei)) {
3004                WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3005                goto out;
3006        }
3007#endif
3008        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3009
3010        if (item_size != sizeof(*ei) +
3011            btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3012                goto out;
3013
3014        if (btrfs_extent_generation(leaf, ei) <=
3015            btrfs_root_last_snapshot(&root->root_item))
3016                goto out;
3017
3018        iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3019        if (btrfs_extent_inline_ref_type(leaf, iref) !=
3020            BTRFS_EXTENT_DATA_REF_KEY)
3021                goto out;
3022
3023        ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3024        if (btrfs_extent_refs(leaf, ei) !=
3025            btrfs_extent_data_ref_count(leaf, ref) ||
3026            btrfs_extent_data_ref_root(leaf, ref) !=
3027            root->root_key.objectid ||
3028            btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3029            btrfs_extent_data_ref_offset(leaf, ref) != offset)
3030                goto out;
3031
3032        ret = 0;
3033out:
3034        return ret;
3035}
3036
3037int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3038                          struct btrfs_root *root,
3039                          u64 objectid, u64 offset, u64 bytenr)
3040{
3041        struct btrfs_path *path;
3042        int ret;
3043        int ret2;
3044
3045        path = btrfs_alloc_path();
3046        if (!path)
3047                return -ENOENT;
3048
3049        do {
3050                ret = check_committed_ref(trans, root, path, objectid,
3051                                          offset, bytenr);
3052                if (ret && ret != -ENOENT)
3053                        goto out;
3054
3055                ret2 = check_delayed_ref(trans, root, path, objectid,
3056                                         offset, bytenr);
3057        } while (ret2 == -EAGAIN);
3058
3059        if (ret2 && ret2 != -ENOENT) {
3060                ret = ret2;
3061                goto out;
3062        }
3063
3064        if (ret != -ENOENT || ret2 != -ENOENT)
3065                ret = 0;
3066out:
3067        btrfs_free_path(path);
3068        if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3069                WARN_ON(ret > 0);
3070        return ret;
3071}
3072
3073static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3074                           struct btrfs_root *root,
3075                           struct extent_buffer *buf,
3076                           int full_backref, int inc)
3077{
3078        u64 bytenr;
3079        u64 num_bytes;
3080        u64 parent;
3081        u64 ref_root;
3082        u32 nritems;
3083        struct btrfs_key key;
3084        struct btrfs_file_extent_item *fi;
3085        int i;
3086        int level;
3087        int ret = 0;
3088        int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3089                            u64, u64, u64, u64, u64, u64, int);
3090
3091
3092        if (btrfs_test_is_dummy_root(root))
3093                return 0;
3094
3095        ref_root = btrfs_header_owner(buf);
3096        nritems = btrfs_header_nritems(buf);
3097        level = btrfs_header_level(buf);
3098
3099        if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3100                return 0;
3101
3102        if (inc)
3103                process_func = btrfs_inc_extent_ref;
3104        else
3105                process_func = btrfs_free_extent;
3106
3107        if (full_backref)
3108                parent = buf->start;
3109        else
3110                parent = 0;
3111
3112        for (i = 0; i < nritems; i++) {
3113                if (level == 0) {
3114                        btrfs_item_key_to_cpu(buf, &key, i);
3115                        if (key.type != BTRFS_EXTENT_DATA_KEY)
3116                                continue;
3117                        fi = btrfs_item_ptr(buf, i,
3118                                            struct btrfs_file_extent_item);
3119                        if (btrfs_file_extent_type(buf, fi) ==
3120                            BTRFS_FILE_EXTENT_INLINE)
3121                                continue;
3122                        bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3123                        if (bytenr == 0)
3124                                continue;
3125
3126                        num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3127                        key.offset -= btrfs_file_extent_offset(buf, fi);
3128                        ret = process_func(trans, root, bytenr, num_bytes,
3129                                           parent, ref_root, key.objectid,
3130                                           key.offset, 1);
3131                        if (ret)
3132                                goto fail;
3133                } else {
3134                        bytenr = btrfs_node_blockptr(buf, i);
3135                        num_bytes = root->nodesize;
3136                        ret = process_func(trans, root, bytenr, num_bytes,
3137                                           parent, ref_root, level - 1, 0,
3138                                           1);
3139                        if (ret)
3140                                goto fail;
3141                }
3142        }
3143        return 0;
3144fail:
3145        return ret;
3146}
3147
3148int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3149                  struct extent_buffer *buf, int full_backref)
3150{
3151        return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3152}
3153
3154int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3155                  struct extent_buffer *buf, int full_backref)
3156{
3157        return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3158}
3159
3160static int write_one_cache_group(struct btrfs_trans_handle *trans,
3161                                 struct btrfs_root *root,
3162                                 struct btrfs_path *path,
3163                                 struct btrfs_block_group_cache *cache)
3164{
3165        int ret;
3166        struct btrfs_root *extent_root = root->fs_info->extent_root;
3167        unsigned long bi;
3168        struct extent_buffer *leaf;
3169
3170        ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3171        if (ret) {
3172                if (ret > 0)
3173                        ret = -ENOENT;
3174                goto fail;
3175        }
3176
3177        leaf = path->nodes[0];
3178        bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3179        write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3180        btrfs_mark_buffer_dirty(leaf);
3181fail:
3182        btrfs_release_path(path);
3183        return ret;
3184
3185}
3186
3187static struct btrfs_block_group_cache *
3188next_block_group(struct btrfs_root *root,
3189                 struct btrfs_block_group_cache *cache)
3190{
3191        struct rb_node *node;
3192
3193        spin_lock(&root->fs_info->block_group_cache_lock);
3194
3195        /* If our block group was removed, we need a full search. */
3196        if (RB_EMPTY_NODE(&cache->cache_node)) {
3197                const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3198
3199                spin_unlock(&root->fs_info->block_group_cache_lock);
3200                btrfs_put_block_group(cache);
3201                cache = btrfs_lookup_first_block_group(root->fs_info,
3202                                                       next_bytenr);
3203                return cache;
3204        }
3205        node = rb_next(&cache->cache_node);
3206        btrfs_put_block_group(cache);
3207        if (node) {
3208                cache = rb_entry(node, struct btrfs_block_group_cache,
3209                                 cache_node);
3210                btrfs_get_block_group(cache);
3211        } else
3212                cache = NULL;
3213        spin_unlock(&root->fs_info->block_group_cache_lock);
3214        return cache;
3215}
3216
3217static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3218                            struct btrfs_trans_handle *trans,
3219                            struct btrfs_path *path)
3220{
3221        struct btrfs_root *root = block_group->fs_info->tree_root;
3222        struct inode *inode = NULL;
3223        u64 alloc_hint = 0;
3224        int dcs = BTRFS_DC_ERROR;
3225        u64 num_pages = 0;
3226        int retries = 0;
3227        int ret = 0;
3228
3229        /*
3230         * If this block group is smaller than 100 megs don't bother caching the
3231         * block group.
3232         */
3233        if (block_group->key.offset < (100 * 1024 * 1024)) {
3234                spin_lock(&block_group->lock);
3235                block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3236                spin_unlock(&block_group->lock);
3237                return 0;
3238        }
3239
3240        if (trans->aborted)
3241                return 0;
3242again:
3243        inode = lookup_free_space_inode(root, block_group, path);
3244        if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3245                ret = PTR_ERR(inode);
3246                btrfs_release_path(path);
3247                goto out;
3248        }
3249
3250        if (IS_ERR(inode)) {
3251                BUG_ON(retries);
3252                retries++;
3253
3254                if (block_group->ro)
3255                        goto out_free;
3256
3257                ret = create_free_space_inode(root, trans, block_group, path);
3258                if (ret)
3259                        goto out_free;
3260                goto again;
3261        }
3262
3263        /* We've already setup this transaction, go ahead and exit */
3264        if (block_group->cache_generation == trans->transid &&
3265            i_size_read(inode)) {
3266                dcs = BTRFS_DC_SETUP;
3267                goto out_put;
3268        }
3269
3270        /*
3271         * We want to set the generation to 0, that way if anything goes wrong
3272         * from here on out we know not to trust this cache when we load up next
3273         * time.
3274         */
3275        BTRFS_I(inode)->generation = 0;
3276        ret = btrfs_update_inode(trans, root, inode);
3277        if (ret) {
3278                /*
3279                 * So theoretically we could recover from this, simply set the
3280                 * super cache generation to 0 so we know to invalidate the
3281                 * cache, but then we'd have to keep track of the block groups
3282                 * that fail this way so we know we _have_ to reset this cache
3283                 * before the next commit or risk reading stale cache.  So to
3284                 * limit our exposure to horrible edge cases lets just abort the
3285                 * transaction, this only happens in really bad situations
3286                 * anyway.
3287                 */
3288                btrfs_abort_transaction(trans, root, ret);
3289                goto out_put;
3290        }
3291        WARN_ON(ret);
3292
3293        if (i_size_read(inode) > 0) {
3294                ret = btrfs_check_trunc_cache_free_space(root,
3295                                        &root->fs_info->global_block_rsv);
3296                if (ret)
3297                        goto out_put;
3298
3299                ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3300                if (ret)
3301                        goto out_put;
3302        }
3303
3304        spin_lock(&block_group->lock);
3305        if (block_group->cached != BTRFS_CACHE_FINISHED ||
3306            !btrfs_test_opt(root, SPACE_CACHE)) {
3307                /*
3308                 * don't bother trying to write stuff out _if_
3309                 * a) we're not cached,
3310                 * b) we're with nospace_cache mount option.
3311                 */
3312                dcs = BTRFS_DC_WRITTEN;
3313                spin_unlock(&block_group->lock);
3314                goto out_put;
3315        }
3316        spin_unlock(&block_group->lock);
3317
3318        /*
3319         * Try to preallocate enough space based on how big the block group is.
3320         * Keep in mind this has to include any pinned space which could end up
3321         * taking up quite a bit since it's not folded into the other space
3322         * cache.
3323         */
3324        num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3325        if (!num_pages)
3326                num_pages = 1;
3327
3328        num_pages *= 16;
3329        num_pages *= PAGE_CACHE_SIZE;
3330
3331        ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
3332        if (ret)
3333                goto out_put;
3334
3335        ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3336                                              num_pages, num_pages,
3337                                              &alloc_hint);
3338        if (!ret)
3339                dcs = BTRFS_DC_SETUP;
3340        btrfs_free_reserved_data_space(inode, num_pages);
3341
3342out_put:
3343        iput(inode);
3344out_free:
3345        btrfs_release_path(path);
3346out:
3347        spin_lock(&block_group->lock);
3348        if (!ret && dcs == BTRFS_DC_SETUP)
3349                block_group->cache_generation = trans->transid;
3350        block_group->disk_cache_state = dcs;
3351        spin_unlock(&block_group->lock);
3352
3353        return ret;
3354}
3355
3356int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3357                            struct btrfs_root *root)
3358{
3359        struct btrfs_block_group_cache *cache, *tmp;
3360        struct btrfs_transaction *cur_trans = trans->transaction;
3361        struct btrfs_path *path;
3362
3363        if (list_empty(&cur_trans->dirty_bgs) ||
3364            !btrfs_test_opt(root, SPACE_CACHE))
3365                return 0;
3366
3367        path = btrfs_alloc_path();
3368        if (!path)
3369                return -ENOMEM;
3370
3371        /* Could add new block groups, use _safe just in case */
3372        list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3373                                 dirty_list) {
3374                if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3375                        cache_save_setup(cache, trans, path);
3376        }
3377
3378        btrfs_free_path(path);
3379        return 0;
3380}
3381
3382/*
3383 * transaction commit does final block group cache writeback during a
3384 * critical section where nothing is allowed to change the FS.  This is
3385 * required in order for the cache to actually match the block group,
3386 * but can introduce a lot of latency into the commit.
3387 *
3388 * So, btrfs_start_dirty_block_groups is here to kick off block group
3389 * cache IO.  There's a chance we'll have to redo some of it if the
3390 * block group changes again during the commit, but it greatly reduces
3391 * the commit latency by getting rid of the easy block groups while
3392 * we're still allowing others to join the commit.
3393 */
3394int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3395                                   struct btrfs_root *root)
3396{
3397        struct btrfs_block_group_cache *cache;
3398        struct btrfs_transaction *cur_trans = trans->transaction;
3399        int ret = 0;
3400        int should_put;
3401        struct btrfs_path *path = NULL;
3402        LIST_HEAD(dirty);
3403        struct list_head *io = &cur_trans->io_bgs;
3404        int num_started = 0;
3405        int loops = 0;
3406
3407        spin_lock(&cur_trans->dirty_bgs_lock);
3408        if (list_empty(&cur_trans->dirty_bgs)) {
3409                spin_unlock(&cur_trans->dirty_bgs_lock);
3410                return 0;
3411        }
3412        list_splice_init(&cur_trans->dirty_bgs, &dirty);
3413        spin_unlock(&cur_trans->dirty_bgs_lock);
3414
3415again:
3416        /*
3417         * make sure all the block groups on our dirty list actually
3418         * exist
3419         */
3420        btrfs_create_pending_block_groups(trans, root);
3421
3422        if (!path) {
3423                path = btrfs_alloc_path();
3424                if (!path)
3425                        return -ENOMEM;
3426        }
3427
3428        /*
3429         * cache_write_mutex is here only to save us from balance or automatic
3430         * removal of empty block groups deleting this block group while we are
3431         * writing out the cache
3432         */
3433        mutex_lock(&trans->transaction->cache_write_mutex);
3434        while (!list_empty(&dirty)) {
3435                cache = list_first_entry(&dirty,
3436                                         struct btrfs_block_group_cache,
3437                                         dirty_list);
3438                /*
3439                 * this can happen if something re-dirties a block
3440                 * group that is already under IO.  Just wait for it to
3441                 * finish and then do it all again
3442                 */
3443                if (!list_empty(&cache->io_list)) {
3444                        list_del_init(&cache->io_list);
3445                        btrfs_wait_cache_io(root, trans, cache,
3446                                            &cache->io_ctl, path,
3447                                            cache->key.objectid);
3448                        btrfs_put_block_group(cache);
3449                }
3450
3451
3452                /*
3453                 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3454                 * if it should update the cache_state.  Don't delete
3455                 * until after we wait.
3456                 *
3457                 * Since we're not running in the commit critical section
3458                 * we need the dirty_bgs_lock to protect from update_block_group
3459                 */
3460                spin_lock(&cur_trans->dirty_bgs_lock);
3461                list_del_init(&cache->dirty_list);
3462                spin_unlock(&cur_trans->dirty_bgs_lock);
3463
3464                should_put = 1;
3465
3466                cache_save_setup(cache, trans, path);
3467
3468                if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3469                        cache->io_ctl.inode = NULL;
3470                        ret = btrfs_write_out_cache(root, trans, cache, path);
3471                        if (ret == 0 && cache->io_ctl.inode) {
3472                                num_started++;
3473                                should_put = 0;
3474
3475                                /*
3476                                 * the cache_write_mutex is protecting
3477                                 * the io_list
3478                                 */
3479                                list_add_tail(&cache->io_list, io);
3480                        } else {
3481                                /*
3482                                 * if we failed to write the cache, the
3483                                 * generation will be bad and life goes on
3484                                 */
3485                                ret = 0;
3486                        }
3487                }
3488                if (!ret) {
3489                        ret = write_one_cache_group(trans, root, path, cache);
3490                        /*
3491                         * Our block group might still be attached to the list
3492                         * of new block groups in the transaction handle of some
3493                         * other task (struct btrfs_trans_handle->new_bgs). This
3494                         * means its block group item isn't yet in the extent
3495                         * tree. If this happens ignore the error, as we will
3496                         * try again later in the critical section of the
3497                         * transaction commit.
3498                         */
3499                        if (ret == -ENOENT) {
3500                                ret = 0;
3501                                spin_lock(&cur_trans->dirty_bgs_lock);
3502                                if (list_empty(&cache->dirty_list)) {
3503                                        list_add_tail(&cache->dirty_list,
3504                                                      &cur_trans->dirty_bgs);
3505                                        btrfs_get_block_group(cache);
3506                                }
3507                                spin_unlock(&cur_trans->dirty_bgs_lock);
3508                        } else if (ret) {
3509                                btrfs_abort_transaction(trans, root, ret);
3510                        }
3511                }
3512
3513                /* if its not on the io list, we need to put the block group */
3514                if (should_put)
3515                        btrfs_put_block_group(cache);
3516
3517                if (ret)
3518                        break;
3519
3520                /*
3521                 * Avoid blocking other tasks for too long. It might even save
3522                 * us from writing caches for block groups that are going to be
3523                 * removed.
3524                 */
3525                mutex_unlock(&trans->transaction->cache_write_mutex);
3526                mutex_lock(&trans->transaction->cache_write_mutex);
3527        }
3528        mutex_unlock(&trans->transaction->cache_write_mutex);
3529
3530        /*
3531         * go through delayed refs for all the stuff we've just kicked off
3532         * and then loop back (just once)
3533         */
3534        ret = btrfs_run_delayed_refs(trans, root, 0);
3535        if (!ret && loops == 0) {
3536                loops++;
3537                spin_lock(&cur_trans->dirty_bgs_lock);
3538                list_splice_init(&cur_trans->dirty_bgs, &dirty);
3539                /*
3540                 * dirty_bgs_lock protects us from concurrent block group
3541                 * deletes too (not just cache_write_mutex).
3542                 */
3543                if (!list_empty(&dirty)) {
3544                        spin_unlock(&cur_trans->dirty_bgs_lock);
3545                        goto again;
3546                }
3547                spin_unlock(&cur_trans->dirty_bgs_lock);
3548        }
3549
3550        btrfs_free_path(path);
3551        return ret;
3552}
3553
3554int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3555                                   struct btrfs_root *root)
3556{
3557        struct btrfs_block_group_cache *cache;
3558        struct btrfs_transaction *cur_trans = trans->transaction;
3559        int ret = 0;
3560        int should_put;
3561        struct btrfs_path *path;
3562        struct list_head *io = &cur_trans->io_bgs;
3563        int num_started = 0;
3564
3565        path = btrfs_alloc_path();
3566        if (!path)
3567                return -ENOMEM;
3568
3569        /*
3570         * We don't need the lock here since we are protected by the transaction
3571         * commit.  We want to do the cache_save_setup first and then run the
3572         * delayed refs to make sure we have the best chance at doing this all
3573         * in one shot.
3574         */
3575        while (!list_empty(&cur_trans->dirty_bgs)) {
3576                cache = list_first_entry(&cur_trans->dirty_bgs,
3577                                         struct btrfs_block_group_cache,
3578                                         dirty_list);
3579
3580                /*
3581                 * this can happen if cache_save_setup re-dirties a block
3582                 * group that is already under IO.  Just wait for it to
3583                 * finish and then do it all again
3584                 */
3585                if (!list_empty(&cache->io_list)) {
3586                        list_del_init(&cache->io_list);
3587                        btrfs_wait_cache_io(root, trans, cache,
3588                                            &cache->io_ctl, path,
3589                                            cache->key.objectid);
3590                        btrfs_put_block_group(cache);
3591                }
3592
3593                /*
3594                 * don't remove from the dirty list until after we've waited
3595                 * on any pending IO
3596                 */
3597                list_del_init(&cache->dirty_list);
3598                should_put = 1;
3599
3600                cache_save_setup(cache, trans, path);
3601
3602                if (!ret)
3603                        ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3604
3605                if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3606                        cache->io_ctl.inode = NULL;
3607                        ret = btrfs_write_out_cache(root, trans, cache, path);
3608                        if (ret == 0 && cache->io_ctl.inode) {
3609                                num_started++;
3610                                should_put = 0;
3611                                list_add_tail(&cache->io_list, io);
3612                        } else {
3613                                /*
3614                                 * if we failed to write the cache, the
3615                                 * generation will be bad and life goes on
3616                                 */
3617                                ret = 0;
3618                        }
3619                }
3620                if (!ret) {
3621                        ret = write_one_cache_group(trans, root, path, cache);
3622                        if (ret)
3623                                btrfs_abort_transaction(trans, root, ret);
3624                }
3625
3626                /* if its not on the io list, we need to put the block group */
3627                if (should_put)
3628                        btrfs_put_block_group(cache);
3629        }
3630
3631        while (!list_empty(io)) {
3632                cache = list_first_entry(io, struct btrfs_block_group_cache,
3633                                         io_list);
3634                list_del_init(&cache->io_list);
3635                btrfs_wait_cache_io(root, trans, cache,
3636                                    &cache->io_ctl, path, cache->key.objectid);
3637                btrfs_put_block_group(cache);
3638        }
3639
3640        btrfs_free_path(path);
3641        return ret;
3642}
3643
3644int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3645{
3646        struct btrfs_block_group_cache *block_group;
3647        int readonly = 0;
3648
3649        block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3650        if (!block_group || block_group->ro)
3651                readonly = 1;
3652        if (block_group)
3653                btrfs_put_block_group(block_group);
3654        return readonly;
3655}
3656
3657static const char *alloc_name(u64 flags)
3658{
3659        switch (flags) {
3660        case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3661                return "mixed";
3662        case BTRFS_BLOCK_GROUP_METADATA:
3663                return "metadata";
3664        case BTRFS_BLOCK_GROUP_DATA:
3665                return "data";
3666        case BTRFS_BLOCK_GROUP_SYSTEM:
3667                return "system";
3668        default:
3669                WARN_ON(1);
3670                return "invalid-combination";
3671        };
3672}
3673
3674static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3675                             u64 total_bytes, u64 bytes_used,
3676                             struct btrfs_space_info **space_info)
3677{
3678        struct btrfs_space_info *found;
3679        int i;
3680        int factor;
3681        int ret;
3682
3683        if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3684                     BTRFS_BLOCK_GROUP_RAID10))
3685                factor = 2;
3686        else
3687                factor = 1;
3688
3689        found = __find_space_info(info, flags);
3690        if (found) {
3691                spin_lock(&found->lock);
3692                found->total_bytes += total_bytes;
3693                found->disk_total += total_bytes * factor;
3694                found->bytes_used += bytes_used;
3695                found->disk_used += bytes_used * factor;
3696                found->full = 0;
3697                spin_unlock(&found->lock);
3698                *space_info = found;
3699                return 0;
3700        }
3701        found = kzalloc(sizeof(*found), GFP_NOFS);
3702        if (!found)
3703                return -ENOMEM;
3704
3705        ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3706        if (ret) {
3707                kfree(found);
3708                return ret;
3709        }
3710
3711        for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3712                INIT_LIST_HEAD(&found->block_groups[i]);
3713        init_rwsem(&found->groups_sem);
3714        spin_lock_init(&found->lock);
3715        found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3716        found->total_bytes = total_bytes;
3717        found->disk_total = total_bytes * factor;
3718        found->bytes_used = bytes_used;
3719        found->disk_used = bytes_used * factor;
3720        found->bytes_pinned = 0;
3721        found->bytes_reserved = 0;
3722        found->bytes_readonly = 0;
3723        found->bytes_may_use = 0;
3724        found->full = 0;
3725        found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3726        found->chunk_alloc = 0;
3727        found->flush = 0;
3728        init_waitqueue_head(&found->wait);
3729        INIT_LIST_HEAD(&found->ro_bgs);
3730
3731        ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3732                                    info->space_info_kobj, "%s",
3733                                    alloc_name(found->flags));
3734        if (ret) {
3735                kfree(found);
3736                return ret;
3737        }
3738
3739        *space_info = found;
3740        list_add_rcu(&found->list, &info->space_info);
3741        if (flags & BTRFS_BLOCK_GROUP_DATA)
3742                info->data_sinfo = found;
3743
3744        return ret;
3745}
3746
3747static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3748{
3749        u64 extra_flags = chunk_to_extended(flags) &
3750                                BTRFS_EXTENDED_PROFILE_MASK;
3751
3752        write_seqlock(&fs_info->profiles_lock);
3753        if (flags & BTRFS_BLOCK_GROUP_DATA)
3754                fs_info->avail_data_alloc_bits |= extra_flags;
3755        if (flags & BTRFS_BLOCK_GROUP_METADATA)
3756                fs_info->avail_metadata_alloc_bits |= extra_flags;
3757        if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3758                fs_info->avail_system_alloc_bits |= extra_flags;
3759        write_sequnlock(&fs_info->profiles_lock);
3760}
3761
3762/*
3763 * returns target flags in extended format or 0 if restripe for this
3764 * chunk_type is not in progress
3765 *
3766 * should be called with either volume_mutex or balance_lock held
3767 */
3768static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3769{
3770        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3771        u64 target = 0;
3772
3773        if (!bctl)
3774                return 0;
3775
3776        if (flags & BTRFS_BLOCK_GROUP_DATA &&
3777            bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3778                target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3779        } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3780                   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3781                target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3782        } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3783                   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3784                target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3785        }
3786
3787        return target;
3788}
3789
3790/*
3791 * @flags: available profiles in extended format (see ctree.h)
3792 *
3793 * Returns reduced profile in chunk format.  If profile changing is in
3794 * progress (either running or paused) picks the target profile (if it's
3795 * already available), otherwise falls back to plain reducing.
3796 */
3797static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3798{
3799        u64 num_devices = root->fs_info->fs_devices->rw_devices;
3800        u64 target;
3801        u64 tmp;
3802
3803        /*
3804         * see if restripe for this chunk_type is in progress, if so
3805         * try to reduce to the target profile
3806         */
3807        spin_lock(&root->fs_info->balance_lock);
3808        target = get_restripe_target(root->fs_info, flags);
3809        if (target) {
3810                /* pick target profile only if it's already available */
3811                if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3812                        spin_unlock(&root->fs_info->balance_lock);
3813                        return extended_to_chunk(target);
3814                }
3815        }
3816        spin_unlock(&root->fs_info->balance_lock);
3817
3818        /* First, mask out the RAID levels which aren't possible */
3819        if (num_devices == 1)
3820                flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3821                           BTRFS_BLOCK_GROUP_RAID5);
3822        if (num_devices < 3)
3823                flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3824        if (num_devices < 4)
3825                flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3826
3827        tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3828                       BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3829                       BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3830        flags &= ~tmp;
3831
3832        if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3833                tmp = BTRFS_BLOCK_GROUP_RAID6;
3834        else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3835                tmp = BTRFS_BLOCK_GROUP_RAID5;
3836        else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3837                tmp = BTRFS_BLOCK_GROUP_RAID10;
3838        else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3839                tmp = BTRFS_BLOCK_GROUP_RAID1;
3840        else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3841                tmp = BTRFS_BLOCK_GROUP_RAID0;
3842
3843        return extended_to_chunk(flags | tmp);
3844}
3845
3846static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3847{
3848        unsigned seq;
3849        u64 flags;
3850
3851        do {
3852                flags = orig_flags;
3853                seq = read_seqbegin(&root->fs_info->profiles_lock);
3854
3855                if (flags & BTRFS_BLOCK_GROUP_DATA)
3856                        flags |= root->fs_info->avail_data_alloc_bits;
3857                else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3858                        flags |= root->fs_info->avail_system_alloc_bits;
3859                else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3860                        flags |= root->fs_info->avail_metadata_alloc_bits;
3861        } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3862
3863        return btrfs_reduce_alloc_profile(root, flags);
3864}
3865
3866u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3867{
3868        u64 flags;
3869        u64 ret;
3870
3871        if (data)
3872                flags = BTRFS_BLOCK_GROUP_DATA;
3873        else if (root == root->fs_info->chunk_root)
3874                flags = BTRFS_BLOCK_GROUP_SYSTEM;
3875        else
3876                flags = BTRFS_BLOCK_GROUP_METADATA;
3877
3878        ret = get_alloc_profile(root, flags);
3879        return ret;
3880}
3881
3882/*
3883 * This will check the space that the inode allocates from to make sure we have
3884 * enough space for bytes.
3885 */
3886int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
3887{
3888        struct btrfs_space_info *data_sinfo;
3889        struct btrfs_root *root = BTRFS_I(inode)->root;
3890        struct btrfs_fs_info *fs_info = root->fs_info;
3891        u64 used;
3892        int ret = 0;
3893        int need_commit = 2;
3894        int have_pinned_space;
3895
3896        /* make sure bytes are sectorsize aligned */
3897        bytes = ALIGN(bytes, root->sectorsize);
3898
3899        if (btrfs_is_free_space_inode(inode)) {
3900                need_commit = 0;
3901                ASSERT(current->journal_info);
3902        }
3903
3904        data_sinfo = fs_info->data_sinfo;
3905        if (!data_sinfo)
3906                goto alloc;
3907
3908again:
3909        /* make sure we have enough space to handle the data first */
3910        spin_lock(&data_sinfo->lock);
3911        used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3912                data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3913                data_sinfo->bytes_may_use;
3914
3915        if (used + bytes > data_sinfo->total_bytes) {
3916                struct btrfs_trans_handle *trans;
3917
3918                /*
3919                 * if we don't have enough free bytes in this space then we need
3920                 * to alloc a new chunk.
3921                 */
3922                if (!data_sinfo->full) {
3923                        u64 alloc_target;
3924
3925                        data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3926                        spin_unlock(&data_sinfo->lock);
3927alloc:
3928                        alloc_target = btrfs_get_alloc_profile(root, 1);
3929                        /*
3930                         * It is ugly that we don't call nolock join
3931                         * transaction for the free space inode case here.
