linux/fs/btrfs/file.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/pagemap.h>
  21#include <linux/highmem.h>
  22#include <linux/time.h>
  23#include <linux/init.h>
  24#include <linux/string.h>
  25#include <linux/backing-dev.h>
  26#include <linux/mpage.h>
  27#include <linux/falloc.h>
  28#include <linux/swap.h>
  29#include <linux/writeback.h>
  30#include <linux/statfs.h>
  31#include <linux/compat.h>
  32#include <linux/slab.h>
  33#include <linux/btrfs.h>
  34#include <linux/uio.h>
  35#include "ctree.h"
  36#include "disk-io.h"
  37#include "transaction.h"
  38#include "btrfs_inode.h"
  39#include "print-tree.h"
  40#include "tree-log.h"
  41#include "locking.h"
  42#include "volumes.h"
  43#include "qgroup.h"
  44
  45static struct kmem_cache *btrfs_inode_defrag_cachep;
  46/*
  47 * when auto defrag is enabled we
  48 * queue up these defrag structs to remember which
  49 * inodes need defragging passes
  50 */
  51struct inode_defrag {
  52        struct rb_node rb_node;
  53        /* objectid */
  54        u64 ino;
  55        /*
  56         * transid where the defrag was added, we search for
  57         * extents newer than this
  58         */
  59        u64 transid;
  60
  61        /* root objectid */
  62        u64 root;
  63
  64        /* last offset we were able to defrag */
  65        u64 last_offset;
  66
  67        /* if we've wrapped around back to zero once already */
  68        int cycled;
  69};
  70
  71static int __compare_inode_defrag(struct inode_defrag *defrag1,
  72                                  struct inode_defrag *defrag2)
  73{
  74        if (defrag1->root > defrag2->root)
  75                return 1;
  76        else if (defrag1->root < defrag2->root)
  77                return -1;
  78        else if (defrag1->ino > defrag2->ino)
  79                return 1;
  80        else if (defrag1->ino < defrag2->ino)
  81                return -1;
  82        else
  83                return 0;
  84}
  85
  86/* pop a record for an inode into the defrag tree.  The lock
  87 * must be held already
  88 *
  89 * If you're inserting a record for an older transid than an
  90 * existing record, the transid already in the tree is lowered
  91 *
  92 * If an existing record is found the defrag item you
  93 * pass in is freed
  94 */
  95static int __btrfs_add_inode_defrag(struct inode *inode,
  96                                    struct inode_defrag *defrag)
  97{
  98        struct btrfs_root *root = BTRFS_I(inode)->root;
  99        struct inode_defrag *entry;
 100        struct rb_node **p;
 101        struct rb_node *parent = NULL;
 102        int ret;
 103
 104        p = &root->fs_info->defrag_inodes.rb_node;
 105        while (*p) {
 106                parent = *p;
 107                entry = rb_entry(parent, struct inode_defrag, rb_node);
 108
 109                ret = __compare_inode_defrag(defrag, entry);
 110                if (ret < 0)
 111                        p = &parent->rb_left;
 112                else if (ret > 0)
 113                        p = &parent->rb_right;
 114                else {
 115                        /* if we're reinserting an entry for
 116                         * an old defrag run, make sure to
 117                         * lower the transid of our existing record
 118                         */
 119                        if (defrag->transid < entry->transid)
 120                                entry->transid = defrag->transid;
 121                        if (defrag->last_offset > entry->last_offset)
 122                                entry->last_offset = defrag->last_offset;
 123                        return -EEXIST;
 124                }
 125        }
 126        set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 127        rb_link_node(&defrag->rb_node, parent, p);
 128        rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
 129        return 0;
 130}
 131
 132static inline int __need_auto_defrag(struct btrfs_root *root)
 133{
 134        if (!btrfs_test_opt(root, AUTO_DEFRAG))
 135                return 0;
 136
 137        if (btrfs_fs_closing(root->fs_info))
 138                return 0;
 139
 140        return 1;
 141}
 142
 143/*
 144 * insert a defrag record for this inode if auto defrag is
 145 * enabled
 146 */
 147int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
 148                           struct inode *inode)
 149{
 150        struct btrfs_root *root = BTRFS_I(inode)->root;
 151        struct inode_defrag *defrag;
 152        u64 transid;
 153        int ret;
 154
 155        if (!__need_auto_defrag(root))
 156                return 0;
 157
 158        if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
 159                return 0;
 160
 161        if (trans)
 162                transid = trans->transid;
 163        else
 164                transid = BTRFS_I(inode)->root->last_trans;
 165
 166        defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
 167        if (!defrag)
 168                return -ENOMEM;
 169
 170        defrag->ino = btrfs_ino(inode);
 171        defrag->transid = transid;
 172        defrag->root = root->root_key.objectid;
 173
 174        spin_lock(&root->fs_info->defrag_inodes_lock);
 175        if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
 176                /*
 177                 * If we set IN_DEFRAG flag and evict the inode from memory,
 178                 * and then re-read this inode, this new inode doesn't have
 179                 * IN_DEFRAG flag. At the case, we may find the existed defrag.
 180                 */
 181                ret = __btrfs_add_inode_defrag(inode, defrag);
 182                if (ret)
 183                        kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 184        } else {
 185                kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 186        }
 187        spin_unlock(&root->fs_info->defrag_inodes_lock);
 188        return 0;
 189}
 190
 191/*
 192 * Requeue the defrag object. If there is a defrag object that points to
 193 * the same inode in the tree, we will merge them together (by
 194 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
 195 */
 196static void btrfs_requeue_inode_defrag(struct inode *inode,
 197                                       struct inode_defrag *defrag)
 198{
 199        struct btrfs_root *root = BTRFS_I(inode)->root;
 200        int ret;
 201
 202        if (!__need_auto_defrag(root))
 203                goto out;
 204
 205        /*
 206         * Here we don't check the IN_DEFRAG flag, because we need merge
 207         * them together.
 208         */
 209        spin_lock(&root->fs_info->defrag_inodes_lock);
 210        ret = __btrfs_add_inode_defrag(inode, defrag);
 211        spin_unlock(&root->fs_info->defrag_inodes_lock);
 212        if (ret)
 213                goto out;
 214        return;
 215out:
 216        kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 217}
 218
 219/*
 220 * pick the defragable inode that we want, if it doesn't exist, we will get
 221 * the next one.
 222 */
 223static struct inode_defrag *
 224btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
 225{
 226        struct inode_defrag *entry = NULL;
 227        struct inode_defrag tmp;
 228        struct rb_node *p;
 229        struct rb_node *parent = NULL;
 230        int ret;
 231
 232        tmp.ino = ino;
 233        tmp.root = root;
 234
 235        spin_lock(&fs_info->defrag_inodes_lock);
 236        p = fs_info->defrag_inodes.rb_node;
 237        while (p) {
 238                parent = p;
 239                entry = rb_entry(parent, struct inode_defrag, rb_node);
 240
 241                ret = __compare_inode_defrag(&tmp, entry);
 242                if (ret < 0)
 243                        p = parent->rb_left;
 244                else if (ret > 0)
 245                        p = parent->rb_right;
 246                else
 247                        goto out;
 248        }
 249
 250        if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
 251                parent = rb_next(parent);
 252                if (parent)
 253                        entry = rb_entry(parent, struct inode_defrag, rb_node);
 254                else
 255                        entry = NULL;
 256        }
 257out:
 258        if (entry)
 259                rb_erase(parent, &fs_info->defrag_inodes);
 260        spin_unlock(&fs_info->defrag_inodes_lock);
 261        return entry;
 262}
 263
 264void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
 265{
 266        struct inode_defrag *defrag;
 267        struct rb_node *node;
 268
 269        spin_lock(&fs_info->defrag_inodes_lock);
 270        node = rb_first(&fs_info->defrag_inodes);
 271        while (node) {
 272                rb_erase(node, &fs_info->defrag_inodes);
 273                defrag = rb_entry(node, struct inode_defrag, rb_node);
 274                kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 275
 276                cond_resched_lock(&fs_info->defrag_inodes_lock);
 277
 278                node = rb_first(&fs_info->defrag_inodes);
 279        }
 280        spin_unlock(&fs_info->defrag_inodes_lock);
 281}
 282
 283#define BTRFS_DEFRAG_BATCH      1024
 284
 285static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
 286                                    struct inode_defrag *defrag)
 287{
 288        struct btrfs_root *inode_root;
 289        struct inode *inode;
 290        struct btrfs_key key;
 291        struct btrfs_ioctl_defrag_range_args range;
 292        int num_defrag;
 293        int index;
 294        int ret;
 295
 296        /* get the inode */
 297        key.objectid = defrag->root;
 298        key.type = BTRFS_ROOT_ITEM_KEY;
 299        key.offset = (u64)-1;
 300
 301        index = srcu_read_lock(&fs_info->subvol_srcu);
 302
 303        inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
 304        if (IS_ERR(inode_root)) {
 305                ret = PTR_ERR(inode_root);
 306                goto cleanup;
 307        }
 308
 309        key.objectid = defrag->ino;
 310        key.type = BTRFS_INODE_ITEM_KEY;
 311        key.offset = 0;
 312        inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
 313        if (IS_ERR(inode)) {
 314                ret = PTR_ERR(inode);
 315                goto cleanup;
 316        }
 317        srcu_read_unlock(&fs_info->subvol_srcu, index);
 318
 319        /* do a chunk of defrag */
 320        clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 321        memset(&range, 0, sizeof(range));
 322        range.len = (u64)-1;
 323        range.start = defrag->last_offset;
 324
 325        sb_start_write(fs_info->sb);
 326        num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
 327                                       BTRFS_DEFRAG_BATCH);
 328        sb_end_write(fs_info->sb);
 329        /*
 330         * if we filled the whole defrag batch, there
 331         * must be more work to do.  Queue this defrag
 332         * again
 333         */
 334        if (num_defrag == BTRFS_DEFRAG_BATCH) {
 335                defrag->last_offset = range.start;
 336                btrfs_requeue_inode_defrag(inode, defrag);
 337        } else if (defrag->last_offset && !defrag->cycled) {
 338                /*
 339                 * we didn't fill our defrag batch, but
 340                 * we didn't start at zero.  Make sure we loop
 341                 * around to the start of the file.
 342                 */
 343                defrag->last_offset = 0;
 344                defrag->cycled = 1;
 345                btrfs_requeue_inode_defrag(inode, defrag);
 346        } else {
 347                kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 348        }
 349
 350        iput(inode);
 351        return 0;
 352cleanup:
 353        srcu_read_unlock(&fs_info->subvol_srcu, index);
 354        kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 355        return ret;
 356}
 357
 358/*
 359 * run through the list of inodes in the FS that need
 360 * defragging
 361 */
 362int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
 363{
 364        struct inode_defrag *defrag;
 365        u64 first_ino = 0;
 366        u64 root_objectid = 0;
 367
 368        atomic_inc(&fs_info->defrag_running);
 369        while (1) {
 370                /* Pause the auto defragger. */
 371                if (test_bit(BTRFS_FS_STATE_REMOUNTING,
 372                             &fs_info->fs_state))
 373                        break;
 374
 375                if (!__need_auto_defrag(fs_info->tree_root))
 376                        break;
 377
 378                /* find an inode to defrag */
 379                defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
 380                                                 first_ino);
 381                if (!defrag) {
 382                        if (root_objectid || first_ino) {
 383                                root_objectid = 0;
 384                                first_ino = 0;
 385                                continue;
 386                        } else {
 387                                break;
 388                        }
 389                }
 390
 391                first_ino = defrag->ino + 1;
 392                root_objectid = defrag->root;
 393
 394                __btrfs_run_defrag_inode(fs_info, defrag);
 395        }
 396        atomic_dec(&fs_info->defrag_running);
 397
 398        /*
 399         * during unmount, we use the transaction_wait queue to
 400         * wait for the defragger to stop
 401         */
 402        wake_up(&fs_info->transaction_wait);
 403        return 0;
 404}
 405
 406/* simple helper to fault in pages and copy.  This should go away
 407 * and be replaced with calls into generic code.
