linux/fs/btrfs/volumes.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18#include <linux/sched.h>
  19#include <linux/bio.h>
  20#include <linux/slab.h>
  21#include <linux/buffer_head.h>
  22#include <linux/blkdev.h>
  23#include <linux/random.h>
  24#include <linux/iocontext.h>
  25#include <linux/capability.h>
  26#include <linux/ratelimit.h>
  27#include <linux/kthread.h>
  28#include <linux/raid/pq.h>
  29#include <linux/semaphore.h>
  30#include <asm/div64.h>
  31#include "ctree.h"
  32#include "extent_map.h"
  33#include "disk-io.h"
  34#include "transaction.h"
  35#include "print-tree.h"
  36#include "volumes.h"
  37#include "raid56.h"
  38#include "async-thread.h"
  39#include "check-integrity.h"
  40#include "rcu-string.h"
  41#include "math.h"
  42#include "dev-replace.h"
  43#include "sysfs.h"
  44
  45static int init_first_rw_device(struct btrfs_trans_handle *trans,
  46                                struct btrfs_root *root,
  47                                struct btrfs_device *device);
  48static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
  49static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
  50static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
  51static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
  52
  53DEFINE_MUTEX(uuid_mutex);
  54static LIST_HEAD(fs_uuids);
  55
  56static struct btrfs_fs_devices *__alloc_fs_devices(void)
  57{
  58        struct btrfs_fs_devices *fs_devs;
  59
  60        fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
  61        if (!fs_devs)
  62                return ERR_PTR(-ENOMEM);
  63
  64        mutex_init(&fs_devs->device_list_mutex);
  65
  66        INIT_LIST_HEAD(&fs_devs->devices);
  67        INIT_LIST_HEAD(&fs_devs->resized_devices);
  68        INIT_LIST_HEAD(&fs_devs->alloc_list);
  69        INIT_LIST_HEAD(&fs_devs->list);
  70
  71        return fs_devs;
  72}
  73
  74/**
  75 * alloc_fs_devices - allocate struct btrfs_fs_devices
  76 * @fsid:       a pointer to UUID for this FS.  If NULL a new UUID is
  77 *              generated.
  78 *
  79 * Return: a pointer to a new &struct btrfs_fs_devices on success;
  80 * ERR_PTR() on error.  Returned struct is not linked onto any lists and
  81 * can be destroyed with kfree() right away.
  82 */
  83static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
  84{
  85        struct btrfs_fs_devices *fs_devs;
  86
  87        fs_devs = __alloc_fs_devices();
  88        if (IS_ERR(fs_devs))
  89                return fs_devs;
  90
  91        if (fsid)
  92                memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
  93        else
  94                generate_random_uuid(fs_devs->fsid);
  95
  96        return fs_devs;
  97}
  98
  99static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
 100{
 101        struct btrfs_device *device;
 102        WARN_ON(fs_devices->opened);
 103        while (!list_empty(&fs_devices->devices)) {
 104                device = list_entry(fs_devices->devices.next,
 105                                    struct btrfs_device, dev_list);
 106                list_del(&device->dev_list);
 107                rcu_string_free(device->name);
 108                kfree(device);
 109        }
 110        kfree(fs_devices);
 111}
 112
 113static void btrfs_kobject_uevent(struct block_device *bdev,
 114                                 enum kobject_action action)
 115{
 116        int ret;
 117
 118        ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
 119        if (ret)
 120                pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
 121                        action,
 122                        kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
 123                        &disk_to_dev(bdev->bd_disk)->kobj);
 124}
 125
 126void btrfs_cleanup_fs_uuids(void)
 127{
 128        struct btrfs_fs_devices *fs_devices;
 129
 130        while (!list_empty(&fs_uuids)) {
 131                fs_devices = list_entry(fs_uuids.next,
 132                                        struct btrfs_fs_devices, list);
 133                list_del(&fs_devices->list);
 134                free_fs_devices(fs_devices);
 135        }
 136}
 137
 138static struct btrfs_device *__alloc_device(void)
 139{
 140        struct btrfs_device *dev;
 141
 142        dev = kzalloc(sizeof(*dev), GFP_NOFS);
 143        if (!dev)
 144                return ERR_PTR(-ENOMEM);
 145
 146        INIT_LIST_HEAD(&dev->dev_list);
 147        INIT_LIST_HEAD(&dev->dev_alloc_list);
 148        INIT_LIST_HEAD(&dev->resized_list);
 149
 150        spin_lock_init(&dev->io_lock);
 151
 152        spin_lock_init(&dev->reada_lock);
 153        atomic_set(&dev->reada_in_flight, 0);
 154        atomic_set(&dev->dev_stats_ccnt, 0);
 155        INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
 156        INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
 157
 158        return dev;
 159}
 160
 161static noinline struct btrfs_device *__find_device(struct list_head *head,
 162                                                   u64 devid, u8 *uuid)
 163{
 164        struct btrfs_device *dev;
 165
 166        list_for_each_entry(dev, head, dev_list) {
 167                if (dev->devid == devid &&
 168                    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
 169                        return dev;
 170                }
 171        }
 172        return NULL;
 173}
 174
 175static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
 176{
 177        struct btrfs_fs_devices *fs_devices;
 178
 179        list_for_each_entry(fs_devices, &fs_uuids, list) {
 180                if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
 181                        return fs_devices;
 182        }
 183        return NULL;
 184}
 185
 186static int
 187btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
 188                      int flush, struct block_device **bdev,
 189                      struct buffer_head **bh)
 190{
 191        int ret;
 192
 193        *bdev = blkdev_get_by_path(device_path, flags, holder);
 194
 195        if (IS_ERR(*bdev)) {
 196                ret = PTR_ERR(*bdev);
 197                printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
 198                goto error;
 199        }
 200
 201        if (flush)
 202                filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
 203        ret = set_blocksize(*bdev, 4096);
 204        if (ret) {
 205                blkdev_put(*bdev, flags);
 206                goto error;
 207        }
 208        invalidate_bdev(*bdev);
 209        *bh = btrfs_read_dev_super(*bdev);
 210        if (!*bh) {
 211                ret = -EINVAL;
 212                blkdev_put(*bdev, flags);
 213                goto error;
 214        }
 215
 216        return 0;
 217
 218error:
 219        *bdev = NULL;
 220        *bh = NULL;
 221        return ret;
 222}
 223
 224static void requeue_list(struct btrfs_pending_bios *pending_bios,
 225                        struct bio *head, struct bio *tail)
 226{
 227
 228        struct bio *old_head;
 229
 230        old_head = pending_bios->head;
 231        pending_bios->head = head;
 232        if (pending_bios->tail)
 233                tail->bi_next = old_head;
 234        else
 235                pending_bios->tail = tail;
 236}
 237
 238/*
 239 * we try to collect pending bios for a device so we don't get a large
 240 * number of procs sending bios down to the same device.  This greatly
 241 * improves the schedulers ability to collect and merge the bios.