3932                         * But it is safe because we only do the data space
3933                         * reservation for the free space cache in the
3934                         * transaction context, the common join transaction
3935                         * just increase the counter of the current transaction
3936                         * handler, doesn't try to acquire the trans_lock of
3937                         * the fs.
3938                         */
3939                        trans = btrfs_join_transaction(root);
3940                        if (IS_ERR(trans))
3941                                return PTR_ERR(trans);
3942
3943                        ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3944                                             alloc_target,
3945                                             CHUNK_ALLOC_NO_FORCE);
3946                        btrfs_end_transaction(trans, root);
3947                        if (ret < 0) {
3948                                if (ret != -ENOSPC)
3949                                        return ret;
3950                                else {
3951                                        have_pinned_space = 1;
3952                                        goto commit_trans;
3953                                }
3954                        }
3955
3956                        if (!data_sinfo)
3957                                data_sinfo = fs_info->data_sinfo;
3958
3959                        goto again;
3960                }
3961
3962                /*
3963                 * If we don't have enough pinned space to deal with this
3964                 * allocation, and no removed chunk in current transaction,
3965                 * don't bother committing the transaction.
3966                 */
3967                have_pinned_space = percpu_counter_compare(
3968                        &data_sinfo->total_bytes_pinned,
3969                        used + bytes - data_sinfo->total_bytes);
3970                spin_unlock(&data_sinfo->lock);
3971
3972                /* commit the current transaction and try again */
3973commit_trans:
3974                if (need_commit &&
3975                    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3976                        need_commit--;
3977
3978                        trans = btrfs_join_transaction(root);
3979                        if (IS_ERR(trans))
3980                                return PTR_ERR(trans);
3981                        if (have_pinned_space >= 0 ||
3982                            trans->transaction->have_free_bgs ||
3983                            need_commit > 0) {
3984                                ret = btrfs_commit_transaction(trans, root);
3985                                if (ret)
3986                                        return ret;
3987                                /*
3988                                 * make sure that all running delayed iput are
3989                                 * done
3990                                 */
3991                                down_write(&root->fs_info->delayed_iput_sem);
3992                                up_write(&root->fs_info->delayed_iput_sem);
3993                                goto again;
3994                        } else {
3995                                btrfs_end_transaction(trans, root);
3996                        }
3997                }
3998
3999                trace_btrfs_space_reservation(root->fs_info,
4000                                              "space_info:enospc",
4001                                              data_sinfo->flags, bytes, 1);
4002                return -ENOSPC;
4003        }
4004        ret = btrfs_qgroup_reserve(root, write_bytes);
4005        if (ret)
4006                goto out;
4007        data_sinfo->bytes_may_use += bytes;
4008        trace_btrfs_space_reservation(root->fs_info, "space_info",
4009                                      data_sinfo->flags, bytes, 1);
4010out:
4011        spin_unlock(&data_sinfo->lock);
4012
4013        return ret;
4014}
4015
4016/*
4017 * Called if we need to clear a data reservation for this inode.
4018 */
4019void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
4020{
4021        struct btrfs_root *root = BTRFS_I(inode)->root;
4022        struct btrfs_space_info *data_sinfo;
4023
4024        /* make sure bytes are sectorsize aligned */
4025        bytes = ALIGN(bytes, root->sectorsize);
4026
4027        data_sinfo = root->fs_info->data_sinfo;
4028        spin_lock(&data_sinfo->lock);
4029        WARN_ON(data_sinfo->bytes_may_use < bytes);
4030        data_sinfo->bytes_may_use -= bytes;
4031        trace_btrfs_space_reservation(root->fs_info, "space_info",
4032                                      data_sinfo->flags, bytes, 0);
4033        spin_unlock(&data_sinfo->lock);
4034}
4035
4036static void force_metadata_allocation(struct btrfs_fs_info *info)
4037{
4038        struct list_head *head = &info->space_info;
4039        struct btrfs_space_info *found;
4040
4041        rcu_read_lock();
4042        list_for_each_entry_rcu(found, head, list) {
4043                if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4044                        found->force_alloc = CHUNK_ALLOC_FORCE;
4045        }
4046        rcu_read_unlock();
4047}
4048
4049static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4050{
4051        return (global->size << 1);
4052}
4053
4054static int should_alloc_chunk(struct btrfs_root *root,
4055                              struct btrfs_space_info *sinfo, int force)
4056{
4057        struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4058        u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4059        u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4060        u64 thresh;
4061
4062        if (force == CHUNK_ALLOC_FORCE)
4063                return 1;
4064
4065        /*
4066         * We need to take into account the global rsv because for all intents
4067         * and purposes it's used space.  Don't worry about locking the
4068         * global_rsv, it doesn't change except when the transaction commits.
4069         */
4070        if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4071                num_allocated += calc_global_rsv_need_space(global_rsv);
4072
4073        /*
4074         * in limited mode, we want to have some free space up to
4075         * about 1% of the FS size.
4076         */
4077        if (force == CHUNK_ALLOC_LIMITED) {
4078                thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4079                thresh = max_t(u64, 64 * 1024 * 1024,
4080                               div_factor_fine(thresh, 1));
4081
4082                if (num_bytes - num_allocated < thresh)
4083                        return 1;
4084        }
4085
4086        if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
4087                return 0;
4088        return 1;
4089}
4090
4091static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
4092{
4093        u64 num_dev;
4094
4095        if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4096                    BTRFS_BLOCK_GROUP_RAID0 |
4097                    BTRFS_BLOCK_GROUP_RAID5 |
4098                    BTRFS_BLOCK_GROUP_RAID6))
4099                num_dev = root->fs_info->fs_devices->rw_devices;
4100        else if (type & BTRFS_BLOCK_GROUP_RAID1)
4101                num_dev = 2;
4102        else
4103                num_dev = 1;    /* DUP or single */
4104
4105        /* metadata for updaing devices and chunk tree */
4106        return btrfs_calc_trans_metadata_size(root, num_dev + 1);
4107}
4108
4109static void check_system_chunk(struct btrfs_trans_handle *trans,
4110                               struct btrfs_root *root, u64 type)
4111{
4112        struct btrfs_space_info *info;
4113        u64 left;
4114        u64 thresh;
4115
4116        info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4117        spin_lock(&info->lock);
4118        left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4119                info->bytes_reserved - info->bytes_readonly;
4120        spin_unlock(&info->lock);
4121
4122        thresh = get_system_chunk_thresh(root, type);
4123        if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4124                btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4125                        left, thresh, type);
4126                dump_space_info(info, 0, 0);
4127        }
4128
4129        if (left < thresh) {
4130                u64 flags;
4131
4132                flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4133                btrfs_alloc_chunk(trans, root, flags);
4134        }
4135}
4136
4137static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4138                          struct btrfs_root *extent_root, u64 flags, int force)
4139{
4140        struct btrfs_space_info *space_info;
4141        struct btrfs_fs_info *fs_info = extent_root->fs_info;
4142        int wait_for_alloc = 0;
4143        int ret = 0;
4144
4145        /* Don't re-enter if we're already allocating a chunk */
4146        if (trans->allocating_chunk)
4147                return -ENOSPC;
4148
4149        space_info = __find_space_info(extent_root->fs_info, flags);
4150        if (!space_info) {
4151                ret = update_space_info(extent_root->fs_info, flags,
4152                                        0, 0, &space_info);
4153                BUG_ON(ret); /* -ENOMEM */
4154        }
4155        BUG_ON(!space_info); /* Logic error */
4156
4157again:
4158        spin_lock(&space_info->lock);
4159        if (force < space_info->force_alloc)
4160                force = space_info->force_alloc;
4161        if (space_info->full) {
4162                if (should_alloc_chunk(extent_root, space_info, force))
4163                        ret = -ENOSPC;
4164                else
4165                        ret = 0;
4166                spin_unlock(&space_info->lock);
4167                return ret;
4168        }
4169
4170        if (!should_alloc_chunk(extent_root, space_info, force)) {
4171                spin_unlock(&space_info->lock);
4172                return 0;
4173        } else if (space_info->chunk_alloc) {
4174                wait_for_alloc = 1;
4175        } else {
4176                space_info->chunk_alloc = 1;
4177        }
4178
4179        spin_unlock(&space_info->lock);
4180
4181        mutex_lock(&fs_info->chunk_mutex);
4182
4183        /*
4184         * The chunk_mutex is held throughout the entirety of a chunk
4185         * allocation, so once we've acquired the chunk_mutex we know that the
4186         * other guy is done and we need to recheck and see if we should
4187         * allocate.
4188         */
4189        if (wait_for_alloc) {
4190                mutex_unlock(&fs_info->chunk_mutex);
4191                wait_for_alloc = 0;
4192                goto again;
4193        }
4194
4195        trans->allocating_chunk = true;
4196
4197        /*
4198         * If we have mixed data/metadata chunks we want to make sure we keep
4199         * allocating mixed chunks instead of individual chunks.
4200         */
4201        if (btrfs_mixed_space_info(space_info))
4202                flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4203
4204        /*
4205         * if we're doing a data chunk, go ahead and make sure that
4206         * we keep a reasonable number of metadata chunks allocated in the
4207         * FS as well.
4208         */
4209        if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4210                fs_info->data_chunk_allocations++;
4211                if (!(fs_info->data_chunk_allocations %
4212                      fs_info->metadata_ratio))
4213                        force_metadata_allocation(fs_info);
4214        }
4215
4216        /*
4217         * Check if we have enough space in SYSTEM chunk because we may need
4218         * to update devices.
4219         */
4220        check_system_chunk(trans, extent_root, flags);
4221
4222        ret = btrfs_alloc_chunk(trans, extent_root, flags);
4223        trans->allocating_chunk = false;
4224
4225        spin_lock(&space_info->lock);
4226        if (ret < 0 && ret != -ENOSPC)
4227                goto out;
4228        if (ret)
4229                space_info->full = 1;
4230        else
4231                ret = 1;
4232
4233        space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4234out:
4235        space_info->chunk_alloc = 0;
4236        spin_unlock(&space_info->lock);
4237        mutex_unlock(&fs_info->chunk_mutex);
4238        return ret;
4239}
4240
4241static int can_overcommit(struct btrfs_root *root,
4242                          struct btrfs_space_info *space_info, u64 bytes,
4243                          enum btrfs_reserve_flush_enum flush)
4244{
4245        struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4246        u64 profile = btrfs_get_alloc_profile(root, 0);
4247        u64 space_size;
4248        u64 avail;
4249        u64 used;
4250
4251        used = space_info->bytes_used + space_info->bytes_reserved +
4252                space_info->bytes_pinned + space_info->bytes_readonly;
4253
4254        /*
4255         * We only want to allow over committing if we have lots of actual space
4256         * free, but if we don't have enough space to handle the global reserve
4257         * space then we could end up having a real enospc problem when trying
4258         * to allocate a chunk or some other such important allocation.
4259         */
4260        spin_lock(&global_rsv->lock);
4261        space_size = calc_global_rsv_need_space(global_rsv);
4262        spin_unlock(&global_rsv->lock);
4263        if (used + space_size >= space_info->total_bytes)
4264                return 0;
4265
4266        used += space_info->bytes_may_use;
4267
4268        spin_lock(&root->fs_info->free_chunk_lock);
4269        avail = root->fs_info->free_chunk_space;
4270        spin_unlock(&root->fs_info->free_chunk_lock);
4271
4272        /*
4273         * If we have dup, raid1 or raid10 then only half of the free
4274         * space is actually useable.  For raid56, the space info used
4275         * doesn't include the parity drive, so we don't have to
4276         * change the math
4277         */
4278        if (profile & (BTRFS_BLOCK_GROUP_DUP |
4279                       BTRFS_BLOCK_GROUP_RAID1 |
4280                       BTRFS_BLOCK_GROUP_RAID10))
4281                avail >>= 1;
4282
4283        /*
4284         * If we aren't flushing all things, let us overcommit up to
4285         * 1/2th of the space. If we can flush, don't let us overcommit
4286         * too much, let it overcommit up to 1/8 of the space.
4287         */
4288        if (flush == BTRFS_RESERVE_FLUSH_ALL)
4289                avail >>= 3;
4290        else
4291                avail >>= 1;
4292
4293        if (used + bytes < space_info->total_bytes + avail)
4294                return 1;
4295        return 0;
4296}
4297
4298static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4299                                         unsigned long nr_pages, int nr_items)
4300{
4301        struct super_block *sb = root->fs_info->sb;
4302
4303        if (down_read_trylock(&sb->s_umount)) {
4304                writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4305                up_read(&sb->s_umount);
4306        } else {
4307                /*
4308                 * We needn't worry the filesystem going from r/w to r/o though
4309                 * we don't acquire ->s_umount mutex, because the filesystem
4310                 * should guarantee the delalloc inodes list be empty after
4311                 * the filesystem is readonly(all dirty pages are written to
4312                 * the disk).
4313                 */
4314                btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4315                if (!current->journal_info)
4316                        btrfs_wait_ordered_roots(root->fs_info, nr_items);
4317        }
4318}
4319
4320static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4321{
4322        u64 bytes;
4323        int nr;
4324
4325        bytes = btrfs_calc_trans_metadata_size(root, 1);
4326        nr = (int)div64_u64(to_reclaim, bytes);
4327        if (!nr)
4328                nr = 1;
4329        return nr;
4330}
4331
4332#define EXTENT_SIZE_PER_ITEM    (256 * 1024)
4333
4334/*
4335 * shrink metadata reservation for delalloc
4336 */
4337static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4338                            bool wait_ordered)
4339{
4340        struct btrfs_block_rsv *block_rsv;
4341        struct btrfs_space_info *space_info;
4342        struct btrfs_trans_handle *trans;
4343        u64 delalloc_bytes;
4344        u64 max_reclaim;
4345        long time_left;
4346        unsigned long nr_pages;
4347        int loops;
4348        int items;
4349        enum btrfs_reserve_flush_enum flush;
4350
4351        /* Calc the number of the pages we need flush for space reservation */
4352        items = calc_reclaim_items_nr(root, to_reclaim);
4353        to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4354
4355        trans = (struct btrfs_trans_handle *)current->journal_info;
4356        block_rsv = &root->fs_info->delalloc_block_rsv;
4357        space_info = block_rsv->space_info;
4358
4359        delalloc_bytes = percpu_counter_sum_positive(
4360                                                &root->fs_info->delalloc_bytes);
4361        if (delalloc_bytes == 0) {
4362                if (trans)
4363                        return;
4364                if (wait_ordered)
4365                        btrfs_wait_ordered_roots(root->fs_info, items);
4366                return;
4367        }
4368
4369        loops = 0;
4370        while (delalloc_bytes && loops < 3) {
4371                max_reclaim = min(delalloc_bytes, to_reclaim);
4372                nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4373                btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4374                /*
4375                 * We need to wait for the async pages to actually start before
4376                 * we do anything.
4377                 */
4378                max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4379                if (!max_reclaim)
4380                        goto skip_async;
4381
4382                if (max_reclaim <= nr_pages)
4383                        max_reclaim = 0;
4384                else
4385                        max_reclaim -= nr_pages;
4386
4387                wait_event(root->fs_info->async_submit_wait,
4388                           atomic_read(&root->fs_info->async_delalloc_pages) <=
4389                           (int)max_reclaim);
4390skip_async:
4391                if (!trans)
4392                        flush = BTRFS_RESERVE_FLUSH_ALL;
4393                else
4394                        flush = BTRFS_RESERVE_NO_FLUSH;
4395                spin_lock(&space_info->lock);
4396                if (can_overcommit(root, space_info, orig, flush)) {
4397                        spin_unlock(&space_info->lock);
4398                        break;
4399                }
4400                spin_unlock(&space_info->lock);
4401
4402                loops++;
4403                if (wait_ordered && !trans) {
4404                        btrfs_wait_ordered_roots(root->fs_info, items);
4405                } else {
4406                        time_left = schedule_timeout_killable(1);
4407                        if (time_left)
4408                                break;
4409                }
4410                delalloc_bytes = percpu_counter_sum_positive(
4411                                                &root->fs_info->delalloc_bytes);
4412        }
4413}
4414
4415/**
4416 * maybe_commit_transaction - possibly commit the transaction if its ok to
4417 * @root - the root we're allocating for
4418 * @bytes - the number of bytes we want to reserve
4419 * @force - force the commit
4420 *
4421 * This will check to make sure that committing the transaction will actually
4422 * get us somewhere and then commit the transaction if it does.  Otherwise it
4423 * will return -ENOSPC.
4424 */
4425static int may_commit_transaction(struct btrfs_root *root,
4426                                  struct btrfs_space_info *space_info,
4427                                  u64 bytes, int force)
4428{
4429        struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4430        struct btrfs_trans_handle *trans;
4431
4432        trans = (struct btrfs_trans_handle *)current->journal_info;
4433        if (trans)
4434                return -EAGAIN;
4435
4436        if (force)
4437                goto commit;
4438
4439        /* See if there is enough pinned space to make this reservation */
4440        if (percpu_counter_compare(&space_info->total_bytes_pinned,
4441                                   bytes) >= 0)
4442                goto commit;
4443
4444        /*
4445         * See if there is some space in the delayed insertion reservation for
4446         * this reservation.
4447         */
4448        if (space_info != delayed_rsv->space_info)
4449                return -ENOSPC;
4450
4451        spin_lock(&delayed_rsv->lock);
4452        if (percpu_counter_compare(&space_info->total_bytes_pinned,
4453                                   bytes - delayed_rsv->size) >= 0) {
4454                spin_unlock(&delayed_rsv->lock);
4455                return -ENOSPC;
4456        }
4457        spin_unlock(&delayed_rsv->lock);
4458
4459commit:
4460        trans = btrfs_join_transaction(root);
4461        if (IS_ERR(trans))
4462                return -ENOSPC;
4463
4464        return btrfs_commit_transaction(trans, root);
4465}
4466
4467enum flush_state {
4468        FLUSH_DELAYED_ITEMS_NR  =       1,
4469        FLUSH_DELAYED_ITEMS     =       2,
4470        FLUSH_DELALLOC          =       3,
4471        FLUSH_DELALLOC_WAIT     =       4,
4472        ALLOC_CHUNK             =       5,
4473        COMMIT_TRANS            =       6,
4474};
4475
4476static int flush_space(struct btrfs_root *root,
4477                       struct btrfs_space_info *space_info, u64 num_bytes,
4478                       u64 orig_bytes, int state)
4479{
4480        struct btrfs_trans_handle *trans;
4481        int nr;
4482        int ret = 0;
4483
4484        switch (state) {
4485        case FLUSH_DELAYED_ITEMS_NR:
4486        case FLUSH_DELAYED_ITEMS:
4487                if (state == FLUSH_DELAYED_ITEMS_NR)
4488                        nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4489                else
4490                        nr = -1;
4491
4492                trans = btrfs_join_transaction(root);
4493                if (IS_ERR(trans)) {
4494                        ret = PTR_ERR(trans);
4495                        break;
4496                }
4497                ret = btrfs_run_delayed_items_nr(trans, root, nr);
4498                btrfs_end_transaction(trans, root);
4499                break;
4500        case FLUSH_DELALLOC:
4501        case FLUSH_DELALLOC_WAIT:
4502                shrink_delalloc(root, num_bytes * 2, orig_bytes,
4503                                state == FLUSH_DELALLOC_WAIT);
4504                break;
4505        case ALLOC_CHUNK:
4506                trans = btrfs_join_transaction(root);
4507                if (IS_ERR(trans)) {
4508                        ret = PTR_ERR(trans);
4509                        break;
4510                }
4511                ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4512                                     btrfs_get_alloc_profile(root, 0),
4513                                     CHUNK_ALLOC_NO_FORCE);
4514                btrfs_end_transaction(trans, root);
4515                if (ret == -ENOSPC)
4516                        ret = 0;
4517                break;
4518        case COMMIT_TRANS:
4519                ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4520                break;
4521        default:
4522                ret = -ENOSPC;
4523                break;
4524        }
4525
4526        return ret;
4527}
4528
4529static inline u64
4530btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4531                                 struct btrfs_space_info *space_info)
4532{
4533        u64 used;
4534        u64 expected;
4535        u64 to_reclaim;
4536
4537        to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4538                                16 * 1024 * 1024);
4539        spin_lock(&space_info->lock);
4540        if (can_overcommit(root, space_info, to_reclaim,
4541                           BTRFS_RESERVE_FLUSH_ALL)) {
4542                to_reclaim = 0;
4543                goto out;
4544        }
4545
4546        used = space_info->bytes_used + space_info->bytes_reserved +
4547               space_info->bytes_pinned + space_info->bytes_readonly +
4548               space_info->bytes_may_use;
4549        if (can_overcommit(root, space_info, 1024 * 1024,
4550                           BTRFS_RESERVE_FLUSH_ALL))
4551                expected = div_factor_fine(space_info->total_bytes, 95);
4552        else
4553                expected = div_factor_fine(space_info->total_bytes, 90);
4554
4555        if (used > expected)
4556                to_reclaim = used - expected;
4557        else
4558                to_reclaim = 0;
4559        to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4560                                     space_info->bytes_reserved);
4561out:
4562        spin_unlock(&space_info->lock);
4563
4564        return to_reclaim;
4565}
4566
4567static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4568                                        struct btrfs_fs_info *fs_info, u64 used)
4569{
4570        u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4571
4572        /* If we're just plain full then async reclaim just slows us down. */
4573        if (space_info->bytes_used >= thresh)
4574                return 0;
4575
4576        return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4577                !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4578}
4579
4580static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4581                                       struct btrfs_fs_info *fs_info,
4582                                       int flush_state)
4583{
4584        u64 used;
4585
4586        spin_lock(&space_info->lock);
4587        /*
4588         * We run out of space and have not got any free space via flush_space,
4589         * so don't bother doing async reclaim.
4590         */
4591        if (flush_state > COMMIT_TRANS && space_info->full) {
4592                spin_unlock(&space_info->lock);
4593                return 0;
4594        }
4595
4596        used = space_info->bytes_used + space_info->bytes_reserved +
4597               space_info->bytes_pinned + space_info->bytes_readonly +
4598               space_info->bytes_may_use;
4599        if (need_do_async_reclaim(space_info, fs_info, used)) {
4600                spin_unlock(&space_info->lock);
4601                return 1;
4602        }
4603        spin_unlock(&space_info->lock);
4604
4605        return 0;
4606}
4607
4608static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4609{
4610        struct btrfs_fs_info *fs_info;
4611        struct btrfs_space_info *space_info;
4612        u64 to_reclaim;
4613        int flush_state;
4614
4615        fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4616        space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4617
4618        to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4619                                                      space_info);
4620        if (!to_reclaim)
4621                return;
4622
4623        flush_state = FLUSH_DELAYED_ITEMS_NR;
4624        do {
4625                flush_space(fs_info->fs_root, space_info, to_reclaim,
4626                            to_reclaim, flush_state);
4627                flush_state++;
4628                if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4629                                                 flush_state))
4630                        return;
4631        } while (flush_state < COMMIT_TRANS);
4632}
4633
4634void btrfs_init_async_reclaim_work(struct work_struct *work)
4635{
4636        INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4637}
4638
4639/**
4640 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4641 * @root - the root we're allocating for
4642 * @block_rsv - the block_rsv we're allocating for
4643 * @orig_bytes - the number of bytes we want
4644 * @flush - whether or not we can flush to make our reservation
4645 *
4646 * This will reserve orgi_bytes number of bytes from the space info associated
4647 * with the block_rsv.  If there is not enough space it will make an attempt to
4648 * flush out space to make room.  It will do this by flushing delalloc if
4649 * possible or committing the transaction.  If flush is 0 then no attempts to
4650 * regain reservations will be made and this will fail if there is not enough
4651 * space already.
4652 */
4653static int reserve_metadata_bytes(struct btrfs_root *root,
4654                                  struct btrfs_block_rsv *block_rsv,
4655                                  u64 orig_bytes,
4656                                  enum btrfs_reserve_flush_enum flush)
4657{
4658        struct btrfs_space_info *space_info = block_rsv->space_info;
4659        u64 used;
4660        u64 num_bytes = orig_bytes;
4661        int flush_state = FLUSH_DELAYED_ITEMS_NR;
4662        int ret = 0;
4663        bool flushing = false;
4664
4665again:
4666        ret = 0;
4667        spin_lock(&space_info->lock);
4668        /*
4669         * We only want to wait if somebody other than us is flushing and we
4670         * are actually allowed to flush all things.
4671         */
4672        while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4673               space_info->flush) {
4674                spin_unlock(&space_info->lock);
4675                /*
4676                 * If we have a trans handle we can't wait because the flusher
4677                 * may have to commit the transaction, which would mean we would
4678                 * deadlock since we are waiting for the flusher to finish, but
4679                 * hold the current transaction open.
4680                 */
4681                if (current->journal_info)
4682                        return -EAGAIN;
4683                ret = wait_event_killable(space_info->wait, !space_info->flush);
4684                /* Must have been killed, return */
4685                if (ret)
4686                        return -EINTR;
4687
4688                spin_lock(&space_info->lock);
4689        }
4690
4691        ret = -ENOSPC;
4692        used = space_info->bytes_used + space_info->bytes_reserved +
4693                space_info->bytes_pinned + space_info->bytes_readonly +
4694                space_info->bytes_may_use;
4695
4696        /*
4697         * The idea here is that we've not already over-reserved the block group
4698         * then we can go ahead and save our reservation first and then start
4699         * flushing if we need to.  Otherwise if we've already overcommitted
4700         * lets start flushing stuff first and then come back and try to make
4701         * our reservation.
4702         */
4703        if (used <= space_info->total_bytes) {
4704                if (used + orig_bytes <= space_info->total_bytes) {
4705                        space_info->bytes_may_use += orig_bytes;
4706                        trace_btrfs_space_reservation(root->fs_info,
4707                                "space_info", space_info->flags, orig_bytes, 1);
4708                        ret = 0;
4709                } else {
4710                        /*
4711                         * Ok set num_bytes to orig_bytes since we aren't
4712                         * overocmmitted, this way we only try and reclaim what
4713                         * we need.
4714                         */
4715                        num_bytes = orig_bytes;
4716                }
4717        } else {
4718                /*
4719                 * Ok we're over committed, set num_bytes to the overcommitted
4720                 * amount plus the amount of bytes that we need for this
4721                 * reservation.
4722                 */
4723                num_bytes = used - space_info->total_bytes +
4724                        (orig_bytes * 2);
4725        }
4726
4727        if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4728                space_info->bytes_may_use += orig_bytes;
4729                trace_btrfs_space_reservation(root->fs_info, "space_info",
4730                                              space_info->flags, orig_bytes,
4731                                              1);
4732                ret = 0;
4733        }
4734
4735        /*
4736         * Couldn't make our reservation, save our place so while we're trying
4737         * to reclaim space we can actually use it instead of somebody else
4738         * stealing it from us.
4739         *
4740         * We make the other tasks wait for the flush only when we can flush
4741         * all things.
4742         */
4743        if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4744                flushing = true;
4745                space_info->flush = 1;
4746        } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4747                used += orig_bytes;
4748                /*
4749                 * We will do the space reservation dance during log replay,
4750                 * which means we won't have fs_info->fs_root set, so don't do
4751                 * the async reclaim as we will panic.
4752                 */
4753                if (!root->fs_info->log_root_recovering &&
4754                    need_do_async_reclaim(space_info, root->fs_info, used) &&
4755                    !work_busy(&root->fs_info->async_reclaim_work))
4756                        queue_work(system_unbound_wq,
4757                                   &root->fs_info->async_reclaim_work);
4758        }
4759        spin_unlock(&space_info->lock);
4760
4761        if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4762                goto out;
4763
4764        ret = flush_space(root, space_info, num_bytes, orig_bytes,
4765                          flush_state);
4766        flush_state++;
4767
4768        /*
4769         * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4770         * would happen. So skip delalloc flush.