 408 */
 409static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
 410                                         size_t write_bytes,
 411                                         struct page **prepared_pages,
 412                                         struct iov_iter *i)
 413{
 414        size_t copied = 0;
 415        size_t total_copied = 0;
 416        int pg = 0;
 417        int offset = pos & (PAGE_CACHE_SIZE - 1);
 418
 419        while (write_bytes > 0) {
 420                size_t count = min_t(size_t,
 421                                     PAGE_CACHE_SIZE - offset, write_bytes);
 422                struct page *page = prepared_pages[pg];
 423                /*
 424                 * Copy data from userspace to the current page
 425                 */
 426                copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
 427
 428                /* Flush processor's dcache for this page */
 429                flush_dcache_page(page);
 430
 431                /*
 432                 * if we get a partial write, we can end up with
 433                 * partially up to date pages.  These add
 434                 * a lot of complexity, so make sure they don't
 435                 * happen by forcing this copy to be retried.
 436                 *
 437                 * The rest of the btrfs_file_write code will fall
 438                 * back to page at a time copies after we return 0.
 439                 */
 440                if (!PageUptodate(page) && copied < count)
 441                        copied = 0;
 442
 443                iov_iter_advance(i, copied);
 444                write_bytes -= copied;
 445                total_copied += copied;
 446
 447                /* Return to btrfs_file_write_iter to fault page */
 448                if (unlikely(copied == 0))
 449                        break;
 450
 451                if (copied < PAGE_CACHE_SIZE - offset) {
 452                        offset += copied;
 453                } else {
 454                        pg++;
 455                        offset = 0;
 456                }
 457        }
 458        return total_copied;
 459}
 460
 461/*
 462 * unlocks pages after btrfs_file_write is done with them
 463 */
 464static void btrfs_drop_pages(struct page **pages, size_t num_pages)
 465{
 466        size_t i;
 467        for (i = 0; i < num_pages; i++) {
 468                /* page checked is some magic around finding pages that
 469                 * have been modified without going through btrfs_set_page_dirty
 470                 * clear it here. There should be no need to mark the pages
 471                 * accessed as prepare_pages should have marked them accessed
 472                 * in prepare_pages via find_or_create_page()
 473                 */
 474                ClearPageChecked(pages[i]);
 475                unlock_page(pages[i]);
 476                page_cache_release(pages[i]);
 477        }
 478}
 479
 480/*
 481 * after copy_from_user, pages need to be dirtied and we need to make
 482 * sure holes are created between the current EOF and the start of
 483 * any next extents (if required).
 484 *
 485 * this also makes the decision about creating an inline extent vs
 486 * doing real data extents, marking pages dirty and delalloc as required.
 487 */
 488int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
 489                             struct page **pages, size_t num_pages,
 490                             loff_t pos, size_t write_bytes,
 491                             struct extent_state **cached)
 492{
 493        int err = 0;
 494        int i;
 495        u64 num_bytes;
 496        u64 start_pos;
 497        u64 end_of_last_block;
 498        u64 end_pos = pos + write_bytes;
 499        loff_t isize = i_size_read(inode);
 500
 501        start_pos = pos & ~((u64)root->sectorsize - 1);
 502        num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
 503
 504        end_of_last_block = start_pos + num_bytes - 1;
 505        err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 506                                        cached);
 507        if (err)
 508                return err;
 509
 510        for (i = 0; i < num_pages; i++) {
 511                struct page *p = pages[i];
 512                SetPageUptodate(p);
 513                ClearPageChecked(p);
 514                set_page_dirty(p);
 515        }
 516
 517        /*
 518         * we've only changed i_size in ram, and we haven't updated
 519         * the disk i_size.  There is no need to log the inode
 520         * at this time.
 521         */
 522        if (end_pos > isize)
 523                i_size_write(inode, end_pos);
 524        return 0;
 525}
 526
 527/*
 528 * this drops all the extents in the cache that intersect the range
 529 * [start, end].  Existing extents are split as required.
 530 */
 531void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
 532                             int skip_pinned)
 533{
 534        struct extent_map *em;
 535        struct extent_map *split = NULL;
 536        struct extent_map *split2 = NULL;
 537        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 538        u64 len = end - start + 1;
 539        u64 gen;
 540        int ret;
 541        int testend = 1;
 542        unsigned long flags;
 543        int compressed = 0;
 544        bool modified;
 545
 546        WARN_ON(end < start);
 547        if (end == (u64)-1) {
 548                len = (u64)-1;
 549                testend = 0;
 550        }
 551        while (1) {
 552                int no_splits = 0;
 553
 554                modified = false;
 555                if (!split)
 556                        split = alloc_extent_map();
 557                if (!split2)
 558                        split2 = alloc_extent_map();
 559                if (!split || !split2)
 560                        no_splits = 1;
 561
 562                write_lock(&em_tree->lock);
 563                em = lookup_extent_mapping(em_tree, start, len);
 564                if (!em) {
 565                        write_unlock(&em_tree->lock);
 566                        break;
 567                }
 568                flags = em->flags;
 569                gen = em->generation;
 570                if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
 571                        if (testend && em->start + em->len >= start + len) {
 572                                free_extent_map(em);
 573                                write_unlock(&em_tree->lock);
 574                                break;
 575                        }
 576                        start = em->start + em->len;
 577                        if (testend)
 578                                len = start + len - (em->start + em->len);
 579                        free_extent_map(em);
 580                        write_unlock(&em_tree->lock);
 581                        continue;
 582                }
 583                compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 584                clear_bit(EXTENT_FLAG_PINNED, &em->flags);
 585                clear_bit(EXTENT_FLAG_LOGGING, &flags);
 586                modified = !list_empty(&em->list);
 587                if (no_splits)
 588                        goto next;
 589
 590                if (em->start < start) {
 591                        split->start = em->start;
 592                        split->len = start - em->start;
 593
 594                        if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 595                                split->orig_start = em->orig_start;
 596                                split->block_start = em->block_start;
 597
 598                                if (compressed)
 599                                        split->block_len = em->block_len;
 600                                else
 601                                        split->block_len = split->len;
 602                                split->orig_block_len = max(split->block_len,
 603                                                em->orig_block_len);
 604                                split->ram_bytes = em->ram_bytes;
 605                        } else {
 606                                split->orig_start = split->start;
 607                                split->block_len = 0;
 608                                split->block_start = em->block_start;
 609                                split->orig_block_len = 0;
 610                                split->ram_bytes = split->len;
 611                        }
 612
 613                        split->generation = gen;
 614                        split->bdev = em->bdev;
 615                        split->flags = flags;
 616                        split->compress_type = em->compress_type;
 617                        replace_extent_mapping(em_tree, em, split, modified);
 618                        free_extent_map(split);
 619                        split = split2;
 620                        split2 = NULL;
 621                }
 622                if (testend && em->start + em->len > start + len) {
 623                        u64 diff = start + len - em->start;
 624
 625                        split->start = start + len;
 626                        split->len = em->start + em->len - (start + len);
 627                        split->bdev = em->bdev;
 628                        split->flags = flags;
 629                        split->compress_type = em->compress_type;
 630                        split->generation = gen;
 631
 632                        if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 633                                split->orig_block_len = max(em->block_len,
 634                                                    em->orig_block_len);
 635
 636                                split->ram_bytes = em->ram_bytes;
 637                                if (compressed) {
 638                                        split->block_len = em->block_len;
 639                                        split->block_start = em->block_start;
 640                                        split->orig_start = em->orig_start;
 641                                } else {
 642                                        split->block_len = split->len;
 643                                        split->block_start = em->block_start
 644                                                + diff;
 645                                        split->orig_start = em->orig_start;
 646                                }
 647                        } else {
 648                                split->ram_bytes = split->len;
 649                                split->orig_start = split->start;
 650                                split->block_len = 0;
 651                                split->block_start = em->block_start;
 652                                split->orig_block_len = 0;
 653                        }
 654
 655                        if (extent_map_in_tree(em)) {
 656                                replace_extent_mapping(em_tree, em, split,
 657                                                       modified);
 658                        } else {
 659                                ret = add_extent_mapping(em_tree, split,
 660                                                         modified);
 661                                ASSERT(ret == 0); /* Logic error */
 662                        }
 663                        free_extent_map(split);
 664                        split = NULL;
 665                }
 666next:
 667                if (extent_map_in_tree(em))
 668                        remove_extent_mapping(em_tree, em);
 669                write_unlock(&em_tree->lock);
 670
 671                /* once for us */
 672                free_extent_map(em);
 673                /* once for the tree*/
 674                free_extent_map(em);
 675        }
 676        if (split)
 677                free_extent_map(split);
 678        if (split2)
 679                free_extent_map(split2);
 680}
 681
 682/*
 683 * this is very complex, but the basic idea is to drop all extents
 684 * in the range start - end.  hint_block is filled in with a block number
 685 * that would be a good hint to the block allocator for this file.
 686 *
 687 * If an extent intersects the range but is not entirely inside the range
 688 * it is either truncated or split.  Anything entirely inside the range
 689 * is deleted from the tree.
 690 */
 691int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
 692                         struct btrfs_root *root, struct inode *inode,
 693                         struct btrfs_path *path, u64 start, u64 end,
 694                         u64 *drop_end, int drop_cache,
 695                         int replace_extent,
 696                         u32 extent_item_size,
 697                         int *key_inserted)
 698{
 699        struct extent_buffer *leaf;
 700        struct btrfs_file_extent_item *fi;
 701        struct btrfs_key key;
 702        struct btrfs_key new_key;
 703        u64 ino = btrfs_ino(inode);
 704        u64 search_start = start;
 705        u64 disk_bytenr = 0;
 706        u64 num_bytes = 0;
 707        u64 extent_offset = 0;
 708        u64 extent_end = 0;
 709        int del_nr = 0;
 710        int del_slot = 0;
 711        int extent_type;
 712        int recow;
 713        int ret;
 714        int modify_tree = -1;
 715        int update_refs;
 716        int found = 0;
 717        int leafs_visited = 0;
 718
 719        if (drop_cache)
 720                btrfs_drop_extent_cache(inode, start, end - 1, 0);
 721
 722        if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
 723                modify_tree = 0;
 724
 725        update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
 726                       root == root->fs_info->tree_root);
 727        while (1) {
 728                recow = 0;
 729                ret = btrfs_lookup_file_extent(trans, root, path, ino,
 730                                               search_start, modify_tree);
 731                if (ret < 0)
 732                        break;
 733                if (ret > 0 && path->slots[0] > 0 && search_start == start) {
 734                        leaf = path->nodes[0];
 735                        btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 736                        if (key.objectid == ino &&
 737                            key.type == BTRFS_EXTENT_DATA_KEY)
 738                                path->slots[0]--;
 739                }
 740                ret = 0;
 741                leafs_visited++;
 742next_slot:
 743                leaf = path->nodes[0];
 744                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 745                        BUG_ON(del_nr > 0);
 746                        ret = btrfs_next_leaf(root, path);
 747                        if (ret < 0)
 748                                break;
 749                        if (ret > 0) {
 750                                ret = 0;
 751                                break;
 752                        }
 753                        leafs_visited++;
 754                        leaf = path->nodes[0];
 755                        recow = 1;
 756                }
 757
 758                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 759                if (key.objectid > ino ||
 760                    key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
 761                        break;
 762
 763                fi = btrfs_item_ptr(leaf, path->slots[0],
 764                                    struct btrfs_file_extent_item);
 765                extent_type = btrfs_file_extent_type(leaf, fi);
 766
 767                if (extent_type == BTRFS_FILE_EXTENT_REG ||
 768                    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 769                        disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 770                        num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 771                        extent_offset = btrfs_file_extent_offset(leaf, fi);
 772                        extent_end = key.offset +
 773                                btrfs_file_extent_num_bytes(leaf, fi);
 774                } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 775                        extent_end = key.offset +
 776                                btrfs_file_extent_inline_len(leaf,
 777                                                     path->slots[0], fi);
 778                } else {
 779                        WARN_ON(1);
 780                        extent_end = search_start;
 781                }
 782
 783                /*
 784                 * Don't skip extent items representing 0 byte lengths. They
 785                 * used to be created (bug) if while punching holes we hit
 786                 * -ENOSPC condition. So if we find one here, just ensure we
 787                 * delete it, otherwise we would insert a new file extent item
 788                 * with the same key (offset) as that 0 bytes length file
 789                 * extent item in the call to setup_items_for_insert() later
 790                 * in this function.