 242 *
 243 * But, it also turns into a long list of bios to process and that is sure
 244 * to eventually make the worker thread block.  The solution here is to
 245 * make some progress and then put this work struct back at the end of
 246 * the list if the block device is congested.  This way, multiple devices
 247 * can make progress from a single worker thread.
 248 */
 249static noinline void run_scheduled_bios(struct btrfs_device *device)
 250{
 251        struct bio *pending;
 252        struct backing_dev_info *bdi;
 253        struct btrfs_fs_info *fs_info;
 254        struct btrfs_pending_bios *pending_bios;
 255        struct bio *tail;
 256        struct bio *cur;
 257        int again = 0;
 258        unsigned long num_run;
 259        unsigned long batch_run = 0;
 260        unsigned long limit;
 261        unsigned long last_waited = 0;
 262        int force_reg = 0;
 263        int sync_pending = 0;
 264        struct blk_plug plug;
 265
 266        /*
 267         * this function runs all the bios we've collected for
 268         * a particular device.  We don't want to wander off to
 269         * another device without first sending all of these down.
 270         * So, setup a plug here and finish it off before we return
 271         */
 272        blk_start_plug(&plug);
 273
 274        bdi = blk_get_backing_dev_info(device->bdev);
 275        fs_info = device->dev_root->fs_info;
 276        limit = btrfs_async_submit_limit(fs_info);
 277        limit = limit * 2 / 3;
 278
 279loop:
 280        spin_lock(&device->io_lock);
 281
 282loop_lock:
 283        num_run = 0;
 284
 285        /* take all the bios off the list at once and process them
 286         * later on (without the lock held).  But, remember the
 287         * tail and other pointers so the bios can be properly reinserted
 288         * into the list if we hit congestion
 289         */
 290        if (!force_reg && device->pending_sync_bios.head) {
 291                pending_bios = &device->pending_sync_bios;
 292                force_reg = 1;
 293        } else {
 294                pending_bios = &device->pending_bios;
 295                force_reg = 0;
 296        }
 297
 298        pending = pending_bios->head;
 299        tail = pending_bios->tail;
 300        WARN_ON(pending && !tail);
 301
 302        /*
 303         * if pending was null this time around, no bios need processing
 304         * at all and we can stop.  Otherwise it'll loop back up again
 305         * and do an additional check so no bios are missed.
 306         *
 307         * device->running_pending is used to synchronize with the
 308         * schedule_bio code.
 309         */
 310        if (device->pending_sync_bios.head == NULL &&
 311            device->pending_bios.head == NULL) {
 312                again = 0;
 313                device->running_pending = 0;
 314        } else {
 315                again = 1;
 316                device->running_pending = 1;
 317        }
 318
 319        pending_bios->head = NULL;
 320        pending_bios->tail = NULL;
 321
 322        spin_unlock(&device->io_lock);
 323
 324        while (pending) {
 325
 326                rmb();
 327                /* we want to work on both lists, but do more bios on the
 328                 * sync list than the regular list
 329                 */
 330                if ((num_run > 32 &&
 331                    pending_bios != &device->pending_sync_bios &&
 332                    device->pending_sync_bios.head) ||
 333                   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
 334                    device->pending_bios.head)) {
 335                        spin_lock(&device->io_lock);
 336                        requeue_list(pending_bios, pending, tail);
 337                        goto loop_lock;
 338                }
 339
 340                cur = pending;
 341                pending = pending->bi_next;
 342                cur->bi_next = NULL;
 343
 344                if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
 345                    waitqueue_active(&fs_info->async_submit_wait))
 346                        wake_up(&fs_info->async_submit_wait);
 347
 348                BUG_ON(atomic_read(&cur->bi_cnt) == 0);
 349
 350                /*
 351                 * if we're doing the sync list, record that our
 352                 * plug has some sync requests on it
 353                 *
 354                 * If we're doing the regular list and there are
 355                 * sync requests sitting around, unplug before
 356                 * we add more
 357                 */
 358                if (pending_bios == &device->pending_sync_bios) {
 359                        sync_pending = 1;
 360                } else if (sync_pending) {
 361                        blk_finish_plug(&plug);
 362                        blk_start_plug(&plug);
 363                        sync_pending = 0;
 364                }
 365
 366                btrfsic_submit_bio(cur->bi_rw, cur);
 367                num_run++;
 368                batch_run++;
 369
 370                cond_resched();
 371
 372                /*
 373                 * we made progress, there is more work to do and the bdi
 374                 * is now congested.  Back off and let other work structs
 375                 * run instead
 376                 */
 377                if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
 378                    fs_info->fs_devices->open_devices > 1) {
 379                        struct io_context *ioc;
 380
 381                        ioc = current->io_context;
 382
 383                        /*
 384                         * the main goal here is that we don't want to
 385                         * block if we're going to be able to submit
 386                         * more requests without blocking.
 387                         *
 388                         * This code does two great things, it pokes into
 389                         * the elevator code from a filesystem _and_
 390                         * it makes assumptions about how batching works.
 391                         */
 392                        if (ioc && ioc->nr_batch_requests > 0 &&
 393                            time_before(jiffies, ioc->last_waited + HZ/50UL) &&
 394                            (last_waited == 0 ||
 395                             ioc->last_waited == last_waited)) {
 396                                /*
 397                                 * we want to go through our batch of
 398                                 * requests and stop.  So, we copy out
 399                                 * the ioc->last_waited time and test
 400                                 * against it before looping
 401                                 */
 402                                last_waited = ioc->last_waited;
 403                                cond_resched();
 404                                continue;
 405                        }
 406                        spin_lock(&device->io_lock);
 407                        requeue_list(pending_bios, pending, tail);
 408                        device->running_pending = 1;
 409
 410                        spin_unlock(&device->io_lock);
 411                        btrfs_queue_work(fs_info->submit_workers,
 412                                         &device->work);
 413                        goto done;
 414                }
 415                /* unplug every 64 requests just for good measure */
 416                if (batch_run % 64 == 0) {
 417                        blk_finish_plug(&plug);
 418                        blk_start_plug(&plug);
 419                        sync_pending = 0;
 420                }
 421        }
 422
 423        cond_resched();
 424        if (again)
 425                goto loop;
 426
 427        spin_lock(&device->io_lock);
 428        if (device->pending_bios.head || device->pending_sync_bios.head)
 429                goto loop_lock;
 430        spin_unlock(&device->io_lock);
 431
 432done:
 433        blk_finish_plug(&plug);
 434}
 435
 436static void pending_bios_fn(struct btrfs_work *work)
 437{
 438        struct btrfs_device *device;
 439
 440        device = container_of(work, struct btrfs_device, work);
 441        run_scheduled_bios(device);
 442}
 443
 444/*
 445 * Add new device to list of registered devices
 446 *
 447 * Returns:
 448 * 1   - first time device is seen
 449 * 0   - device already known
 450 * < 0 - error
 451 */
 452static noinline int device_list_add(const char *path,
 453                           struct btrfs_super_block *disk_super,
 454                           u64 devid, struct btrfs_fs_devices **fs_devices_ret)
 455{
 456        struct btrfs_device *device;
 457        struct btrfs_fs_devices *fs_devices;
 458        struct rcu_string *name;
 459        int ret = 0;
 460        u64 found_transid = btrfs_super_generation(disk_super);
 461
 462        fs_devices = find_fsid(disk_super->fsid);
 463        if (!fs_devices) {
 464                fs_devices = alloc_fs_devices(disk_super->fsid);
 465                if (IS_ERR(fs_devices))
 466                        return PTR_ERR(fs_devices);
 467
 468                list_add(&fs_devices->list, &fs_uuids);
 469
 470                device = NULL;
 471        } else {
 472                device = __find_device(&fs_devices->devices, devid,
 473                                       disk_super->dev_item.uuid);
 474        }
 475
 476        if (!device) {
 477                if (fs_devices->opened)
 478                        return -EBUSY;
 479
 480                device = btrfs_alloc_device(NULL, &devid,
 481                                            disk_super->dev_item.uuid);
 482                if (IS_ERR(device)) {
 483                        /* we can safely leave the fs_devices entry around */
 484                        return PTR_ERR(device);
 485                }
 486
 487                name = rcu_string_strdup(path, GFP_NOFS);
 488                if (!name) {
 489                        kfree(device);
 490                        return -ENOMEM;
 491                }
 492                rcu_assign_pointer(device->name, name);
 493
 494                mutex_lock(&fs_devices->device_list_mutex);
 495                list_add_rcu(&device->dev_list, &fs_devices->devices);
 496                fs_devices->num_devices++;
 497                mutex_unlock(&fs_devices->device_list_mutex);
 498
 499                ret = 1;
 500                device->fs_devices = fs_devices;
 501        } else if (!device->name || strcmp(device->name->str, path)) {
 502                /*
 503                 * When FS is already mounted.