4771         */
4772        if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4773            (flush_state == FLUSH_DELALLOC ||
4774             flush_state == FLUSH_DELALLOC_WAIT))
4775                flush_state = ALLOC_CHUNK;
4776
4777        if (!ret)
4778                goto again;
4779        else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4780                 flush_state < COMMIT_TRANS)
4781                goto again;
4782        else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4783                 flush_state <= COMMIT_TRANS)
4784                goto again;
4785
4786out:
4787        if (ret == -ENOSPC &&
4788            unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4789                struct btrfs_block_rsv *global_rsv =
4790                        &root->fs_info->global_block_rsv;
4791
4792                if (block_rsv != global_rsv &&
4793                    !block_rsv_use_bytes(global_rsv, orig_bytes))
4794                        ret = 0;
4795        }
4796        if (ret == -ENOSPC)
4797                trace_btrfs_space_reservation(root->fs_info,
4798                                              "space_info:enospc",
4799                                              space_info->flags, orig_bytes, 1);
4800        if (flushing) {
4801                spin_lock(&space_info->lock);
4802                space_info->flush = 0;
4803                wake_up_all(&space_info->wait);
4804                spin_unlock(&space_info->lock);
4805        }
4806        return ret;
4807}
4808
4809static struct btrfs_block_rsv *get_block_rsv(
4810                                        const struct btrfs_trans_handle *trans,
4811                                        const struct btrfs_root *root)
4812{
4813        struct btrfs_block_rsv *block_rsv = NULL;
4814
4815        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4816                block_rsv = trans->block_rsv;
4817
4818        if (root == root->fs_info->csum_root && trans->adding_csums)
4819                block_rsv = trans->block_rsv;
4820
4821        if (root == root->fs_info->uuid_root)
4822                block_rsv = trans->block_rsv;
4823
4824        if (!block_rsv)
4825                block_rsv = root->block_rsv;
4826
4827        if (!block_rsv)
4828                block_rsv = &root->fs_info->empty_block_rsv;
4829
4830        return block_rsv;
4831}
4832
4833static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4834                               u64 num_bytes)
4835{
4836        int ret = -ENOSPC;
4837        spin_lock(&block_rsv->lock);
4838        if (block_rsv->reserved >= num_bytes) {
4839                block_rsv->reserved -= num_bytes;
4840                if (block_rsv->reserved < block_rsv->size)
4841                        block_rsv->full = 0;
4842                ret = 0;
4843        }
4844        spin_unlock(&block_rsv->lock);
4845        return ret;
4846}
4847
4848static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4849                                u64 num_bytes, int update_size)
4850{
4851        spin_lock(&block_rsv->lock);
4852        block_rsv->reserved += num_bytes;
4853        if (update_size)
4854                block_rsv->size += num_bytes;
4855        else if (block_rsv->reserved >= block_rsv->size)
4856                block_rsv->full = 1;
4857        spin_unlock(&block_rsv->lock);
4858}
4859
4860int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4861                             struct btrfs_block_rsv *dest, u64 num_bytes,
4862                             int min_factor)
4863{
4864        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4865        u64 min_bytes;
4866
4867        if (global_rsv->space_info != dest->space_info)
4868                return -ENOSPC;
4869
4870        spin_lock(&global_rsv->lock);
4871        min_bytes = div_factor(global_rsv->size, min_factor);
4872        if (global_rsv->reserved < min_bytes + num_bytes) {
4873                spin_unlock(&global_rsv->lock);
4874                return -ENOSPC;
4875        }
4876        global_rsv->reserved -= num_bytes;
4877        if (global_rsv->reserved < global_rsv->size)
4878                global_rsv->full = 0;
4879        spin_unlock(&global_rsv->lock);
4880
4881        block_rsv_add_bytes(dest, num_bytes, 1);
4882        return 0;
4883}
4884
4885static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4886                                    struct btrfs_block_rsv *block_rsv,
4887                                    struct btrfs_block_rsv *dest, u64 num_bytes)
4888{
4889        struct btrfs_space_info *space_info = block_rsv->space_info;
4890
4891        spin_lock(&block_rsv->lock);
4892        if (num_bytes == (u64)-1)
4893                num_bytes = block_rsv->size;
4894        block_rsv->size -= num_bytes;
4895        if (block_rsv->reserved >= block_rsv->size) {
4896                num_bytes = block_rsv->reserved - block_rsv->size;
4897                block_rsv->reserved = block_rsv->size;
4898                block_rsv->full = 1;
4899        } else {
4900                num_bytes = 0;
4901        }
4902        spin_unlock(&block_rsv->lock);
4903
4904        if (num_bytes > 0) {
4905                if (dest) {
4906                        spin_lock(&dest->lock);
4907                        if (!dest->full) {
4908                                u64 bytes_to_add;
4909
4910                                bytes_to_add = dest->size - dest->reserved;
4911                                bytes_to_add = min(num_bytes, bytes_to_add);
4912                                dest->reserved += bytes_to_add;
4913                                if (dest->reserved >= dest->size)
4914                                        dest->full = 1;
4915                                num_bytes -= bytes_to_add;
4916                        }
4917                        spin_unlock(&dest->lock);
4918                }
4919                if (num_bytes) {
4920                        spin_lock(&space_info->lock);
4921                        space_info->bytes_may_use -= num_bytes;
4922                        trace_btrfs_space_reservation(fs_info, "space_info",
4923                                        space_info->flags, num_bytes, 0);
4924                        spin_unlock(&space_info->lock);
4925                }
4926        }
4927}
4928
4929static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4930                                   struct btrfs_block_rsv *dst, u64 num_bytes)
4931{
4932        int ret;
4933
4934        ret = block_rsv_use_bytes(src, num_bytes);
4935        if (ret)
4936                return ret;
4937
4938        block_rsv_add_bytes(dst, num_bytes, 1);
4939        return 0;
4940}
4941
4942void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4943{
4944        memset(rsv, 0, sizeof(*rsv));
4945        spin_lock_init(&rsv->lock);
4946        rsv->type = type;
4947}
4948
4949struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4950                                              unsigned short type)
4951{
4952        struct btrfs_block_rsv *block_rsv;
4953        struct btrfs_fs_info *fs_info = root->fs_info;
4954
4955        block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4956        if (!block_rsv)
4957                return NULL;
4958
4959        btrfs_init_block_rsv(block_rsv, type);
4960        block_rsv->space_info = __find_space_info(fs_info,
4961                                                  BTRFS_BLOCK_GROUP_METADATA);
4962        return block_rsv;
4963}
4964
4965void btrfs_free_block_rsv(struct btrfs_root *root,
4966                          struct btrfs_block_rsv *rsv)
4967{
4968        if (!rsv)
4969                return;
4970        btrfs_block_rsv_release(root, rsv, (u64)-1);
4971        kfree(rsv);
4972}
4973
4974void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
4975{
4976        kfree(rsv);
4977}
4978
4979int btrfs_block_rsv_add(struct btrfs_root *root,
4980                        struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4981                        enum btrfs_reserve_flush_enum flush)
4982{
4983        int ret;
4984
4985        if (num_bytes == 0)
4986                return 0;
4987
4988        ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4989        if (!ret) {
4990                block_rsv_add_bytes(block_rsv, num_bytes, 1);
4991                return 0;
4992        }
4993
4994        return ret;
4995}
4996
4997int btrfs_block_rsv_check(struct btrfs_root *root,
4998                          struct btrfs_block_rsv *block_rsv, int min_factor)
4999{
5000        u64 num_bytes = 0;
5001        int ret = -ENOSPC;
5002
5003        if (!block_rsv)
5004                return 0;
5005
5006        spin_lock(&block_rsv->lock);
5007        num_bytes = div_factor(block_rsv->size, min_factor);
5008        if (block_rsv->reserved >= num_bytes)
5009                ret = 0;
5010        spin_unlock(&block_rsv->lock);
5011
5012        return ret;
5013}
5014
5015int btrfs_block_rsv_refill(struct btrfs_root *root,
5016                           struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5017                           enum btrfs_reserve_flush_enum flush)
5018{
5019        u64 num_bytes = 0;
5020        int ret = -ENOSPC;
5021
5022        if (!block_rsv)
5023                return 0;
5024
5025        spin_lock(&block_rsv->lock);
5026        num_bytes = min_reserved;
5027        if (block_rsv->reserved >= num_bytes)
5028                ret = 0;
5029        else
5030                num_bytes -= block_rsv->reserved;
5031        spin_unlock(&block_rsv->lock);
5032
5033        if (!ret)
5034                return 0;
5035
5036        ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5037        if (!ret) {
5038                block_rsv_add_bytes(block_rsv, num_bytes, 0);
5039                return 0;
5040        }
5041
5042        return ret;
5043}
5044
5045int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5046                            struct btrfs_block_rsv *dst_rsv,
5047                            u64 num_bytes)
5048{
5049        return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5050}
5051
5052void btrfs_block_rsv_release(struct btrfs_root *root,
5053                             struct btrfs_block_rsv *block_rsv,
5054                             u64 num_bytes)
5055{
5056        struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5057        if (global_rsv == block_rsv ||
5058            block_rsv->space_info != global_rsv->space_info)
5059                global_rsv = NULL;
5060        block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5061                                num_bytes);
5062}
5063
5064/*
5065 * helper to calculate size of global block reservation.
5066 * the desired value is sum of space used by extent tree,
5067 * checksum tree and root tree
5068 */
5069static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5070{
5071        struct btrfs_space_info *sinfo;
5072        u64 num_bytes;
5073        u64 meta_used;
5074        u64 data_used;
5075        int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5076
5077        sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5078        spin_lock(&sinfo->lock);
5079        data_used = sinfo->bytes_used;
5080        spin_unlock(&sinfo->lock);
5081
5082        sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5083        spin_lock(&sinfo->lock);
5084        if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5085                data_used = 0;
5086        meta_used = sinfo->bytes_used;
5087        spin_unlock(&sinfo->lock);
5088
5089        num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5090                    csum_size * 2;
5091        num_bytes += div_u64(data_used + meta_used, 50);
5092
5093        if (num_bytes * 3 > meta_used)
5094                num_bytes = div_u64(meta_used, 3);
5095
5096        return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5097}
5098
5099static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5100{
5101        struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5102        struct btrfs_space_info *sinfo = block_rsv->space_info;
5103        u64 num_bytes;
5104
5105        num_bytes = calc_global_metadata_size(fs_info);
5106
5107        spin_lock(&sinfo->lock);
5108        spin_lock(&block_rsv->lock);
5109
5110        block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
5111
5112        num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5113                    sinfo->bytes_reserved + sinfo->bytes_readonly +
5114                    sinfo->bytes_may_use;
5115
5116        if (sinfo->total_bytes > num_bytes) {
5117                num_bytes = sinfo->total_bytes - num_bytes;
5118                block_rsv->reserved += num_bytes;
5119                sinfo->bytes_may_use += num_bytes;
5120                trace_btrfs_space_reservation(fs_info, "space_info",
5121                                      sinfo->flags, num_bytes, 1);
5122        }
5123
5124        if (block_rsv->reserved >= block_rsv->size) {
5125                num_bytes = block_rsv->reserved - block_rsv->size;
5126                sinfo->bytes_may_use -= num_bytes;
5127                trace_btrfs_space_reservation(fs_info, "space_info",
5128                                      sinfo->flags, num_bytes, 0);
5129                block_rsv->reserved = block_rsv->size;
5130                block_rsv->full = 1;
5131        }
5132
5133        spin_unlock(&block_rsv->lock);
5134        spin_unlock(&sinfo->lock);
5135}
5136
5137static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5138{
5139        struct btrfs_space_info *space_info;
5140
5141        space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5142        fs_info->chunk_block_rsv.space_info = space_info;
5143
5144        space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5145        fs_info->global_block_rsv.space_info = space_info;
5146        fs_info->delalloc_block_rsv.space_info = space_info;
5147        fs_info->trans_block_rsv.space_info = space_info;
5148        fs_info->empty_block_rsv.space_info = space_info;
5149        fs_info->delayed_block_rsv.space_info = space_info;
5150
5151        fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5152        fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5153        fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5154        fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5155        if (fs_info->quota_root)
5156                fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5157        fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5158
5159        update_global_block_rsv(fs_info);
5160}
5161
5162static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5163{
5164        block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5165                                (u64)-1);
5166        WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5167        WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5168        WARN_ON(fs_info->trans_block_rsv.size > 0);
5169        WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5170        WARN_ON(fs_info->chunk_block_rsv.size > 0);
5171        WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5172        WARN_ON(fs_info->delayed_block_rsv.size > 0);
5173        WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5174}
5175
5176void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5177                                  struct btrfs_root *root)
5178{
5179        if (!trans->block_rsv)
5180                return;
5181
5182        if (!trans->bytes_reserved)
5183                return;
5184
5185        trace_btrfs_space_reservation(root->fs_info, "transaction",
5186                                      trans->transid, trans->bytes_reserved, 0);
5187        btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5188        trans->bytes_reserved = 0;
5189}
5190
5191/* Can only return 0 or -ENOSPC */
5192int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5193                                  struct inode *inode)
5194{
5195        struct btrfs_root *root = BTRFS_I(inode)->root;
5196        struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5197        struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5198
5199        /*
5200         * We need to hold space in order to delete our orphan item once we've
5201         * added it, so this takes the reservation so we can release it later
5202         * when we are truly done with the orphan item.
5203         */
5204        u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5205        trace_btrfs_space_reservation(root->fs_info, "orphan",
5206                                      btrfs_ino(inode), num_bytes, 1);
5207        return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5208}
5209
5210void btrfs_orphan_release_metadata(struct inode *inode)
5211{
5212        struct btrfs_root *root = BTRFS_I(inode)->root;
5213        u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5214        trace_btrfs_space_reservation(root->fs_info, "orphan",
5215                                      btrfs_ino(inode), num_bytes, 0);
5216        btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5217}
5218
5219/*
5220 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5221 * root: the root of the parent directory
5222 * rsv: block reservation
5223 * items: the number of items that we need do reservation
5224 * qgroup_reserved: used to return the reserved size in qgroup
5225 *
5226 * This function is used to reserve the space for snapshot/subvolume
5227 * creation and deletion. Those operations are different with the
5228 * common file/directory operations, they change two fs/file trees
5229 * and root tree, the number of items that the qgroup reserves is
5230 * different with the free space reservation. So we can not use
5231 * the space reseravtion mechanism in start_transaction().
5232 */
5233int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5234                                     struct btrfs_block_rsv *rsv,
5235                                     int items,
5236                                     u64 *qgroup_reserved,
5237                                     bool use_global_rsv)
5238{
5239        u64 num_bytes;
5240        int ret;
5241        struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5242
5243        if (root->fs_info->quota_enabled) {
5244                /* One for parent inode, two for dir entries */
5245                num_bytes = 3 * root->nodesize;
5246                ret = btrfs_qgroup_reserve(root, num_bytes);
5247                if (ret)
5248                        return ret;
5249        } else {
5250                num_bytes = 0;
5251        }
5252
5253        *qgroup_reserved = num_bytes;
5254
5255        num_bytes = btrfs_calc_trans_metadata_size(root, items);
5256        rsv->space_info = __find_space_info(root->fs_info,
5257                                            BTRFS_BLOCK_GROUP_METADATA);
5258        ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5259                                  BTRFS_RESERVE_FLUSH_ALL);
5260
5261        if (ret == -ENOSPC && use_global_rsv)
5262                ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5263
5264        if (ret) {
5265                if (*qgroup_reserved)
5266                        btrfs_qgroup_free(root, *qgroup_reserved);
5267        }
5268
5269        return ret;
5270}
5271
5272void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5273                                      struct btrfs_block_rsv *rsv,
5274                                      u64 qgroup_reserved)
5275{
5276        btrfs_block_rsv_release(root, rsv, (u64)-1);
5277}
5278
5279/**
5280 * drop_outstanding_extent - drop an outstanding extent
5281 * @inode: the inode we're dropping the extent for
5282 * @num_bytes: the number of bytes we're relaseing.
5283 *
5284 * This is called when we are freeing up an outstanding extent, either called
5285 * after an error or after an extent is written.  This will return the number of
5286 * reserved extents that need to be freed.  This must be called with
5287 * BTRFS_I(inode)->lock held.
5288 */
5289static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5290{
5291        unsigned drop_inode_space = 0;
5292        unsigned dropped_extents = 0;
5293        unsigned num_extents = 0;
5294
5295        num_extents = (unsigned)div64_u64(num_bytes +
5296                                          BTRFS_MAX_EXTENT_SIZE - 1,
5297                                          BTRFS_MAX_EXTENT_SIZE);
5298        ASSERT(num_extents);
5299        ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5300        BTRFS_I(inode)->outstanding_extents -= num_extents;
5301
5302        if (BTRFS_I(inode)->outstanding_extents == 0 &&
5303            test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5304                               &BTRFS_I(inode)->runtime_flags))
5305                drop_inode_space = 1;
5306
5307        /*
5308         * If we have more or the same amount of outsanding extents than we have
5309         * reserved then we need to leave the reserved extents count alone.
5310         */
5311        if (BTRFS_I(inode)->outstanding_extents >=
5312            BTRFS_I(inode)->reserved_extents)
5313                return drop_inode_space;
5314
5315        dropped_extents = BTRFS_I(inode)->reserved_extents -
5316                BTRFS_I(inode)->outstanding_extents;
5317        BTRFS_I(inode)->reserved_extents -= dropped_extents;
5318        return dropped_extents + drop_inode_space;
5319}
5320
5321/**
5322 * calc_csum_metadata_size - return the amount of metada space that must be
5323 *      reserved/free'd for the given bytes.
5324 * @inode: the inode we're manipulating
5325 * @num_bytes: the number of bytes in question
5326 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5327 *
5328 * This adjusts the number of csum_bytes in the inode and then returns the
5329 * correct amount of metadata that must either be reserved or freed.  We
5330 * calculate how many checksums we can fit into one leaf and then divide the
5331 * number of bytes that will need to be checksumed by this value to figure out
5332 * how many checksums will be required.  If we are adding bytes then the number
5333 * may go up and we will return the number of additional bytes that must be
5334 * reserved.  If it is going down we will return the number of bytes that must
5335 * be freed.
5336 *
5337 * This must be called with BTRFS_I(inode)->lock held.
5338 */
5339static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5340                                   int reserve)
5341{
5342        struct btrfs_root *root = BTRFS_I(inode)->root;
5343        u64 old_csums, num_csums;
5344
5345        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5346            BTRFS_I(inode)->csum_bytes == 0)
5347                return 0;
5348
5349        old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5350        if (reserve)
5351                BTRFS_I(inode)->csum_bytes += num_bytes;
5352        else
5353                BTRFS_I(inode)->csum_bytes -= num_bytes;
5354        num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5355
5356        /* No change, no need to reserve more */
5357        if (old_csums == num_csums)
5358                return 0;
5359
5360        if (reserve)
5361                return btrfs_calc_trans_metadata_size(root,
5362                                                      num_csums - old_csums);
5363
5364        return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5365}
5366
5367int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5368{
5369        struct btrfs_root *root = BTRFS_I(inode)->root;
5370        struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5371        u64 to_reserve = 0;
5372        u64 csum_bytes;
5373        unsigned nr_extents = 0;
5374        int extra_reserve = 0;
5375        enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5376        int ret = 0;
5377        bool delalloc_lock = true;
5378        u64 to_free = 0;
5379        unsigned dropped;
5380
5381        /* If we are a free space inode we need to not flush since we will be in
5382         * the middle of a transaction commit.  We also don't need the delalloc
5383         * mutex since we won't race with anybody.  We need this mostly to make
5384         * lockdep shut its filthy mouth.
5385         */
5386        if (btrfs_is_free_space_inode(inode)) {
5387                flush = BTRFS_RESERVE_NO_FLUSH;
5388                delalloc_lock = false;
5389        }
5390
5391        if (flush != BTRFS_RESERVE_NO_FLUSH &&
5392            btrfs_transaction_in_commit(root->fs_info))
5393                schedule_timeout(1);
5394
5395        if (delalloc_lock)
5396                mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5397
5398        num_bytes = ALIGN(num_bytes, root->sectorsize);
5399
5400        spin_lock(&BTRFS_I(inode)->lock);
5401        nr_extents = (unsigned)div64_u64(num_bytes +
5402                                         BTRFS_MAX_EXTENT_SIZE - 1,
5403                                         BTRFS_MAX_EXTENT_SIZE);
5404        BTRFS_I(inode)->outstanding_extents += nr_extents;
5405        nr_extents = 0;
5406
5407        if (BTRFS_I(inode)->outstanding_extents >
5408            BTRFS_I(inode)->reserved_extents)
5409                nr_extents = BTRFS_I(inode)->outstanding_extents -
5410                        BTRFS_I(inode)->reserved_extents;
5411
5412        /*
5413         * Add an item to reserve for updating the inode when we complete the
5414         * delalloc io.
5415         */
5416        if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5417                      &BTRFS_I(inode)->runtime_flags)) {
5418                nr_extents++;
5419                extra_reserve = 1;
5420        }
5421
5422        to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5423        to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5424        csum_bytes = BTRFS_I(inode)->csum_bytes;
5425        spin_unlock(&BTRFS_I(inode)->lock);
5426
5427        if (root->fs_info->quota_enabled) {
5428                ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize);
5429                if (ret)
5430                        goto out_fail;
5431        }
5432
5433        ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5434        if (unlikely(ret)) {
5435                if (root->fs_info->quota_enabled)
5436                        btrfs_qgroup_free(root, nr_extents * root->nodesize);
5437                goto out_fail;
5438        }
5439
5440        spin_lock(&BTRFS_I(inode)->lock);
5441        if (extra_reserve) {
5442                set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5443                        &BTRFS_I(inode)->runtime_flags);
5444                nr_extents--;
5445        }
5446        BTRFS_I(inode)->reserved_extents += nr_extents;
5447        spin_unlock(&BTRFS_I(inode)->lock);
5448
5449        if (delalloc_lock)
5450                mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5451
5452        if (to_reserve)
5453                trace_btrfs_space_reservation(root->fs_info, "delalloc",
5454                                              btrfs_ino(inode), to_reserve, 1);
5455        block_rsv_add_bytes(block_rsv, to_reserve, 1);
5456
5457        return 0;
5458
5459out_fail:
5460        spin_lock(&BTRFS_I(inode)->lock);
5461        dropped = drop_outstanding_extent(inode, num_bytes);
5462        /*
5463         * If the inodes csum_bytes is the same as the original
5464         * csum_bytes then we know we haven't raced with any free()ers
5465         * so we can just reduce our inodes csum bytes and carry on.
5466         */
5467        if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5468                calc_csum_metadata_size(inode, num_bytes, 0);
5469        } else {
5470                u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5471                u64 bytes;
5472
5473                /*
5474                 * This is tricky, but first we need to figure out how much we
5475                 * free'd from any free-ers that occured during this
5476                 * reservation, so we reset ->csum_bytes to the csum_bytes
5477                 * before we dropped our lock, and then call the free for the
5478                 * number of bytes that were freed while we were trying our
5479                 * reservation.
5480                 */
5481                bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5482                BTRFS_I(inode)->csum_bytes = csum_bytes;
5483                to_free = calc_csum_metadata_size(inode, bytes, 0);
5484
5485
5486                /*
5487                 * Now we need to see how much we would have freed had we not
5488                 * been making this reservation and our ->csum_bytes were not
5489                 * artificially inflated.
5490                 */
5491                BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5492                bytes = csum_bytes - orig_csum_bytes;
5493                bytes = calc_csum_metadata_size(inode, bytes, 0);
5494
5495                /*
5496                 * Now reset ->csum_bytes to what it should be.  If bytes is
5497                 * more than to_free then we would have free'd more space had we
5498                 * not had an artificially high ->csum_bytes, so we need to free
5499                 * the remainder.  If bytes is the same or less then we don't
5500                 * need to do anything, the other free-ers did the correct
5501                 * thing.
5502                 */
5503                BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5504                if (bytes > to_free)
5505                        to_free = bytes - to_free;
5506                else
5507                        to_free = 0;
5508        }
5509        spin_unlock(&BTRFS_I(inode)->lock);
5510        if (dropped)
5511                to_free += btrfs_calc_trans_metadata_size(root, dropped);
5512
5513        if (to_free) {
5514                btrfs_block_rsv_release(root, block_rsv, to_free);
5515                trace_btrfs_space_reservation(root->fs_info, "delalloc",
5516                                              btrfs_ino(inode), to_free, 0);
5517        }
5518        if (delalloc_lock)
5519                mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5520        return ret;
5521}
5522
5523/**
5524 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5525 * @inode: the inode to release the reservation for
5526 * @num_bytes: the number of bytes we're releasing
5527 *
5528 * This will release the metadata reservation for an inode.  This can be called
5529 * once we complete IO for a given set of bytes to release their metadata
5530 * reservations.
5531 */
5532void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5533{
5534        struct btrfs_root *root = BTRFS_I(inode)->root;
5535        u64 to_free = 0;
5536        unsigned dropped;
5537
5538        num_bytes = ALIGN(num_bytes, root->sectorsize);
5539        spin_lock(&BTRFS_I(inode)->lock);
5540        dropped = drop_outstanding_extent(inode, num_bytes);
5541
5542        if (num_bytes)
5543                to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5544        spin_unlock(&BTRFS_I(inode)->lock);
5545        if (dropped > 0)
5546                to_free += btrfs_calc_trans_metadata_size(root, dropped);
5547
5548        if (btrfs_test_is_dummy_root(root))
5549                return;
5550
5551        trace_btrfs_space_reservation(root->fs_info, "delalloc",
5552                                      btrfs_ino(inode), to_free, 0);
5553
5554        btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5555                                to_free);
5556}
5557
5558/**
5559 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5560 * @inode: inode we're writing to
5561 * @num_bytes: the number of bytes we want to allocate
5562 *
5563 * This will do the following things
5564 *
5565 * o reserve space in the data space info for num_bytes
5566 * o reserve space in the metadata space info based on number of outstanding
5567 *   extents and how much csums will be needed
5568 * o add to the inodes ->delalloc_bytes
5569 * o add it to the fs_info's delalloc inodes list.
5570 *
5571 * This will return 0 for success and -ENOSPC if there is no space left.
5572 */
5573int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5574{
5575        int ret;
5576
5577        ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
5578        if (ret)
5579                return ret;
5580
5581        ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5582        if (ret) {
5583                btrfs_free_reserved_data_space(inode, num_bytes);
5584                return ret;
5585        }
5586
5587        return 0;
5588}
5589
5590/**
5591 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5592 * @inode: inode we're releasing space for
5593 * @num_bytes: the number of bytes we want to free up
5594 *
5595 * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5596 * called in the case that we don't need the metadata AND data reservations
5597 * anymore.  So if there is an error or we insert an inline extent.
5598 *
5599 * This function will release the metadata space that was not used and will
5600 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5601 * list if there are no delalloc bytes left.
5602 */
5603void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5604{
5605        btrfs_delalloc_release_metadata(inode, num_bytes);
5606        btrfs_free_reserved_data_space(inode, num_bytes);
5607}
5608
5609static int update_block_group(struct btrfs_trans_handle *trans,
5610                              struct btrfs_root *root, u64 bytenr,
5611                              u64 num_bytes, int alloc)
5612{
5613        struct btrfs_block_group_cache *cache = NULL;
5614        struct btrfs_fs_info *info = root->fs_info;
5615        u64 total = num_bytes;
5616        u64 old_val;
5617        u64 byte_in_group;
5618        int factor;
5619
5620        /* block accounting for super block */
5621        spin_lock(&info->delalloc_root_lock);
5622        old_val = btrfs_super_bytes_used(info->super_copy);
5623        if (alloc)
5624                old_val += num_bytes;
5625        else
5626                old_val -= num_bytes;
5627        btrfs_set_super_bytes_used(info->super_copy, old_val);
5628        spin_unlock(&info->delalloc_root_lock);
5629
5630        while (total) {
5631                cache = btrfs_lookup_block_group(info, bytenr);
5632                if (!cache)
5633                        return -ENOENT;
5634                if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5635                                    BTRFS_BLOCK_GROUP_RAID1 |
5636                                    BTRFS_BLOCK_GROUP_RAID10))
5637                        factor = 2;
5638                else
5639                        factor = 1;
5640                /*
5641                 * If this block group has free space cache written out, we
5642                 * need to make sure to load it if we are removing space.  This
5643                 * is because we need the unpinning stage to actually add the
5644                 * space back to the block group, otherwise we will leak space.
5645                 */
5646                if (!alloc && cache->cached == BTRFS_CACHE_NO)
5647                        cache_block_group(cache, 1);
5648
5649                byte_in_group = bytenr - cache->key.objectid;
5650                WARN_ON(byte_in_group > cache->key.offset);
5651
5652                spin_lock(&cache->space_info->lock);
5653                spin_lock(&cache->lock);
5654
5655                if (btrfs_test_opt(root, SPACE_CACHE) &&
5656                    cache->disk_cache_state < BTRFS_DC_CLEAR)
5657                        cache->disk_cache_state = BTRFS_DC_CLEAR;
5658
5659                old_val = btrfs_block_group_used(&cache->item);
5660                num_bytes = min(total, cache->key.offset - byte_in_group);
5661                if (alloc) {
5662                        old_val += num_bytes;
5663                        btrfs_set_block_group_used(&cache->item, old_val);
5664                        cache->reserved -= num_bytes;
5665                        cache->space_info->bytes_reserved -= num_bytes;
5666                        cache->space_info->bytes_used += num_bytes;
5667                        cache->space_info->disk_used += num_bytes * factor;
5668                        spin_unlock(&cache->lock);
5669                        spin_unlock(&cache->space_info->lock);
5670                } else {
5671                        old_val -= num_bytes;
5672                        btrfs_set_block_group_used(&cache->item, old_val);
5673                        cache->pinned += num_bytes;
5674                        cache->space_info->bytes_pinned += num_bytes;
5675                        cache->space_info->bytes_used -= num_bytes;
5676                        cache->space_info->disk_used -= num_bytes * factor;
5677                        spin_unlock(&cache->lock);
5678                        spin_unlock(&cache->space_info->lock);
5679
5680                        set_extent_dirty(info->pinned_extents,
5681                                         bytenr, bytenr + num_bytes - 1,
5682                                         GFP_NOFS | __GFP_NOFAIL);
5683                        /*
5684                         * No longer have used bytes in this block group, queue
5685                         * it for deletion.