 791                 */
 792                if (extent_end == key.offset && extent_end >= search_start)
 793                        goto delete_extent_item;
 794
 795                if (extent_end <= search_start) {
 796                        path->slots[0]++;
 797                        goto next_slot;
 798                }
 799
 800                found = 1;
 801                search_start = max(key.offset, start);
 802                if (recow || !modify_tree) {
 803                        modify_tree = -1;
 804                        btrfs_release_path(path);
 805                        continue;
 806                }
 807
 808                /*
 809                 *     | - range to drop - |
 810                 *  | -------- extent -------- |
 811                 */
 812                if (start > key.offset && end < extent_end) {
 813                        BUG_ON(del_nr > 0);
 814                        if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 815                                ret = -EOPNOTSUPP;
 816                                break;
 817                        }
 818
 819                        memcpy(&new_key, &key, sizeof(new_key));
 820                        new_key.offset = start;
 821                        ret = btrfs_duplicate_item(trans, root, path,
 822                                                   &new_key);
 823                        if (ret == -EAGAIN) {
 824                                btrfs_release_path(path);
 825                                continue;
 826                        }
 827                        if (ret < 0)
 828                                break;
 829
 830                        leaf = path->nodes[0];
 831                        fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 832                                            struct btrfs_file_extent_item);
 833                        btrfs_set_file_extent_num_bytes(leaf, fi,
 834                                                        start - key.offset);
 835
 836                        fi = btrfs_item_ptr(leaf, path->slots[0],
 837                                            struct btrfs_file_extent_item);
 838
 839                        extent_offset += start - key.offset;
 840                        btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 841                        btrfs_set_file_extent_num_bytes(leaf, fi,
 842                                                        extent_end - start);
 843                        btrfs_mark_buffer_dirty(leaf);
 844
 845                        if (update_refs && disk_bytenr > 0) {
 846                                ret = btrfs_inc_extent_ref(trans, root,
 847                                                disk_bytenr, num_bytes, 0,
 848                                                root->root_key.objectid,
 849                                                new_key.objectid,
 850                                                start - extent_offset, 1);
 851                                BUG_ON(ret); /* -ENOMEM */
 852                        }
 853                        key.offset = start;
 854                }
 855                /*
 856                 *  | ---- range to drop ----- |
 857                 *      | -------- extent -------- |
 858                 */
 859                if (start <= key.offset && end < extent_end) {
 860                        if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 861                                ret = -EOPNOTSUPP;
 862                                break;
 863                        }
 864
 865                        memcpy(&new_key, &key, sizeof(new_key));
 866                        new_key.offset = end;
 867                        btrfs_set_item_key_safe(root->fs_info, path, &new_key);
 868
 869                        extent_offset += end - key.offset;
 870                        btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 871                        btrfs_set_file_extent_num_bytes(leaf, fi,
 872                                                        extent_end - end);
 873                        btrfs_mark_buffer_dirty(leaf);
 874                        if (update_refs && disk_bytenr > 0)
 875                                inode_sub_bytes(inode, end - key.offset);
 876                        break;
 877                }
 878
 879                search_start = extent_end;
 880                /*
 881                 *       | ---- range to drop ----- |
 882                 *  | -------- extent -------- |
 883                 */
 884                if (start > key.offset && end >= extent_end) {
 885                        BUG_ON(del_nr > 0);
 886                        if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 887                                ret = -EOPNOTSUPP;
 888                                break;
 889                        }
 890
 891                        btrfs_set_file_extent_num_bytes(leaf, fi,
 892                                                        start - key.offset);
 893                        btrfs_mark_buffer_dirty(leaf);
 894                        if (update_refs && disk_bytenr > 0)
 895                                inode_sub_bytes(inode, extent_end - start);
 896                        if (end == extent_end)
 897                                break;
 898
 899                        path->slots[0]++;
 900                        goto next_slot;
 901                }
 902
 903                /*
 904                 *  | ---- range to drop ----- |
 905                 *    | ------ extent ------ |
 906                 */
 907                if (start <= key.offset && end >= extent_end) {
 908delete_extent_item:
 909                        if (del_nr == 0) {
 910                                del_slot = path->slots[0];
 911                                del_nr = 1;
 912                        } else {
 913                                BUG_ON(del_slot + del_nr != path->slots[0]);
 914                                del_nr++;
 915                        }
 916
 917                        if (update_refs &&
 918                            extent_type == BTRFS_FILE_EXTENT_INLINE) {
 919                                inode_sub_bytes(inode,
 920                                                extent_end - key.offset);
 921                                extent_end = ALIGN(extent_end,
 922                                                   root->sectorsize);
 923                        } else if (update_refs && disk_bytenr > 0) {
 924                                ret = btrfs_free_extent(trans, root,
 925                                                disk_bytenr, num_bytes, 0,
 926                                                root->root_key.objectid,
 927                                                key.objectid, key.offset -
 928                                                extent_offset, 0);
 929                                BUG_ON(ret); /* -ENOMEM */
 930                                inode_sub_bytes(inode,
 931                                                extent_end - key.offset);
 932                        }
 933
 934                        if (end == extent_end)
 935                                break;
 936
 937                        if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
 938                                path->slots[0]++;
 939                                goto next_slot;
 940                        }
 941
 942                        ret = btrfs_del_items(trans, root, path, del_slot,
 943                                              del_nr);
 944                        if (ret) {
 945                                btrfs_abort_transaction(trans, root, ret);
 946                                break;
 947                        }
 948
 949                        del_nr = 0;
 950                        del_slot = 0;
 951
 952                        btrfs_release_path(path);
 953                        continue;
 954                }
 955
 956                BUG_ON(1);
 957        }
 958
 959        if (!ret && del_nr > 0) {
 960                /*
 961                 * Set path->slots[0] to first slot, so that after the delete
 962                 * if items are move off from our leaf to its immediate left or
 963                 * right neighbor leafs, we end up with a correct and adjusted
 964                 * path->slots[0] for our insertion (if replace_extent != 0).
 965                 */
 966                path->slots[0] = del_slot;
 967                ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 968                if (ret)
 969                        btrfs_abort_transaction(trans, root, ret);
 970        }
 971
 972        leaf = path->nodes[0];
 973        /*
 974         * If btrfs_del_items() was called, it might have deleted a leaf, in
 975         * which case it unlocked our path, so check path->locks[0] matches a
 976         * write lock.
 977         */
 978        if (!ret && replace_extent && leafs_visited == 1 &&
 979            (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
 980             path->locks[0] == BTRFS_WRITE_LOCK) &&
 981            btrfs_leaf_free_space(root, leaf) >=
 982            sizeof(struct btrfs_item) + extent_item_size) {
 983
 984                key.objectid = ino;
 985                key.type = BTRFS_EXTENT_DATA_KEY;
 986                key.offset = start;
 987                if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
 988                        struct btrfs_key slot_key;
 989
 990                        btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
 991                        if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
 992                                path->slots[0]++;
 993                }
 994                setup_items_for_insert(root, path, &key,
 995                                       &extent_item_size,
 996                                       extent_item_size,
 997                                       sizeof(struct btrfs_item) +
 998                                       extent_item_size, 1);
 999                *key_inserted = 1;
1000        }
1001
1002        if (!replace_extent || !(*key_inserted))
1003                btrfs_release_path(path);
1004        if (drop_end)
1005                *drop_end = found ? min(end, extent_end) : end;
1006        return ret;
1007}
1008
1009int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1010                       struct btrfs_root *root, struct inode *inode, u64 start,
1011                       u64 end, int drop_cache)
1012{
1013        struct btrfs_path *path;
1014        int ret;
1015
1016        path = btrfs_alloc_path();
1017        if (!path)
1018                return -ENOMEM;
1019        ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1020                                   drop_cache, 0, 0, NULL);
1021        btrfs_free_path(path);
1022        return ret;
1023}
1024
1025static int extent_mergeable(struct extent_buffer *leaf, int slot,
1026                            u64 objectid, u64 bytenr, u64 orig_offset,
1027                            u64 *start, u64 *end)
1028{
1029        struct btrfs_file_extent_item *fi;
1030        struct btrfs_key key;
1031        u64 extent_end;
1032
1033        if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1034                return 0;
1035
1036        btrfs_item_key_to_cpu(leaf, &key, slot);
1037        if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1038                return 0;
1039
1040        fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1041        if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1042            btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1043            btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1044            btrfs_file_extent_compression(leaf, fi) ||
1045            btrfs_file_extent_encryption(leaf, fi) ||
1046            btrfs_file_extent_other_encoding(leaf, fi))
1047                return 0;
1048
1049        extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1050        if ((*start && *start != key.offset) || (*end && *end != extent_end))
1051                return 0;
1052
1053        *start = key.offset;
1054        *end = extent_end;
1055        return 1;
1056}
1057
1058/*
1059 * Mark extent in the range start - end as written.
1060 *
1061 * This changes extent type from 'pre-allocated' to 'regular'. If only
1062 * part of extent is marked as written, the extent will be split into
1063 * two or three.