 504                 * 1. If you are here and if the device->name is NULL that
 505                 *    means this device was missing at time of FS mount.
 506                 * 2. If you are here and if the device->name is different
 507                 *    from 'path' that means either
 508                 *      a. The same device disappeared and reappeared with
 509                 *         different name. or
 510                 *      b. The missing-disk-which-was-replaced, has
 511                 *         reappeared now.
 512                 *
 513                 * We must allow 1 and 2a above. But 2b would be a spurious
 514                 * and unintentional.
 515                 *
 516                 * Further in case of 1 and 2a above, the disk at 'path'
 517                 * would have missed some transaction when it was away and
 518                 * in case of 2a the stale bdev has to be updated as well.
 519                 * 2b must not be allowed at all time.
 520                 */
 521
 522                /*
 523                 * For now, we do allow update to btrfs_fs_device through the
 524                 * btrfs dev scan cli after FS has been mounted.  We're still
 525                 * tracking a problem where systems fail mount by subvolume id
 526                 * when we reject replacement on a mounted FS.
 527                 */
 528                if (!fs_devices->opened && found_transid < device->generation) {
 529                        /*
 530                         * That is if the FS is _not_ mounted and if you
 531                         * are here, that means there is more than one
 532                         * disk with same uuid and devid.We keep the one
 533                         * with larger generation number or the last-in if
 534                         * generation are equal.
 535                         */
 536                        return -EEXIST;
 537                }
 538
 539                name = rcu_string_strdup(path, GFP_NOFS);
 540                if (!name)
 541                        return -ENOMEM;
 542                rcu_string_free(device->name);
 543                rcu_assign_pointer(device->name, name);
 544                if (device->missing) {
 545                        fs_devices->missing_devices--;
 546                        device->missing = 0;
 547                }
 548        }
 549
 550        /*
 551         * Unmount does not free the btrfs_device struct but would zero
 552         * generation along with most of the other members. So just update
 553         * it back. We need it to pick the disk with largest generation
 554         * (as above).
 555         */
 556        if (!fs_devices->opened)
 557                device->generation = found_transid;
 558
 559        *fs_devices_ret = fs_devices;
 560
 561        return ret;
 562}
 563
 564static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
 565{
 566        struct btrfs_fs_devices *fs_devices;
 567        struct btrfs_device *device;
 568        struct btrfs_device *orig_dev;
 569
 570        fs_devices = alloc_fs_devices(orig->fsid);
 571        if (IS_ERR(fs_devices))
 572                return fs_devices;
 573
 574        mutex_lock(&orig->device_list_mutex);
 575        fs_devices->total_devices = orig->total_devices;
 576
 577        /* We have held the volume lock, it is safe to get the devices. */
 578        list_for_each_entry(orig_dev, &orig->devices, dev_list) {
 579                struct rcu_string *name;
 580
 581                device = btrfs_alloc_device(NULL, &orig_dev->devid,
 582                                            orig_dev->uuid);
 583                if (IS_ERR(device))
 584                        goto error;
 585
 586                /*
 587                 * This is ok to do without rcu read locked because we hold the
 588                 * uuid mutex so nothing we touch in here is going to disappear.
 589                 */
 590                if (orig_dev->name) {
 591                        name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
 592                        if (!name) {
 593                                kfree(device);
 594                                goto error;
 595                        }
 596                        rcu_assign_pointer(device->name, name);
 597                }
 598
 599                list_add(&device->dev_list, &fs_devices->devices);
 600                device->fs_devices = fs_devices;
 601                fs_devices->num_devices++;
 602        }
 603        mutex_unlock(&orig->device_list_mutex);
 604        return fs_devices;
 605error:
 606        mutex_unlock(&orig->device_list_mutex);
 607        free_fs_devices(fs_devices);
 608        return ERR_PTR(-ENOMEM);
 609}
 610
 611void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
 612{
 613        struct btrfs_device *device, *next;
 614        struct btrfs_device *latest_dev = NULL;
 615
 616        mutex_lock(&uuid_mutex);
 617again:
 618        /* This is the initialized path, it is safe to release the devices. */
 619        list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
 620                if (device->in_fs_metadata) {
 621                        if (!device->is_tgtdev_for_dev_replace &&
 622                            (!latest_dev ||
 623                             device->generation > latest_dev->generation)) {
 624                                latest_dev = device;
 625                        }
 626                        continue;
 627                }
 628
 629                if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
 630                        /*
 631                         * In the first step, keep the device which has
 632                         * the correct fsid and the devid that is used
 633                         * for the dev_replace procedure.
 634                         * In the second step, the dev_replace state is
 635                         * read from the device tree and it is known
 636                         * whether the procedure is really active or
 637                         * not, which means whether this device is
 638                         * used or whether it should be removed.