5686                         */
5687                        if (old_val == 0) {
5688                                spin_lock(&info->unused_bgs_lock);
5689                                if (list_empty(&cache->bg_list)) {
5690                                        btrfs_get_block_group(cache);
5691                                        list_add_tail(&cache->bg_list,
5692                                                      &info->unused_bgs);
5693                                }
5694                                spin_unlock(&info->unused_bgs_lock);
5695                        }
5696                }
5697
5698                spin_lock(&trans->transaction->dirty_bgs_lock);
5699                if (list_empty(&cache->dirty_list)) {
5700                        list_add_tail(&cache->dirty_list,
5701                                      &trans->transaction->dirty_bgs);
5702                                trans->transaction->num_dirty_bgs++;
5703                        btrfs_get_block_group(cache);
5704                }
5705                spin_unlock(&trans->transaction->dirty_bgs_lock);
5706
5707                btrfs_put_block_group(cache);
5708                total -= num_bytes;
5709                bytenr += num_bytes;
5710        }
5711        return 0;
5712}
5713
5714static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5715{
5716        struct btrfs_block_group_cache *cache;
5717        u64 bytenr;
5718
5719        spin_lock(&root->fs_info->block_group_cache_lock);
5720        bytenr = root->fs_info->first_logical_byte;
5721        spin_unlock(&root->fs_info->block_group_cache_lock);
5722
5723        if (bytenr < (u64)-1)
5724                return bytenr;
5725
5726        cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5727        if (!cache)
5728                return 0;
5729
5730        bytenr = cache->key.objectid;
5731        btrfs_put_block_group(cache);
5732
5733        return bytenr;
5734}
5735
5736static int pin_down_extent(struct btrfs_root *root,
5737                           struct btrfs_block_group_cache *cache,
5738                           u64 bytenr, u64 num_bytes, int reserved)
5739{
5740        spin_lock(&cache->space_info->lock);
5741        spin_lock(&cache->lock);
5742        cache->pinned += num_bytes;
5743        cache->space_info->bytes_pinned += num_bytes;
5744        if (reserved) {
5745                cache->reserved -= num_bytes;
5746                cache->space_info->bytes_reserved -= num_bytes;
5747        }
5748        spin_unlock(&cache->lock);
5749        spin_unlock(&cache->space_info->lock);
5750
5751        set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5752                         bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5753        if (reserved)
5754                trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5755        return 0;
5756}
5757
5758/*
5759 * this function must be called within transaction
5760 */
5761int btrfs_pin_extent(struct btrfs_root *root,
5762                     u64 bytenr, u64 num_bytes, int reserved)
5763{
5764        struct btrfs_block_group_cache *cache;
5765
5766        cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5767        BUG_ON(!cache); /* Logic error */
5768
5769        pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5770
5771        btrfs_put_block_group(cache);
5772        return 0;
5773}
5774
5775/*
5776 * this function must be called within transaction
5777 */
5778int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5779                                    u64 bytenr, u64 num_bytes)
5780{
5781        struct btrfs_block_group_cache *cache;
5782        int ret;
5783
5784        cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5785        if (!cache)
5786                return -EINVAL;
5787
5788        /*
5789         * pull in the free space cache (if any) so that our pin
5790         * removes the free space from the cache.  We have load_only set
5791         * to one because the slow code to read in the free extents does check
5792         * the pinned extents.
5793         */
5794        cache_block_group(cache, 1);
5795
5796        pin_down_extent(root, cache, bytenr, num_bytes, 0);
5797
5798        /* remove us from the free space cache (if we're there at all) */
5799        ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5800        btrfs_put_block_group(cache);
5801        return ret;
5802}
5803
5804static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5805{
5806        int ret;
5807        struct btrfs_block_group_cache *block_group;
5808        struct btrfs_caching_control *caching_ctl;
5809
5810        block_group = btrfs_lookup_block_group(root->fs_info, start);
5811        if (!block_group)
5812                return -EINVAL;
5813
5814        cache_block_group(block_group, 0);
5815        caching_ctl = get_caching_control(block_group);
5816
5817        if (!caching_ctl) {
5818                /* Logic error */
5819                BUG_ON(!block_group_cache_done(block_group));
5820                ret = btrfs_remove_free_space(block_group, start, num_bytes);
5821        } else {
5822                mutex_lock(&caching_ctl->mutex);
5823
5824                if (start >= caching_ctl->progress) {
5825                        ret = add_excluded_extent(root, start, num_bytes);
5826                } else if (start + num_bytes <= caching_ctl->progress) {
5827                        ret = btrfs_remove_free_space(block_group,
5828                                                      start, num_bytes);
5829                } else {
5830                        num_bytes = caching_ctl->progress - start;
5831                        ret = btrfs_remove_free_space(block_group,
5832                                                      start, num_bytes);
5833                        if (ret)
5834                                goto out_lock;
5835
5836                        num_bytes = (start + num_bytes) -
5837                                caching_ctl->progress;
5838                        start = caching_ctl->progress;
5839                        ret = add_excluded_extent(root, start, num_bytes);
5840                }
5841out_lock:
5842                mutex_unlock(&caching_ctl->mutex);
5843                put_caching_control(caching_ctl);
5844        }
5845        btrfs_put_block_group(block_group);
5846        return ret;
5847}
5848
5849int btrfs_exclude_logged_extents(struct btrfs_root *log,
5850                                 struct extent_buffer *eb)
5851{
5852        struct btrfs_file_extent_item *item;
5853        struct btrfs_key key;
5854        int found_type;
5855        int i;
5856
5857        if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5858                return 0;
5859
5860        for (i = 0; i < btrfs_header_nritems(eb); i++) {
5861                btrfs_item_key_to_cpu(eb, &key, i);
5862                if (key.type != BTRFS_EXTENT_DATA_KEY)
5863                        continue;
5864                item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5865                found_type = btrfs_file_extent_type(eb, item);
5866                if (found_type == BTRFS_FILE_EXTENT_INLINE)
5867                        continue;
5868                if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5869                        continue;
5870                key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5871                key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5872                __exclude_logged_extent(log, key.objectid, key.offset);
5873        }
5874
5875        return 0;
5876}
5877
5878/**
5879 * btrfs_update_reserved_bytes - update the block_group and space info counters
5880 * @cache:      The cache we are manipulating
5881 * @num_bytes:  The number of bytes in question
5882 * @reserve:    One of the reservation enums
5883 * @delalloc:   The blocks are allocated for the delalloc write
5884 *
5885 * This is called by the allocator when it reserves space, or by somebody who is
5886 * freeing space that was never actually used on disk.  For example if you
5887 * reserve some space for a new leaf in transaction A and before transaction A
5888 * commits you free that leaf, you call this with reserve set to 0 in order to
5889 * clear the reservation.
5890 *
5891 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5892 * ENOSPC accounting.  For data we handle the reservation through clearing the
5893 * delalloc bits in the io_tree.  We have to do this since we could end up
5894 * allocating less disk space for the amount of data we have reserved in the
5895 * case of compression.
5896 *
5897 * If this is a reservation and the block group has become read only we cannot
5898 * make the reservation and return -EAGAIN, otherwise this function always
5899 * succeeds.
5900 */
5901static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5902                                       u64 num_bytes, int reserve, int delalloc)
5903{
5904        struct btrfs_space_info *space_info = cache->space_info;
5905        int ret = 0;
5906
5907        spin_lock(&space_info->lock);
5908        spin_lock(&cache->lock);
5909        if (reserve != RESERVE_FREE) {
5910                if (cache->ro) {
5911                        ret = -EAGAIN;
5912                } else {
5913                        cache->reserved += num_bytes;
5914                        space_info->bytes_reserved += num_bytes;
5915                        if (reserve == RESERVE_ALLOC) {
5916                                trace_btrfs_space_reservation(cache->fs_info,
5917                                                "space_info", space_info->flags,
5918                                                num_bytes, 0);
5919                                space_info->bytes_may_use -= num_bytes;
5920                        }
5921
5922                        if (delalloc)
5923                                cache->delalloc_bytes += num_bytes;
5924                }
5925        } else {
5926                if (cache->ro)
5927                        space_info->bytes_readonly += num_bytes;
5928                cache->reserved -= num_bytes;
5929                space_info->bytes_reserved -= num_bytes;
5930
5931                if (delalloc)
5932                        cache->delalloc_bytes -= num_bytes;
5933        }
5934        spin_unlock(&cache->lock);
5935        spin_unlock(&space_info->lock);
5936        return ret;
5937}
5938
5939void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5940                                struct btrfs_root *root)
5941{
5942        struct btrfs_fs_info *fs_info = root->fs_info;
5943        struct btrfs_caching_control *next;
5944        struct btrfs_caching_control *caching_ctl;
5945        struct btrfs_block_group_cache *cache;
5946
5947        down_write(&fs_info->commit_root_sem);
5948
5949        list_for_each_entry_safe(caching_ctl, next,
5950                                 &fs_info->caching_block_groups, list) {
5951                cache = caching_ctl->block_group;
5952                if (block_group_cache_done(cache)) {
5953                        cache->last_byte_to_unpin = (u64)-1;
5954                        list_del_init(&caching_ctl->list);
5955                        put_caching_control(caching_ctl);
5956                } else {
5957                        cache->last_byte_to_unpin = caching_ctl->progress;
5958                }
5959        }
5960
5961        if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5962                fs_info->pinned_extents = &fs_info->freed_extents[1];
5963        else
5964                fs_info->pinned_extents = &fs_info->freed_extents[0];
5965
5966        up_write(&fs_info->commit_root_sem);
5967
5968        update_global_block_rsv(fs_info);
5969}
5970
5971static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
5972                              const bool return_free_space)
5973{
5974        struct btrfs_fs_info *fs_info = root->fs_info;
5975        struct btrfs_block_group_cache *cache = NULL;
5976        struct btrfs_space_info *space_info;
5977        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5978        u64 len;
5979        bool readonly;
5980
5981        while (start <= end) {
5982                readonly = false;
5983                if (!cache ||
5984                    start >= cache->key.objectid + cache->key.offset) {
5985                        if (cache)
5986                                btrfs_put_block_group(cache);
5987                        cache = btrfs_lookup_block_group(fs_info, start);
5988                        BUG_ON(!cache); /* Logic error */
5989                }
5990
5991                len = cache->key.objectid + cache->key.offset - start;
5992                len = min(len, end + 1 - start);
5993
5994                if (start < cache->last_byte_to_unpin) {
5995                        len = min(len, cache->last_byte_to_unpin - start);
5996                        if (return_free_space)
5997                                btrfs_add_free_space(cache, start, len);
5998                }
5999
6000                start += len;
6001                space_info = cache->space_info;
6002
6003                spin_lock(&space_info->lock);
6004                spin_lock(&cache->lock);
6005                cache->pinned -= len;
6006                space_info->bytes_pinned -= len;
6007                percpu_counter_add(&space_info->total_bytes_pinned, -len);
6008                if (cache->ro) {
6009                        space_info->bytes_readonly += len;
6010                        readonly = true;
6011                }
6012                spin_unlock(&cache->lock);
6013                if (!readonly && global_rsv->space_info == space_info) {
6014                        spin_lock(&global_rsv->lock);
6015                        if (!global_rsv->full) {
6016                                len = min(len, global_rsv->size -
6017                                          global_rsv->reserved);
6018                                global_rsv->reserved += len;
6019                                space_info->bytes_may_use += len;
6020                                if (global_rsv->reserved >= global_rsv->size)
6021                                        global_rsv->full = 1;
6022                        }
6023                        spin_unlock(&global_rsv->lock);
6024                }
6025                spin_unlock(&space_info->lock);
6026        }
6027
6028        if (cache)
6029                btrfs_put_block_group(cache);
6030        return 0;
6031}
6032
6033int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6034                               struct btrfs_root *root)
6035{
6036        struct btrfs_fs_info *fs_info = root->fs_info;
6037        struct extent_io_tree *unpin;
6038        u64 start;
6039        u64 end;
6040        int ret;
6041
6042        if (trans->aborted)
6043                return 0;
6044
6045        if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6046                unpin = &fs_info->freed_extents[1];
6047        else
6048                unpin = &fs_info->freed_extents[0];
6049
6050        while (1) {
6051                mutex_lock(&fs_info->unused_bg_unpin_mutex);
6052                ret = find_first_extent_bit(unpin, 0, &start, &end,
6053                                            EXTENT_DIRTY, NULL);
6054                if (ret) {
6055                        mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6056                        break;
6057                }
6058
6059                if (btrfs_test_opt(root, DISCARD))
6060                        ret = btrfs_discard_extent(root, start,
6061                                                   end + 1 - start, NULL);
6062
6063                clear_extent_dirty(unpin, start, end, GFP_NOFS);
6064                unpin_extent_range(root, start, end, true);
6065                mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6066                cond_resched();
6067        }
6068
6069        return 0;
6070}
6071
6072static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6073                             u64 owner, u64 root_objectid)
6074{
6075        struct btrfs_space_info *space_info;
6076        u64 flags;
6077
6078        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6079                if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6080                        flags = BTRFS_BLOCK_GROUP_SYSTEM;
6081                else
6082                        flags = BTRFS_BLOCK_GROUP_METADATA;
6083        } else {
6084                flags = BTRFS_BLOCK_GROUP_DATA;
6085        }
6086
6087        space_info = __find_space_info(fs_info, flags);
6088        BUG_ON(!space_info); /* Logic bug */
6089        percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6090}
6091
6092
6093static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6094                                struct btrfs_root *root,
6095                                u64 bytenr, u64 num_bytes, u64 parent,
6096                                u64 root_objectid, u64 owner_objectid,
6097                                u64 owner_offset, int refs_to_drop,
6098                                struct btrfs_delayed_extent_op *extent_op,
6099                                int no_quota)
6100{
6101        struct btrfs_key key;
6102        struct btrfs_path *path;
6103        struct btrfs_fs_info *info = root->fs_info;
6104        struct btrfs_root *extent_root = info->extent_root;
6105        struct extent_buffer *leaf;
6106        struct btrfs_extent_item *ei;
6107        struct btrfs_extent_inline_ref *iref;
6108        int ret;
6109        int is_data;
6110        int extent_slot = 0;
6111        int found_extent = 0;
6112        int num_to_del = 1;
6113        u32 item_size;
6114        u64 refs;
6115        int last_ref = 0;
6116        enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
6117        bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6118                                                 SKINNY_METADATA);
6119
6120        if (!info->quota_enabled || !is_fstree(root_objectid))
6121                no_quota = 1;
6122
6123        path = btrfs_alloc_path();
6124        if (!path)
6125                return -ENOMEM;
6126
6127        path->reada = 1;
6128        path->leave_spinning = 1;
6129
6130        is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6131        BUG_ON(!is_data && refs_to_drop != 1);
6132
6133        if (is_data)
6134                skinny_metadata = 0;
6135
6136        ret = lookup_extent_backref(trans, extent_root, path, &iref,
6137                                    bytenr, num_bytes, parent,
6138                                    root_objectid, owner_objectid,
6139                                    owner_offset);
6140        if (ret == 0) {
6141                extent_slot = path->slots[0];
6142                while (extent_slot >= 0) {
6143                        btrfs_item_key_to_cpu(path->nodes[0], &key,
6144                                              extent_slot);
6145                        if (key.objectid != bytenr)
6146                                break;
6147                        if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6148                            key.offset == num_bytes) {
6149                                found_extent = 1;
6150                                break;
6151                        }
6152                        if (key.type == BTRFS_METADATA_ITEM_KEY &&
6153                            key.offset == owner_objectid) {
6154                                found_extent = 1;
6155                                break;
6156                        }
6157                        if (path->slots[0] - extent_slot > 5)
6158                                break;
6159                        extent_slot--;
6160                }
6161#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6162                item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6163                if (found_extent && item_size < sizeof(*ei))
6164                        found_extent = 0;
6165#endif
6166                if (!found_extent) {
6167                        BUG_ON(iref);
6168                        ret = remove_extent_backref(trans, extent_root, path,
6169                                                    NULL, refs_to_drop,
6170                                                    is_data, &last_ref);
6171                        if (ret) {
6172                                btrfs_abort_transaction(trans, extent_root, ret);
6173                                goto out;
6174                        }
6175                        btrfs_release_path(path);
6176                        path->leave_spinning = 1;
6177
6178                        key.objectid = bytenr;
6179                        key.type = BTRFS_EXTENT_ITEM_KEY;
6180                        key.offset = num_bytes;
6181
6182                        if (!is_data && skinny_metadata) {
6183                                key.type = BTRFS_METADATA_ITEM_KEY;
6184                                key.offset = owner_objectid;
6185                        }
6186
6187                        ret = btrfs_search_slot(trans, extent_root,
6188                                                &key, path, -1, 1);
6189                        if (ret > 0 && skinny_metadata && path->slots[0]) {
6190                                /*
6191                                 * Couldn't find our skinny metadata item,
6192                                 * see if we have ye olde extent item.
6193                                 */
6194                                path->slots[0]--;
6195                                btrfs_item_key_to_cpu(path->nodes[0], &key,
6196                                                      path->slots[0]);
6197                                if (key.objectid == bytenr &&
6198                                    key.type == BTRFS_EXTENT_ITEM_KEY &&
6199                                    key.offset == num_bytes)
6200                                        ret = 0;
6201                        }
6202
6203                        if (ret > 0 && skinny_metadata) {
6204                                skinny_metadata = false;
6205                                key.objectid = bytenr;
6206                                key.type = BTRFS_EXTENT_ITEM_KEY;
6207                                key.offset = num_bytes;
6208                                btrfs_release_path(path);
6209                                ret = btrfs_search_slot(trans, extent_root,
6210                                                        &key, path, -1, 1);
6211                        }
6212
6213                        if (ret) {
6214                                btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6215                                        ret, bytenr);
6216                                if (ret > 0)
6217                                        btrfs_print_leaf(extent_root,
6218                                                         path->nodes[0]);
6219                        }
6220                        if (ret < 0) {
6221                                btrfs_abort_transaction(trans, extent_root, ret);
6222                                goto out;
6223                        }
6224                        extent_slot = path->slots[0];
6225                }
6226        } else if (WARN_ON(ret == -ENOENT)) {
6227                btrfs_print_leaf(extent_root, path->nodes[0]);
6228                btrfs_err(info,
6229                        "unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6230                        bytenr, parent, root_objectid, owner_objectid,
6231                        owner_offset);
6232                btrfs_abort_transaction(trans, extent_root, ret);
6233                goto out;
6234        } else {
6235                btrfs_abort_transaction(trans, extent_root, ret);
6236                goto out;
6237        }
6238
6239        leaf = path->nodes[0];
6240        item_size = btrfs_item_size_nr(leaf, extent_slot);
6241#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6242        if (item_size < sizeof(*ei)) {
6243                BUG_ON(found_extent || extent_slot != path->slots[0]);
6244                ret = convert_extent_item_v0(trans, extent_root, path,
6245                                             owner_objectid, 0);
6246                if (ret < 0) {
6247                        btrfs_abort_transaction(trans, extent_root, ret);
6248                        goto out;
6249                }
6250
6251                btrfs_release_path(path);
6252                path->leave_spinning = 1;
6253
6254                key.objectid = bytenr;
6255                key.type = BTRFS_EXTENT_ITEM_KEY;
6256                key.offset = num_bytes;
6257
6258                ret = btrfs_search_slot(trans, extent_root, &key, path,
6259                                        -1, 1);
6260                if (ret) {
6261                        btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6262                                ret, bytenr);
6263                        btrfs_print_leaf(extent_root, path->nodes[0]);
6264                }
6265                if (ret < 0) {
6266                        btrfs_abort_transaction(trans, extent_root, ret);
6267                        goto out;
6268                }
6269
6270                extent_slot = path->slots[0];
6271                leaf = path->nodes[0];
6272                item_size = btrfs_item_size_nr(leaf, extent_slot);
6273        }
6274#endif
6275        BUG_ON(item_size < sizeof(*ei));
6276        ei = btrfs_item_ptr(leaf, extent_slot,
6277                            struct btrfs_extent_item);
6278        if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6279            key.type == BTRFS_EXTENT_ITEM_KEY) {
6280                struct btrfs_tree_block_info *bi;
6281                BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6282                bi = (struct btrfs_tree_block_info *)(ei + 1);
6283                WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6284        }
6285
6286        refs = btrfs_extent_refs(leaf, ei);
6287        if (refs < refs_to_drop) {
6288                btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6289                          "for bytenr %Lu", refs_to_drop, refs, bytenr);
6290                ret = -EINVAL;
6291                btrfs_abort_transaction(trans, extent_root, ret);
6292                goto out;
6293        }
6294        refs -= refs_to_drop;
6295
6296        if (refs > 0) {
6297                type = BTRFS_QGROUP_OPER_SUB_SHARED;
6298                if (extent_op)
6299                        __run_delayed_extent_op(extent_op, leaf, ei);
6300                /*
6301                 * In the case of inline back ref, reference count will
6302                 * be updated by remove_extent_backref
6303                 */
6304                if (iref) {
6305                        BUG_ON(!found_extent);
6306                } else {
6307                        btrfs_set_extent_refs(leaf, ei, refs);
6308                        btrfs_mark_buffer_dirty(leaf);
6309                }
6310                if (found_extent) {
6311                        ret = remove_extent_backref(trans, extent_root, path,
6312                                                    iref, refs_to_drop,
6313                                                    is_data, &last_ref);
6314                        if (ret) {
6315                                btrfs_abort_transaction(trans, extent_root, ret);
6316                                goto out;
6317                        }
6318                }
6319                add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6320                                 root_objectid);
6321        } else {
6322                if (found_extent) {
6323                        BUG_ON(is_data && refs_to_drop !=
6324                               extent_data_ref_count(root, path, iref));
6325                        if (iref) {
6326                                BUG_ON(path->slots[0] != extent_slot);
6327                        } else {
6328                                BUG_ON(path->slots[0] != extent_slot + 1);
6329                                path->slots[0] = extent_slot;
6330                                num_to_del = 2;
6331                        }
6332                }
6333
6334                last_ref = 1;
6335                ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6336                                      num_to_del);
6337                if (ret) {
6338                        btrfs_abort_transaction(trans, extent_root, ret);
6339                        goto out;
6340                }
6341                btrfs_release_path(path);
6342
6343                if (is_data) {
6344                        ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6345                        if (ret) {
6346                                btrfs_abort_transaction(trans, extent_root, ret);
6347                                goto out;
6348                        }
6349                }
6350
6351                ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6352                if (ret) {
6353                        btrfs_abort_transaction(trans, extent_root, ret);
6354                        goto out;
6355                }
6356        }
6357        btrfs_release_path(path);
6358
6359        /* Deal with the quota accounting */
6360        if (!ret && last_ref && !no_quota) {
6361                int mod_seq = 0;
6362
6363                if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6364                    type == BTRFS_QGROUP_OPER_SUB_SHARED)
6365                        mod_seq = 1;
6366
6367                ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6368                                              bytenr, num_bytes, type,
6369                                              mod_seq);
6370        }
6371out:
6372        btrfs_free_path(path);
6373        return ret;
6374}
6375
6376/*
6377 * when we free an block, it is possible (and likely) that we free the last
6378 * delayed ref for that extent as well.  This searches the delayed ref tree for
6379 * a given extent, and if there are no other delayed refs to be processed, it
6380 * removes it from the tree.
6381 */
6382static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6383                                      struct btrfs_root *root, u64 bytenr)
6384{
6385        struct btrfs_delayed_ref_head *head;
6386        struct btrfs_delayed_ref_root *delayed_refs;
6387        int ret = 0;
6388
6389        delayed_refs = &trans->transaction->delayed_refs;
6390        spin_lock(&delayed_refs->lock);
6391        head = btrfs_find_delayed_ref_head(trans, bytenr);
6392        if (!head)
6393                goto out_delayed_unlock;
6394
6395        spin_lock(&head->lock);
6396        if (rb_first(&head->ref_root))
6397                goto out;
6398
6399        if (head->extent_op) {
6400                if (!head->must_insert_reserved)
6401                        goto out;
6402                btrfs_free_delayed_extent_op(head->extent_op);
6403                head->extent_op = NULL;
6404        }
6405
6406        /*
6407         * waiting for the lock here would deadlock.  If someone else has it
6408         * locked they are already in the process of dropping it anyway
6409         */
6410        if (!mutex_trylock(&head->mutex))
6411                goto out;
6412
6413        /*
6414         * at this point we have a head with no other entries.  Go
6415         * ahead and process it.
6416         */
6417        head->node.in_tree = 0;
6418        rb_erase(&head->href_node, &delayed_refs->href_root);
6419
6420        atomic_dec(&delayed_refs->num_entries);
6421
6422        /*
6423         * we don't take a ref on the node because we're removing it from the
6424         * tree, so we just steal the ref the tree was holding.
6425         */
6426        delayed_refs->num_heads--;
6427        if (head->processing == 0)
6428                delayed_refs->num_heads_ready--;
6429        head->processing = 0;
6430        spin_unlock(&head->lock);
6431        spin_unlock(&delayed_refs->lock);
6432
6433        BUG_ON(head->extent_op);
6434        if (head->must_insert_reserved)
6435                ret = 1;
6436
6437        mutex_unlock(&head->mutex);
6438        btrfs_put_delayed_ref(&head->node);
6439        return ret;
6440out:
6441        spin_unlock(&head->lock);
6442
6443out_delayed_unlock:
6444        spin_unlock(&delayed_refs->lock);
6445        return 0;
6446}
6447
6448void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6449                           struct btrfs_root *root,
6450                           struct extent_buffer *buf,
6451                           u64 parent, int last_ref)
6452{
6453        int pin = 1;
6454        int ret;
6455
6456        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6457                ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6458                                        buf->start, buf->len,
6459                                        parent, root->root_key.objectid,
6460                                        btrfs_header_level(buf),
6461                                        BTRFS_DROP_DELAYED_REF, NULL, 0);
6462                BUG_ON(ret); /* -ENOMEM */
6463        }
6464
6465        if (!last_ref)
6466                return;
6467
6468        if (btrfs_header_generation(buf) == trans->transid) {
6469                struct btrfs_block_group_cache *cache;
6470
6471                if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6472                        ret = check_ref_cleanup(trans, root, buf->start);
6473                        if (!ret)
6474                                goto out;
6475                }
6476
6477                cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6478
6479                if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6480                        pin_down_extent(root, cache, buf->start, buf->len, 1);
6481                        btrfs_put_block_group(cache);
6482                        goto out;
6483                }
6484
6485                WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6486
6487                btrfs_add_free_space(cache, buf->start, buf->len);
6488                btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6489                btrfs_put_block_group(cache);
6490                trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6491                pin = 0;
6492        }
6493out:
6494        if (pin)
6495                add_pinned_bytes(root->fs_info, buf->len,
6496                                 btrfs_header_level(buf),
6497                                 root->root_key.objectid);
6498
6499        /*
6500         * Deleting the buffer, clear the corrupt flag since it doesn't matter
6501         * anymore.
6502         */
6503        clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6504}
6505
6506/* Can return -ENOMEM */
6507int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6508                      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6509                      u64 owner, u64 offset, int no_quota)
6510{
6511        int ret;
6512        struct btrfs_fs_info *fs_info = root->fs_info;
6513
6514        if (btrfs_test_is_dummy_root(root))
6515                return 0;
6516
6517        add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6518
6519        /*
6520         * tree log blocks never actually go into the extent allocation
6521         * tree, just update pinning info and exit early.
6522         */
6523        if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6524                WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6525                /* unlocks the pinned mutex */
6526                btrfs_pin_extent(root, bytenr, num_bytes, 1);
6527                ret = 0;
6528        } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6529                ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6530                                        num_bytes,
6531                                        parent, root_objectid, (int)owner,
6532                                        BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6533        } else {
6534                ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6535                                                num_bytes,
6536                                                parent, root_objectid, owner,
6537                                                offset, BTRFS_DROP_DELAYED_REF,
6538                                                NULL, no_quota);
6539        }
6540        return ret;
6541}
6542
6543/*
6544 * when we wait for progress in the block group caching, its because
6545 * our allocation attempt failed at least once.  So, we must sleep
6546 * and let some progress happen before we try again.
6547 *
6548 * This function will sleep at least once waiting for new free space to
6549 * show up, and then it will check the block group free space numbers
6550 * for our min num_bytes.  Another option is to have it go ahead
6551 * and look in the rbtree for a free extent of a given size, but this
6552 * is a good start.
6553 *
6554 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6555 * any of the information in this block group.