1064 */
1065int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1066                              struct inode *inode, u64 start, u64 end)
1067{
1068        struct btrfs_root *root = BTRFS_I(inode)->root;
1069        struct extent_buffer *leaf;
1070        struct btrfs_path *path;
1071        struct btrfs_file_extent_item *fi;
1072        struct btrfs_key key;
1073        struct btrfs_key new_key;
1074        u64 bytenr;
1075        u64 num_bytes;
1076        u64 extent_end;
1077        u64 orig_offset;
1078        u64 other_start;
1079        u64 other_end;
1080        u64 split;
1081        int del_nr = 0;
1082        int del_slot = 0;
1083        int recow;
1084        int ret;
1085        u64 ino = btrfs_ino(inode);
1086
1087        path = btrfs_alloc_path();
1088        if (!path)
1089                return -ENOMEM;
1090again:
1091        recow = 0;
1092        split = start;
1093        key.objectid = ino;
1094        key.type = BTRFS_EXTENT_DATA_KEY;
1095        key.offset = split;
1096
1097        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1098        if (ret < 0)
1099                goto out;
1100        if (ret > 0 && path->slots[0] > 0)
1101                path->slots[0]--;
1102
1103        leaf = path->nodes[0];
1104        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1105        BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1106        fi = btrfs_item_ptr(leaf, path->slots[0],
1107                            struct btrfs_file_extent_item);
1108        BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1109               BTRFS_FILE_EXTENT_PREALLOC);
1110        extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1111        BUG_ON(key.offset > start || extent_end < end);
1112
1113        bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1114        num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1115        orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1116        memcpy(&new_key, &key, sizeof(new_key));
1117
1118        if (start == key.offset && end < extent_end) {
1119                other_start = 0;
1120                other_end = start;
1121                if (extent_mergeable(leaf, path->slots[0] - 1,
1122                                     ino, bytenr, orig_offset,
1123                                     &other_start, &other_end)) {
1124                        new_key.offset = end;
1125                        btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1126                        fi = btrfs_item_ptr(leaf, path->slots[0],
1127                                            struct btrfs_file_extent_item);
1128                        btrfs_set_file_extent_generation(leaf, fi,
1129                                                         trans->transid);
1130                        btrfs_set_file_extent_num_bytes(leaf, fi,
1131                                                        extent_end - end);
1132                        btrfs_set_file_extent_offset(leaf, fi,
1133                                                     end - orig_offset);
1134                        fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1135                                            struct btrfs_file_extent_item);
1136                        btrfs_set_file_extent_generation(leaf, fi,
1137                                                         trans->transid);
1138                        btrfs_set_file_extent_num_bytes(leaf, fi,
1139                                                        end - other_start);
1140                        btrfs_mark_buffer_dirty(leaf);
1141                        goto out;
1142                }
1143        }
1144
1145        if (start > key.offset && end == extent_end) {
1146                other_start = end;
1147                other_end = 0;
1148                if (extent_mergeable(leaf, path->slots[0] + 1,
1149                                     ino, bytenr, orig_offset,
1150                                     &other_start, &other_end)) {
1151                        fi = btrfs_item_ptr(leaf, path->slots[0],
1152                                            struct btrfs_file_extent_item);
1153                        btrfs_set_file_extent_num_bytes(leaf, fi,
1154                                                        start - key.offset);
1155                        btrfs_set_file_extent_generation(leaf, fi,
1156                                                         trans->transid);
1157                        path->slots[0]++;
1158                        new_key.offset = start;
1159                        btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1160
1161                        fi = btrfs_item_ptr(leaf, path->slots[0],
1162                                            struct btrfs_file_extent_item);
1163                        btrfs_set_file_extent_generation(leaf, fi,
1164                                                         trans->transid);
1165                        btrfs_set_file_extent_num_bytes(leaf, fi,
1166                                                        other_end - start);
1167                        btrfs_set_file_extent_offset(leaf, fi,
1168                                                     start - orig_offset);
1169                        btrfs_mark_buffer_dirty(leaf);
1170                        goto out;
1171                }
1172        }
1173
1174        while (start > key.offset || end < extent_end) {
1175                if (key.offset == start)
1176                        split = end;
1177
1178                new_key.offset = split;
1179                ret = btrfs_duplicate_item(trans, root, path, &new_key);
1180                if (ret == -EAGAIN) {
1181                        btrfs_release_path(path);
1182                        goto again;
1183                }
1184                if (ret < 0) {
1185                        btrfs_abort_transaction(trans, root, ret);
1186                        goto out;
1187                }
1188
1189                leaf = path->nodes[0];
1190                fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1191                                    struct btrfs_file_extent_item);
1192                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1193                btrfs_set_file_extent_num_bytes(leaf, fi,
1194                                                split - key.offset);
1195
1196                fi = btrfs_item_ptr(leaf, path->slots[0],
1197                                    struct btrfs_file_extent_item);
1198
1199                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1200                btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1201                btrfs_set_file_extent_num_bytes(leaf, fi,
1202                                                extent_end - split);
1203                btrfs_mark_buffer_dirty(leaf);
1204
1205                ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1206                                           root->root_key.objectid,
1207                                           ino, orig_offset, 1);
1208                BUG_ON(ret); /* -ENOMEM */
1209
1210                if (split == start) {
1211                        key.offset = start;
1212                } else {
1213                        BUG_ON(start != key.offset);
1214                        path->slots[0]--;
1215                        extent_end = end;
1216                }
1217                recow = 1;
1218        }
1219
1220        other_start = end;
1221        other_end = 0;
1222        if (extent_mergeable(leaf, path->slots[0] + 1,
1223                             ino, bytenr, orig_offset,
1224                             &other_start, &other_end)) {
1225                if (recow) {
1226                        btrfs_release_path(path);
1227                        goto again;
1228                }
1229                extent_end = other_end;
1230                del_slot = path->slots[0] + 1;
1231                del_nr++;
1232                ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1233                                        0, root->root_key.objectid,
1234                                        ino, orig_offset, 0);
1235                BUG_ON(ret); /* -ENOMEM */
1236        }
1237        other_start = 0;
1238        other_end = start;
1239        if (extent_mergeable(leaf, path->slots[0] - 1,
1240                             ino, bytenr, orig_offset,
1241                             &other_start, &other_end)) {
1242                if (recow) {
1243                        btrfs_release_path(path);
1244                        goto again;
1245                }
1246                key.offset = other_start;
1247                del_slot = path->slots[0];
1248                del_nr++;
1249                ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1250                                        0, root->root_key.objectid,
1251                                        ino, orig_offset, 0);
1252                BUG_ON(ret); /* -ENOMEM */
1253        }
1254        if (del_nr == 0) {
1255                fi = btrfs_item_ptr(leaf, path->slots[0],
1256                           struct btrfs_file_extent_item);
1257                btrfs_set_file_extent_type(leaf, fi,
1258                                           BTRFS_FILE_EXTENT_REG);
1259                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1260                btrfs_mark_buffer_dirty(leaf);
1261        } else {
1262                fi = btrfs_item_ptr(leaf, del_slot - 1,
1263                           struct btrfs_file_extent_item);
1264                btrfs_set_file_extent_type(leaf, fi,
1265                                           BTRFS_FILE_EXTENT_REG);
1266                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1267                btrfs_set_file_extent_num_bytes(leaf, fi,
1268                                                extent_end - key.offset);
1269                btrfs_mark_buffer_dirty(leaf);
1270
1271                ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1272                if (ret < 0) {
1273                        btrfs_abort_transaction(trans, root, ret);
1274                        goto out;
1275                }
1276        }
1277out:
1278        btrfs_free_path(path);
1279        return 0;
1280}
1281
1282/*
1283 * on error we return an unlocked page and the error value
1284 * on success we return a locked page and 0
1285 */
1286static int prepare_uptodate_page(struct page *page, u64 pos,
1287                                 bool force_uptodate)
1288{
1289        int ret = 0;
1290
1291        if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1292            !PageUptodate(page)) {
1293                ret = btrfs_readpage(NULL, page);
1294                if (ret)
1295                        return ret;
1296                lock_page(page);
1297                if (!PageUptodate(page)) {
1298                        unlock_page(page);
1299                        return -EIO;
1300                }
1301        }
1302        return 0;
1303}
1304
1305/*
1306 * this just gets pages into the page cache and locks them down.
1307 */
1308static noinline int prepare_pages(struct inode *inode, struct page **pages,
1309                                  size_t num_pages, loff_t pos,
1310                                  size_t write_bytes, bool force_uptodate)
1311{
1312        int i;
1313        unsigned long index = pos >> PAGE_CACHE_SHIFT;
1314        gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1315        int err = 0;
1316        int faili;
1317
1318        for (i = 0; i < num_pages; i++) {
1319                pages[i] = find_or_create_page(inode->i_mapping, index + i,
1320                                               mask | __GFP_WRITE);
1321                if (!pages[i]) {
1322                        faili = i - 1;
1323                        err = -ENOMEM;
1324                        goto fail;
1325                }
1326
1327                if (i == 0)
1328                        err = prepare_uptodate_page(pages[i], pos,
1329                                                    force_uptodate);
1330                if (i == num_pages - 1)
1331                        err = prepare_uptodate_page(pages[i],
1332                                                    pos + write_bytes, false);
1333                if (err) {
1334                        page_cache_release(pages[i]);
1335                        faili = i - 1;
1336                        goto fail;
1337                }
1338                wait_on_page_writeback(pages[i]);
1339        }
1340
1341        return 0;
1342fail:
1343        while (faili >= 0) {
1344                unlock_page(pages[faili]);
1345                page_cache_release(pages[faili]);
1346                faili--;
1347        }
1348        return err;
1349
1350}
1351
1352/*
1353 * This function locks the extent and properly waits for data=ordered extents
1354 * to finish before allowing the pages to be modified if need.
1355 *
1356 * The return value:
1357 * 1 - the extent is locked
1358 * 0 - the extent is not locked, and everything is OK
1359 * -EAGAIN - need re-prepare the pages
1360 * the other < 0 number - Something wrong happens
1361 */
1362static noinline int
1363lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1364                                size_t num_pages, loff_t pos,
1365                                u64 *lockstart, u64 *lockend,
1366                                struct extent_state **cached_state)
1367{
1368        u64 start_pos;
1369        u64 last_pos;
1370        int i;
1371        int ret = 0;
1372
1373        start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
1374        last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
1375
1376        if (start_pos < inode->i_size) {
1377                struct btrfs_ordered_extent *ordered;
1378                lock_extent_bits(&BTRFS_I(inode)->io_tree,
1379                                 start_pos, last_pos, 0, cached_state);
1380                ordered = btrfs_lookup_ordered_range(inode, start_pos,
1381                                                     last_pos - start_pos + 1);
1382                if (ordered &&
1383                    ordered->file_offset + ordered->len > start_pos &&
1384                    ordered->file_offset <= last_pos) {
1385                        unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1386                                             start_pos, last_pos,
1387                                             cached_state, GFP_NOFS);
1388                        for (i = 0; i < num_pages; i++) {
1389                                unlock_page(pages[i]);
1390                                page_cache_release(pages[i]);
1391                        }
1392                        btrfs_start_ordered_extent(inode, ordered, 1);
1393                        btrfs_put_ordered_extent(ordered);
1394                        return -EAGAIN;
1395                }
1396                if (ordered)
1397                        btrfs_put_ordered_extent(ordered);
1398
1399                clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1400                                  last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1401                                  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1402                                  0, 0, cached_state, GFP_NOFS);
1403                *lockstart = start_pos;
1404                *lockend = last_pos;
1405                ret = 1;
1406        }
1407
1408        for (i = 0; i < num_pages; i++) {
1409                if (clear_page_dirty_for_io(pages[i]))
1410                        account_page_redirty(pages[i]);
1411                set_page_extent_mapped(pages[i]);
1412                WARN_ON(!PageLocked(pages[i]));
1413        }
1414
1415        return ret;
1416}
1417
1418static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1419                                    size_t *write_bytes)
1420{
1421        struct btrfs_root *root = BTRFS_I(inode)->root;
1422        struct btrfs_ordered_extent *ordered;
1423        u64 lockstart, lockend;
1424        u64 num_bytes;
1425        int ret;
1426
1427        ret = btrfs_start_write_no_snapshoting(root);
1428        if (!ret)
1429                return -ENOSPC;
1430
1431        lockstart = round_down(pos, root->sectorsize);
1432        lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
1433
1434        while (1) {
1435                lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1436                ordered = btrfs_lookup_ordered_range(inode, lockstart,
1437                                                     lockend - lockstart + 1);
1438                if (!ordered) {
1439                        break;
1440                }
1441                unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1442                btrfs_start_ordered_extent(inode, ordered, 1);
1443                btrfs_put_ordered_extent(ordered);
1444        }
1445
1446        num_bytes = lockend - lockstart + 1;
1447        ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1448        if (ret <= 0) {
1449                ret = 0;
1450                btrfs_end_write_no_snapshoting(root);
1451        } else {
1452                *write_bytes = min_t(size_t, *write_bytes ,
1453                                     num_bytes - pos + lockstart);
1454        }
1455
1456        unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1457
1458        return ret;
1459}
1460
1461static noinline ssize_t __btrfs_buffered_write(struct file *file,
1462                                               struct iov_iter *i,
1463                                               loff_t pos)
1464{
1465        struct inode *inode = file_inode(file);
1466        struct btrfs_root *root = BTRFS_I(inode)->root;
1467        struct page **pages = NULL;
1468        struct extent_state *cached_state = NULL;
1469        u64 release_bytes = 0;
1470        u64 lockstart;
1471        u64 lockend;
1472        unsigned long first_index;
1473        size_t num_written = 0;
1474        int nrptrs;
1475        int ret = 0;
1476        bool only_release_metadata = false;
1477        bool force_page_uptodate = false;
1478        bool need_unlock;
1479
1480        nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_CACHE_SIZE),
1481                        PAGE_CACHE_SIZE / (sizeof(struct page *)));
1482        nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1483        nrptrs = max(nrptrs, 8);
1484        pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1485        if (!pages)
1486                return -ENOMEM;
1487
1488        first_index = pos >> PAGE_CACHE_SHIFT;
1489
1490        while (iov_iter_count(i) > 0) {
1491                size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1492                size_t write_bytes = min(iov_iter_count(i),
1493                                         nrptrs * (size_t)PAGE_CACHE_SIZE -
1494                                         offset);
1495                size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1496                                                PAGE_CACHE_SIZE);
1497                size_t reserve_bytes;
1498                size_t dirty_pages;
1499                size_t copied;
1500
1501                WARN_ON(num_pages > nrptrs);
1502
1503                /*
1504                 * Fault pages before locking them in prepare_pages
1505                 * to avoid recursive lock
1506                 */
1507                if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1508                        ret = -EFAULT;
1509                        break;
1510                }
1511
1512                reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1513                ret = btrfs_check_data_free_space(inode, reserve_bytes, write_bytes);
1514                if (ret == -ENOSPC &&
1515                    (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1516                                              BTRFS_INODE_PREALLOC))) {
1517                        ret = check_can_nocow(inode, pos, &write_bytes);
1518                        if (ret > 0) {
1519                                only_release_metadata = true;
1520                                /*
1521                                 * our prealloc extent may be smaller than
1522                                 * write_bytes, so scale down.