 639                         */
 640                        if (step == 0 || device->is_tgtdev_for_dev_replace) {
 641                                continue;
 642                        }
 643                }
 644                if (device->bdev) {
 645                        blkdev_put(device->bdev, device->mode);
 646                        device->bdev = NULL;
 647                        fs_devices->open_devices--;
 648                }
 649                if (device->writeable) {
 650                        list_del_init(&device->dev_alloc_list);
 651                        device->writeable = 0;
 652                        if (!device->is_tgtdev_for_dev_replace)
 653                                fs_devices->rw_devices--;
 654                }
 655                list_del_init(&device->dev_list);
 656                fs_devices->num_devices--;
 657                rcu_string_free(device->name);
 658                kfree(device);
 659        }
 660
 661        if (fs_devices->seed) {
 662                fs_devices = fs_devices->seed;
 663                goto again;
 664        }
 665
 666        fs_devices->latest_bdev = latest_dev->bdev;
 667
 668        mutex_unlock(&uuid_mutex);
 669}
 670
 671static void __free_device(struct work_struct *work)
 672{
 673        struct btrfs_device *device;
 674
 675        device = container_of(work, struct btrfs_device, rcu_work);
 676
 677        if (device->bdev)
 678                blkdev_put(device->bdev, device->mode);
 679
 680        rcu_string_free(device->name);
 681        kfree(device);
 682}
 683
 684static void free_device(struct rcu_head *head)
 685{
 686        struct btrfs_device *device;
 687
 688        device = container_of(head, struct btrfs_device, rcu);
 689
 690        INIT_WORK(&device->rcu_work, __free_device);
 691        schedule_work(&device->rcu_work);
 692}
 693
 694static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
 695{
 696        struct btrfs_device *device;
 697
 698        if (--fs_devices->opened > 0)
 699                return 0;
 700
 701        mutex_lock(&fs_devices->device_list_mutex);
 702        list_for_each_entry(device, &fs_devices->devices, dev_list) {
 703                struct btrfs_device *new_device;
 704                struct rcu_string *name;
 705
 706                if (device->bdev)
 707                        fs_devices->open_devices--;
 708
 709                if (device->writeable &&
 710                    device->devid != BTRFS_DEV_REPLACE_DEVID) {
 711                        list_del_init(&device->dev_alloc_list);
 712                        fs_devices->rw_devices--;
 713                }
 714
 715                if (device->missing)
 716                        fs_devices->missing_devices--;
 717
 718                new_device = btrfs_alloc_device(NULL, &device->devid,
 719                                                device->uuid);
 720                BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
 721
 722                /* Safe because we are under uuid_mutex */
 723                if (device->name) {
 724                        name = rcu_string_strdup(device->name->str, GFP_NOFS);
 725                        BUG_ON(!name); /* -ENOMEM */
 726                        rcu_assign_pointer(new_device->name, name);
 727                }
 728
 729                list_replace_rcu(&device->dev_list, &new_device->dev_list);
 730                new_device->fs_devices = device->fs_devices;
 731
 732                call_rcu(&device->rcu, free_device);
 733        }
 734        mutex_unlock(&fs_devices->device_list_mutex);
 735
 736        WARN_ON(fs_devices->open_devices);
 737        WARN_ON(fs_devices->rw_devices);
 738        fs_devices->opened = 0;
 739        fs_devices->seeding = 0;
 740
 741        return 0;
 742}
 743
 744int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
 745{
 746        struct btrfs_fs_devices *seed_devices = NULL;
 747        int ret;
 748
 749        mutex_lock(&uuid_mutex);
 750        ret = __btrfs_close_devices(fs_devices);
 751        if (!fs_devices->opened) {
 752                seed_devices = fs_devices->seed;
 753                fs_devices->seed = NULL;
 754        }
 755        mutex_unlock(&uuid_mutex);
 756
 757        while (seed_devices) {
 758                fs_devices = seed_devices;
 759                seed_devices = fs_devices->seed;
 760                __btrfs_close_devices(fs_devices);
 761                free_fs_devices(fs_devices);
 762        }
 763        /*
 764         * Wait for rcu kworkers under __btrfs_close_devices
 765         * to finish all blkdev_puts so device is really
 766         * free when umount is done.
 767         */
 768        rcu_barrier();
 769        return ret;
 770}
 771
 772static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
 773                                fmode_t flags, void *holder)
 774{
 775        struct request_queue *q;
 776        struct block_device *bdev;
 777        struct list_head *head = &fs_devices->devices;
 778        struct btrfs_device *device;
 779        struct btrfs_device *latest_dev = NULL;
 780        struct buffer_head *bh;
 781        struct btrfs_super_block *disk_super;
 782        u64 devid;
 783        int seeding = 1;
 784        int ret = 0;
 785
 786        flags |= FMODE_EXCL;
 787
 788        list_for_each_entry(device, head, dev_list) {
 789                if (device->bdev)
 790                        continue;
 791                if (!device->name)
 792                        continue;
 793
 794                /* Just open everything we can; ignore failures here */
 795                if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
 796                                            &bdev, &bh))
 797                        continue;
 798
 799                disk_super = (struct btrfs_super_block *)bh->b_data;
 800                devid = btrfs_stack_device_id(&disk_super->dev_item);
 801                if (devid != device->devid)
 802                        goto error_brelse;
 803
 804                if (memcmp(device->uuid, disk_super->dev_item.uuid,
 805                           BTRFS_UUID_SIZE))
 806                        goto error_brelse;
 807
 808                device->generation = btrfs_super_generation(disk_super);
 809                if (!latest_dev ||
 810                    device->generation > latest_dev->generation)
 811                        latest_dev = device;
 812
 813                if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
 814                        device->writeable = 0;
 815                } else {
 816                        device->writeable = !bdev_read_only(bdev);
 817                        seeding = 0;
 818                }
 819
 820                q = bdev_get_queue(bdev);
 821                if (blk_queue_discard(q))
 822                        device->can_discard = 1;
 823
 824                device->bdev = bdev;
 825                device->in_fs_metadata = 0;
 826                device->mode = flags;
 827
 828                if (!blk_queue_nonrot(bdev_get_queue(bdev)))
 829                        fs_devices->rotating = 1;
 830
 831                fs_devices->open_devices++;
 832                if (device->writeable &&
 833                    device->devid != BTRFS_DEV_REPLACE_DEVID) {
 834                        fs_devices->rw_devices++;
 835                        list_add(&device->dev_alloc_list,
 836                                 &fs_devices->alloc_list);
 837                }
 838                brelse(bh);
 839                continue;
 840
 841error_brelse:
 842                brelse(bh);
 843                blkdev_put(bdev, flags);
 844                continue;
 845        }
 846        if (fs_devices->open_devices == 0) {
 847                ret = -EINVAL;
 848                goto out;
 849        }
 850        fs_devices->seeding = seeding;
 851        fs_devices->opened = 1;
 852        fs_devices->latest_bdev = latest_dev->bdev;
 853        fs_devices->total_rw_bytes = 0;
 854out:
 855        return ret;
 856}
 857
 858int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
 859                       fmode_t flags, void *holder)
 860{
 861        int ret;
 862
 863        mutex_lock(&uuid_mutex);
 864        if (fs_devices->opened) {
 865                fs_devices->opened++;
 866                ret = 0;
 867        } else {
 868                ret = __btrfs_open_devices(fs_devices, flags, holder);
 869        }
 870        mutex_unlock(&uuid_mutex);
 871        return ret;
 872}
 873
 874/*
 875 * Look for a btrfs signature on a device. This may be called out of the mount path
 876 * and we are not allowed to call set_blocksize during the scan. The superblock
 877 * is read via pagecache
 878 */
 879int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
 880                          struct btrfs_fs_devices **fs_devices_ret)
 881{
 882        struct btrfs_super_block *disk_super;
 883        struct block_device *bdev;
 884        struct page *page;
 885        void *p;
 886        int ret = -EINVAL;
 887        u64 devid;
 888        u64 transid;
 889        u64 total_devices;
 890        u64 bytenr;
 891        pgoff_t index;
 892
 893        /*
 894         * we would like to check all the supers, but that would make
 895         * a btrfs mount succeed after a mkfs from a different FS.