6556 */
6557static noinline void
6558wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6559                                u64 num_bytes)
6560{
6561        struct btrfs_caching_control *caching_ctl;
6562
6563        caching_ctl = get_caching_control(cache);
6564        if (!caching_ctl)
6565                return;
6566
6567        wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6568                   (cache->free_space_ctl->free_space >= num_bytes));
6569
6570        put_caching_control(caching_ctl);
6571}
6572
6573static noinline int
6574wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6575{
6576        struct btrfs_caching_control *caching_ctl;
6577        int ret = 0;
6578
6579        caching_ctl = get_caching_control(cache);
6580        if (!caching_ctl)
6581                return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6582
6583        wait_event(caching_ctl->wait, block_group_cache_done(cache));
6584        if (cache->cached == BTRFS_CACHE_ERROR)
6585                ret = -EIO;
6586        put_caching_control(caching_ctl);
6587        return ret;
6588}
6589
6590int __get_raid_index(u64 flags)
6591{
6592        if (flags & BTRFS_BLOCK_GROUP_RAID10)
6593                return BTRFS_RAID_RAID10;
6594        else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6595                return BTRFS_RAID_RAID1;
6596        else if (flags & BTRFS_BLOCK_GROUP_DUP)
6597                return BTRFS_RAID_DUP;
6598        else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6599                return BTRFS_RAID_RAID0;
6600        else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6601                return BTRFS_RAID_RAID5;
6602        else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6603                return BTRFS_RAID_RAID6;
6604
6605        return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6606}
6607
6608int get_block_group_index(struct btrfs_block_group_cache *cache)
6609{
6610        return __get_raid_index(cache->flags);
6611}
6612
6613static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6614        [BTRFS_RAID_RAID10]     = "raid10",
6615        [BTRFS_RAID_RAID1]      = "raid1",
6616        [BTRFS_RAID_DUP]        = "dup",
6617        [BTRFS_RAID_RAID0]      = "raid0",
6618        [BTRFS_RAID_SINGLE]     = "single",
6619        [BTRFS_RAID_RAID5]      = "raid5",
6620        [BTRFS_RAID_RAID6]      = "raid6",
6621};
6622
6623static const char *get_raid_name(enum btrfs_raid_types type)
6624{
6625        if (type >= BTRFS_NR_RAID_TYPES)
6626                return NULL;
6627
6628        return btrfs_raid_type_names[type];
6629}
6630
6631enum btrfs_loop_type {
6632        LOOP_CACHING_NOWAIT = 0,
6633        LOOP_CACHING_WAIT = 1,
6634        LOOP_ALLOC_CHUNK = 2,
6635        LOOP_NO_EMPTY_SIZE = 3,
6636};
6637
6638static inline void
6639btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6640                       int delalloc)
6641{
6642        if (delalloc)
6643                down_read(&cache->data_rwsem);
6644}
6645
6646static inline void
6647btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6648                       int delalloc)
6649{
6650        btrfs_get_block_group(cache);
6651        if (delalloc)
6652                down_read(&cache->data_rwsem);
6653}
6654
6655static struct btrfs_block_group_cache *
6656btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6657                   struct btrfs_free_cluster *cluster,
6658                   int delalloc)
6659{
6660        struct btrfs_block_group_cache *used_bg;
6661        bool locked = false;
6662again:
6663        spin_lock(&cluster->refill_lock);
6664        if (locked) {
6665                if (used_bg == cluster->block_group)
6666                        return used_bg;
6667
6668                up_read(&used_bg->data_rwsem);
6669                btrfs_put_block_group(used_bg);
6670        }
6671
6672        used_bg = cluster->block_group;
6673        if (!used_bg)
6674                return NULL;
6675
6676        if (used_bg == block_group)
6677                return used_bg;
6678
6679        btrfs_get_block_group(used_bg);
6680
6681        if (!delalloc)
6682                return used_bg;
6683
6684        if (down_read_trylock(&used_bg->data_rwsem))
6685                return used_bg;
6686
6687        spin_unlock(&cluster->refill_lock);
6688        down_read(&used_bg->data_rwsem);
6689        locked = true;
6690        goto again;
6691}
6692
6693static inline void
6694btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6695                         int delalloc)
6696{
6697        if (delalloc)
6698                up_read(&cache->data_rwsem);
6699        btrfs_put_block_group(cache);
6700}
6701
6702/*
6703 * walks the btree of allocated extents and find a hole of a given size.
6704 * The key ins is changed to record the hole:
6705 * ins->objectid == start position
6706 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6707 * ins->offset == the size of the hole.
6708 * Any available blocks before search_start are skipped.
6709 *
6710 * If there is no suitable free space, we will record the max size of
6711 * the free space extent currently.
6712 */
6713static noinline int find_free_extent(struct btrfs_root *orig_root,
6714                                     u64 num_bytes, u64 empty_size,
6715                                     u64 hint_byte, struct btrfs_key *ins,
6716                                     u64 flags, int delalloc)
6717{
6718        int ret = 0;
6719        struct btrfs_root *root = orig_root->fs_info->extent_root;
6720        struct btrfs_free_cluster *last_ptr = NULL;
6721        struct btrfs_block_group_cache *block_group = NULL;
6722        u64 search_start = 0;
6723        u64 max_extent_size = 0;
6724        int empty_cluster = 2 * 1024 * 1024;
6725        struct btrfs_space_info *space_info;
6726        int loop = 0;
6727        int index = __get_raid_index(flags);
6728        int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6729                RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6730        bool failed_cluster_refill = false;
6731        bool failed_alloc = false;
6732        bool use_cluster = true;
6733        bool have_caching_bg = false;
6734
6735        WARN_ON(num_bytes < root->sectorsize);
6736        ins->type = BTRFS_EXTENT_ITEM_KEY;
6737        ins->objectid = 0;
6738        ins->offset = 0;
6739
6740        trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6741
6742        space_info = __find_space_info(root->fs_info, flags);
6743        if (!space_info) {
6744                btrfs_err(root->fs_info, "No space info for %llu", flags);
6745                return -ENOSPC;
6746        }
6747
6748        /*
6749         * If the space info is for both data and metadata it means we have a
6750         * small filesystem and we can't use the clustering stuff.
6751         */
6752        if (btrfs_mixed_space_info(space_info))
6753                use_cluster = false;
6754
6755        if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6756                last_ptr = &root->fs_info->meta_alloc_cluster;
6757                if (!btrfs_test_opt(root, SSD))
6758                        empty_cluster = 64 * 1024;
6759        }
6760
6761        if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6762            btrfs_test_opt(root, SSD)) {
6763                last_ptr = &root->fs_info->data_alloc_cluster;
6764        }
6765
6766        if (last_ptr) {
6767                spin_lock(&last_ptr->lock);
6768                if (last_ptr->block_group)
6769                        hint_byte = last_ptr->window_start;
6770                spin_unlock(&last_ptr->lock);
6771        }
6772
6773        search_start = max(search_start, first_logical_byte(root, 0));
6774        search_start = max(search_start, hint_byte);
6775
6776        if (!last_ptr)
6777                empty_cluster = 0;
6778
6779        if (search_start == hint_byte) {
6780                block_group = btrfs_lookup_block_group(root->fs_info,
6781                                                       search_start);
6782                /*
6783                 * we don't want to use the block group if it doesn't match our
6784                 * allocation bits, or if its not cached.
6785                 *
6786                 * However if we are re-searching with an ideal block group
6787                 * picked out then we don't care that the block group is cached.
6788                 */
6789                if (block_group && block_group_bits(block_group, flags) &&
6790                    block_group->cached != BTRFS_CACHE_NO) {
6791                        down_read(&space_info->groups_sem);
6792                        if (list_empty(&block_group->list) ||
6793                            block_group->ro) {
6794                                /*
6795                                 * someone is removing this block group,
6796                                 * we can't jump into the have_block_group
6797                                 * target because our list pointers are not
6798                                 * valid
6799                                 */
6800                                btrfs_put_block_group(block_group);
6801                                up_read(&space_info->groups_sem);
6802                        } else {
6803                                index = get_block_group_index(block_group);
6804                                btrfs_lock_block_group(block_group, delalloc);
6805                                goto have_block_group;
6806                        }
6807                } else if (block_group) {
6808                        btrfs_put_block_group(block_group);
6809                }
6810        }
6811search:
6812        have_caching_bg = false;
6813        down_read(&space_info->groups_sem);
6814        list_for_each_entry(block_group, &space_info->block_groups[index],
6815                            list) {
6816                u64 offset;
6817                int cached;
6818
6819                btrfs_grab_block_group(block_group, delalloc);
6820                search_start = block_group->key.objectid;
6821
6822                /*
6823                 * this can happen if we end up cycling through all the
6824                 * raid types, but we want to make sure we only allocate
6825                 * for the proper type.
6826                 */
6827                if (!block_group_bits(block_group, flags)) {
6828                    u64 extra = BTRFS_BLOCK_GROUP_DUP |
6829                                BTRFS_BLOCK_GROUP_RAID1 |
6830                                BTRFS_BLOCK_GROUP_RAID5 |
6831                                BTRFS_BLOCK_GROUP_RAID6 |
6832                                BTRFS_BLOCK_GROUP_RAID10;
6833
6834                        /*
6835                         * if they asked for extra copies and this block group
6836                         * doesn't provide them, bail.  This does allow us to
6837                         * fill raid0 from raid1.
6838                         */
6839                        if ((flags & extra) && !(block_group->flags & extra))
6840                                goto loop;
6841                }
6842
6843have_block_group:
6844                cached = block_group_cache_done(block_group);
6845                if (unlikely(!cached)) {
6846                        ret = cache_block_group(block_group, 0);
6847                        BUG_ON(ret < 0);
6848                        ret = 0;
6849                }
6850
6851                if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6852                        goto loop;
6853                if (unlikely(block_group->ro))
6854                        goto loop;
6855
6856                /*
6857                 * Ok we want to try and use the cluster allocator, so
6858                 * lets look there
6859                 */
6860                if (last_ptr) {
6861                        struct btrfs_block_group_cache *used_block_group;
6862                        unsigned long aligned_cluster;
6863                        /*
6864                         * the refill lock keeps out other
6865                         * people trying to start a new cluster
6866                         */
6867                        used_block_group = btrfs_lock_cluster(block_group,
6868                                                              last_ptr,
6869                                                              delalloc);
6870                        if (!used_block_group)
6871                                goto refill_cluster;
6872
6873                        if (used_block_group != block_group &&
6874                            (used_block_group->ro ||
6875                             !block_group_bits(used_block_group, flags)))
6876                                goto release_cluster;
6877
6878                        offset = btrfs_alloc_from_cluster(used_block_group,
6879                                                last_ptr,
6880                                                num_bytes,
6881                                                used_block_group->key.objectid,
6882                                                &max_extent_size);
6883                        if (offset) {
6884                                /* we have a block, we're done */
6885                                spin_unlock(&last_ptr->refill_lock);
6886                                trace_btrfs_reserve_extent_cluster(root,
6887                                                used_block_group,
6888                                                search_start, num_bytes);
6889                                if (used_block_group != block_group) {
6890                                        btrfs_release_block_group(block_group,
6891                                                                  delalloc);
6892                                        block_group = used_block_group;
6893                                }
6894                                goto checks;
6895                        }
6896
6897                        WARN_ON(last_ptr->block_group != used_block_group);
6898release_cluster:
6899                        /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6900                         * set up a new clusters, so lets just skip it
6901                         * and let the allocator find whatever block
6902                         * it can find.  If we reach this point, we
6903                         * will have tried the cluster allocator
6904                         * plenty of times and not have found
6905                         * anything, so we are likely way too
6906                         * fragmented for the clustering stuff to find
6907                         * anything.
6908                         *
6909                         * However, if the cluster is taken from the
6910                         * current block group, release the cluster
6911                         * first, so that we stand a better chance of
6912                         * succeeding in the unclustered
6913                         * allocation.  */
6914                        if (loop >= LOOP_NO_EMPTY_SIZE &&
6915                            used_block_group != block_group) {
6916                                spin_unlock(&last_ptr->refill_lock);
6917                                btrfs_release_block_group(used_block_group,
6918                                                          delalloc);
6919                                goto unclustered_alloc;
6920                        }
6921
6922                        /*
6923                         * this cluster didn't work out, free it and
6924                         * start over
6925                         */
6926                        btrfs_return_cluster_to_free_space(NULL, last_ptr);
6927
6928                        if (used_block_group != block_group)
6929                                btrfs_release_block_group(used_block_group,
6930                                                          delalloc);
6931refill_cluster:
6932                        if (loop >= LOOP_NO_EMPTY_SIZE) {
6933                                spin_unlock(&last_ptr->refill_lock);
6934                                goto unclustered_alloc;
6935                        }
6936
6937                        aligned_cluster = max_t(unsigned long,
6938                                                empty_cluster + empty_size,
6939                                              block_group->full_stripe_len);
6940
6941                        /* allocate a cluster in this block group */
6942                        ret = btrfs_find_space_cluster(root, block_group,
6943                                                       last_ptr, search_start,
6944                                                       num_bytes,
6945                                                       aligned_cluster);
6946                        if (ret == 0) {
6947                                /*
6948                                 * now pull our allocation out of this
6949                                 * cluster
6950                                 */
6951                                offset = btrfs_alloc_from_cluster(block_group,
6952                                                        last_ptr,
6953                                                        num_bytes,
6954                                                        search_start,
6955                                                        &max_extent_size);
6956                                if (offset) {
6957                                        /* we found one, proceed */
6958                                        spin_unlock(&last_ptr->refill_lock);
6959                                        trace_btrfs_reserve_extent_cluster(root,
6960                                                block_group, search_start,
6961                                                num_bytes);
6962                                        goto checks;
6963                                }
6964                        } else if (!cached && loop > LOOP_CACHING_NOWAIT
6965                                   && !failed_cluster_refill) {
6966                                spin_unlock(&last_ptr->refill_lock);
6967
6968                                failed_cluster_refill = true;
6969                                wait_block_group_cache_progress(block_group,
6970                                       num_bytes + empty_cluster + empty_size);
6971                                goto have_block_group;
6972                        }
6973
6974                        /*
6975                         * at this point we either didn't find a cluster
6976                         * or we weren't able to allocate a block from our
6977                         * cluster.  Free the cluster we've been trying
6978                         * to use, and go to the next block group
6979                         */
6980                        btrfs_return_cluster_to_free_space(NULL, last_ptr);
6981                        spin_unlock(&last_ptr->refill_lock);
6982                        goto loop;
6983                }
6984
6985unclustered_alloc:
6986                spin_lock(&block_group->free_space_ctl->tree_lock);
6987                if (cached &&
6988                    block_group->free_space_ctl->free_space <
6989                    num_bytes + empty_cluster + empty_size) {
6990                        if (block_group->free_space_ctl->free_space >
6991                            max_extent_size)
6992                                max_extent_size =
6993                                        block_group->free_space_ctl->free_space;
6994                        spin_unlock(&block_group->free_space_ctl->tree_lock);
6995                        goto loop;
6996                }
6997                spin_unlock(&block_group->free_space_ctl->tree_lock);
6998
6999                offset = btrfs_find_space_for_alloc(block_group, search_start,
7000                                                    num_bytes, empty_size,
7001                                                    &max_extent_size);
7002                /*
7003                 * If we didn't find a chunk, and we haven't failed on this
7004                 * block group before, and this block group is in the middle of
7005                 * caching and we are ok with waiting, then go ahead and wait
7006                 * for progress to be made, and set failed_alloc to true.
7007                 *
7008                 * If failed_alloc is true then we've already waited on this
7009                 * block group once and should move on to the next block group.
7010                 */
7011                if (!offset && !failed_alloc && !cached &&
7012                    loop > LOOP_CACHING_NOWAIT) {
7013                        wait_block_group_cache_progress(block_group,
7014                                                num_bytes + empty_size);
7015                        failed_alloc = true;
7016                        goto have_block_group;
7017                } else if (!offset) {
7018                        if (!cached)
7019                                have_caching_bg = true;
7020                        goto loop;
7021                }
7022checks:
7023                search_start = ALIGN(offset, root->stripesize);
7024
7025                /* move on to the next group */
7026                if (search_start + num_bytes >
7027                    block_group->key.objectid + block_group->key.offset) {
7028                        btrfs_add_free_space(block_group, offset, num_bytes);
7029                        goto loop;
7030                }
7031
7032                if (offset < search_start)
7033                        btrfs_add_free_space(block_group, offset,
7034                                             search_start - offset);
7035                BUG_ON(offset > search_start);
7036
7037                ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7038                                                  alloc_type, delalloc);
7039                if (ret == -EAGAIN) {
7040                        btrfs_add_free_space(block_group, offset, num_bytes);
7041                        goto loop;
7042                }
7043
7044                /* we are all good, lets return */
7045                ins->objectid = search_start;
7046                ins->offset = num_bytes;
7047
7048                trace_btrfs_reserve_extent(orig_root, block_group,
7049                                           search_start, num_bytes);
7050                btrfs_release_block_group(block_group, delalloc);
7051                break;
7052loop:
7053                failed_cluster_refill = false;
7054                failed_alloc = false;
7055                BUG_ON(index != get_block_group_index(block_group));
7056                btrfs_release_block_group(block_group, delalloc);
7057        }
7058        up_read(&space_info->groups_sem);
7059
7060        if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7061                goto search;
7062
7063        if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7064                goto search;
7065
7066        /*
7067         * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7068         *                      caching kthreads as we move along
7069         * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7070         * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7071         * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7072         *                      again
7073         */
7074        if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7075                index = 0;
7076                loop++;
7077                if (loop == LOOP_ALLOC_CHUNK) {
7078                        struct btrfs_trans_handle *trans;
7079                        int exist = 0;
7080
7081                        trans = current->journal_info;
7082                        if (trans)
7083                                exist = 1;
7084                        else
7085                                trans = btrfs_join_transaction(root);
7086
7087                        if (IS_ERR(trans)) {
7088                                ret = PTR_ERR(trans);
7089                                goto out;
7090                        }
7091
7092                        ret = do_chunk_alloc(trans, root, flags,
7093                                             CHUNK_ALLOC_FORCE);
7094                        /*
7095                         * Do not bail out on ENOSPC since we
7096                         * can do more things.
7097                         */
7098                        if (ret < 0 && ret != -ENOSPC)
7099                                btrfs_abort_transaction(trans,
7100                                                        root, ret);
7101                        else
7102                                ret = 0;
7103                        if (!exist)
7104                                btrfs_end_transaction(trans, root);
7105                        if (ret)
7106                                goto out;
7107                }
7108
7109                if (loop == LOOP_NO_EMPTY_SIZE) {
7110                        empty_size = 0;
7111                        empty_cluster = 0;
7112                }
7113
7114                goto search;
7115        } else if (!ins->objectid) {
7116                ret = -ENOSPC;
7117        } else if (ins->objectid) {
7118                ret = 0;
7119        }
7120out:
7121        if (ret == -ENOSPC)
7122                ins->offset = max_extent_size;
7123        return ret;
7124}
7125
7126static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7127                            int dump_block_groups)
7128{
7129        struct btrfs_block_group_cache *cache;
7130        int index = 0;
7131
7132        spin_lock(&info->lock);
7133        printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7134               info->flags,
7135               info->total_bytes - info->bytes_used - info->bytes_pinned -
7136               info->bytes_reserved - info->bytes_readonly,
7137               (info->full) ? "" : "not ");
7138        printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7139               "reserved=%llu, may_use=%llu, readonly=%llu\n",
7140               info->total_bytes, info->bytes_used, info->bytes_pinned,
7141               info->bytes_reserved, info->bytes_may_use,
7142               info->bytes_readonly);
7143        spin_unlock(&info->lock);
7144
7145        if (!dump_block_groups)
7146                return;
7147
7148        down_read(&info->groups_sem);
7149again:
7150        list_for_each_entry(cache, &info->block_groups[index], list) {
7151                spin_lock(&cache->lock);
7152                printk(KERN_INFO "BTRFS: "
7153                           "block group %llu has %llu bytes, "
7154                           "%llu used %llu pinned %llu reserved %s\n",
7155                       cache->key.objectid, cache->key.offset,
7156                       btrfs_block_group_used(&cache->item), cache->pinned,
7157                       cache->reserved, cache->ro ? "[readonly]" : "");
7158                btrfs_dump_free_space(cache, bytes);
7159                spin_unlock(&cache->lock);
7160        }
7161        if (++index < BTRFS_NR_RAID_TYPES)
7162                goto again;
7163        up_read(&info->groups_sem);
7164}
7165
7166int btrfs_reserve_extent(struct btrfs_root *root,
7167                         u64 num_bytes, u64 min_alloc_size,
7168                         u64 empty_size, u64 hint_byte,
7169                         struct btrfs_key *ins, int is_data, int delalloc)
7170{
7171        bool final_tried = false;
7172        u64 flags;
7173        int ret;
7174
7175        flags = btrfs_get_alloc_profile(root, is_data);
7176again:
7177        WARN_ON(num_bytes < root->sectorsize);
7178        ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7179                               flags, delalloc);
7180
7181        if (ret == -ENOSPC) {
7182                if (!final_tried && ins->offset) {
7183                        num_bytes = min(num_bytes >> 1, ins->offset);
7184                        num_bytes = round_down(num_bytes, root->sectorsize);
7185                        num_bytes = max(num_bytes, min_alloc_size);
7186                        if (num_bytes == min_alloc_size)
7187                                final_tried = true;
7188                        goto again;
7189                } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7190                        struct btrfs_space_info *sinfo;
7191
7192                        sinfo = __find_space_info(root->fs_info, flags);
7193                        btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7194                                flags, num_bytes);
7195                        if (sinfo)
7196                                dump_space_info(sinfo, num_bytes, 1);
7197                }
7198        }
7199
7200        return ret;
7201}
7202
7203static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7204                                        u64 start, u64 len,
7205                                        int pin, int delalloc)
7206{
7207        struct btrfs_block_group_cache *cache;
7208        int ret = 0;
7209
7210        cache = btrfs_lookup_block_group(root->fs_info, start);
7211        if (!cache) {
7212                btrfs_err(root->fs_info, "Unable to find block group for %llu",
7213                        start);
7214                return -ENOSPC;
7215        }
7216
7217        if (pin)
7218                pin_down_extent(root, cache, start, len, 1);
7219        else {
7220                if (btrfs_test_opt(root, DISCARD))
7221                        ret = btrfs_discard_extent(root, start, len, NULL);
7222                btrfs_add_free_space(cache, start, len);
7223                btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7224        }
7225
7226        btrfs_put_block_group(cache);
7227
7228        trace_btrfs_reserved_extent_free(root, start, len);
7229
7230        return ret;
7231}
7232
7233int btrfs_free_reserved_extent(struct btrfs_root *root,
7234                               u64 start, u64 len, int delalloc)
7235{
7236        return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7237}
7238
7239int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7240                                       u64 start, u64 len)
7241{
7242        return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7243}
7244
7245static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7246                                      struct btrfs_root *root,
7247                                      u64 parent, u64 root_objectid,
7248                                      u64 flags, u64 owner, u64 offset,
7249                                      struct btrfs_key *ins, int ref_mod)
7250{
7251        int ret;
7252        struct btrfs_fs_info *fs_info = root->fs_info;
7253        struct btrfs_extent_item *extent_item;
7254        struct btrfs_extent_inline_ref *iref;
7255        struct btrfs_path *path;
7256        struct extent_buffer *leaf;
7257        int type;
7258        u32 size;
7259
7260        if (parent > 0)
7261                type = BTRFS_SHARED_DATA_REF_KEY;
7262        else
7263                type = BTRFS_EXTENT_DATA_REF_KEY;
7264
7265        size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7266
7267        path = btrfs_alloc_path();
7268        if (!path)
7269                return -ENOMEM;
7270
7271        path->leave_spinning = 1;
7272        ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7273                                      ins, size);
7274        if (ret) {
7275                btrfs_free_path(path);
7276                return ret;
7277        }
7278
7279        leaf = path->nodes[0];
7280        extent_item = btrfs_item_ptr(leaf, path->slots[0],
7281                                     struct btrfs_extent_item);
7282        btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7283        btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7284        btrfs_set_extent_flags(leaf, extent_item,
7285                               flags | BTRFS_EXTENT_FLAG_DATA);
7286
7287        iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7288        btrfs_set_extent_inline_ref_type(leaf, iref, type);
7289        if (parent > 0) {
7290                struct btrfs_shared_data_ref *ref;
7291                ref = (struct btrfs_shared_data_ref *)(iref + 1);
7292                btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7293                btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7294        } else {
7295                struct btrfs_extent_data_ref *ref;
7296                ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7297                btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7298                btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7299                btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7300                btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7301        }
7302
7303        btrfs_mark_buffer_dirty(path->nodes[0]);
7304        btrfs_free_path(path);
7305
7306        /* Always set parent to 0 here since its exclusive anyway. */
7307        ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7308                                      ins->objectid, ins->offset,
7309                                      BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7310        if (ret)
7311                return ret;
7312
7313        ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7314        if (ret) { /* -ENOENT, logic error */
7315                btrfs_err(fs_info, "update block group failed for %llu %llu",
7316                        ins->objectid, ins->offset);
7317                BUG();
7318        }
7319        trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7320        return ret;
7321}
7322
7323static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7324                                     struct btrfs_root *root,
7325                                     u64 parent, u64 root_objectid,
7326                                     u64 flags, struct btrfs_disk_key *key,
7327                                     int level, struct btrfs_key *ins,
7328                                     int no_quota)
7329{
7330        int ret;
7331        struct btrfs_fs_info *fs_info = root->fs_info;
7332        struct btrfs_extent_item *extent_item;
7333        struct btrfs_tree_block_info *block_info;
7334        struct btrfs_extent_inline_ref *iref;
7335        struct btrfs_path *path;
7336        struct extent_buffer *leaf;
7337        u32 size = sizeof(*extent_item) + sizeof(*iref);
7338        u64 num_bytes = ins->offset;
7339        bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7340                                                 SKINNY_METADATA);
7341
7342        if (!skinny_metadata)
7343                size += sizeof(*block_info);
7344
7345        path = btrfs_alloc_path();
7346        if (!path) {
7347                btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7348                                                   root->nodesize);
7349                return -ENOMEM;
7350        }
7351
7352        path->leave_spinning = 1;
7353        ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7354                                      ins, size);
7355        if (ret) {
7356                btrfs_free_path(path);
7357                btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7358                                                   root->nodesize);
7359                return ret;
7360        }
7361
7362        leaf = path->nodes[0];
7363        extent_item = btrfs_item_ptr(leaf, path->slots[0],
7364                                     struct btrfs_extent_item);
7365        btrfs_set_extent_refs(leaf, extent_item, 1);
7366        btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7367        btrfs_set_extent_flags(leaf, extent_item,
7368                               flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7369
7370        if (skinny_metadata) {
7371                iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7372                num_bytes = root->nodesize;
7373        } else {
7374                block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7375                btrfs_set_tree_block_key(leaf, block_info, key);
7376                btrfs_set_tree_block_level(leaf, block_info, level);
7377                iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7378        }
7379
7380        if (parent > 0) {
7381                BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7382                btrfs_set_extent_inline_ref_type(leaf, iref,
7383                                                 BTRFS_SHARED_BLOCK_REF_KEY);
7384                btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7385        } else {
7386                btrfs_set_extent_inline_ref_type(leaf, iref,
7387                                                 BTRFS_TREE_BLOCK_REF_KEY);
7388                btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7389        }
7390
7391        btrfs_mark_buffer_dirty(leaf);
7392        btrfs_free_path(path);
7393
7394        if (!no_quota) {
7395                ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7396                                              ins->objectid, num_bytes,
7397                                              BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7398                if (ret)
7399                        return ret;
7400        }
7401
7402        ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7403                                 1);
7404        if (ret) { /* -ENOENT, logic error */
7405                btrfs_err(fs_info, "update block group failed for %llu %llu",
7406                        ins->objectid, ins->offset);
7407                BUG();
7408        }
7409
7410        trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7411        return ret;
7412}
7413
7414int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7415                                     struct btrfs_root *root,
7416                                     u64 root_objectid, u64 owner,
7417                                     u64 offset, struct btrfs_key *ins)
7418{
7419        int ret;
7420
7421        BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7422
7423        ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7424                                         ins->offset, 0,
7425                                         root_objectid, owner, offset,
7426                                         BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7427        return ret;
7428}
7429
7430/*
7431 * this is used by the tree logging recovery code.  It records that
7432 * an extent has been allocated and makes sure to clear the free
7433 * space cache bits as well
7434 */
7435int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7436                                   struct btrfs_root *root,
7437                                   u64 root_objectid, u64 owner, u64 offset,
7438                                   struct btrfs_key *ins)
7439{
7440        int ret;
7441        struct btrfs_block_group_cache *block_group;
7442
7443        /*
7444         * Mixed block groups will exclude before processing the log so we only
7445         * need to do the exlude dance if this fs isn't mixed.
7446         */
7447        if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7448                ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7449                if (ret)
7450                        return ret;
7451        }
7452
7453        block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7454        if (!block_group)
7455                return -EINVAL;
7456
7457        ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7458                                          RESERVE_ALLOC_NO_ACCOUNT, 0);
7459        BUG_ON(ret); /* logic error */
7460        ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7461                                         0, owner, offset, ins, 1);
7462        btrfs_put_block_group(block_group);
7463        return ret;
7464}
7465
7466static struct extent_buffer *
7467btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7468                      u64 bytenr, int level)
7469{
7470        struct extent_buffer *buf;
7471
7472        buf = btrfs_find_create_tree_block(root, bytenr);
7473        if (!buf)
7474                return ERR_PTR(-ENOMEM);
7475        btrfs_set_header_generation(buf, trans->transid);
7476        btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7477        btrfs_tree_lock(buf);
7478        clean_tree_block(trans, root->fs_info, buf);
7479        clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7480
7481        btrfs_set_lock_blocking(buf);
7482        btrfs_set_buffer_uptodate(buf);
7483
7484        if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7485                buf->log_index = root->log_transid % 2;
7486                /*
7487                 * we allow two log transactions at a time, use different
7488                 * EXENT bit to differentiate dirty pages.