1523                                 */
1524                                num_pages = DIV_ROUND_UP(write_bytes + offset,
1525                                                         PAGE_CACHE_SIZE);
1526                                reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1527                                ret = 0;
1528                        } else {
1529                                ret = -ENOSPC;
1530                        }
1531                }
1532
1533                if (ret)
1534                        break;
1535
1536                ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1537                if (ret) {
1538                        if (!only_release_metadata)
1539                                btrfs_free_reserved_data_space(inode,
1540                                                               reserve_bytes);
1541                        else
1542                                btrfs_end_write_no_snapshoting(root);
1543                        break;
1544                }
1545
1546                release_bytes = reserve_bytes;
1547                need_unlock = false;
1548again:
1549                /*
1550                 * This is going to setup the pages array with the number of
1551                 * pages we want, so we don't really need to worry about the
1552                 * contents of pages from loop to loop
1553                 */
1554                ret = prepare_pages(inode, pages, num_pages,
1555                                    pos, write_bytes,
1556                                    force_page_uptodate);
1557                if (ret)
1558                        break;
1559
1560                ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1561                                                      pos, &lockstart, &lockend,
1562                                                      &cached_state);
1563                if (ret < 0) {
1564                        if (ret == -EAGAIN)
1565                                goto again;
1566                        break;
1567                } else if (ret > 0) {
1568                        need_unlock = true;
1569                        ret = 0;
1570                }
1571
1572                copied = btrfs_copy_from_user(pos, num_pages,
1573                                           write_bytes, pages, i);
1574
1575                /*
1576                 * if we have trouble faulting in the pages, fall
1577                 * back to one page at a time
1578                 */
1579                if (copied < write_bytes)
1580                        nrptrs = 1;
1581
1582                if (copied == 0) {
1583                        force_page_uptodate = true;
1584                        dirty_pages = 0;
1585                } else {
1586                        force_page_uptodate = false;
1587                        dirty_pages = DIV_ROUND_UP(copied + offset,
1588                                                   PAGE_CACHE_SIZE);
1589                }
1590
1591                /*
1592                 * If we had a short copy we need to release the excess delaloc
1593                 * bytes we reserved.  We need to increment outstanding_extents
1594                 * because btrfs_delalloc_release_space will decrement it, but
1595                 * we still have an outstanding extent for the chunk we actually
1596                 * managed to copy.
1597                 */
1598                if (num_pages > dirty_pages) {
1599                        release_bytes = (num_pages - dirty_pages) <<
1600                                PAGE_CACHE_SHIFT;
1601                        if (copied > 0) {
1602                                spin_lock(&BTRFS_I(inode)->lock);
1603                                BTRFS_I(inode)->outstanding_extents++;
1604                                spin_unlock(&BTRFS_I(inode)->lock);
1605                        }
1606                        if (only_release_metadata)
1607                                btrfs_delalloc_release_metadata(inode,
1608                                                                release_bytes);
1609                        else
1610                                btrfs_delalloc_release_space(inode,
1611                                                             release_bytes);
1612                }
1613
1614                release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1615
1616                if (copied > 0)
1617                        ret = btrfs_dirty_pages(root, inode, pages,
1618                                                dirty_pages, pos, copied,
1619                                                NULL);
1620                if (need_unlock)
1621                        unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1622                                             lockstart, lockend, &cached_state,
1623                                             GFP_NOFS);
1624                if (ret) {
1625                        btrfs_drop_pages(pages, num_pages);
1626                        break;
1627                }
1628
1629                release_bytes = 0;
1630                if (only_release_metadata)
1631                        btrfs_end_write_no_snapshoting(root);
1632
1633                if (only_release_metadata && copied > 0) {
1634                        lockstart = round_down(pos, root->sectorsize);
1635                        lockend = lockstart +
1636                                (dirty_pages << PAGE_CACHE_SHIFT) - 1;
1637
1638                        set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1639                                       lockend, EXTENT_NORESERVE, NULL,
1640                                       NULL, GFP_NOFS);
1641                        only_release_metadata = false;
1642                }
1643
1644                btrfs_drop_pages(pages, num_pages);
1645
1646                cond_resched();
1647
1648                balance_dirty_pages_ratelimited(inode->i_mapping);
1649                if (dirty_pages < (root->nodesize >> PAGE_CACHE_SHIFT) + 1)
1650                        btrfs_btree_balance_dirty(root);
1651
1652                pos += copied;
1653                num_written += copied;
1654        }
1655
1656        kfree(pages);
1657
1658        if (release_bytes) {
1659                if (only_release_metadata) {
1660                        btrfs_end_write_no_snapshoting(root);
1661                        btrfs_delalloc_release_metadata(inode, release_bytes);
1662                } else {
1663                        btrfs_delalloc_release_space(inode, release_bytes);
1664                }
1665        }
1666
1667        return num_written ? num_written : ret;
1668}
1669
1670static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1671                                    struct iov_iter *from,
1672                                    loff_t pos)
1673{
1674        struct file *file = iocb->ki_filp;
1675        struct inode *inode = file_inode(file);
1676        ssize_t written;
1677        ssize_t written_buffered;
1678        loff_t endbyte;
1679        int err;
1680
1681        written = generic_file_direct_write(iocb, from, pos);
1682
1683        if (written < 0 || !iov_iter_count(from))
1684                return written;
1685
1686        pos += written;
1687        written_buffered = __btrfs_buffered_write(file, from, pos);
1688        if (written_buffered < 0) {
1689                err = written_buffered;
1690                goto out;
1691        }
1692        /*
1693         * Ensure all data is persisted. We want the next direct IO read to be
1694         * able to read what was just written.
1695         */
1696        endbyte = pos + written_buffered - 1;
1697        err = btrfs_fdatawrite_range(inode, pos, endbyte);
1698        if (err)
1699                goto out;
1700        err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1701        if (err)
1702                goto out;
1703        written += written_buffered;
1704        iocb->ki_pos = pos + written_buffered;
1705        invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1706                                 endbyte >> PAGE_CACHE_SHIFT);
1707out:
1708        return written ? written : err;
1709}
1710
1711static void update_time_for_write(struct inode *inode)
1712{
1713        struct timespec now;
1714
1715        if (IS_NOCMTIME(inode))
1716                return;
1717
1718        now = current_fs_time(inode->i_sb);
1719        if (!timespec_equal(&inode->i_mtime, &now))
1720                inode->i_mtime = now;
1721
1722        if (!timespec_equal(&inode->i_ctime, &now))
1723                inode->i_ctime = now;
1724
1725        if (IS_I_VERSION(inode))
1726                inode_inc_iversion(inode);
1727}
1728
1729static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1730                                    struct iov_iter *from)
1731{
1732        struct file *file = iocb->ki_filp;
1733        struct inode *inode = file_inode(file);
1734        struct btrfs_root *root = BTRFS_I(inode)->root;
1735        u64 start_pos;
1736        u64 end_pos;
1737        ssize_t num_written = 0;
1738        bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1739        ssize_t err;
1740        loff_t pos;
1741        size_t count;
1742
1743        mutex_lock(&inode->i_mutex);
1744        err = generic_write_checks(iocb, from);
1745        if (err <= 0) {
1746                mutex_unlock(&inode->i_mutex);
1747                return err;
1748        }
1749
1750        current->backing_dev_info = inode_to_bdi(inode);
1751        err = file_remove_suid(file);
1752        if (err) {
1753                mutex_unlock(&inode->i_mutex);
1754                goto out;
1755        }
1756
1757        /*
1758         * If BTRFS flips readonly due to some impossible error
1759         * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1760         * although we have opened a file as writable, we have
1761         * to stop this write operation to ensure FS consistency.
1762         */
1763        if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1764                mutex_unlock(&inode->i_mutex);
1765                err = -EROFS;
1766                goto out;
1767        }
1768
1769        /*
1770         * We reserve space for updating the inode when we reserve space for the
1771         * extent we are going to write, so we will enospc out there.  We don't
1772         * need to start yet another transaction to update the inode as we will
1773         * update the inode when we finish writing whatever data we write.
1774         */
1775        update_time_for_write(inode);
1776
1777        pos = iocb->ki_pos;
1778        count = iov_iter_count(from);
1779        start_pos = round_down(pos, root->sectorsize);
1780        if (start_pos > i_size_read(inode)) {
1781                /* Expand hole size to cover write data, preventing empty gap */
1782                end_pos = round_up(pos + count, root->sectorsize);
1783                err = btrfs_cont_expand(inode, i_size_read(inode), end_pos);
1784                if (err) {
1785                        mutex_unlock(&inode->i_mutex);
1786                        goto out;
1787                }
1788        }
1789
1790        if (sync)
1791                atomic_inc(&BTRFS_I(inode)->sync_writers);
1792
1793        if (iocb->ki_flags & IOCB_DIRECT) {
1794                num_written = __btrfs_direct_write(iocb, from, pos);
1795        } else {
1796                num_written = __btrfs_buffered_write(file, from, pos);
1797                if (num_written > 0)
1798                        iocb->ki_pos = pos + num_written;
1799        }
1800
1801        mutex_unlock(&inode->i_mutex);
1802
1803        /*
1804         * We also have to set last_sub_trans to the current log transid,
1805         * otherwise subsequent syncs to a file that's been synced in this
1806         * transaction will appear to have already occured.