 896         * So, we need to add a special mount option to scan for
 897         * later supers, using BTRFS_SUPER_MIRROR_MAX instead
 898         */
 899        bytenr = btrfs_sb_offset(0);
 900        flags |= FMODE_EXCL;
 901        mutex_lock(&uuid_mutex);
 902
 903        bdev = blkdev_get_by_path(path, flags, holder);
 904
 905        if (IS_ERR(bdev)) {
 906                ret = PTR_ERR(bdev);
 907                goto error;
 908        }
 909
 910        /* make sure our super fits in the device */
 911        if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
 912                goto error_bdev_put;
 913
 914        /* make sure our super fits in the page */
 915        if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
 916                goto error_bdev_put;
 917
 918        /* make sure our super doesn't straddle pages on disk */
 919        index = bytenr >> PAGE_CACHE_SHIFT;
 920        if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
 921                goto error_bdev_put;
 922
 923        /* pull in the page with our super */
 924        page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
 925                                   index, GFP_NOFS);
 926
 927        if (IS_ERR_OR_NULL(page))
 928                goto error_bdev_put;
 929
 930        p = kmap(page);
 931
 932        /* align our pointer to the offset of the super block */
 933        disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
 934
 935        if (btrfs_super_bytenr(disk_super) != bytenr ||
 936            btrfs_super_magic(disk_super) != BTRFS_MAGIC)
 937                goto error_unmap;
 938
 939        devid = btrfs_stack_device_id(&disk_super->dev_item);
 940        transid = btrfs_super_generation(disk_super);
 941        total_devices = btrfs_super_num_devices(disk_super);
 942
 943        ret = device_list_add(path, disk_super, devid, fs_devices_ret);
 944        if (ret > 0) {
 945                if (disk_super->label[0]) {
 946                        if (disk_super->label[BTRFS_LABEL_SIZE - 1])
 947                                disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
 948                        printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
 949                } else {
 950                        printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
 951                }
 952
 953                printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
 954                ret = 0;
 955        }
 956        if (!ret && fs_devices_ret)
 957                (*fs_devices_ret)->total_devices = total_devices;
 958
 959error_unmap:
 960        kunmap(page);
 961        page_cache_release(page);
 962
 963error_bdev_put:
 964        blkdev_put(bdev, flags);
 965error:
 966        mutex_unlock(&uuid_mutex);
 967        return ret;
 968}
 969
 970/* helper to account the used device space in the range */
 971int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
 972                                   u64 end, u64 *length)
 973{
 974        struct btrfs_key key;
 975        struct btrfs_root *root = device->dev_root;
 976        struct btrfs_dev_extent *dev_extent;
 977        struct btrfs_path *path;
 978        u64 extent_end;
 979        int ret;
 980        int slot;
 981        struct extent_buffer *l;
 982
 983        *length = 0;
 984
 985        if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
 986                return 0;
 987
 988        path = btrfs_alloc_path();
 989        if (!path)
 990                return -ENOMEM;
 991        path->reada = 2;
 992
 993        key.objectid = device->devid;
 994        key.offset = start;
 995        key.type = BTRFS_DEV_EXTENT_KEY;
 996
 997        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 998        if (ret < 0)
 999                goto out;
1000        if (ret > 0) {
1001                ret = btrfs_previous_item(root, path, key.objectid, key.type);
1002                if (ret < 0)
1003                        goto out;
1004        }
1005
1006        while (1) {
1007                l = path->nodes[0];
1008                slot = path->slots[0];
1009                if (slot >= btrfs_header_nritems(l)) {
1010                        ret = btrfs_next_leaf(root, path);
1011                        if (ret == 0)
1012                                continue;
1013                        if (ret < 0)
1014                                goto out;
1015
1016                        break;
1017                }
1018                btrfs_item_key_to_cpu(l, &key, slot);
1019
1020                if (key.objectid < device->devid)
1021                        goto next;
1022
1023                if (key.objectid > device->devid)
1024                        break;
1025
1026                if (key.type != BTRFS_DEV_EXTENT_KEY)
1027                        goto next;
1028
1029                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1030                extent_end = key.offset + btrfs_dev_extent_length(l,
1031                                                                  dev_extent);
1032                if (key.offset <= start && extent_end > end) {
1033                        *length = end - start + 1;
1034                        break;
1035                } else if (key.offset <= start && extent_end > start)
1036                        *length += extent_end - start;
1037                else if (key.offset > start && extent_end <= end)
1038                        *length += extent_end - key.offset;
1039                else if (key.offset > start && key.offset <= end) {
1040                        *length += end - key.offset + 1;
1041                        break;
1042                } else if (key.offset > end)
1043                        break;
1044
1045next:
1046                path->slots[0]++;
1047        }
1048        ret = 0;
1049out:
1050        btrfs_free_path(path);
1051        return ret;
1052}
1053
1054static int contains_pending_extent(struct btrfs_trans_handle *trans,
1055                                   struct btrfs_device *device,
1056                                   u64 *start, u64 len)
1057{
1058        struct extent_map *em;
1059        struct list_head *search_list = &trans->transaction->pending_chunks;
1060        int ret = 0;
1061        u64 physical_start = *start;
1062
1063again:
1064        list_for_each_entry(em, search_list, list) {
1065                struct map_lookup *map;
1066                int i;
1067
1068                map = (struct map_lookup *)em->bdev;
1069                for (i = 0; i < map->num_stripes; i++) {
1070                        if (map->stripes[i].dev != device)
1071                                continue;
1072                        if (map->stripes[i].physical >= physical_start + len ||
1073                            map->stripes[i].physical + em->orig_block_len <=
1074                            physical_start)
1075                                continue;
1076                        *start = map->stripes[i].physical +
1077                                em->orig_block_len;
1078                        ret = 1;
1079                }
1080        }
1081        if (search_list == &trans->transaction->pending_chunks) {
1082                search_list = &trans->root->fs_info->pinned_chunks;
1083                goto again;
1084        }
1085
1086        return ret;
1087}
1088
1089
1090/*
1091 * find_free_dev_extent - find free space in the specified device
1092 * @device:     the device which we search the free space in
1093 * @num_bytes:  the size of the free space that we need
1094 * @start:      store the start of the free space.
1095 * @len:        the size of the free space. that we find, or the size of the max
1096 *              free space if we don't find suitable free space
1097 *
1098 * this uses a pretty simple search, the expectation is that it is
1099 * called very infrequently and that a given device has a small number
1100 * of extents
1101 *
1102 * @start is used to store the start of the free space if we find. But if we
1103 * don't find suitable free space, it will be used to store the start position
1104 * of the max free space.