7489                 */
7490                if (buf->log_index == 0)
7491                        set_extent_dirty(&root->dirty_log_pages, buf->start,
7492                                        buf->start + buf->len - 1, GFP_NOFS);
7493                else
7494                        set_extent_new(&root->dirty_log_pages, buf->start,
7495                                        buf->start + buf->len - 1, GFP_NOFS);
7496        } else {
7497                buf->log_index = -1;
7498                set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7499                         buf->start + buf->len - 1, GFP_NOFS);
7500        }
7501        trans->blocks_used++;
7502        /* this returns a buffer locked for blocking */
7503        return buf;
7504}
7505
7506static struct btrfs_block_rsv *
7507use_block_rsv(struct btrfs_trans_handle *trans,
7508              struct btrfs_root *root, u32 blocksize)
7509{
7510        struct btrfs_block_rsv *block_rsv;
7511        struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7512        int ret;
7513        bool global_updated = false;
7514
7515        block_rsv = get_block_rsv(trans, root);
7516
7517        if (unlikely(block_rsv->size == 0))
7518                goto try_reserve;
7519again:
7520        ret = block_rsv_use_bytes(block_rsv, blocksize);
7521        if (!ret)
7522                return block_rsv;
7523
7524        if (block_rsv->failfast)
7525                return ERR_PTR(ret);
7526
7527        if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7528                global_updated = true;
7529                update_global_block_rsv(root->fs_info);
7530                goto again;
7531        }
7532
7533        if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7534                static DEFINE_RATELIMIT_STATE(_rs,
7535                                DEFAULT_RATELIMIT_INTERVAL * 10,
7536                                /*DEFAULT_RATELIMIT_BURST*/ 1);
7537                if (__ratelimit(&_rs))
7538                        WARN(1, KERN_DEBUG
7539                                "BTRFS: block rsv returned %d\n", ret);
7540        }
7541try_reserve:
7542        ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7543                                     BTRFS_RESERVE_NO_FLUSH);
7544        if (!ret)
7545                return block_rsv;
7546        /*
7547         * If we couldn't reserve metadata bytes try and use some from
7548         * the global reserve if its space type is the same as the global
7549         * reservation.
7550         */
7551        if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7552            block_rsv->space_info == global_rsv->space_info) {
7553                ret = block_rsv_use_bytes(global_rsv, blocksize);
7554                if (!ret)
7555                        return global_rsv;
7556        }
7557        return ERR_PTR(ret);
7558}
7559
7560static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7561                            struct btrfs_block_rsv *block_rsv, u32 blocksize)
7562{
7563        block_rsv_add_bytes(block_rsv, blocksize, 0);
7564        block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7565}
7566
7567/*
7568 * finds a free extent and does all the dirty work required for allocation
7569 * returns the key for the extent through ins, and a tree buffer for
7570 * the first block of the extent through buf.
7571 *
7572 * returns the tree buffer or an ERR_PTR on error.
7573 */
7574struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7575                                        struct btrfs_root *root,
7576                                        u64 parent, u64 root_objectid,
7577                                        struct btrfs_disk_key *key, int level,
7578                                        u64 hint, u64 empty_size)
7579{
7580        struct btrfs_key ins;
7581        struct btrfs_block_rsv *block_rsv;
7582        struct extent_buffer *buf;
7583        struct btrfs_delayed_extent_op *extent_op;
7584        u64 flags = 0;
7585        int ret;
7586        u32 blocksize = root->nodesize;
7587        bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7588                                                 SKINNY_METADATA);
7589
7590        if (btrfs_test_is_dummy_root(root)) {
7591                buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7592                                            level);
7593                if (!IS_ERR(buf))
7594                        root->alloc_bytenr += blocksize;
7595                return buf;
7596        }
7597
7598        block_rsv = use_block_rsv(trans, root, blocksize);
7599        if (IS_ERR(block_rsv))
7600                return ERR_CAST(block_rsv);
7601
7602        ret = btrfs_reserve_extent(root, blocksize, blocksize,
7603                                   empty_size, hint, &ins, 0, 0);
7604        if (ret)
7605                goto out_unuse;
7606
7607        buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7608        if (IS_ERR(buf)) {
7609                ret = PTR_ERR(buf);
7610                goto out_free_reserved;
7611        }
7612
7613        if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7614                if (parent == 0)
7615                        parent = ins.objectid;
7616                flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7617        } else
7618                BUG_ON(parent > 0);
7619
7620        if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7621                extent_op = btrfs_alloc_delayed_extent_op();
7622                if (!extent_op) {
7623                        ret = -ENOMEM;
7624                        goto out_free_buf;
7625                }
7626                if (key)
7627                        memcpy(&extent_op->key, key, sizeof(extent_op->key));
7628                else
7629                        memset(&extent_op->key, 0, sizeof(extent_op->key));
7630                extent_op->flags_to_set = flags;
7631                if (skinny_metadata)
7632                        extent_op->update_key = 0;
7633                else
7634                        extent_op->update_key = 1;
7635                extent_op->update_flags = 1;
7636                extent_op->is_data = 0;
7637                extent_op->level = level;
7638
7639                ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7640                                                 ins.objectid, ins.offset,
7641                                                 parent, root_objectid, level,
7642                                                 BTRFS_ADD_DELAYED_EXTENT,
7643                                                 extent_op, 0);
7644                if (ret)
7645                        goto out_free_delayed;
7646        }
7647        return buf;
7648
7649out_free_delayed:
7650        btrfs_free_delayed_extent_op(extent_op);
7651out_free_buf:
7652        free_extent_buffer(buf);
7653out_free_reserved:
7654        btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7655out_unuse:
7656        unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7657        return ERR_PTR(ret);
7658}
7659
7660struct walk_control {
7661        u64 refs[BTRFS_MAX_LEVEL];
7662        u64 flags[BTRFS_MAX_LEVEL];
7663        struct btrfs_key update_progress;
7664        int stage;
7665        int level;
7666        int shared_level;
7667        int update_ref;
7668        int keep_locks;
7669        int reada_slot;
7670        int reada_count;
7671        int for_reloc;
7672};
7673
7674#define DROP_REFERENCE  1
7675#define UPDATE_BACKREF  2
7676
7677static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7678                                     struct btrfs_root *root,
7679                                     struct walk_control *wc,
7680                                     struct btrfs_path *path)
7681{
7682        u64 bytenr;
7683        u64 generation;
7684        u64 refs;
7685        u64 flags;
7686        u32 nritems;
7687        u32 blocksize;
7688        struct btrfs_key key;
7689        struct extent_buffer *eb;
7690        int ret;
7691        int slot;
7692        int nread = 0;
7693
7694        if (path->slots[wc->level] < wc->reada_slot) {
7695                wc->reada_count = wc->reada_count * 2 / 3;
7696                wc->reada_count = max(wc->reada_count, 2);
7697        } else {
7698                wc->reada_count = wc->reada_count * 3 / 2;
7699                wc->reada_count = min_t(int, wc->reada_count,
7700                                        BTRFS_NODEPTRS_PER_BLOCK(root));
7701        }
7702
7703        eb = path->nodes[wc->level];
7704        nritems = btrfs_header_nritems(eb);
7705        blocksize = root->nodesize;
7706
7707        for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7708                if (nread >= wc->reada_count)
7709                        break;
7710
7711                cond_resched();
7712                bytenr = btrfs_node_blockptr(eb, slot);
7713                generation = btrfs_node_ptr_generation(eb, slot);
7714
7715                if (slot == path->slots[wc->level])
7716                        goto reada;
7717
7718                if (wc->stage == UPDATE_BACKREF &&
7719                    generation <= root->root_key.offset)
7720                        continue;
7721
7722                /* We don't lock the tree block, it's OK to be racy here */
7723                ret = btrfs_lookup_extent_info(trans, root, bytenr,
7724                                               wc->level - 1, 1, &refs,
7725                                               &flags);
7726                /* We don't care about errors in readahead. */
7727                if (ret < 0)
7728                        continue;
7729                BUG_ON(refs == 0);
7730
7731                if (wc->stage == DROP_REFERENCE) {
7732                        if (refs == 1)
7733                                goto reada;
7734
7735                        if (wc->level == 1 &&
7736                            (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7737                                continue;
7738                        if (!wc->update_ref ||
7739                            generation <= root->root_key.offset)
7740                                continue;
7741                        btrfs_node_key_to_cpu(eb, &key, slot);
7742                        ret = btrfs_comp_cpu_keys(&key,
7743                                                  &wc->update_progress);
7744                        if (ret < 0)
7745                                continue;
7746                } else {
7747                        if (wc->level == 1 &&
7748                            (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7749                                continue;
7750                }
7751reada:
7752                readahead_tree_block(root, bytenr);
7753                nread++;
7754        }
7755        wc->reada_slot = slot;
7756}
7757
7758static int account_leaf_items(struct btrfs_trans_handle *trans,
7759                              struct btrfs_root *root,
7760                              struct extent_buffer *eb)
7761{
7762        int nr = btrfs_header_nritems(eb);
7763        int i, extent_type, ret;
7764        struct btrfs_key key;
7765        struct btrfs_file_extent_item *fi;
7766        u64 bytenr, num_bytes;
7767
7768        for (i = 0; i < nr; i++) {
7769                btrfs_item_key_to_cpu(eb, &key, i);
7770
7771                if (key.type != BTRFS_EXTENT_DATA_KEY)
7772                        continue;
7773
7774                fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7775                /* filter out non qgroup-accountable extents  */
7776                extent_type = btrfs_file_extent_type(eb, fi);
7777
7778                if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7779                        continue;
7780
7781                bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7782                if (!bytenr)
7783                        continue;
7784
7785                num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7786
7787                ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7788                                              root->objectid,
7789                                              bytenr, num_bytes,
7790                                              BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7791                if (ret)
7792                        return ret;
7793        }
7794        return 0;
7795}
7796
7797/*
7798 * Walk up the tree from the bottom, freeing leaves and any interior
7799 * nodes which have had all slots visited. If a node (leaf or
7800 * interior) is freed, the node above it will have it's slot
7801 * incremented. The root node will never be freed.
7802 *
7803 * At the end of this function, we should have a path which has all
7804 * slots incremented to the next position for a search. If we need to
7805 * read a new node it will be NULL and the node above it will have the
7806 * correct slot selected for a later read.
7807 *
7808 * If we increment the root nodes slot counter past the number of
7809 * elements, 1 is returned to signal completion of the search.
7810 */
7811static int adjust_slots_upwards(struct btrfs_root *root,
7812                                struct btrfs_path *path, int root_level)
7813{
7814        int level = 0;
7815        int nr, slot;
7816        struct extent_buffer *eb;
7817
7818        if (root_level == 0)
7819                return 1;
7820
7821        while (level <= root_level) {
7822                eb = path->nodes[level];
7823                nr = btrfs_header_nritems(eb);
7824                path->slots[level]++;
7825                slot = path->slots[level];
7826                if (slot >= nr || level == 0) {
7827                        /*
7828                         * Don't free the root -  we will detect this
7829                         * condition after our loop and return a
7830                         * positive value for caller to stop walking the tree.
7831                         */
7832                        if (level != root_level) {
7833                                btrfs_tree_unlock_rw(eb, path->locks[level]);
7834                                path->locks[level] = 0;
7835
7836                                free_extent_buffer(eb);
7837                                path->nodes[level] = NULL;
7838                                path->slots[level] = 0;
7839                        }
7840                } else {
7841                        /*
7842                         * We have a valid slot to walk back down
7843                         * from. Stop here so caller can process these
7844                         * new nodes.
7845                         */
7846                        break;
7847                }
7848
7849                level++;
7850        }
7851
7852        eb = path->nodes[root_level];
7853        if (path->slots[root_level] >= btrfs_header_nritems(eb))
7854                return 1;
7855
7856        return 0;
7857}
7858
7859/*
7860 * root_eb is the subtree root and is locked before this function is called.
7861 */
7862static int account_shared_subtree(struct btrfs_trans_handle *trans,
7863                                  struct btrfs_root *root,
7864                                  struct extent_buffer *root_eb,
7865                                  u64 root_gen,
7866                                  int root_level)
7867{
7868        int ret = 0;
7869        int level;
7870        struct extent_buffer *eb = root_eb;
7871        struct btrfs_path *path = NULL;
7872
7873        BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7874        BUG_ON(root_eb == NULL);
7875
7876        if (!root->fs_info->quota_enabled)
7877                return 0;
7878
7879        if (!extent_buffer_uptodate(root_eb)) {
7880                ret = btrfs_read_buffer(root_eb, root_gen);
7881                if (ret)
7882                        goto out;
7883        }
7884
7885        if (root_level == 0) {
7886                ret = account_leaf_items(trans, root, root_eb);
7887                goto out;
7888        }
7889
7890        path = btrfs_alloc_path();
7891        if (!path)
7892                return -ENOMEM;
7893
7894        /*
7895         * Walk down the tree.  Missing extent blocks are filled in as
7896         * we go. Metadata is accounted every time we read a new
7897         * extent block.
7898         *
7899         * When we reach a leaf, we account for file extent items in it,
7900         * walk back up the tree (adjusting slot pointers as we go)
7901         * and restart the search process.
7902         */
7903        extent_buffer_get(root_eb); /* For path */
7904        path->nodes[root_level] = root_eb;
7905        path->slots[root_level] = 0;
7906        path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7907walk_down:
7908        level = root_level;
7909        while (level >= 0) {
7910                if (path->nodes[level] == NULL) {
7911                        int parent_slot;
7912                        u64 child_gen;
7913                        u64 child_bytenr;
7914
7915                        /* We need to get child blockptr/gen from
7916                         * parent before we can read it. */
7917                        eb = path->nodes[level + 1];
7918                        parent_slot = path->slots[level + 1];
7919                        child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7920                        child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7921
7922                        eb = read_tree_block(root, child_bytenr, child_gen);
7923                        if (!eb || !extent_buffer_uptodate(eb)) {
7924                                ret = -EIO;
7925                                goto out;
7926                        }
7927
7928                        path->nodes[level] = eb;
7929                        path->slots[level] = 0;
7930
7931                        btrfs_tree_read_lock(eb);
7932                        btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7933                        path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7934
7935                        ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7936                                                root->objectid,
7937                                                child_bytenr,
7938                                                root->nodesize,
7939                                                BTRFS_QGROUP_OPER_SUB_SUBTREE,
7940                                                0);
7941                        if (ret)
7942                                goto out;
7943
7944                }
7945
7946                if (level == 0) {
7947                        ret = account_leaf_items(trans, root, path->nodes[level]);
7948                        if (ret)
7949                                goto out;
7950
7951                        /* Nonzero return here means we completed our search */
7952                        ret = adjust_slots_upwards(root, path, root_level);
7953                        if (ret)
7954                                break;
7955
7956                        /* Restart search with new slots */
7957                        goto walk_down;
7958                }
7959
7960                level--;
7961        }
7962
7963        ret = 0;
7964out:
7965        btrfs_free_path(path);
7966
7967        return ret;
7968}
7969
7970/*
7971 * helper to process tree block while walking down the tree.
7972 *
7973 * when wc->stage == UPDATE_BACKREF, this function updates
7974 * back refs for pointers in the block.
7975 *
7976 * NOTE: return value 1 means we should stop walking down.
7977 */
7978static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7979                                   struct btrfs_root *root,
7980                                   struct btrfs_path *path,
7981                                   struct walk_control *wc, int lookup_info)
7982{
7983        int level = wc->level;
7984        struct extent_buffer *eb = path->nodes[level];
7985        u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7986        int ret;
7987
7988        if (wc->stage == UPDATE_BACKREF &&
7989            btrfs_header_owner(eb) != root->root_key.objectid)
7990                return 1;
7991
7992        /*
7993         * when reference count of tree block is 1, it won't increase
7994         * again. once full backref flag is set, we never clear it.
7995         */
7996        if (lookup_info &&
7997            ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7998             (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7999                BUG_ON(!path->locks[level]);
8000                ret = btrfs_lookup_extent_info(trans, root,
8001                                               eb->start, level, 1,
8002                                               &wc->refs[level],
8003                                               &wc->flags[level]);
8004                BUG_ON(ret == -ENOMEM);
8005                if (ret)
8006                        return ret;
8007                BUG_ON(wc->refs[level] == 0);
8008        }
8009
8010        if (wc->stage == DROP_REFERENCE) {
8011                if (wc->refs[level] > 1)
8012                        return 1;
8013
8014                if (path->locks[level] && !wc->keep_locks) {
8015                        btrfs_tree_unlock_rw(eb, path->locks[level]);
8016                        path->locks[level] = 0;
8017                }
8018                return 0;
8019        }
8020
8021        /* wc->stage == UPDATE_BACKREF */
8022        if (!(wc->flags[level] & flag)) {
8023                BUG_ON(!path->locks[level]);
8024                ret = btrfs_inc_ref(trans, root, eb, 1);
8025                BUG_ON(ret); /* -ENOMEM */
8026                ret = btrfs_dec_ref(trans, root, eb, 0);
8027                BUG_ON(ret); /* -ENOMEM */
8028                ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8029                                                  eb->len, flag,
8030                                                  btrfs_header_level(eb), 0);
8031                BUG_ON(ret); /* -ENOMEM */
8032                wc->flags[level] |= flag;
8033        }
8034
8035        /*
8036         * the block is shared by multiple trees, so it's not good to
8037         * keep the tree lock
8038         */
8039        if (path->locks[level] && level > 0) {
8040                btrfs_tree_unlock_rw(eb, path->locks[level]);
8041                path->locks[level] = 0;
8042        }
8043        return 0;
8044}
8045
8046/*
8047 * helper to process tree block pointer.
8048 *
8049 * when wc->stage == DROP_REFERENCE, this function checks
8050 * reference count of the block pointed to. if the block
8051 * is shared and we need update back refs for the subtree
8052 * rooted at the block, this function changes wc->stage to
8053 * UPDATE_BACKREF. if the block is shared and there is no
8054 * need to update back, this function drops the reference
8055 * to the block.
8056 *
8057 * NOTE: return value 1 means we should stop walking down.
8058 */
8059static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8060                                 struct btrfs_root *root,
8061                                 struct btrfs_path *path,
8062                                 struct walk_control *wc, int *lookup_info)
8063{
8064        u64 bytenr;
8065        u64 generation;
8066        u64 parent;
8067        u32 blocksize;
8068        struct btrfs_key key;
8069        struct extent_buffer *next;
8070        int level = wc->level;
8071        int reada = 0;
8072        int ret = 0;
8073        bool need_account = false;
8074
8075        generation = btrfs_node_ptr_generation(path->nodes[level],
8076                                               path->slots[level]);
8077        /*
8078         * if the lower level block was created before the snapshot
8079         * was created, we know there is no need to update back refs
8080         * for the subtree
8081         */
8082        if (wc->stage == UPDATE_BACKREF &&
8083            generation <= root->root_key.offset) {
8084                *lookup_info = 1;
8085                return 1;
8086        }
8087
8088        bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8089        blocksize = root->nodesize;
8090
8091        next = btrfs_find_tree_block(root->fs_info, bytenr);
8092        if (!next) {
8093                next = btrfs_find_create_tree_block(root, bytenr);
8094                if (!next)
8095                        return -ENOMEM;
8096                btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8097                                               level - 1);
8098                reada = 1;
8099        }
8100        btrfs_tree_lock(next);
8101        btrfs_set_lock_blocking(next);
8102
8103        ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8104                                       &wc->refs[level - 1],
8105                                       &wc->flags[level - 1]);
8106        if (ret < 0) {
8107                btrfs_tree_unlock(next);
8108                return ret;
8109        }
8110
8111        if (unlikely(wc->refs[level - 1] == 0)) {
8112                btrfs_err(root->fs_info, "Missing references.");
8113                BUG();
8114        }
8115        *lookup_info = 0;
8116
8117        if (wc->stage == DROP_REFERENCE) {
8118                if (wc->refs[level - 1] > 1) {
8119                        need_account = true;
8120                        if (level == 1 &&
8121                            (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8122                                goto skip;
8123
8124                        if (!wc->update_ref ||
8125                            generation <= root->root_key.offset)
8126                                goto skip;
8127
8128                        btrfs_node_key_to_cpu(path->nodes[level], &key,
8129                                              path->slots[level]);
8130                        ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8131                        if (ret < 0)
8132                                goto skip;
8133
8134                        wc->stage = UPDATE_BACKREF;
8135                        wc->shared_level = level - 1;
8136                }
8137        } else {
8138                if (level == 1 &&
8139                    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8140                        goto skip;
8141        }
8142
8143        if (!btrfs_buffer_uptodate(next, generation, 0)) {
8144                btrfs_tree_unlock(next);
8145                free_extent_buffer(next);
8146                next = NULL;
8147                *lookup_info = 1;
8148        }
8149
8150        if (!next) {
8151                if (reada && level == 1)
8152                        reada_walk_down(trans, root, wc, path);
8153                next = read_tree_block(root, bytenr, generation);
8154                if (!next || !extent_buffer_uptodate(next)) {
8155                        free_extent_buffer(next);
8156                        return -EIO;
8157                }
8158                btrfs_tree_lock(next);
8159                btrfs_set_lock_blocking(next);
8160        }
8161
8162        level--;
8163        BUG_ON(level != btrfs_header_level(next));
8164        path->nodes[level] = next;
8165        path->slots[level] = 0;
8166        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8167        wc->level = level;
8168        if (wc->level == 1)
8169                wc->reada_slot = 0;
8170        return 0;
8171skip:
8172        wc->refs[level - 1] = 0;
8173        wc->flags[level - 1] = 0;
8174        if (wc->stage == DROP_REFERENCE) {
8175                if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8176                        parent = path->nodes[level]->start;
8177                } else {
8178                        BUG_ON(root->root_key.objectid !=
8179                               btrfs_header_owner(path->nodes[level]));
8180                        parent = 0;
8181                }
8182
8183                if (need_account) {
8184                        ret = account_shared_subtree(trans, root, next,
8185                                                     generation, level - 1);
8186                        if (ret) {
8187                                printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8188                                        "%d accounting shared subtree. Quota "
8189                                        "is out of sync, rescan required.\n",
8190                                        root->fs_info->sb->s_id, ret);
8191                        }
8192                }
8193                ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8194                                root->root_key.objectid, level - 1, 0, 0);
8195                BUG_ON(ret); /* -ENOMEM */
8196        }
8197        btrfs_tree_unlock(next);
8198        free_extent_buffer(next);
8199        *lookup_info = 1;
8200        return 1;
8201}
8202
8203/*
8204 * helper to process tree block while walking up the tree.
8205 *
8206 * when wc->stage == DROP_REFERENCE, this function drops
8207 * reference count on the block.
8208 *
8209 * when wc->stage == UPDATE_BACKREF, this function changes
8210 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8211 * to UPDATE_BACKREF previously while processing the block.
8212 *
8213 * NOTE: return value 1 means we should stop walking up.
8214 */
8215static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8216                                 struct btrfs_root *root,
8217                                 struct btrfs_path *path,
8218                                 struct walk_control *wc)
8219{
8220        int ret;
8221        int level = wc->level;
8222        struct extent_buffer *eb = path->nodes[level];
8223        u64 parent = 0;
8224
8225        if (wc->stage == UPDATE_BACKREF) {
8226                BUG_ON(wc->shared_level < level);
8227                if (level < wc->shared_level)
8228                        goto out;
8229
8230                ret = find_next_key(path, level + 1, &wc->update_progress);
8231                if (ret > 0)
8232                        wc->update_ref = 0;
8233
8234                wc->stage = DROP_REFERENCE;
8235                wc->shared_level = -1;
8236                path->slots[level] = 0;
8237
8238                /*
8239                 * check reference count again if the block isn't locked.
8240                 * we should start walking down the tree again if reference
8241                 * count is one.
8242                 */
8243                if (!path->locks[level]) {
8244                        BUG_ON(level == 0);
8245                        btrfs_tree_lock(eb);
8246                        btrfs_set_lock_blocking(eb);
8247                        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8248
8249                        ret = btrfs_lookup_extent_info(trans, root,
8250                                                       eb->start, level, 1,
8251                                                       &wc->refs[level],
8252                                                       &wc->flags[level]);
8253                        if (ret < 0) {
8254                                btrfs_tree_unlock_rw(eb, path->locks[level]);
8255                                path->locks[level] = 0;
8256                                return ret;
8257                        }
8258                        BUG_ON(wc->refs[level] == 0);
8259                        if (wc->refs[level] == 1) {
8260                                btrfs_tree_unlock_rw(eb, path->locks[level]);
8261                                path->locks[level] = 0;
8262                                return 1;
8263                        }
8264                }
8265        }
8266
8267        /* wc->stage == DROP_REFERENCE */
8268        BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8269
8270        if (wc->refs[level] == 1) {
8271                if (level == 0) {
8272                        if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8273                                ret = btrfs_dec_ref(trans, root, eb, 1);
8274                        else
8275                                ret = btrfs_dec_ref(trans, root, eb, 0);
8276                        BUG_ON(ret); /* -ENOMEM */
8277                        ret = account_leaf_items(trans, root, eb);
8278                        if (ret) {
8279                                printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8280                                        "%d accounting leaf items. Quota "
8281                                        "is out of sync, rescan required.\n",
8282                                        root->fs_info->sb->s_id, ret);
8283                        }
8284                }
8285                /* make block locked assertion in clean_tree_block happy */
8286                if (!path->locks[level] &&
8287                    btrfs_header_generation(eb) == trans->transid) {
8288                        btrfs_tree_lock(eb);
8289                        btrfs_set_lock_blocking(eb);
8290                        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8291                }
8292                clean_tree_block(trans, root->fs_info, eb);
8293        }
8294
8295        if (eb == root->node) {
8296                if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8297                        parent = eb->start;
8298                else
8299                        BUG_ON(root->root_key.objectid !=
8300                               btrfs_header_owner(eb));
8301        } else {
8302                if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8303                        parent = path->nodes[level + 1]->start;
8304                else
8305                        BUG_ON(root->root_key.objectid !=
8306                               btrfs_header_owner(path->nodes[level + 1]));
8307        }
8308
8309        btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8310out:
8311        wc->refs[level] = 0;
8312        wc->flags[level] = 0;
8313        return 0;
8314}
8315
8316static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8317                                   struct btrfs_root *root,
8318                                   struct btrfs_path *path,
8319                                   struct walk_control *wc)
8320{
8321        int level = wc->level;
8322        int lookup_info = 1;
8323        int ret;
8324
8325        while (level >= 0) {
8326                ret = walk_down_proc(trans, root, path, wc, lookup_info);
8327                if (ret > 0)
8328                        break;
8329
8330                if (level == 0)
8331                        break;
8332
8333                if (path->slots[level] >=
8334                    btrfs_header_nritems(path->nodes[level]))
8335                        break;
8336
8337                ret = do_walk_down(trans, root, path, wc, &lookup_info);
8338                if (ret > 0) {
8339                        path->slots[level]++;
8340                        continue;
8341                } else if (ret < 0)
8342                        return ret;
8343                level = wc->level;
8344        }
8345        return 0;
8346}
8347
8348static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8349                                 struct btrfs_root *root,
8350                                 struct btrfs_path *path,
8351                                 struct walk_control *wc, int max_level)
8352{
8353        int level = wc->level;
8354        int ret;
8355
8356        path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8357        while (level < max_level && path->nodes[level]) {
8358                wc->level = level;
8359                if (path->slots[level] + 1 <
8360                    btrfs_header_nritems(path->nodes[level])) {
8361                        path->slots[level]++;
8362                        return 0;
8363                } else {
8364                        ret = walk_up_proc(trans, root, path, wc);
8365                        if (ret > 0)
8366                                return 0;
8367
8368                        if (path->locks[level]) {
8369                                btrfs_tree_unlock_rw(path->nodes[level],
8370                                                     path->locks[level]);
8371                                path->locks[level] = 0;
8372                        }
8373                        free_extent_buffer(path->nodes[level]);
8374                        path->nodes[level] = NULL;
8375                        level++;
8376                }
8377        }
8378        return 1;
8379}
8380
8381/*
8382 * drop a subvolume tree.
8383 *
8384 * this function traverses the tree freeing any blocks that only
8385 * referenced by the tree.
8386 *
8387 * when a shared tree block is found. this function decreases its
8388 * reference count by one. if update_ref is true, this function
8389 * also make sure backrefs for the shared block and all lower level
8390 * blocks are properly updated.