1807         */
1808        spin_lock(&BTRFS_I(inode)->lock);
1809        BTRFS_I(inode)->last_sub_trans = root->log_transid;
1810        spin_unlock(&BTRFS_I(inode)->lock);
1811        if (num_written > 0) {
1812                err = generic_write_sync(file, pos, num_written);
1813                if (err < 0)
1814                        num_written = err;
1815        }
1816
1817        if (sync)
1818                atomic_dec(&BTRFS_I(inode)->sync_writers);
1819out:
1820        current->backing_dev_info = NULL;
1821        return num_written ? num_written : err;
1822}
1823
1824int btrfs_release_file(struct inode *inode, struct file *filp)
1825{
1826        if (filp->private_data)
1827                btrfs_ioctl_trans_end(filp);
1828        /*
1829         * ordered_data_close is set by settattr when we are about to truncate
1830         * a file from a non-zero size to a zero size.  This tries to
1831         * flush down new bytes that may have been written if the
1832         * application were using truncate to replace a file in place.
1833         */
1834        if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1835                               &BTRFS_I(inode)->runtime_flags))
1836                        filemap_flush(inode->i_mapping);
1837        return 0;
1838}
1839
1840static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1841{
1842        int ret;
1843
1844        atomic_inc(&BTRFS_I(inode)->sync_writers);
1845        ret = btrfs_fdatawrite_range(inode, start, end);
1846        atomic_dec(&BTRFS_I(inode)->sync_writers);
1847
1848        return ret;
1849}
1850
1851/*
1852 * fsync call for both files and directories.  This logs the inode into
1853 * the tree log instead of forcing full commits whenever possible.
1854 *
1855 * It needs to call filemap_fdatawait so that all ordered extent updates are
1856 * in the metadata btree are up to date for copying to the log.
1857 *
1858 * It drops the inode mutex before doing the tree log commit.  This is an
1859 * important optimization for directories because holding the mutex prevents
1860 * new operations on the dir while we write to disk.
1861 */
1862int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1863{
1864        struct dentry *dentry = file->f_path.dentry;
1865        struct inode *inode = d_inode(dentry);
1866        struct btrfs_root *root = BTRFS_I(inode)->root;
1867        struct btrfs_trans_handle *trans;
1868        struct btrfs_log_ctx ctx;
1869        int ret = 0;
1870        bool full_sync = 0;
1871
1872        trace_btrfs_sync_file(file, datasync);
1873
1874        /*
1875         * We write the dirty pages in the range and wait until they complete
1876         * out of the ->i_mutex. If so, we can flush the dirty pages by
1877         * multi-task, and make the performance up.  See
1878         * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1879         */
1880        ret = start_ordered_ops(inode, start, end);
1881        if (ret)
1882                return ret;
1883
1884        mutex_lock(&inode->i_mutex);
1885        atomic_inc(&root->log_batch);
1886        full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1887                             &BTRFS_I(inode)->runtime_flags);
1888        /*
1889         * We might have have had more pages made dirty after calling
1890         * start_ordered_ops and before acquiring the inode's i_mutex.
1891         */
1892        if (full_sync) {
1893                /*
1894                 * For a full sync, we need to make sure any ordered operations
1895                 * start and finish before we start logging the inode, so that
1896                 * all extents are persisted and the respective file extent
1897                 * items are in the fs/subvol btree.
1898                 */
1899                ret = btrfs_wait_ordered_range(inode, start, end - start + 1);
1900        } else {
1901                /*
1902                 * Start any new ordered operations before starting to log the
1903                 * inode. We will wait for them to finish in btrfs_sync_log().
1904                 *
1905                 * Right before acquiring the inode's mutex, we might have new
1906                 * writes dirtying pages, which won't immediately start the
1907                 * respective ordered operations - that is done through the
1908                 * fill_delalloc callbacks invoked from the writepage and
1909                 * writepages address space operations. So make sure we start
1910                 * all ordered operations before starting to log our inode. Not
1911                 * doing this means that while logging the inode, writeback
1912                 * could start and invoke writepage/writepages, which would call
1913                 * the fill_delalloc callbacks (cow_file_range,
1914                 * submit_compressed_extents). These callbacks add first an
1915                 * extent map to the modified list of extents and then create
1916                 * the respective ordered operation, which means in
1917                 * tree-log.c:btrfs_log_inode() we might capture all existing
1918                 * ordered operations (with btrfs_get_logged_extents()) before
1919                 * the fill_delalloc callback adds its ordered operation, and by
1920                 * the time we visit the modified list of extent maps (with
1921                 * btrfs_log_changed_extents()), we see and process the extent
1922                 * map they created. We then use the extent map to construct a
1923                 * file extent item for logging without waiting for the
1924                 * respective ordered operation to finish - this file extent
1925                 * item points to a disk location that might not have yet been
1926                 * written to, containing random data - so after a crash a log
1927                 * replay will make our inode have file extent items that point
1928                 * to disk locations containing invalid data, as we returned
1929                 * success to userspace without waiting for the respective
1930                 * ordered operation to finish, because it wasn't captured by
1931                 * btrfs_get_logged_extents().
1932                 */
1933                ret = start_ordered_ops(inode, start, end);
1934        }
1935        if (ret) {
1936                mutex_unlock(&inode->i_mutex);
1937                goto out;
1938        }
1939        atomic_inc(&root->log_batch);
1940
1941        /*
1942         * If the last transaction that changed this file was before the current
1943         * transaction and we have the full sync flag set in our inode, we can
1944         * bail out now without any syncing.
1945         *
1946         * Note that we can't bail out if the full sync flag isn't set. This is
1947         * because when the full sync flag is set we start all ordered extents
1948         * and wait for them to fully complete - when they complete they update
1949         * the inode's last_trans field through:
1950         *
1951         *     btrfs_finish_ordered_io() ->
1952         *         btrfs_update_inode_fallback() ->
1953         *             btrfs_update_inode() ->
1954         *                 btrfs_set_inode_last_trans()
1955         *
1956         * So we are sure that last_trans is up to date and can do this check to
1957         * bail out safely. For the fast path, when the full sync flag is not
1958         * set in our inode, we can not do it because we start only our ordered
1959         * extents and don't wait for them to complete (that is when
1960         * btrfs_finish_ordered_io runs), so here at this point their last_trans
1961         * value might be less than or equals to fs_info->last_trans_committed,
1962         * and setting a speculative last_trans for an inode when a buffered
1963         * write is made (such as fs_info->generation + 1 for example) would not
1964         * be reliable since after setting the value and before fsync is called
1965         * any number of transactions can start and commit (transaction kthread
1966         * commits the current transaction periodically), and a transaction
1967         * commit does not start nor waits for ordered extents to complete.
1968         */
1969        smp_mb();
1970        if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1971            (full_sync && BTRFS_I(inode)->last_trans <=
1972             root->fs_info->last_trans_committed)) {
1973                /*
1974                 * We'v had everything committed since the last time we were
1975                 * modified so clear this flag in case it was set for whatever
1976                 * reason, it's no longer relevant.
1977                 */
1978                clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1979                          &BTRFS_I(inode)->runtime_flags);
1980                mutex_unlock(&inode->i_mutex);
1981                goto out;
1982        }
1983
1984        /*
1985         * ok we haven't committed the transaction yet, lets do a commit
1986         */
1987        if (file->private_data)
1988                btrfs_ioctl_trans_end(file);
1989
1990        /*
1991         * We use start here because we will need to wait on the IO to complete
1992         * in btrfs_sync_log, which could require joining a transaction (for
1993         * example checking cross references in the nocow path).  If we use join
1994         * here we could get into a situation where we're waiting on IO to
1995         * happen that is blocked on a transaction trying to commit.  With start
1996         * we inc the extwriter counter, so we wait for all extwriters to exit
1997         * before we start blocking join'ers.  This comment is to keep somebody
1998         * from thinking they are super smart and changing this to
1999         * btrfs_join_transaction *cough*Josef*cough*.
2000         */
2001        trans = btrfs_start_transaction(root, 0);
2002        if (IS_ERR(trans)) {
2003                ret = PTR_ERR(trans);
2004                mutex_unlock(&inode->i_mutex);
2005                goto out;
2006        }
2007        trans->sync = true;
2008
2009        btrfs_init_log_ctx(&ctx);
2010
2011        ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2012        if (ret < 0) {
2013                /* Fallthrough and commit/free transaction. */
2014                ret = 1;
2015        }
2016
2017        /* we've logged all the items and now have a consistent
2018         * version of the file in the log.  It is possible that
2019         * someone will come in and modify the file, but that's
2020         * fine because the log is consistent on disk, and we
2021         * have references to all of the file's extents
2022         *
2023         * It is possible that someone will come in and log the
2024         * file again, but that will end up using the synchronization
2025         * inside btrfs_sync_log to keep things safe.
2026         */
2027        mutex_unlock(&inode->i_mutex);
2028
2029        /*
2030         * If any of the ordered extents had an error, just return it to user
2031         * space, so that the application knows some writes didn't succeed and
2032         * can take proper action (retry for e.g.). Blindly committing the
2033         * transaction in this case, would fool userspace that everything was
2034         * successful. And we also want to make sure our log doesn't contain
2035         * file extent items pointing to extents that weren't fully written to -
2036         * just like in the non fast fsync path, where we check for the ordered
2037         * operation's error flag before writing to the log tree and return -EIO
2038         * if any of them had this flag set (btrfs_wait_ordered_range) -
2039         * therefore we need to check for errors in the ordered operations,
2040         * which are indicated by ctx.io_err.