1105 *
1106 * @len is used to store the size of the free space that we find.
1107 * But if we don't find suitable free space, it is used to store the size of
1108 * the max free space.
1109 */
1110int find_free_dev_extent(struct btrfs_trans_handle *trans,
1111                         struct btrfs_device *device, u64 num_bytes,
1112                         u64 *start, u64 *len)
1113{
1114        struct btrfs_key key;
1115        struct btrfs_root *root = device->dev_root;
1116        struct btrfs_dev_extent *dev_extent;
1117        struct btrfs_path *path;
1118        u64 hole_size;
1119        u64 max_hole_start;
1120        u64 max_hole_size;
1121        u64 extent_end;
1122        u64 search_start;
1123        u64 search_end = device->total_bytes;
1124        int ret;
1125        int slot;
1126        struct extent_buffer *l;
1127
1128        /* FIXME use last free of some kind */
1129
1130        /* we don't want to overwrite the superblock on the drive,
1131         * so we make sure to start at an offset of at least 1MB
1132         */
1133        search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1134
1135        path = btrfs_alloc_path();
1136        if (!path)
1137                return -ENOMEM;
1138
1139        max_hole_start = search_start;
1140        max_hole_size = 0;
1141
1142again:
1143        if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1144                ret = -ENOSPC;
1145                goto out;
1146        }
1147
1148        path->reada = 2;
1149        path->search_commit_root = 1;
1150        path->skip_locking = 1;
1151
1152        key.objectid = device->devid;
1153        key.offset = search_start;
1154        key.type = BTRFS_DEV_EXTENT_KEY;
1155
1156        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1157        if (ret < 0)
1158                goto out;
1159        if (ret > 0) {
1160                ret = btrfs_previous_item(root, path, key.objectid, key.type);
1161                if (ret < 0)
1162                        goto out;
1163        }
1164
1165        while (1) {
1166                l = path->nodes[0];
1167                slot = path->slots[0];
1168                if (slot >= btrfs_header_nritems(l)) {
1169                        ret = btrfs_next_leaf(root, path);
1170                        if (ret == 0)
1171                                continue;
1172                        if (ret < 0)
1173                                goto out;
1174
1175                        break;
1176                }
1177                btrfs_item_key_to_cpu(l, &key, slot);
1178
1179                if (key.objectid < device->devid)
1180                        goto next;
1181
1182                if (key.objectid > device->devid)
1183                        break;
1184
1185                if (key.type != BTRFS_DEV_EXTENT_KEY)
1186                        goto next;
1187
1188                if (key.offset > search_start) {
1189                        hole_size = key.offset - search_start;
1190
1191                        /*
1192                         * Have to check before we set max_hole_start, otherwise
1193                         * we could end up sending back this offset anyway.
1194                         */
1195                        if (contains_pending_extent(trans, device,
1196                                                    &search_start,
1197                                                    hole_size)) {
1198                                if (key.offset >= search_start) {
1199                                        hole_size = key.offset - search_start;
1200                                } else {
1201                                        WARN_ON_ONCE(1);
1202                                        hole_size = 0;
1203                                }
1204                        }
1205
1206                        if (hole_size > max_hole_size) {
1207                                max_hole_start = search_start;
1208                                max_hole_size = hole_size;
1209                        }
1210
1211                        /*
1212                         * If this free space is greater than which we need,
1213                         * it must be the max free space that we have found
1214                         * until now, so max_hole_start must point to the start
1215                         * of this free space and the length of this free space
1216                         * is stored in max_hole_size. Thus, we return
1217                         * max_hole_start and max_hole_size and go back to the
1218                         * caller.
1219                         */
1220                        if (hole_size >= num_bytes) {
1221                                ret = 0;
1222                                goto out;
1223                        }
1224                }
1225
1226                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1227                extent_end = key.offset + btrfs_dev_extent_length(l,
1228                                                                  dev_extent);
1229                if (extent_end > search_start)
1230                        search_start = extent_end;
1231next:
1232                path->slots[0]++;
1233                cond_resched();
1234        }
1235
1236        /*
1237         * At this point, search_start should be the end of
1238         * allocated dev extents, and when shrinking the device,
1239         * search_end may be smaller than search_start.
1240         */
1241        if (search_end > search_start) {
1242                hole_size = search_end - search_start;
1243
1244                if (contains_pending_extent(trans, device, &search_start,
1245                                            hole_size)) {
1246                        btrfs_release_path(path);
1247                        goto again;
1248                }
1249
1250                if (hole_size > max_hole_size) {
1251                        max_hole_start = search_start;
1252                        max_hole_size = hole_size;
1253                }
1254        }
1255
1256        /* See above. */
1257        if (max_hole_size < num_bytes)
1258                ret = -ENOSPC;
1259        else
1260                ret = 0;
1261
1262out:
1263        btrfs_free_path(path);
1264        *start = max_hole_start;
1265        if (len)
1266                *len = max_hole_size;
1267        return ret;
1268}
1269
1270static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1271                          struct btrfs_device *device,
1272                          u64 start, u64 *dev_extent_len)
1273{
1274        int ret;
1275        struct btrfs_path *path;
1276        struct btrfs_root *root = device->dev_root;
1277        struct btrfs_key key;
1278        struct btrfs_key found_key;
1279        struct extent_buffer *leaf = NULL;
1280        struct btrfs_dev_extent *extent = NULL;
1281
1282        path = btrfs_alloc_path();
1283        if (!path)
1284                return -ENOMEM;
1285
1286        key.objectid = device->devid;
1287        key.offset = start;
1288        key.type = BTRFS_DEV_EXTENT_KEY;
1289again:
1290        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1291        if (ret > 0) {
1292                ret = btrfs_previous_item(root, path, key.objectid,
1293                                          BTRFS_DEV_EXTENT_KEY);
1294                if (ret)
1295                        goto out;
1296                leaf = path->nodes[0];
1297                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1298                extent = btrfs_item_ptr(leaf, path->slots[0],
1299                                        struct btrfs_dev_extent);
1300                BUG_ON(found_key.offset > start || found_key.offset +
1301                       btrfs_dev_extent_length(leaf, extent) < start);
1302                key = found_key;
1303                btrfs_release_path(path);
1304                goto again;
1305        } else if (ret == 0) {
1306                leaf = path->nodes[0];
1307                extent = btrfs_item_ptr(leaf, path->slots[0],
1308                                        struct btrfs_dev_extent);
1309        } else {
1310                btrfs_error(root->fs_info, ret, "Slot search failed");
1311                goto out;
1312        }
1313
1314        *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1315
1316        ret = btrfs_del_item(trans, root, path);
1317        if (ret) {
1318                btrfs_error(root->fs_info, ret,
1319                            "Failed to remove dev extent item");
1320        } else {
1321                trans->transaction->have_free_bgs = 1;
1322        }
1323out:
1324        btrfs_free_path(path);
1325        return ret;
1326}
1327
1328static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1329                                  struct btrfs_device *device,
1330                                  u64 chunk_tree, u64 chunk_objectid,
1331                                  u64 chunk_offset, u64 start, u64 num_bytes)
1332{
1333        int ret;
1334        struct btrfs_path *path;
1335        struct btrfs_root *root = device->dev_root;
1336        struct btrfs_dev_extent *extent;
1337        struct extent_buffer *leaf;
1338        struct btrfs_key key;
1339
1340        WARN_ON(!device->in_fs_metadata);
1341        WARN_ON(device->is_tgtdev_for_dev_replace);
1342        path = btrfs_alloc_path();
1343        if (!path)
1344                return -ENOMEM;
1345
1346        key.objectid = device->devid;