8391 *
8392 * If called with for_reloc == 0, may exit early with -EAGAIN
8393 */
8394int btrfs_drop_snapshot(struct btrfs_root *root,
8395                         struct btrfs_block_rsv *block_rsv, int update_ref,
8396                         int for_reloc)
8397{
8398        struct btrfs_path *path;
8399        struct btrfs_trans_handle *trans;
8400        struct btrfs_root *tree_root = root->fs_info->tree_root;
8401        struct btrfs_root_item *root_item = &root->root_item;
8402        struct walk_control *wc;
8403        struct btrfs_key key;
8404        int err = 0;
8405        int ret;
8406        int level;
8407        bool root_dropped = false;
8408
8409        btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8410
8411        path = btrfs_alloc_path();
8412        if (!path) {
8413                err = -ENOMEM;
8414                goto out;
8415        }
8416
8417        wc = kzalloc(sizeof(*wc), GFP_NOFS);
8418        if (!wc) {
8419                btrfs_free_path(path);
8420                err = -ENOMEM;
8421                goto out;
8422        }
8423
8424        trans = btrfs_start_transaction(tree_root, 0);
8425        if (IS_ERR(trans)) {
8426                err = PTR_ERR(trans);
8427                goto out_free;
8428        }
8429
8430        if (block_rsv)
8431                trans->block_rsv = block_rsv;
8432
8433        if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8434                level = btrfs_header_level(root->node);
8435                path->nodes[level] = btrfs_lock_root_node(root);
8436                btrfs_set_lock_blocking(path->nodes[level]);
8437                path->slots[level] = 0;
8438                path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8439                memset(&wc->update_progress, 0,
8440                       sizeof(wc->update_progress));
8441        } else {
8442                btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8443                memcpy(&wc->update_progress, &key,
8444                       sizeof(wc->update_progress));
8445
8446                level = root_item->drop_level;
8447                BUG_ON(level == 0);
8448                path->lowest_level = level;
8449                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8450                path->lowest_level = 0;
8451                if (ret < 0) {
8452                        err = ret;
8453                        goto out_end_trans;
8454                }
8455                WARN_ON(ret > 0);
8456
8457                /*
8458                 * unlock our path, this is safe because only this
8459                 * function is allowed to delete this snapshot
8460                 */
8461                btrfs_unlock_up_safe(path, 0);
8462
8463                level = btrfs_header_level(root->node);
8464                while (1) {
8465                        btrfs_tree_lock(path->nodes[level]);
8466                        btrfs_set_lock_blocking(path->nodes[level]);
8467                        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8468
8469                        ret = btrfs_lookup_extent_info(trans, root,
8470                                                path->nodes[level]->start,
8471                                                level, 1, &wc->refs[level],
8472                                                &wc->flags[level]);
8473                        if (ret < 0) {
8474                                err = ret;
8475                                goto out_end_trans;
8476                        }
8477                        BUG_ON(wc->refs[level] == 0);
8478
8479                        if (level == root_item->drop_level)
8480                                break;
8481
8482                        btrfs_tree_unlock(path->nodes[level]);
8483                        path->locks[level] = 0;
8484                        WARN_ON(wc->refs[level] != 1);
8485                        level--;
8486                }
8487        }
8488
8489        wc->level = level;
8490        wc->shared_level = -1;
8491        wc->stage = DROP_REFERENCE;
8492        wc->update_ref = update_ref;
8493        wc->keep_locks = 0;
8494        wc->for_reloc = for_reloc;
8495        wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8496
8497        while (1) {
8498
8499                ret = walk_down_tree(trans, root, path, wc);
8500                if (ret < 0) {
8501                        err = ret;
8502                        break;
8503                }
8504
8505                ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8506                if (ret < 0) {
8507                        err = ret;
8508                        break;
8509                }
8510
8511                if (ret > 0) {
8512                        BUG_ON(wc->stage != DROP_REFERENCE);
8513                        break;
8514                }
8515
8516                if (wc->stage == DROP_REFERENCE) {
8517                        level = wc->level;
8518                        btrfs_node_key(path->nodes[level],
8519                                       &root_item->drop_progress,
8520                                       path->slots[level]);
8521                        root_item->drop_level = level;
8522                }
8523
8524                BUG_ON(wc->level == 0);
8525                if (btrfs_should_end_transaction(trans, tree_root) ||
8526                    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8527                        ret = btrfs_update_root(trans, tree_root,
8528                                                &root->root_key,
8529                                                root_item);
8530                        if (ret) {
8531                                btrfs_abort_transaction(trans, tree_root, ret);
8532                                err = ret;
8533                                goto out_end_trans;
8534                        }
8535
8536                        /*
8537                         * Qgroup update accounting is run from
8538                         * delayed ref handling. This usually works
8539                         * out because delayed refs are normally the
8540                         * only way qgroup updates are added. However,
8541                         * we may have added updates during our tree
8542                         * walk so run qgroups here to make sure we
8543                         * don't lose any updates.
8544                         */
8545                        ret = btrfs_delayed_qgroup_accounting(trans,
8546                                                              root->fs_info);
8547                        if (ret)
8548                                printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8549                                                   "running qgroup updates "
8550                                                   "during snapshot delete. "
8551                                                   "Quota is out of sync, "
8552                                                   "rescan required.\n", ret);
8553
8554                        btrfs_end_transaction_throttle(trans, tree_root);
8555                        if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8556                                pr_debug("BTRFS: drop snapshot early exit\n");
8557                                err = -EAGAIN;
8558                                goto out_free;
8559                        }
8560
8561                        trans = btrfs_start_transaction(tree_root, 0);
8562                        if (IS_ERR(trans)) {
8563                                err = PTR_ERR(trans);
8564                                goto out_free;
8565                        }
8566                        if (block_rsv)
8567                                trans->block_rsv = block_rsv;
8568                }
8569        }
8570        btrfs_release_path(path);
8571        if (err)
8572                goto out_end_trans;
8573
8574        ret = btrfs_del_root(trans, tree_root, &root->root_key);
8575        if (ret) {
8576                btrfs_abort_transaction(trans, tree_root, ret);
8577                goto out_end_trans;
8578        }
8579
8580        if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8581                ret = btrfs_find_root(tree_root, &root->root_key, path,
8582                                      NULL, NULL);
8583                if (ret < 0) {
8584                        btrfs_abort_transaction(trans, tree_root, ret);
8585                        err = ret;
8586                        goto out_end_trans;
8587                } else if (ret > 0) {
8588                        /* if we fail to delete the orphan item this time
8589                         * around, it'll get picked up the next time.
8590                         *
8591                         * The most common failure here is just -ENOENT.
8592                         */
8593                        btrfs_del_orphan_item(trans, tree_root,
8594                                              root->root_key.objectid);
8595                }
8596        }
8597
8598        if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8599                btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8600        } else {
8601                free_extent_buffer(root->node);
8602                free_extent_buffer(root->commit_root);
8603                btrfs_put_fs_root(root);
8604        }
8605        root_dropped = true;
8606out_end_trans:
8607        ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8608        if (ret)
8609                printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8610                                   "running qgroup updates "
8611                                   "during snapshot delete. "
8612                                   "Quota is out of sync, "
8613                                   "rescan required.\n", ret);
8614
8615        btrfs_end_transaction_throttle(trans, tree_root);
8616out_free:
8617        kfree(wc);
8618        btrfs_free_path(path);
8619out:
8620        /*
8621         * So if we need to stop dropping the snapshot for whatever reason we
8622         * need to make sure to add it back to the dead root list so that we
8623         * keep trying to do the work later.  This also cleans up roots if we
8624         * don't have it in the radix (like when we recover after a power fail
8625         * or unmount) so we don't leak memory.
8626         */
8627        if (!for_reloc && root_dropped == false)
8628                btrfs_add_dead_root(root);
8629        if (err && err != -EAGAIN)
8630                btrfs_std_error(root->fs_info, err);
8631        return err;
8632}
8633
8634/*
8635 * drop subtree rooted at tree block 'node'.
8636 *
8637 * NOTE: this function will unlock and release tree block 'node'
8638 * only used by relocation code
8639 */
8640int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8641                        struct btrfs_root *root,
8642                        struct extent_buffer *node,
8643                        struct extent_buffer *parent)
8644{
8645        struct btrfs_path *path;
8646        struct walk_control *wc;
8647        int level;
8648        int parent_level;
8649        int ret = 0;
8650        int wret;
8651
8652        BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8653
8654        path = btrfs_alloc_path();
8655        if (!path)
8656                return -ENOMEM;
8657
8658        wc = kzalloc(sizeof(*wc), GFP_NOFS);
8659        if (!wc) {
8660                btrfs_free_path(path);
8661                return -ENOMEM;
8662        }
8663
8664        btrfs_assert_tree_locked(parent);
8665        parent_level = btrfs_header_level(parent);
8666        extent_buffer_get(parent);
8667        path->nodes[parent_level] = parent;
8668        path->slots[parent_level] = btrfs_header_nritems(parent);
8669
8670        btrfs_assert_tree_locked(node);
8671        level = btrfs_header_level(node);
8672        path->nodes[level] = node;
8673        path->slots[level] = 0;
8674        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8675
8676        wc->refs[parent_level] = 1;
8677        wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8678        wc->level = level;
8679        wc->shared_level = -1;
8680        wc->stage = DROP_REFERENCE;
8681        wc->update_ref = 0;
8682        wc->keep_locks = 1;
8683        wc->for_reloc = 1;
8684        wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8685
8686        while (1) {
8687                wret = walk_down_tree(trans, root, path, wc);
8688                if (wret < 0) {
8689                        ret = wret;
8690                        break;
8691                }
8692
8693                wret = walk_up_tree(trans, root, path, wc, parent_level);
8694                if (wret < 0)
8695                        ret = wret;
8696                if (wret != 0)
8697                        break;
8698        }
8699
8700        kfree(wc);
8701        btrfs_free_path(path);
8702        return ret;
8703}
8704
8705static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8706{
8707        u64 num_devices;
8708        u64 stripped;
8709
8710        /*
8711         * if restripe for this chunk_type is on pick target profile and
8712         * return, otherwise do the usual balance
8713         */
8714        stripped = get_restripe_target(root->fs_info, flags);
8715        if (stripped)
8716                return extended_to_chunk(stripped);
8717
8718        num_devices = root->fs_info->fs_devices->rw_devices;
8719
8720        stripped = BTRFS_BLOCK_GROUP_RAID0 |
8721                BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8722                BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8723
8724        if (num_devices == 1) {
8725                stripped |= BTRFS_BLOCK_GROUP_DUP;
8726                stripped = flags & ~stripped;
8727
8728                /* turn raid0 into single device chunks */
8729                if (flags & BTRFS_BLOCK_GROUP_RAID0)
8730                        return stripped;
8731
8732                /* turn mirroring into duplication */
8733                if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8734                             BTRFS_BLOCK_GROUP_RAID10))
8735                        return stripped | BTRFS_BLOCK_GROUP_DUP;
8736        } else {
8737                /* they already had raid on here, just return */
8738                if (flags & stripped)
8739                        return flags;
8740
8741                stripped |= BTRFS_BLOCK_GROUP_DUP;
8742                stripped = flags & ~stripped;
8743
8744                /* switch duplicated blocks with raid1 */
8745                if (flags & BTRFS_BLOCK_GROUP_DUP)
8746                        return stripped | BTRFS_BLOCK_GROUP_RAID1;
8747
8748                /* this is drive concat, leave it alone */
8749        }
8750
8751        return flags;
8752}
8753
8754static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8755{
8756        struct btrfs_space_info *sinfo = cache->space_info;
8757        u64 num_bytes;
8758        u64 min_allocable_bytes;
8759        int ret = -ENOSPC;
8760
8761
8762        /*
8763         * We need some metadata space and system metadata space for
8764         * allocating chunks in some corner cases until we force to set
8765         * it to be readonly.
8766         */
8767        if ((sinfo->flags &
8768             (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8769            !force)
8770                min_allocable_bytes = 1 * 1024 * 1024;
8771        else
8772                min_allocable_bytes = 0;
8773
8774        spin_lock(&sinfo->lock);
8775        spin_lock(&cache->lock);
8776
8777        if (cache->ro) {
8778                ret = 0;
8779                goto out;
8780        }
8781
8782        num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8783                    cache->bytes_super - btrfs_block_group_used(&cache->item);
8784
8785        if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8786            sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8787            min_allocable_bytes <= sinfo->total_bytes) {
8788                sinfo->bytes_readonly += num_bytes;
8789                cache->ro = 1;
8790                list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8791                ret = 0;
8792        }
8793out:
8794        spin_unlock(&cache->lock);
8795        spin_unlock(&sinfo->lock);
8796        return ret;
8797}
8798
8799int btrfs_set_block_group_ro(struct btrfs_root *root,
8800                             struct btrfs_block_group_cache *cache)
8801
8802{
8803        struct btrfs_trans_handle *trans;
8804        u64 alloc_flags;
8805        int ret;
8806
8807        BUG_ON(cache->ro);
8808
8809again:
8810        trans = btrfs_join_transaction(root);
8811        if (IS_ERR(trans))
8812                return PTR_ERR(trans);
8813
8814        /*
8815         * we're not allowed to set block groups readonly after the dirty
8816         * block groups cache has started writing.  If it already started,
8817         * back off and let this transaction commit
8818         */
8819        mutex_lock(&root->fs_info->ro_block_group_mutex);
8820        if (trans->transaction->dirty_bg_run) {
8821                u64 transid = trans->transid;
8822
8823                mutex_unlock(&root->fs_info->ro_block_group_mutex);
8824                btrfs_end_transaction(trans, root);
8825
8826                ret = btrfs_wait_for_commit(root, transid);
8827                if (ret)
8828                        return ret;
8829                goto again;
8830        }
8831
8832        /*
8833         * if we are changing raid levels, try to allocate a corresponding
8834         * block group with the new raid level.
8835         */
8836        alloc_flags = update_block_group_flags(root, cache->flags);
8837        if (alloc_flags != cache->flags) {
8838                ret = do_chunk_alloc(trans, root, alloc_flags,
8839                                     CHUNK_ALLOC_FORCE);
8840                /*
8841                 * ENOSPC is allowed here, we may have enough space
8842                 * already allocated at the new raid level to
8843                 * carry on
8844                 */
8845                if (ret == -ENOSPC)
8846                        ret = 0;
8847                if (ret < 0)
8848                        goto out;
8849        }
8850
8851        ret = set_block_group_ro(cache, 0);
8852        if (!ret)
8853                goto out;
8854        alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8855        ret = do_chunk_alloc(trans, root, alloc_flags,
8856                             CHUNK_ALLOC_FORCE);
8857        if (ret < 0)
8858                goto out;
8859        ret = set_block_group_ro(cache, 0);
8860out:
8861        if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8862                alloc_flags = update_block_group_flags(root, cache->flags);
8863                lock_chunks(root->fs_info->chunk_root);
8864                check_system_chunk(trans, root, alloc_flags);
8865                unlock_chunks(root->fs_info->chunk_root);
8866        }
8867        mutex_unlock(&root->fs_info->ro_block_group_mutex);
8868
8869        btrfs_end_transaction(trans, root);
8870        return ret;
8871}
8872
8873int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8874                            struct btrfs_root *root, u64 type)
8875{
8876        u64 alloc_flags = get_alloc_profile(root, type);
8877        return do_chunk_alloc(trans, root, alloc_flags,
8878                              CHUNK_ALLOC_FORCE);
8879}
8880
8881/*
8882 * helper to account the unused space of all the readonly block group in the
8883 * space_info. takes mirrors into account.
8884 */
8885u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8886{
8887        struct btrfs_block_group_cache *block_group;
8888        u64 free_bytes = 0;
8889        int factor;
8890
8891        /* It's df, we don't care if it's racey */
8892        if (list_empty(&sinfo->ro_bgs))
8893                return 0;
8894
8895        spin_lock(&sinfo->lock);
8896        list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8897                spin_lock(&block_group->lock);
8898
8899                if (!block_group->ro) {
8900                        spin_unlock(&block_group->lock);
8901                        continue;
8902                }
8903
8904                if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8905                                          BTRFS_BLOCK_GROUP_RAID10 |
8906                                          BTRFS_BLOCK_GROUP_DUP))
8907                        factor = 2;
8908                else
8909                        factor = 1;
8910
8911                free_bytes += (block_group->key.offset -
8912                               btrfs_block_group_used(&block_group->item)) *
8913                               factor;
8914
8915                spin_unlock(&block_group->lock);
8916        }
8917        spin_unlock(&sinfo->lock);
8918
8919        return free_bytes;
8920}
8921
8922void btrfs_set_block_group_rw(struct btrfs_root *root,
8923                              struct btrfs_block_group_cache *cache)
8924{
8925        struct btrfs_space_info *sinfo = cache->space_info;
8926        u64 num_bytes;
8927
8928        BUG_ON(!cache->ro);
8929
8930        spin_lock(&sinfo->lock);
8931        spin_lock(&cache->lock);
8932        num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8933                    cache->bytes_super - btrfs_block_group_used(&cache->item);
8934        sinfo->bytes_readonly -= num_bytes;
8935        cache->ro = 0;
8936        list_del_init(&cache->ro_list);
8937        spin_unlock(&cache->lock);
8938        spin_unlock(&sinfo->lock);
8939}
8940
8941/*
8942 * checks to see if its even possible to relocate this block group.
8943 *
8944 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8945 * ok to go ahead and try.
8946 */
8947int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8948{
8949        struct btrfs_block_group_cache *block_group;
8950        struct btrfs_space_info *space_info;
8951        struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8952        struct btrfs_device *device;
8953        struct btrfs_trans_handle *trans;
8954        u64 min_free;
8955        u64 dev_min = 1;
8956        u64 dev_nr = 0;
8957        u64 target;
8958        int index;
8959        int full = 0;
8960        int ret = 0;
8961
8962        block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8963
8964        /* odd, couldn't find the block group, leave it alone */
8965        if (!block_group)
8966                return -1;
8967
8968        min_free = btrfs_block_group_used(&block_group->item);
8969
8970        /* no bytes used, we're good */
8971        if (!min_free)
8972                goto out;
8973
8974        space_info = block_group->space_info;
8975        spin_lock(&space_info->lock);
8976
8977        full = space_info->full;
8978
8979        /*
8980         * if this is the last block group we have in this space, we can't
8981         * relocate it unless we're able to allocate a new chunk below.
8982         *
8983         * Otherwise, we need to make sure we have room in the space to handle
8984         * all of the extents from this block group.  If we can, we're good
8985         */
8986        if ((space_info->total_bytes != block_group->key.offset) &&
8987            (space_info->bytes_used + space_info->bytes_reserved +
8988             space_info->bytes_pinned + space_info->bytes_readonly +
8989             min_free < space_info->total_bytes)) {
8990                spin_unlock(&space_info->lock);
8991                goto out;
8992        }
8993        spin_unlock(&space_info->lock);
8994
8995        /*
8996         * ok we don't have enough space, but maybe we have free space on our
8997         * devices to allocate new chunks for relocation, so loop through our
8998         * alloc devices and guess if we have enough space.  if this block
8999         * group is going to be restriped, run checks against the target
9000         * profile instead of the current one.
9001         */
9002        ret = -1;
9003
9004        /*
9005         * index:
9006         *      0: raid10
9007         *      1: raid1
9008         *      2: dup
9009         *      3: raid0
9010         *      4: single
9011         */
9012        target = get_restripe_target(root->fs_info, block_group->flags);
9013        if (target) {
9014                index = __get_raid_index(extended_to_chunk(target));
9015        } else {
9016                /*
9017                 * this is just a balance, so if we were marked as full
9018                 * we know there is no space for a new chunk
9019                 */
9020                if (full)
9021                        goto out;
9022
9023                index = get_block_group_index(block_group);
9024        }
9025
9026        if (index == BTRFS_RAID_RAID10) {
9027                dev_min = 4;
9028                /* Divide by 2 */
9029                min_free >>= 1;
9030        } else if (index == BTRFS_RAID_RAID1) {
9031                dev_min = 2;
9032        } else if (index == BTRFS_RAID_DUP) {
9033                /* Multiply by 2 */
9034                min_free <<= 1;
9035        } else if (index == BTRFS_RAID_RAID0) {
9036                dev_min = fs_devices->rw_devices;
9037                min_free = div64_u64(min_free, dev_min);
9038        }
9039
9040        /* We need to do this so that we can look at pending chunks */
9041        trans = btrfs_join_transaction(root);
9042        if (IS_ERR(trans)) {
9043                ret = PTR_ERR(trans);
9044                goto out;
9045        }
9046
9047        mutex_lock(&root->fs_info->chunk_mutex);
9048        list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9049                u64 dev_offset;
9050
9051                /*
9052                 * check to make sure we can actually find a chunk with enough
9053                 * space to fit our block group in.
9054                 */
9055                if (device->total_bytes > device->bytes_used + min_free &&
9056                    !device->is_tgtdev_for_dev_replace) {
9057                        ret = find_free_dev_extent(trans, device, min_free,
9058                                                   &dev_offset, NULL);
9059                        if (!ret)
9060                                dev_nr++;
9061
9062                        if (dev_nr >= dev_min)
9063                                break;
9064
9065                        ret = -1;
9066                }
9067        }
9068        mutex_unlock(&root->fs_info->chunk_mutex);
9069        btrfs_end_transaction(trans, root);
9070out:
9071        btrfs_put_block_group(block_group);
9072        return ret;
9073}
9074
9075static int find_first_block_group(struct btrfs_root *root,
9076                struct btrfs_path *path, struct btrfs_key *key)
9077{
9078        int ret = 0;
9079        struct btrfs_key found_key;
9080        struct extent_buffer *leaf;
9081        int slot;
9082
9083        ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9084        if (ret < 0)
9085                goto out;
9086
9087        while (1) {
9088                slot = path->slots[0];
9089                leaf = path->nodes[0];
9090                if (slot >= btrfs_header_nritems(leaf)) {
9091                        ret = btrfs_next_leaf(root, path);
9092                        if (ret == 0)
9093                                continue;
9094                        if (ret < 0)
9095                                goto out;
9096                        break;
9097                }
9098                btrfs_item_key_to_cpu(leaf, &found_key, slot);
9099
9100                if (found_key.objectid >= key->objectid &&
9101                    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9102                        ret = 0;
9103                        goto out;
9104                }
9105                path->slots[0]++;
9106        }
9107out:
9108        return ret;
9109}
9110
9111void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9112{
9113        struct btrfs_block_group_cache *block_group;
9114        u64 last = 0;
9115
9116        while (1) {
9117                struct inode *inode;
9118
9119                block_group = btrfs_lookup_first_block_group(info, last);
9120                while (block_group) {
9121                        spin_lock(&block_group->lock);
9122                        if (block_group->iref)
9123                                break;
9124                        spin_unlock(&block_group->lock);
9125                        block_group = next_block_group(info->tree_root,
9126                                                       block_group);
9127                }
9128                if (!block_group) {
9129                        if (last == 0)
9130                                break;
9131                        last = 0;
9132                        continue;
9133                }
9134
9135                inode = block_group->inode;
9136                block_group->iref = 0;
9137                block_group->inode = NULL;
9138                spin_unlock(&block_group->lock);
9139                iput(inode);
9140                last = block_group->key.objectid + block_group->key.offset;
9141                btrfs_put_block_group(block_group);
9142        }
9143}
9144
9145int btrfs_free_block_groups(struct btrfs_fs_info *info)
9146{
9147        struct btrfs_block_group_cache *block_group;
9148        struct btrfs_space_info *space_info;
9149        struct btrfs_caching_control *caching_ctl;
9150        struct rb_node *n;
9151
9152        down_write(&info->commit_root_sem);
9153        while (!list_empty(&info->caching_block_groups)) {
9154                caching_ctl = list_entry(info->caching_block_groups.next,
9155                                         struct btrfs_caching_control, list);
9156                list_del(&caching_ctl->list);
9157                put_caching_control(caching_ctl);
9158        }
9159        up_write(&info->commit_root_sem);
9160
9161        spin_lock(&info->unused_bgs_lock);
9162        while (!list_empty(&info->unused_bgs)) {
9163                block_group = list_first_entry(&info->unused_bgs,
9164                                               struct btrfs_block_group_cache,
9165                                               bg_list);
9166                list_del_init(&block_group->bg_list);
9167                btrfs_put_block_group(block_group);
9168        }
9169        spin_unlock(&info->unused_bgs_lock);
9170
9171        spin_lock(&info->block_group_cache_lock);
9172        while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9173                block_group = rb_entry(n, struct btrfs_block_group_cache,
9174                                       cache_node);
9175                rb_erase(&block_group->cache_node,
9176                         &info->block_group_cache_tree);
9177                RB_CLEAR_NODE(&block_group->cache_node);
9178                spin_unlock(&info->block_group_cache_lock);
9179
9180                down_write(&block_group->space_info->groups_sem);
9181                list_del(&block_group->list);
9182                up_write(&block_group->space_info->groups_sem);
9183
9184                if (block_group->cached == BTRFS_CACHE_STARTED)
9185                        wait_block_group_cache_done(block_group);
9186
9187                /*
9188                 * We haven't cached this block group, which means we could
9189                 * possibly have excluded extents on this block group.
9190                 */
9191                if (block_group->cached == BTRFS_CACHE_NO ||
9192                    block_group->cached == BTRFS_CACHE_ERROR)
9193                        free_excluded_extents(info->extent_root, block_group);
9194
9195                btrfs_remove_free_space_cache(block_group);
9196                btrfs_put_block_group(block_group);
9197
9198                spin_lock(&info->block_group_cache_lock);
9199        }
9200        spin_unlock(&info->block_group_cache_lock);
9201
9202        /* now that all the block groups are freed, go through and
9203         * free all the space_info structs.  This is only called during
9204         * the final stages of unmount, and so we know nobody is
9205         * using them.  We call synchronize_rcu() once before we start,
9206         * just to be on the safe side.
9207         */
9208        synchronize_rcu();
9209
9210        release_global_block_rsv(info);
9211
9212        while (!list_empty(&info->space_info)) {
9213                int i;
9214
9215                space_info = list_entry(info->space_info.next,
9216                                        struct btrfs_space_info,
9217                                        list);
9218                if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9219                        if (WARN_ON(space_info->bytes_pinned > 0 ||
9220                            space_info->bytes_reserved > 0 ||
9221                            space_info->bytes_may_use > 0)) {
9222                                dump_space_info(space_info, 0, 0);
9223                        }
9224                }
9225                list_del(&space_info->list);
9226                for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9227                        struct kobject *kobj;
9228                        kobj = space_info->block_group_kobjs[i];
9229                        space_info->block_group_kobjs[i] = NULL;
9230                        if (kobj) {
9231                                kobject_del(kobj);
9232                                kobject_put(kobj);
9233                        }
9234                }
9235                kobject_del(&space_info->kobj);
9236                kobject_put(&space_info->kobj);
9237        }
9238        return 0;
9239}
9240
9241static void __link_block_group(struct btrfs_space_info *space_info,
9242                               struct btrfs_block_group_cache *cache)
9243{
9244        int index = get_block_group_index(cache);
9245        bool first = false;
9246
9247        down_write(&space_info->groups_sem);
9248        if (list_empty(&space_info->block_groups[index]))
9249                first = true;
9250        list_add_tail(&cache->list, &space_info->block_groups[index]);
9251        up_write(&space_info->groups_sem);
9252
9253        if (first) {
9254                struct raid_kobject *rkobj;
9255                int ret;
9256
9257                rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9258                if (!rkobj)
9259                        goto out_err;
9260                rkobj->raid_type = index;
9261                kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9262                ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9263                                  "%s", get_raid_name(index));
9264                if (ret) {
9265                        kobject_put(&rkobj->kobj);
9266                        goto out_err;
9267                }
9268                space_info->block_group_kobjs[index] = &rkobj->kobj;
9269        }
9270
9271        return;
9272out_err:
9273        pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9274}
9275
9276static struct btrfs_block_group_cache *
9277btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9278{
9279        struct btrfs_block_group_cache *cache;
9280
9281        cache = kzalloc(sizeof(*cache), GFP_NOFS);
9282        if (!cache)
9283                return NULL;
9284
9285        cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9286                                        GFP_NOFS);
9287        if (!cache->free_space_ctl) {
9288                kfree(cache);
9289                return NULL;
9290        }
9291
9292        cache->key.objectid = start;
9293        cache->key.offset = size;
9294        cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9295
9296        cache->sectorsize = root->sectorsize;
9297        cache->fs_info = root->fs_info;
9298        cache->full_stripe_len = btrfs_full_stripe_len(root,
9299                                               &root->fs_info->mapping_tree,
9300                                               start);
9301        atomic_set(&cache->count, 1);
9302        spin_lock_init(&cache->lock);
9303        init_rwsem(&cache->data_rwsem);
9304        INIT_LIST_HEAD(&cache->list);
9305        INIT_LIST_HEAD(&cache->cluster_list);
9306        INIT_LIST_HEAD(&cache->bg_list);
9307        INIT_LIST_HEAD(&cache->ro_list);
9308        INIT_LIST_HEAD(&cache->dirty_list);
9309        INIT_LIST_HEAD(&cache->io_list);
9310        btrfs_init_free_space_ctl(cache);
9311        atomic_set(&cache->trimming, 0);
9312
9313        return cache;
9314}
9315
9316int btrfs_read_block_groups(struct btrfs_root *root)
9317{
9318        struct btrfs_path *path;
9319        int ret;
9320        struct btrfs_block_group_cache *cache;
9321        struct btrfs_fs_info *info = root->fs_info;
9322        struct btrfs_space_info *space_info;
9323        struct btrfs_key key;
9324        struct btrfs_key found_key;
9325        struct extent_buffer *leaf;
9326        int need_clear = 0;
9327        u64 cache_gen;
9328
9329        root = info->extent_root;
9330        key.objectid = 0;
9331        key.offset = 0;
9332        key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9333        path = btrfs_alloc_path();
9334        if (!path)
9335                return -ENOMEM;
9336        path->reada = 1;
9337
9338        cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9339        if (btrfs_test_opt(root, SPACE_CACHE) &&
9340            btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9341                need_clear = 1;
9342        if (btrfs_test_opt(root, CLEAR_CACHE))
9343                need_clear = 1;
9344
9345        while (1) {
9346                ret = find_first_block_group(root, path, &key);
9347                if (ret > 0)
9348                        break;
9349                if (ret != 0)
9350                        goto error;
9351
9352                leaf = path->nodes[0];
9353                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9354
9355                cache = btrfs_create_block_group_cache(root, found_key.objectid,
9356                                                       found_key.offset);
9357                if (!cache) {
9358                        ret = -ENOMEM;
9359                        goto error;
9360                }
9361
9362                if (need_clear) {
9363                        /*
9364                         * When we mount with old space cache, we need to
9365                         * set BTRFS_DC_CLEAR and set dirty flag.