2041         */
2042        if (ctx.io_err) {
2043                btrfs_end_transaction(trans, root);
2044                ret = ctx.io_err;
2045                goto out;
2046        }
2047
2048        if (ret != BTRFS_NO_LOG_SYNC) {
2049                if (!ret) {
2050                        ret = btrfs_sync_log(trans, root, &ctx);
2051                        if (!ret) {
2052                                ret = btrfs_end_transaction(trans, root);
2053                                goto out;
2054                        }
2055                }
2056                if (!full_sync) {
2057                        ret = btrfs_wait_ordered_range(inode, start,
2058                                                       end - start + 1);
2059                        if (ret) {
2060                                btrfs_end_transaction(trans, root);
2061                                goto out;
2062                        }
2063                }
2064                ret = btrfs_commit_transaction(trans, root);
2065        } else {
2066                ret = btrfs_end_transaction(trans, root);
2067        }
2068out:
2069        return ret > 0 ? -EIO : ret;
2070}
2071
2072static const struct vm_operations_struct btrfs_file_vm_ops = {
2073        .fault          = filemap_fault,
2074        .map_pages      = filemap_map_pages,
2075        .page_mkwrite   = btrfs_page_mkwrite,
2076};
2077
2078static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
2079{
2080        struct address_space *mapping = filp->f_mapping;
2081
2082        if (!mapping->a_ops->readpage)
2083                return -ENOEXEC;
2084
2085        file_accessed(filp);
2086        vma->vm_ops = &btrfs_file_vm_ops;
2087
2088        return 0;
2089}
2090
2091static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2092                          int slot, u64 start, u64 end)
2093{
2094        struct btrfs_file_extent_item *fi;
2095        struct btrfs_key key;
2096
2097        if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2098                return 0;
2099
2100        btrfs_item_key_to_cpu(leaf, &key, slot);
2101        if (key.objectid != btrfs_ino(inode) ||
2102            key.type != BTRFS_EXTENT_DATA_KEY)
2103                return 0;
2104
2105        fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2106
2107        if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2108                return 0;
2109
2110        if (btrfs_file_extent_disk_bytenr(leaf, fi))
2111                return 0;
2112
2113        if (key.offset == end)
2114                return 1;
2115        if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2116                return 1;
2117        return 0;
2118}
2119
2120static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2121                      struct btrfs_path *path, u64 offset, u64 end)
2122{
2123        struct btrfs_root *root = BTRFS_I(inode)->root;
2124        struct extent_buffer *leaf;
2125        struct btrfs_file_extent_item *fi;
2126        struct extent_map *hole_em;
2127        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2128        struct btrfs_key key;
2129        int ret;
2130
2131        if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2132                goto out;
2133
2134        key.objectid = btrfs_ino(inode);
2135        key.type = BTRFS_EXTENT_DATA_KEY;
2136        key.offset = offset;
2137
2138        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2139        if (ret < 0)
2140                return ret;
2141        BUG_ON(!ret);
2142
2143        leaf = path->nodes[0];
2144        if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2145                u64 num_bytes;
2146
2147                path->slots[0]--;
2148                fi = btrfs_item_ptr(leaf, path->slots[0],
2149                                    struct btrfs_file_extent_item);
2150                num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2151                        end - offset;
2152                btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2153                btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2154                btrfs_set_file_extent_offset(leaf, fi, 0);
2155                btrfs_mark_buffer_dirty(leaf);
2156                goto out;
2157        }
2158
2159        if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2160                u64 num_bytes;
2161
2162                key.offset = offset;
2163                btrfs_set_item_key_safe(root->fs_info, path, &key);
2164                fi = btrfs_item_ptr(leaf, path->slots[0],
2165                                    struct btrfs_file_extent_item);
2166                num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2167                        offset;
2168                btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2169                btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2170                btrfs_set_file_extent_offset(leaf, fi, 0);
2171                btrfs_mark_buffer_dirty(leaf);
2172                goto out;
2173        }
2174        btrfs_release_path(path);
2175
2176        ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2177                                       0, 0, end - offset, 0, end - offset,
2178                                       0, 0, 0);
2179        if (ret)
2180                return ret;
2181
2182out:
2183        btrfs_release_path(path);
2184
2185        hole_em = alloc_extent_map();
2186        if (!hole_em) {
2187                btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2188                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2189                        &BTRFS_I(inode)->runtime_flags);
2190        } else {
2191                hole_em->start = offset;
2192                hole_em->len = end - offset;
2193                hole_em->ram_bytes = hole_em->len;
2194                hole_em->orig_start = offset;
2195
2196                hole_em->block_start = EXTENT_MAP_HOLE;
2197                hole_em->block_len = 0;
2198                hole_em->orig_block_len = 0;
2199                hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2200                hole_em->compress_type = BTRFS_COMPRESS_NONE;
2201                hole_em->generation = trans->transid;
2202
2203                do {
2204                        btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2205                        write_lock(&em_tree->lock);
2206                        ret = add_extent_mapping(em_tree, hole_em, 1);
2207                        write_unlock(&em_tree->lock);
2208                } while (ret == -EEXIST);
2209                free_extent_map(hole_em);
2210                if (ret)
2211                        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2212                                &BTRFS_I(inode)->runtime_flags);
2213        }
2214
2215        return 0;
2216}
2217
2218/*
2219 * Find a hole extent on given inode and change start/len to the end of hole
2220 * extent.(hole/vacuum extent whose em->start <= start &&
2221 *         em->start + em->len > start)
2222 * When a hole extent is found, return 1 and modify start/len.
2223 */
2224static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2225{
2226        struct extent_map *em;
2227        int ret = 0;
2228
2229        em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
2230        if (IS_ERR_OR_NULL(em)) {
2231                if (!em)
2232                        ret = -ENOMEM;
2233                else
2234                        ret = PTR_ERR(em);
2235                return ret;
2236        }
2237
2238        /* Hole or vacuum extent(only exists in no-hole mode) */
2239        if (em->block_start == EXTENT_MAP_HOLE) {
2240                ret = 1;
2241                *len = em->start + em->len > *start + *len ?
2242                       0 : *start + *len - em->start - em->len;
2243                *start = em->start + em->len;
2244        }
2245        free_extent_map(em);
2246        return ret;
2247}
2248
2249static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2250{
2251        struct btrfs_root *root = BTRFS_I(inode)->root;
2252        struct extent_state *cached_state = NULL;
2253        struct btrfs_path *path;
2254        struct btrfs_block_rsv *rsv;
2255        struct btrfs_trans_handle *trans;
2256        u64 lockstart;
2257        u64 lockend;
2258        u64 tail_start;
2259        u64 tail_len;
2260        u64 orig_start = offset;
2261        u64 cur_offset;
2262        u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2263        u64 drop_end;
2264        int ret = 0;
2265        int err = 0;
2266        int rsv_count;
2267        bool same_page;
2268        bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2269        u64 ino_size;
2270        bool truncated_page = false;
2271        bool updated_inode = false;
2272
2273        ret = btrfs_wait_ordered_range(inode, offset, len);
2274        if (ret)
2275                return ret;
2276
2277        mutex_lock(&inode->i_mutex);
2278        ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE);
2279        ret = find_first_non_hole(inode, &offset, &len);
2280        if (ret < 0)
2281                goto out_only_mutex;
2282        if (ret && !len) {
2283                /* Already in a large hole */
2284                ret = 0;
2285                goto out_only_mutex;
2286        }
2287
2288        lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2289        lockend = round_down(offset + len,
2290                             BTRFS_I(inode)->root->sectorsize) - 1;
2291        same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2292                    ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2293
2294        /*
2295         * We needn't truncate any page which is beyond the end of the file
2296         * because we are sure there is no data there.
2297         */
2298        /*
2299         * Only do this if we are in the same page and we aren't doing the
2300         * entire page.
2301         */
2302        if (same_page && len < PAGE_CACHE_SIZE) {
2303                if (offset < ino_size) {
2304                        truncated_page = true;
2305                        ret = btrfs_truncate_page(inode, offset, len, 0);
2306                } else {
2307                        ret = 0;
2308                }
2309                goto out_only_mutex;
2310        }
2311
2312        /* zero back part of the first page */
2313        if (offset < ino_size) {
2314                truncated_page = true;
2315                ret = btrfs_truncate_page(inode, offset, 0, 0);
2316                if (ret) {
2317                        mutex_unlock(&inode->i_mutex);
2318                        return ret;
2319                }
2320        }
2321
2322        /* Check the aligned pages after the first unaligned page,
2323         * if offset != orig_start, which means the first unaligned page
2324         * including serveral following pages are already in holes,
2325         * the extra check can be skipped */
2326        if (offset == orig_start) {
2327                /* after truncate page, check hole again */
2328                len = offset + len - lockstart;
2329                offset = lockstart;
2330                ret = find_first_non_hole(inode, &offset, &len);
2331                if (ret < 0)
2332                        goto out_only_mutex;
2333                if (ret && !len) {
2334                        ret = 0;
2335                        goto out_only_mutex;
2336                }
2337                lockstart = offset;
2338        }
2339
2340        /* Check the tail unaligned part is in a hole */
2341        tail_start = lockend + 1;
2342        tail_len = offset + len - tail_start;
2343        if (tail_len) {
2344                ret = find_first_non_hole(inode, &tail_start, &tail_len);
2345                if (unlikely(ret < 0))
2346                        goto out_only_mutex;
2347                if (!ret) {
2348                        /* zero the front end of the last page */
2349                        if (tail_start + tail_len < ino_size) {
2350                                truncated_page = true;
2351                                ret = btrfs_truncate_page(inode,
2352                                                tail_start + tail_len, 0, 1);
2353                                if (ret)
2354                                        goto out_only_mutex;
2355                        }
2356                }
2357        }
2358
2359        if (lockend < lockstart) {
2360                ret = 0;
2361                goto out_only_mutex;
2362        }
2363
2364        while (1) {
2365                struct btrfs_ordered_extent *ordered;
2366
2367                truncate_pagecache_range(inode, lockstart, lockend);
2368
2369                lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2370                                 0, &cached_state);
2371                ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2372
2373                /*
2374                 * We need to make sure we have no ordered extents in this range
2375                 * and nobody raced in and read a page in this range, if we did
2376                 * we need to try again.
2377                 */
2378                if ((!ordered ||
2379                    (ordered->file_offset + ordered->len <= lockstart ||
2380                     ordered->file_offset > lockend)) &&
2381                     !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2382                        if (ordered)
2383                                btrfs_put_ordered_extent(ordered);
2384                        break;
2385                }
2386                if (ordered)
2387                        btrfs_put_ordered_extent(ordered);
2388                unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2389                                     lockend, &cached_state, GFP_NOFS);
2390                ret = btrfs_wait_ordered_range(inode, lockstart,
2391                                               lockend - lockstart + 1);
2392                if (ret) {
2393                        mutex_unlock(&inode->i_mutex);
2394                        return ret;
2395                }
2396        }
2397
2398        path = btrfs_alloc_path();
2399        if (!path) {
2400                ret = -ENOMEM;
2401                goto out;
2402        }
2403
2404        rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2405        if (!rsv) {
2406                ret = -ENOMEM;
2407                goto out_free;
2408        }
2409        rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2410        rsv->failfast = 1;
2411
2412        /*
2413         * 1 - update the inode
2414         * 1 - removing the extents in the range
2415         * 1 - adding the hole extent if no_holes isn't set
2416         */
2417        rsv_count = no_holes ? 2 : 3;
2418        trans = btrfs_start_transaction(root, rsv_count);
2419        if (IS_ERR(trans)) {
2420                err = PTR_ERR(trans);
2421                goto out_free;
2422        }
2423
2424        ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2425                                      min_size);
2426        BUG_ON(ret);
2427        trans->block_rsv = rsv;
2428
2429        cur_offset = lockstart;
2430        len = lockend - cur_offset;
2431        while (cur_offset < lockend) {
2432                ret = __btrfs_drop_extents(trans, root, inode, path,
2433                                           cur_offset, lockend + 1,
2434                                           &drop_end, 1, 0, 0, NULL);
2435                if (ret != -ENOSPC)
2436                        break;
2437
2438                trans->block_rsv = &root->fs_info->trans_block_rsv;
2439
2440                if (cur_offset < ino_size) {
2441                        ret = fill_holes(trans, inode, path, cur_offset,
2442                                         drop_end);
2443                        if (ret) {
2444                                err = ret;
2445                                break;
2446                        }
2447                }
2448
2449                cur_offset = drop_end;
2450
2451                ret = btrfs_update_inode(trans, root, inode);
2452                if (ret) {
2453                        err = ret;
2454                        break;
2455                }
2456
2457                btrfs_end_transaction(trans, root);
2458                btrfs_btree_balance_dirty(root);
2459
2460                trans = btrfs_start_transaction(root, rsv_count);
2461                if (IS_ERR(trans)) {
2462                        ret = PTR_ERR(trans);
2463                        trans = NULL;
2464                        break;
2465                }
2466
2467                ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2468                                              rsv, min_size);
2469                BUG_ON(ret);    /* shouldn't happen */
2470                trans->block_rsv = rsv;
2471
2472                ret = find_first_non_hole(inode, &cur_offset, &len);
2473                if (unlikely(ret < 0))
2474                        break;
2475                if (ret && !len) {
2476                        ret = 0;
2477                        break;
2478                }
2479        }
2480
2481        if (ret) {
2482                err = ret;
2483                goto out_trans;
2484        }
2485
2486        trans->block_rsv = &root->fs_info->trans_block_rsv;
2487        /*
2488         * Don't insert file hole extent item if it's for a range beyond eof
2489         * (because it's useless) or if it represents a 0 bytes range (when
2490         * cur_offset == drop_end).