1347        key.offset = start;
1348        key.type = BTRFS_DEV_EXTENT_KEY;
1349        ret = btrfs_insert_empty_item(trans, root, path, &key,
1350                                      sizeof(*extent));
1351        if (ret)
1352                goto out;
1353
1354        leaf = path->nodes[0];
1355        extent = btrfs_item_ptr(leaf, path->slots[0],
1356                                struct btrfs_dev_extent);
1357        btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1358        btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1359        btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1360
1361        write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1362                    btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1363
1364        btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1365        btrfs_mark_buffer_dirty(leaf);
1366out:
1367        btrfs_free_path(path);
1368        return ret;
1369}
1370
1371static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1372{
1373        struct extent_map_tree *em_tree;
1374        struct extent_map *em;
1375        struct rb_node *n;
1376        u64 ret = 0;
1377
1378        em_tree = &fs_info->mapping_tree.map_tree;
1379        read_lock(&em_tree->lock);
1380        n = rb_last(&em_tree->map);
1381        if (n) {
1382                em = rb_entry(n, struct extent_map, rb_node);
1383                ret = em->start + em->len;
1384        }
1385        read_unlock(&em_tree->lock);
1386
1387        return ret;
1388}
1389
1390static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1391                                    u64 *devid_ret)
1392{
1393        int ret;
1394        struct btrfs_key key;
1395        struct btrfs_key found_key;
1396        struct btrfs_path *path;
1397
1398        path = btrfs_alloc_path();
1399        if (!path)
1400                return -ENOMEM;
1401
1402        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1403        key.type = BTRFS_DEV_ITEM_KEY;
1404        key.offset = (u64)-1;
1405
1406        ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1407        if (ret < 0)
1408                goto error;
1409
1410        BUG_ON(ret == 0); /* Corruption */
1411
1412        ret = btrfs_previous_item(fs_info->chunk_root, path,
1413                                  BTRFS_DEV_ITEMS_OBJECTID,
1414                                  BTRFS_DEV_ITEM_KEY);
1415        if (ret) {
1416                *devid_ret = 1;
1417        } else {
1418                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1419                                      path->slots[0]);
1420                *devid_ret = found_key.offset + 1;
1421        }
1422        ret = 0;
1423error:
1424        btrfs_free_path(path);
1425        return ret;
1426}
1427
1428/*
1429 * the device information is stored in the chunk root
1430 * the btrfs_device struct should be fully filled in
1431 */
1432static int btrfs_add_device(struct btrfs_trans_handle *trans,
1433                            struct btrfs_root *root,
1434                            struct btrfs_device *device)
1435{
1436        int ret;
1437        struct btrfs_path *path;
1438        struct btrfs_dev_item *dev_item;
1439        struct extent_buffer *leaf;
1440        struct btrfs_key key;
1441        unsigned long ptr;
1442
1443        root = root->fs_info->chunk_root;
1444
1445        path = btrfs_alloc_path();
1446        if (!path)
1447                return -ENOMEM;
1448
1449        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1450        key.type = BTRFS_DEV_ITEM_KEY;
1451        key.offset = device->devid;
1452
1453        ret = btrfs_insert_empty_item(trans, root, path, &key,
1454                                      sizeof(*dev_item));
1455        if (ret)
1456                goto out;
1457
1458        leaf = path->nodes[0];
1459        dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1460
1461        btrfs_set_device_id(leaf, dev_item, device->devid);
1462        btrfs_set_device_generation(leaf, dev_item, 0);
1463        btrfs_set_device_type(leaf, dev_item, device->type);
1464        btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1465        btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1466        btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1467        btrfs_set_device_total_bytes(leaf, dev_item,
1468                                     btrfs_device_get_disk_total_bytes(device));
1469        btrfs_set_device_bytes_used(leaf, dev_item,
1470                                    btrfs_device_get_bytes_used(device));
1471        btrfs_set_device_group(leaf, dev_item, 0);
1472        btrfs_set_device_seek_speed(leaf, dev_item, 0);
1473        btrfs_set_device_bandwidth(leaf, dev_item, 0);
1474        btrfs_set_device_start_offset(leaf, dev_item, 0);
1475
1476        ptr = btrfs_device_uuid(dev_item);
1477        write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1478        ptr = btrfs_device_fsid(dev_item);
1479        write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1480        btrfs_mark_buffer_dirty(leaf);
1481
1482        ret = 0;
1483out:
1484        btrfs_free_path(path);
1485        return ret;
1486}
1487
1488/*
1489 * Function to update ctime/mtime for a given device path.
1490 * Mainly used for ctime/mtime based probe like libblkid.
1491 */
1492static void update_dev_time(char *path_name)
1493{
1494        struct file *filp;
1495
1496        filp = filp_open(path_name, O_RDWR, 0);
1497        if (IS_ERR(filp))
1498                return;
1499        file_update_time(filp);
1500        filp_close(filp, NULL);
1501        return;
1502}
1503
1504static int btrfs_rm_dev_item(struct btrfs_root *root,
1505                             struct btrfs_device *device)
1506{
1507        int ret;
1508        struct btrfs_path *path;
1509        struct btrfs_key key;
1510        struct btrfs_trans_handle *trans;
1511
1512        root = root->fs_info->chunk_root;
1513
1514        path = btrfs_alloc_path();
1515        if (!path)
1516                return -ENOMEM;
1517
1518        trans = btrfs_start_transaction(root, 0);
1519        if (IS_ERR(trans)) {
1520                btrfs_free_path(path);
1521                return PTR_ERR(trans);
1522        }
1523        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1524        key.type = BTRFS_DEV_ITEM_KEY;
1525        key.offset = device->devid;
1526
1527        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1528        if (ret < 0)
1529                goto out;
1530
1531        if (ret > 0) {
1532                ret = -ENOENT;
1533                goto out;
1534        }
1535
1536        ret = btrfs_del_item(trans, root, path);
1537        if (ret)
1538                goto out;
1539out:
1540        btrfs_free_path(path);
1541        btrfs_commit_transaction(trans, root);
1542        return ret;
1543}
1544
1545int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1546{
1547        struct btrfs_device *device;
1548        struct btrfs_device *next_device;
1549        struct block_device *bdev;
1550        struct buffer_head *bh = NULL;
1551        struct btrfs_super_block *disk_super;
1552        struct btrfs_fs_devices *cur_devices;
1553        u64 all_avail;
1554        u64 devid;
1555        u64 num_devices;
1556        u8 *dev_uuid;
1557        unsigned seq;
1558        int ret = 0;
1559        bool clear_super = false;
1560
1561        mutex_lock(&uuid_mutex);
1562
1563        do {
1564                seq = read_seqbegin(&root->fs_info->profiles_lock);
1565
1566                all_avail = root->fs_info->avail_data_alloc_bits |
1567                            root->fs_info->avail_system_alloc_bits |
1568                            root->fs_info->avail_metadata_alloc_bits;
1569        } while (read_seqretry(&root->fs_info->profiles_lock, seq));
1570
1571        num_devices = root->fs_info->fs_devices->num_devices;
1572        btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1573        if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1574                WARN_ON(num_devices < 1);
1575                num_devices--;
1576        }
1577        btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1578
1579        if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1580                ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1581                goto out;
1582        }
1583
1584        if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1585                ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1586                goto out;
1587        }
1588
1589        if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1590            root->fs_info->fs_devices->rw_devices <= 2) {
1591                ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1592                goto out;
1593        }
1594        if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1595            root->fs_info->fs_devices->rw_devices <= 3) {
1596                ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1597                goto out;
1598        }
1599
1600        if (strcmp(device_path, "missing") == 0) {
1601                struct list_head *devices;
1602                struct btrfs_device *tmp;
1603
1604                device = NULL;
1605                devices = &root->fs_info->fs_devices->devices;
1606                /*
1607                 * It is safe to read the devices since the volume_mutex
1608                 * is held.