9366                         *
9367                         * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9368                         *    truncate the old free space cache inode and
9369                         *    setup a new one.
9370                         * b) Setting 'dirty flag' makes sure that we flush
9371                         *    the new space cache info onto disk.
9372                         */
9373                        if (btrfs_test_opt(root, SPACE_CACHE))
9374                                cache->disk_cache_state = BTRFS_DC_CLEAR;
9375                }
9376
9377                read_extent_buffer(leaf, &cache->item,
9378                                   btrfs_item_ptr_offset(leaf, path->slots[0]),
9379                                   sizeof(cache->item));
9380                cache->flags = btrfs_block_group_flags(&cache->item);
9381
9382                key.objectid = found_key.objectid + found_key.offset;
9383                btrfs_release_path(path);
9384
9385                /*
9386                 * We need to exclude the super stripes now so that the space
9387                 * info has super bytes accounted for, otherwise we'll think
9388                 * we have more space than we actually do.
9389                 */
9390                ret = exclude_super_stripes(root, cache);
9391                if (ret) {
9392                        /*
9393                         * We may have excluded something, so call this just in
9394                         * case.
9395                         */
9396                        free_excluded_extents(root, cache);
9397                        btrfs_put_block_group(cache);
9398                        goto error;
9399                }
9400
9401                /*
9402                 * check for two cases, either we are full, and therefore
9403                 * don't need to bother with the caching work since we won't
9404                 * find any space, or we are empty, and we can just add all
9405                 * the space in and be done with it.  This saves us _alot_ of
9406                 * time, particularly in the full case.
9407                 */
9408                if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9409                        cache->last_byte_to_unpin = (u64)-1;
9410                        cache->cached = BTRFS_CACHE_FINISHED;
9411                        free_excluded_extents(root, cache);
9412                } else if (btrfs_block_group_used(&cache->item) == 0) {
9413                        cache->last_byte_to_unpin = (u64)-1;
9414                        cache->cached = BTRFS_CACHE_FINISHED;
9415                        add_new_free_space(cache, root->fs_info,
9416                                           found_key.objectid,
9417                                           found_key.objectid +
9418                                           found_key.offset);
9419                        free_excluded_extents(root, cache);
9420                }
9421
9422                ret = btrfs_add_block_group_cache(root->fs_info, cache);
9423                if (ret) {
9424                        btrfs_remove_free_space_cache(cache);
9425                        btrfs_put_block_group(cache);
9426                        goto error;
9427                }
9428
9429                ret = update_space_info(info, cache->flags, found_key.offset,
9430                                        btrfs_block_group_used(&cache->item),
9431                                        &space_info);
9432                if (ret) {
9433                        btrfs_remove_free_space_cache(cache);
9434                        spin_lock(&info->block_group_cache_lock);
9435                        rb_erase(&cache->cache_node,
9436                                 &info->block_group_cache_tree);
9437                        RB_CLEAR_NODE(&cache->cache_node);
9438                        spin_unlock(&info->block_group_cache_lock);
9439                        btrfs_put_block_group(cache);
9440                        goto error;
9441                }
9442
9443                cache->space_info = space_info;
9444                spin_lock(&cache->space_info->lock);
9445                cache->space_info->bytes_readonly += cache->bytes_super;
9446                spin_unlock(&cache->space_info->lock);
9447
9448                __link_block_group(space_info, cache);
9449
9450                set_avail_alloc_bits(root->fs_info, cache->flags);
9451                if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9452                        set_block_group_ro(cache, 1);
9453                } else if (btrfs_block_group_used(&cache->item) == 0) {
9454                        spin_lock(&info->unused_bgs_lock);
9455                        /* Should always be true but just in case. */
9456                        if (list_empty(&cache->bg_list)) {
9457                                btrfs_get_block_group(cache);
9458                                list_add_tail(&cache->bg_list,
9459                                              &info->unused_bgs);
9460                        }
9461                        spin_unlock(&info->unused_bgs_lock);
9462                }
9463        }
9464
9465        list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9466                if (!(get_alloc_profile(root, space_info->flags) &
9467                      (BTRFS_BLOCK_GROUP_RAID10 |
9468                       BTRFS_BLOCK_GROUP_RAID1 |
9469                       BTRFS_BLOCK_GROUP_RAID5 |
9470                       BTRFS_BLOCK_GROUP_RAID6 |
9471                       BTRFS_BLOCK_GROUP_DUP)))
9472                        continue;
9473                /*
9474                 * avoid allocating from un-mirrored block group if there are
9475                 * mirrored block groups.
9476                 */
9477                list_for_each_entry(cache,
9478                                &space_info->block_groups[BTRFS_RAID_RAID0],
9479                                list)
9480                        set_block_group_ro(cache, 1);
9481                list_for_each_entry(cache,
9482                                &space_info->block_groups[BTRFS_RAID_SINGLE],
9483                                list)
9484                        set_block_group_ro(cache, 1);
9485        }
9486
9487        init_global_block_rsv(info);
9488        ret = 0;
9489error:
9490        btrfs_free_path(path);
9491        return ret;
9492}
9493
9494void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9495                                       struct btrfs_root *root)
9496{
9497        struct btrfs_block_group_cache *block_group, *tmp;
9498        struct btrfs_root *extent_root = root->fs_info->extent_root;
9499        struct btrfs_block_group_item item;
9500        struct btrfs_key key;
9501        int ret = 0;
9502
9503        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9504                if (ret)
9505                        goto next;
9506
9507                spin_lock(&block_group->lock);
9508                memcpy(&item, &block_group->item, sizeof(item));
9509                memcpy(&key, &block_group->key, sizeof(key));
9510                spin_unlock(&block_group->lock);
9511
9512                ret = btrfs_insert_item(trans, extent_root, &key, &item,
9513                                        sizeof(item));
9514                if (ret)
9515                        btrfs_abort_transaction(trans, extent_root, ret);
9516                ret = btrfs_finish_chunk_alloc(trans, extent_root,
9517                                               key.objectid, key.offset);
9518                if (ret)
9519                        btrfs_abort_transaction(trans, extent_root, ret);
9520next:
9521                list_del_init(&block_group->bg_list);
9522        }
9523}
9524
9525int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9526                           struct btrfs_root *root, u64 bytes_used,
9527                           u64 type, u64 chunk_objectid, u64 chunk_offset,
9528                           u64 size)
9529{
9530        int ret;
9531        struct btrfs_root *extent_root;
9532        struct btrfs_block_group_cache *cache;
9533
9534        extent_root = root->fs_info->extent_root;
9535
9536        btrfs_set_log_full_commit(root->fs_info, trans);
9537
9538        cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9539        if (!cache)
9540                return -ENOMEM;
9541
9542        btrfs_set_block_group_used(&cache->item, bytes_used);
9543        btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9544        btrfs_set_block_group_flags(&cache->item, type);
9545
9546        cache->flags = type;
9547        cache->last_byte_to_unpin = (u64)-1;
9548        cache->cached = BTRFS_CACHE_FINISHED;
9549        ret = exclude_super_stripes(root, cache);
9550        if (ret) {
9551                /*
9552                 * We may have excluded something, so call this just in
9553                 * case.
9554                 */
9555                free_excluded_extents(root, cache);
9556                btrfs_put_block_group(cache);
9557                return ret;
9558        }
9559
9560        add_new_free_space(cache, root->fs_info, chunk_offset,
9561                           chunk_offset + size);
9562
9563        free_excluded_extents(root, cache);
9564
9565        ret = btrfs_add_block_group_cache(root->fs_info, cache);
9566        if (ret) {
9567                btrfs_remove_free_space_cache(cache);
9568                btrfs_put_block_group(cache);
9569                return ret;
9570        }
9571
9572        ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9573                                &cache->space_info);
9574        if (ret) {
9575                btrfs_remove_free_space_cache(cache);
9576                spin_lock(&root->fs_info->block_group_cache_lock);
9577                rb_erase(&cache->cache_node,
9578                         &root->fs_info->block_group_cache_tree);
9579                RB_CLEAR_NODE(&cache->cache_node);
9580                spin_unlock(&root->fs_info->block_group_cache_lock);
9581                btrfs_put_block_group(cache);
9582                return ret;
9583        }
9584        update_global_block_rsv(root->fs_info);
9585
9586        spin_lock(&cache->space_info->lock);
9587        cache->space_info->bytes_readonly += cache->bytes_super;
9588        spin_unlock(&cache->space_info->lock);
9589
9590        __link_block_group(cache->space_info, cache);
9591
9592        list_add_tail(&cache->bg_list, &trans->new_bgs);
9593
9594        set_avail_alloc_bits(extent_root->fs_info, type);
9595
9596        return 0;
9597}
9598
9599static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9600{
9601        u64 extra_flags = chunk_to_extended(flags) &
9602                                BTRFS_EXTENDED_PROFILE_MASK;
9603
9604        write_seqlock(&fs_info->profiles_lock);
9605        if (flags & BTRFS_BLOCK_GROUP_DATA)
9606                fs_info->avail_data_alloc_bits &= ~extra_flags;
9607        if (flags & BTRFS_BLOCK_GROUP_METADATA)
9608                fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9609        if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9610                fs_info->avail_system_alloc_bits &= ~extra_flags;
9611        write_sequnlock(&fs_info->profiles_lock);
9612}
9613
9614int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9615                             struct btrfs_root *root, u64 group_start,
9616                             struct extent_map *em)
9617{
9618        struct btrfs_path *path;
9619        struct btrfs_block_group_cache *block_group;
9620        struct btrfs_free_cluster *cluster;
9621        struct btrfs_root *tree_root = root->fs_info->tree_root;
9622        struct btrfs_key key;
9623        struct inode *inode;
9624        struct kobject *kobj = NULL;
9625        int ret;
9626        int index;
9627        int factor;
9628        struct btrfs_caching_control *caching_ctl = NULL;
9629        bool remove_em;
9630
9631        root = root->fs_info->extent_root;
9632
9633        block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9634        BUG_ON(!block_group);
9635        BUG_ON(!block_group->ro);
9636
9637        /*
9638         * Free the reserved super bytes from this block group before
9639         * remove it.
9640         */
9641        free_excluded_extents(root, block_group);
9642
9643        memcpy(&key, &block_group->key, sizeof(key));
9644        index = get_block_group_index(block_group);
9645        if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9646                                  BTRFS_BLOCK_GROUP_RAID1 |
9647                                  BTRFS_BLOCK_GROUP_RAID10))
9648                factor = 2;
9649        else
9650                factor = 1;
9651
9652        /* make sure this block group isn't part of an allocation cluster */
9653        cluster = &root->fs_info->data_alloc_cluster;
9654        spin_lock(&cluster->refill_lock);
9655        btrfs_return_cluster_to_free_space(block_group, cluster);
9656        spin_unlock(&cluster->refill_lock);
9657
9658        /*
9659         * make sure this block group isn't part of a metadata
9660         * allocation cluster
9661         */
9662        cluster = &root->fs_info->meta_alloc_cluster;
9663        spin_lock(&cluster->refill_lock);
9664        btrfs_return_cluster_to_free_space(block_group, cluster);
9665        spin_unlock(&cluster->refill_lock);
9666
9667        path = btrfs_alloc_path();
9668        if (!path) {
9669                ret = -ENOMEM;
9670                goto out;
9671        }
9672
9673        /*
9674         * get the inode first so any iput calls done for the io_list
9675         * aren't the final iput (no unlinks allowed now)
9676         */
9677        inode = lookup_free_space_inode(tree_root, block_group, path);
9678
9679        mutex_lock(&trans->transaction->cache_write_mutex);
9680        /*
9681         * make sure our free spache cache IO is done before remove the
9682         * free space inode
9683         */
9684        spin_lock(&trans->transaction->dirty_bgs_lock);
9685        if (!list_empty(&block_group->io_list)) {
9686                list_del_init(&block_group->io_list);
9687
9688                WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9689
9690                spin_unlock(&trans->transaction->dirty_bgs_lock);
9691                btrfs_wait_cache_io(root, trans, block_group,
9692                                    &block_group->io_ctl, path,
9693                                    block_group->key.objectid);
9694                btrfs_put_block_group(block_group);
9695                spin_lock(&trans->transaction->dirty_bgs_lock);
9696        }
9697
9698        if (!list_empty(&block_group->dirty_list)) {
9699                list_del_init(&block_group->dirty_list);
9700                btrfs_put_block_group(block_group);
9701        }
9702        spin_unlock(&trans->transaction->dirty_bgs_lock);
9703        mutex_unlock(&trans->transaction->cache_write_mutex);
9704
9705        if (!IS_ERR(inode)) {
9706                ret = btrfs_orphan_add(trans, inode);
9707                if (ret) {
9708                        btrfs_add_delayed_iput(inode);
9709                        goto out;
9710                }
9711                clear_nlink(inode);
9712                /* One for the block groups ref */
9713                spin_lock(&block_group->lock);
9714                if (block_group->iref) {
9715                        block_group->iref = 0;
9716                        block_group->inode = NULL;
9717                        spin_unlock(&block_group->lock);
9718                        iput(inode);
9719                } else {
9720                        spin_unlock(&block_group->lock);
9721                }
9722                /* One for our lookup ref */
9723                btrfs_add_delayed_iput(inode);
9724        }
9725
9726        key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9727        key.offset = block_group->key.objectid;
9728        key.type = 0;
9729
9730        ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9731        if (ret < 0)
9732                goto out;
9733        if (ret > 0)
9734                btrfs_release_path(path);
9735        if (ret == 0) {
9736                ret = btrfs_del_item(trans, tree_root, path);
9737                if (ret)
9738                        goto out;
9739                btrfs_release_path(path);
9740        }
9741
9742        spin_lock(&root->fs_info->block_group_cache_lock);
9743        rb_erase(&block_group->cache_node,
9744                 &root->fs_info->block_group_cache_tree);
9745        RB_CLEAR_NODE(&block_group->cache_node);
9746
9747        if (root->fs_info->first_logical_byte == block_group->key.objectid)
9748                root->fs_info->first_logical_byte = (u64)-1;
9749        spin_unlock(&root->fs_info->block_group_cache_lock);
9750
9751        down_write(&block_group->space_info->groups_sem);
9752        /*
9753         * we must use list_del_init so people can check to see if they
9754         * are still on the list after taking the semaphore
9755         */
9756        list_del_init(&block_group->list);
9757        if (list_empty(&block_group->space_info->block_groups[index])) {
9758                kobj = block_group->space_info->block_group_kobjs[index];
9759                block_group->space_info->block_group_kobjs[index] = NULL;
9760                clear_avail_alloc_bits(root->fs_info, block_group->flags);
9761        }
9762        up_write(&block_group->space_info->groups_sem);
9763        if (kobj) {
9764                kobject_del(kobj);
9765                kobject_put(kobj);
9766        }
9767
9768        if (block_group->has_caching_ctl)
9769                caching_ctl = get_caching_control(block_group);
9770        if (block_group->cached == BTRFS_CACHE_STARTED)
9771                wait_block_group_cache_done(block_group);
9772        if (block_group->has_caching_ctl) {
9773                down_write(&root->fs_info->commit_root_sem);
9774                if (!caching_ctl) {
9775                        struct btrfs_caching_control *ctl;
9776
9777                        list_for_each_entry(ctl,
9778                                    &root->fs_info->caching_block_groups, list)
9779                                if (ctl->block_group == block_group) {
9780                                        caching_ctl = ctl;
9781                                        atomic_inc(&caching_ctl->count);
9782                                        break;
9783                                }
9784                }
9785                if (caching_ctl)
9786                        list_del_init(&caching_ctl->list);
9787                up_write(&root->fs_info->commit_root_sem);
9788                if (caching_ctl) {
9789                        /* Once for the caching bgs list and once for us. */
9790                        put_caching_control(caching_ctl);
9791                        put_caching_control(caching_ctl);
9792                }
9793        }
9794
9795        spin_lock(&trans->transaction->dirty_bgs_lock);
9796        if (!list_empty(&block_group->dirty_list)) {
9797                WARN_ON(1);
9798        }
9799        if (!list_empty(&block_group->io_list)) {
9800                WARN_ON(1);
9801        }
9802        spin_unlock(&trans->transaction->dirty_bgs_lock);
9803        btrfs_remove_free_space_cache(block_group);
9804
9805        spin_lock(&block_group->space_info->lock);
9806        list_del_init(&block_group->ro_list);
9807
9808        if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9809                WARN_ON(block_group->space_info->total_bytes
9810                        < block_group->key.offset);
9811                WARN_ON(block_group->space_info->bytes_readonly
9812                        < block_group->key.offset);
9813                WARN_ON(block_group->space_info->disk_total
9814                        < block_group->key.offset * factor);
9815        }
9816        block_group->space_info->total_bytes -= block_group->key.offset;
9817        block_group->space_info->bytes_readonly -= block_group->key.offset;
9818        block_group->space_info->disk_total -= block_group->key.offset * factor;
9819
9820        spin_unlock(&block_group->space_info->lock);
9821
9822        memcpy(&key, &block_group->key, sizeof(key));
9823
9824        lock_chunks(root);
9825        if (!list_empty(&em->list)) {
9826                /* We're in the transaction->pending_chunks list. */
9827                free_extent_map(em);
9828        }
9829        spin_lock(&block_group->lock);
9830        block_group->removed = 1;
9831        /*
9832         * At this point trimming can't start on this block group, because we
9833         * removed the block group from the tree fs_info->block_group_cache_tree
9834         * so no one can't find it anymore and even if someone already got this
9835         * block group before we removed it from the rbtree, they have already
9836         * incremented block_group->trimming - if they didn't, they won't find
9837         * any free space entries because we already removed them all when we
9838         * called btrfs_remove_free_space_cache().
9839         *
9840         * And we must not remove the extent map from the fs_info->mapping_tree
9841         * to prevent the same logical address range and physical device space
9842         * ranges from being reused for a new block group. This is because our
9843         * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9844         * completely transactionless, so while it is trimming a range the
9845         * currently running transaction might finish and a new one start,
9846         * allowing for new block groups to be created that can reuse the same
9847         * physical device locations unless we take this special care.
9848         */
9849        remove_em = (atomic_read(&block_group->trimming) == 0);
9850        /*
9851         * Make sure a trimmer task always sees the em in the pinned_chunks list
9852         * if it sees block_group->removed == 1 (needs to lock block_group->lock
9853         * before checking block_group->removed).
9854         */
9855        if (!remove_em) {
9856                /*
9857                 * Our em might be in trans->transaction->pending_chunks which
9858                 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9859                 * and so is the fs_info->pinned_chunks list.
9860                 *
9861                 * So at this point we must be holding the chunk_mutex to avoid
9862                 * any races with chunk allocation (more specifically at
9863                 * volumes.c:contains_pending_extent()), to ensure it always
9864                 * sees the em, either in the pending_chunks list or in the
9865                 * pinned_chunks list.
9866                 */
9867                list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9868        }
9869        spin_unlock(&block_group->lock);
9870
9871        if (remove_em) {
9872                struct extent_map_tree *em_tree;
9873
9874                em_tree = &root->fs_info->mapping_tree.map_tree;
9875                write_lock(&em_tree->lock);
9876                /*
9877                 * The em might be in the pending_chunks list, so make sure the
9878                 * chunk mutex is locked, since remove_extent_mapping() will
9879                 * delete us from that list.
9880                 */
9881                remove_extent_mapping(em_tree, em);
9882                write_unlock(&em_tree->lock);
9883                /* once for the tree */
9884                free_extent_map(em);
9885        }
9886
9887        unlock_chunks(root);
9888
9889        btrfs_put_block_group(block_group);
9890        btrfs_put_block_group(block_group);
9891
9892        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9893        if (ret > 0)
9894                ret = -EIO;
9895        if (ret < 0)
9896                goto out;
9897
9898        ret = btrfs_del_item(trans, root, path);
9899out:
9900        btrfs_free_path(path);
9901        return ret;
9902}
9903
9904/*
9905 * Process the unused_bgs list and remove any that don't have any allocated
9906 * space inside of them.
9907 */
9908void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9909{
9910        struct btrfs_block_group_cache *block_group;
9911        struct btrfs_space_info *space_info;
9912        struct btrfs_root *root = fs_info->extent_root;
9913        struct btrfs_trans_handle *trans;
9914        int ret = 0;
9915
9916        if (!fs_info->open)
9917                return;
9918
9919        spin_lock(&fs_info->unused_bgs_lock);
9920        while (!list_empty(&fs_info->unused_bgs)) {
9921                u64 start, end;
9922
9923                block_group = list_first_entry(&fs_info->unused_bgs,
9924                                               struct btrfs_block_group_cache,
9925                                               bg_list);
9926                space_info = block_group->space_info;
9927                list_del_init(&block_group->bg_list);
9928                if (ret || btrfs_mixed_space_info(space_info)) {
9929                        btrfs_put_block_group(block_group);
9930                        continue;
9931                }
9932                spin_unlock(&fs_info->unused_bgs_lock);
9933
9934                /* Don't want to race with allocators so take the groups_sem */
9935                down_write(&space_info->groups_sem);
9936                spin_lock(&block_group->lock);
9937                if (block_group->reserved ||
9938                    btrfs_block_group_used(&block_group->item) ||
9939                    block_group->ro) {
9940                        /*
9941                         * We want to bail if we made new allocations or have
9942                         * outstanding allocations in this block group.  We do
9943                         * the ro check in case balance is currently acting on
9944                         * this block group.
9945                         */
9946                        spin_unlock(&block_group->lock);
9947                        up_write(&space_info->groups_sem);
9948                        goto next;
9949                }
9950                spin_unlock(&block_group->lock);
9951
9952                /* We don't want to force the issue, only flip if it's ok. */
9953                ret = set_block_group_ro(block_group, 0);
9954                up_write(&space_info->groups_sem);
9955                if (ret < 0) {
9956                        ret = 0;
9957                        goto next;
9958                }
9959
9960                /*
9961                 * Want to do this before we do anything else so we can recover
9962                 * properly if we fail to join the transaction.
9963                 */
9964                /* 1 for btrfs_orphan_reserve_metadata() */
9965                trans = btrfs_start_transaction(root, 1);
9966                if (IS_ERR(trans)) {
9967                        btrfs_set_block_group_rw(root, block_group);
9968                        ret = PTR_ERR(trans);
9969                        goto next;
9970                }
9971
9972                /*
9973                 * We could have pending pinned extents for this block group,
9974                 * just delete them, we don't care about them anymore.
9975                 */
9976                start = block_group->key.objectid;
9977                end = start + block_group->key.offset - 1;
9978                /*
9979                 * Hold the unused_bg_unpin_mutex lock to avoid racing with
9980                 * btrfs_finish_extent_commit(). If we are at transaction N,
9981                 * another task might be running finish_extent_commit() for the
9982                 * previous transaction N - 1, and have seen a range belonging
9983                 * to the block group in freed_extents[] before we were able to
9984                 * clear the whole block group range from freed_extents[]. This
9985                 * means that task can lookup for the block group after we
9986                 * unpinned it from freed_extents[] and removed it, leading to
9987                 * a BUG_ON() at btrfs_unpin_extent_range().
9988                 */
9989                mutex_lock(&fs_info->unused_bg_unpin_mutex);
9990                ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
9991                                  EXTENT_DIRTY, GFP_NOFS);
9992                if (ret) {
9993                        mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9994                        btrfs_set_block_group_rw(root, block_group);
9995                        goto end_trans;
9996                }
9997                ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
9998                                  EXTENT_DIRTY, GFP_NOFS);
9999                if (ret) {
10000                        mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10001                        btrfs_set_block_group_rw(root, block_group);
10002                        goto end_trans;
10003                }
10004                mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10005
10006                /* Reset pinned so btrfs_put_block_group doesn't complain */
10007                spin_lock(&space_info->lock);
10008                spin_lock(&block_group->lock);
10009
10010                space_info->bytes_pinned -= block_group->pinned;
10011                space_info->bytes_readonly += block_group->pinned;
10012                percpu_counter_add(&space_info->total_bytes_pinned,
10013                                   -block_group->pinned);
10014                block_group->pinned = 0;
10015
10016                spin_unlock(&block_group->lock);
10017                spin_unlock(&space_info->lock);
10018
10019                /*
10020                 * Btrfs_remove_chunk will abort the transaction if things go
10021                 * horribly wrong.
10022                 */
10023                ret = btrfs_remove_chunk(trans, root,
10024                                         block_group->key.objectid);
10025end_trans:
10026                btrfs_end_transaction(trans, root);
10027next:
10028                btrfs_put_block_group(block_group);
10029                spin_lock(&fs_info->unused_bgs_lock);
10030        }
10031        spin_unlock(&fs_info->unused_bgs_lock);
10032}
10033
10034int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10035{
10036        struct btrfs_space_info *space_info;
10037        struct btrfs_super_block *disk_super;
10038        u64 features;
10039        u64 flags;
10040        int mixed = 0;
10041        int ret;
10042
10043        disk_super = fs_info->super_copy;
10044        if (!btrfs_super_root(disk_super))
10045                return 1;
10046
10047        features = btrfs_super_incompat_flags(disk_super);
10048        if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10049                mixed = 1;
10050
10051        flags = BTRFS_BLOCK_GROUP_SYSTEM;
10052        ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10053        if (ret)
10054                goto out;
10055
10056        if (mixed) {
10057                flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10058                ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10059        } else {
10060                flags = BTRFS_BLOCK_GROUP_METADATA;
10061                ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10062                if (ret)
10063                        goto out;
10064
10065                flags = BTRFS_BLOCK_GROUP_DATA;
10066                ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10067        }
10068out:
10069        return ret;
10070}
10071
10072int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10073{
10074        return unpin_extent_range(root, start, end, false);
10075}
10076
10077int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10078{
10079        struct btrfs_fs_info *fs_info = root->fs_info;
10080        struct btrfs_block_group_cache *cache = NULL;
10081        u64 group_trimmed;
10082        u64 start;
10083        u64 end;
10084        u64 trimmed = 0;
10085        u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10086        int ret = 0;
10087
10088        /*
10089         * try to trim all FS space, our block group may start from non-zero.
10090         */
10091        if (range->len == total_bytes)
10092                cache = btrfs_lookup_first_block_group(fs_info, range->start);
10093        else
10094                cache = btrfs_lookup_block_group(fs_info, range->start);
10095
10096        while (cache) {
10097                if (cache->key.objectid >= (range->start + range->len)) {
10098                        btrfs_put_block_group(cache);
10099                        break;
10100                }
10101
10102                start = max(range->start, cache->key.objectid);
10103                end = min(range->start + range->len,
10104                                cache->key.objectid + cache->key.offset);
10105
10106                if (end - start >= range->minlen) {
10107                        if (!block_group_cache_done(cache)) {
10108                                ret = cache_block_group(cache, 0);
10109                                if (ret) {
10110                                        btrfs_put_block_group(cache);
10111                                        break;
10112                                }
10113                                ret = wait_block_group_cache_done(cache);
10114                                if (ret) {
10115                                        btrfs_put_block_group(cache);
10116                                        break;
10117                                }
10118                        }
10119                        ret = btrfs_trim_block_group(cache,
10120                                                     &group_trimmed,
10121                                                     start,
10122                                                     end,
10123                                                     range->minlen);
10124
10125                        trimmed += group_trimmed;
10126                        if (ret) {
10127                                btrfs_put_block_group(cache);
10128                                break;
10129                        }
10130                }
10131
10132                cache = next_block_group(fs_info->tree_root, cache);
10133        }
10134
10135        range->len = trimmed;
10136        return ret;
10137}
10138
10139/*
10140 * btrfs_{start,end}_write_no_snapshoting() are similar to
10141 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10142 * data into the page cache through nocow before the subvolume is snapshoted,
10143 * but flush the data into disk after the snapshot creation, or to prevent
10144 * operations while snapshoting is ongoing and that cause the snapshot to be
10145 * inconsistent (writes followed by expanding truncates for example).
10146 */
10147void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10148{
10149        percpu_counter_dec(&root->subv_writers->counter);
10150        /*
10151         * Make sure counter is updated before we wake up
10152         * waiters.
10153         */
10154        smp_mb();
10155        if (waitqueue_active(&root->subv_writers->wait))
10156                wake_up(&root->subv_writers->wait);
10157}
10158
10159int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10160{
10161        if (atomic_read(&root->will_be_snapshoted))
10162                return 0;
10163
10164        percpu_counter_inc(&root->subv_writers->counter);
10165        /*
10166         * Make sure counter is updated before we check for snapshot creation.
10167         */
10168        smp_mb();
10169        if (atomic_read(&root->will_be_snapshoted)) {
10170                btrfs_end_write_no_snapshoting(root);
10171                return 0;
10172        }
10173        return 1;
10174}
10175