2491         */
2492        if (cur_offset < ino_size && cur_offset < drop_end) {
2493                ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2494                if (ret) {
2495                        err = ret;
2496                        goto out_trans;
2497                }
2498        }
2499
2500out_trans:
2501        if (!trans)
2502                goto out_free;
2503
2504        inode_inc_iversion(inode);
2505        inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2506
2507        trans->block_rsv = &root->fs_info->trans_block_rsv;
2508        ret = btrfs_update_inode(trans, root, inode);
2509        updated_inode = true;
2510        btrfs_end_transaction(trans, root);
2511        btrfs_btree_balance_dirty(root);
2512out_free:
2513        btrfs_free_path(path);
2514        btrfs_free_block_rsv(root, rsv);
2515out:
2516        unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2517                             &cached_state, GFP_NOFS);
2518out_only_mutex:
2519        if (!updated_inode && truncated_page && !ret && !err) {
2520                /*
2521                 * If we only end up zeroing part of a page, we still need to
2522                 * update the inode item, so that all the time fields are
2523                 * updated as well as the necessary btrfs inode in memory fields
2524                 * for detecting, at fsync time, if the inode isn't yet in the
2525                 * log tree or it's there but not up to date.
2526                 */
2527                trans = btrfs_start_transaction(root, 1);
2528                if (IS_ERR(trans)) {
2529                        err = PTR_ERR(trans);
2530                } else {
2531                        err = btrfs_update_inode(trans, root, inode);
2532                        ret = btrfs_end_transaction(trans, root);
2533                }
2534        }
2535        mutex_unlock(&inode->i_mutex);
2536        if (ret && !err)
2537                err = ret;
2538        return err;
2539}
2540
2541static long btrfs_fallocate(struct file *file, int mode,
2542                            loff_t offset, loff_t len)
2543{
2544        struct inode *inode = file_inode(file);
2545        struct extent_state *cached_state = NULL;
2546        u64 cur_offset;
2547        u64 last_byte;
2548        u64 alloc_start;
2549        u64 alloc_end;
2550        u64 alloc_hint = 0;
2551        u64 locked_end;
2552        struct extent_map *em;
2553        int blocksize = BTRFS_I(inode)->root->sectorsize;
2554        int ret;
2555
2556        alloc_start = round_down(offset, blocksize);
2557        alloc_end = round_up(offset + len, blocksize);
2558
2559        /* Make sure we aren't being give some crap mode */
2560        if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2561                return -EOPNOTSUPP;
2562
2563        if (mode & FALLOC_FL_PUNCH_HOLE)
2564                return btrfs_punch_hole(inode, offset, len);
2565
2566        /*
2567         * Make sure we have enough space before we do the
2568         * allocation.
2569         */
2570        ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start, alloc_end - alloc_start);
2571        if (ret)
2572                return ret;
2573
2574        mutex_lock(&inode->i_mutex);
2575        ret = inode_newsize_ok(inode, alloc_end);
2576        if (ret)
2577                goto out;
2578
2579        if (alloc_start > inode->i_size) {
2580                ret = btrfs_cont_expand(inode, i_size_read(inode),
2581                                        alloc_start);
2582                if (ret)
2583                        goto out;
2584        } else {
2585                /*
2586                 * If we are fallocating from the end of the file onward we
2587                 * need to zero out the end of the page if i_size lands in the
2588                 * middle of a page.
2589                 */
2590                ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2591                if (ret)
2592                        goto out;
2593        }
2594
2595        /*
2596         * wait for ordered IO before we have any locks.  We'll loop again
2597         * below with the locks held.
2598         */
2599        ret = btrfs_wait_ordered_range(inode, alloc_start,
2600                                       alloc_end - alloc_start);
2601        if (ret)
2602                goto out;
2603
2604        locked_end = alloc_end - 1;
2605        while (1) {
2606                struct btrfs_ordered_extent *ordered;
2607
2608                /* the extent lock is ordered inside the running
2609                 * transaction
2610                 */
2611                lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2612                                 locked_end, 0, &cached_state);
2613                ordered = btrfs_lookup_first_ordered_extent(inode,
2614                                                            alloc_end - 1);
2615                if (ordered &&
2616                    ordered->file_offset + ordered->len > alloc_start &&
2617                    ordered->file_offset < alloc_end) {
2618                        btrfs_put_ordered_extent(ordered);
2619                        unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2620                                             alloc_start, locked_end,
2621                                             &cached_state, GFP_NOFS);
2622                        /*
2623                         * we can't wait on the range with the transaction
2624                         * running or with the extent lock held
2625                         */
2626                        ret = btrfs_wait_ordered_range(inode, alloc_start,
2627                                                       alloc_end - alloc_start);
2628                        if (ret)
2629                                goto out;
2630                } else {
2631                        if (ordered)
2632                                btrfs_put_ordered_extent(ordered);
2633                        break;
2634                }
2635        }
2636
2637        cur_offset = alloc_start;
2638        while (1) {
2639                u64 actual_end;
2640
2641                em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2642                                      alloc_end - cur_offset, 0);
2643                if (IS_ERR_OR_NULL(em)) {
2644                        if (!em)
2645                                ret = -ENOMEM;
2646                        else
2647                                ret = PTR_ERR(em);
2648                        break;
2649                }
2650                last_byte = min(extent_map_end(em), alloc_end);
2651                actual_end = min_t(u64, extent_map_end(em), offset + len);
2652                last_byte = ALIGN(last_byte, blocksize);
2653
2654                if (em->block_start == EXTENT_MAP_HOLE ||
2655                    (cur_offset >= inode->i_size &&
2656                     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2657                        ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2658                                                        last_byte - cur_offset,
2659                                                        1 << inode->i_blkbits,
2660                                                        offset + len,
2661                                                        &alloc_hint);
2662                } else if (actual_end > inode->i_size &&
2663                           !(mode & FALLOC_FL_KEEP_SIZE)) {
2664                        struct btrfs_trans_handle *trans;
2665                        struct btrfs_root *root = BTRFS_I(inode)->root;
2666
2667                        /*
2668                         * We didn't need to allocate any more space, but we
2669                         * still extended the size of the file so we need to
2670                         * update i_size and the inode item.
2671                         */
2672                        trans = btrfs_start_transaction(root, 1);
2673                        if (IS_ERR(trans)) {
2674                                ret = PTR_ERR(trans);
2675                        } else {
2676                                inode->i_ctime = CURRENT_TIME;
2677                                i_size_write(inode, actual_end);
2678                                btrfs_ordered_update_i_size(inode, actual_end,
2679                                                            NULL);
2680                                ret = btrfs_update_inode(trans, root, inode);
2681                                if (ret)
2682                                        btrfs_end_transaction(trans, root);
2683                                else
2684                                        ret = btrfs_end_transaction(trans,
2685                                                                    root);
2686                        }
2687                }
2688                free_extent_map(em);
2689                if (ret < 0)
2690                        break;
2691
2692                cur_offset = last_byte;
2693                if (cur_offset >= alloc_end) {
2694                        ret = 0;
2695                        break;
2696                }
2697        }
2698        unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2699                             &cached_state, GFP_NOFS);
2700out:
2701        mutex_unlock(&inode->i_mutex);
2702        /* Let go of our reservation. */
2703        btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2704        return ret;
2705}
2706
2707static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2708{
2709        struct btrfs_root *root = BTRFS_I(inode)->root;
2710        struct extent_map *em = NULL;
2711        struct extent_state *cached_state = NULL;
2712        u64 lockstart;
2713        u64 lockend;
2714        u64 start;
2715        u64 len;
2716        int ret = 0;
2717
2718        if (inode->i_size == 0)
2719                return -ENXIO;
2720
2721        /*
2722         * *offset can be negative, in this case we start finding DATA/HOLE from
2723         * the very start of the file.
2724         */
2725        start = max_t(loff_t, 0, *offset);
2726
2727        lockstart = round_down(start, root->sectorsize);
2728        lockend = round_up(i_size_read(inode), root->sectorsize);
2729        if (lockend <= lockstart)
2730                lockend = lockstart + root->sectorsize;
2731        lockend--;
2732        len = lockend - lockstart + 1;
2733
2734        lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2735                         &cached_state);
2736
2737        while (start < inode->i_size) {
2738                em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2739                if (IS_ERR(em)) {
2740                        ret = PTR_ERR(em);
2741                        em = NULL;
2742                        break;
2743                }
2744
2745                if (whence == SEEK_HOLE &&
2746                    (em->block_start == EXTENT_MAP_HOLE ||
2747                     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2748                        break;
2749                else if (whence == SEEK_DATA &&
2750                           (em->block_start != EXTENT_MAP_HOLE &&
2751                            !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2752                        break;
2753
2754                start = em->start + em->len;
2755                free_extent_map(em);
2756                em = NULL;
2757                cond_resched();
2758        }
2759        free_extent_map(em);
2760        if (!ret) {
2761                if (whence == SEEK_DATA && start >= inode->i_size)
2762                        ret = -ENXIO;
2763                else
2764                        *offset = min_t(loff_t, start, inode->i_size);
2765        }
2766        unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2767                             &cached_state, GFP_NOFS);
2768        return ret;
2769}
2770
2771static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2772{
2773        struct inode *inode = file->f_mapping->host;
2774        int ret;
2775
2776        mutex_lock(&inode->i_mutex);
2777        switch (whence) {
2778        case SEEK_END:
2779        case SEEK_CUR:
2780                offset = generic_file_llseek(file, offset, whence);
2781                goto out;
2782        case SEEK_DATA:
2783        case SEEK_HOLE:
2784                if (offset >= i_size_read(inode)) {
2785                        mutex_unlock(&inode->i_mutex);
2786                        return -ENXIO;
2787                }
2788
2789                ret = find_desired_extent(inode, &offset, whence);
2790                if (ret) {
2791                        mutex_unlock(&inode->i_mutex);
2792                        return ret;
2793                }
2794        }
2795
2796        offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2797out:
2798        mutex_unlock(&inode->i_mutex);
2799        return offset;
2800}
2801
2802const struct file_operations btrfs_file_operations = {
2803        .llseek         = btrfs_file_llseek,
2804        .read_iter      = generic_file_read_iter,
2805        .splice_read    = generic_file_splice_read,
2806        .write_iter     = btrfs_file_write_iter,
2807        .mmap           = btrfs_file_mmap,
2808        .open           = generic_file_open,
2809        .release        = btrfs_release_file,
2810        .fsync          = btrfs_sync_file,
2811        .fallocate      = btrfs_fallocate,
2812        .unlocked_ioctl = btrfs_ioctl,
2813#ifdef CONFIG_COMPAT
2814        .compat_ioctl   = btrfs_ioctl,
2815#endif
2816};
2817
2818void btrfs_auto_defrag_exit(void)
2819{
2820        if (btrfs_inode_defrag_cachep)
2821                kmem_cache_destroy(btrfs_inode_defrag_cachep);
2822}
2823
2824int btrfs_auto_defrag_init(void)
2825{
2826        btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2827                                        sizeof(struct inode_defrag), 0,
2828                                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2829                                        NULL);
2830        if (!btrfs_inode_defrag_cachep)
2831                return -ENOMEM;
2832
2833        return 0;
2834}
2835
2836int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
2837{
2838        int ret;
2839
2840        /*
2841         * So with compression we will find and lock a dirty page and clear the
2842         * first one as dirty, setup an async extent, and immediately return
2843         * with the entire range locked but with nobody actually marked with
2844         * writeback.  So we can't just filemap_write_and_wait_range() and
2845         * expect it to work since it will just kick off a thread to do the
2846         * actual work.  So we need to call filemap_fdatawrite_range _again_
2847         * since it will wait on the page lock, which won't be unlocked until
2848         * after the pages have been marked as writeback and so we're good to go
2849         * from there.  We have to do this otherwise we'll miss the ordered
2850         * extents and that results in badness.  Please Josef, do not think you
2851         * know better and pull this out at some point in the future, it is
2852         * right and you are wrong.
2853         */
2854        ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
2855        if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
2856                             &BTRFS_I(inode)->runtime_flags))
2857                ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
2858
2859        return ret;
2860}
2861