1609                 */
1610                list_for_each_entry(tmp, devices, dev_list) {
1611                        if (tmp->in_fs_metadata &&
1612                            !tmp->is_tgtdev_for_dev_replace &&
1613                            !tmp->bdev) {
1614                                device = tmp;
1615                                break;
1616                        }
1617                }
1618                bdev = NULL;
1619                bh = NULL;
1620                disk_super = NULL;
1621                if (!device) {
1622                        ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1623                        goto out;
1624                }
1625        } else {
1626                ret = btrfs_get_bdev_and_sb(device_path,
1627                                            FMODE_WRITE | FMODE_EXCL,
1628                                            root->fs_info->bdev_holder, 0,
1629                                            &bdev, &bh);
1630                if (ret)
1631                        goto out;
1632                disk_super = (struct btrfs_super_block *)bh->b_data;
1633                devid = btrfs_stack_device_id(&disk_super->dev_item);
1634                dev_uuid = disk_super->dev_item.uuid;
1635                device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1636                                           disk_super->fsid);
1637                if (!device) {
1638                        ret = -ENOENT;
1639                        goto error_brelse;
1640                }
1641        }
1642
1643        if (device->is_tgtdev_for_dev_replace) {
1644                ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1645                goto error_brelse;
1646        }
1647
1648        if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1649                ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1650                goto error_brelse;
1651        }
1652
1653        if (device->writeable) {
1654                lock_chunks(root);
1655                list_del_init(&device->dev_alloc_list);
1656                device->fs_devices->rw_devices--;
1657                unlock_chunks(root);
1658                clear_super = true;
1659        }
1660
1661        mutex_unlock(&uuid_mutex);
1662        ret = btrfs_shrink_device(device, 0);
1663        mutex_lock(&uuid_mutex);
1664        if (ret)
1665                goto error_undo;
1666
1667        /*
1668         * TODO: the superblock still includes this device in its num_devices
1669         * counter although write_all_supers() is not locked out. This
1670         * could give a filesystem state which requires a degraded mount.
1671         */
1672        ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1673        if (ret)
1674                goto error_undo;
1675
1676        device->in_fs_metadata = 0;
1677        btrfs_scrub_cancel_dev(root->fs_info, device);
1678
1679        /*
1680         * the device list mutex makes sure that we don't change
1681         * the device list while someone else is writing out all
1682         * the device supers. Whoever is writing all supers, should
1683         * lock the device list mutex before getting the number of
1684         * devices in the super block (super_copy). Conversely,
1685         * whoever updates the number of devices in the super block
1686         * (super_copy) should hold the device list mutex.
1687         */
1688
1689        cur_devices = device->fs_devices;
1690        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1691        list_del_rcu(&device->dev_list);
1692
1693        device->fs_devices->num_devices--;
1694        device->fs_devices->total_devices--;
1695
1696        if (device->missing)
1697                device->fs_devices->missing_devices--;
1698
1699        next_device = list_entry(root->fs_info->fs_devices->devices.next,
1700                                 struct btrfs_device, dev_list);
1701        if (device->bdev == root->fs_info->sb->s_bdev)
1702                root->fs_info->sb->s_bdev = next_device->bdev;
1703        if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1704                root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1705
1706        if (device->bdev) {
1707                device->fs_devices->open_devices--;
1708                /* remove sysfs entry */
1709                btrfs_kobj_rm_device(root->fs_info, device);
1710        }
1711
1712        call_rcu(&device->rcu, free_device);
1713
1714        num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1715        btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1716        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1717
1718        if (cur_devices->open_devices == 0) {
1719                struct btrfs_fs_devices *fs_devices;
1720                fs_devices = root->fs_info->fs_devices;
1721                while (fs_devices) {
1722                        if (fs_devices->seed == cur_devices) {
1723                                fs_devices->seed = cur_devices->seed;
1724                                break;
1725                        }
1726                        fs_devices = fs_devices->seed;
1727                }
1728                cur_devices->seed = NULL;
1729                __btrfs_close_devices(cur_devices);
1730                free_fs_devices(cur_devices);
1731        }
1732
1733        root->fs_info->num_tolerated_disk_barrier_failures =
1734                btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1735
1736        /*
1737         * at this point, the device is zero sized.  We want to
1738         * remove it from the devices list and zero out the old super
1739         */
1740        if (clear_super && disk_super) {
1741                u64 bytenr;
1742                int i;
1743
1744                /* make sure this device isn't detected as part of
1745                 * the FS anymore
1746                 */
1747                memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1748                set_buffer_dirty(bh);
1749                sync_dirty_buffer(bh);
1750
1751                /* clear the mirror copies of super block on the disk
1752                 * being removed, 0th copy is been taken care above and
1753                 * the below would take of the rest
1754                 */
1755                for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1756                        bytenr = btrfs_sb_offset(i);
1757                        if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1758                                        i_size_read(bdev->bd_inode))
1759                                break;
1760
1761                        brelse(bh);
1762                        bh = __bread(bdev, bytenr / 4096,
1763                                        BTRFS_SUPER_INFO_SIZE);
1764                        if (!bh)
1765                                continue;
1766
1767                        disk_super = (struct btrfs_super_block *)bh->b_data;
1768
1769                        if (btrfs_super_bytenr(disk_super) != bytenr ||
1770                                btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1771                                continue;
1772                        }
1773                        memset(&disk_super->magic, 0,
1774                                                sizeof(disk_super->magic));
1775                        set_buffer_dirty(bh);
1776                        sync_dirty_buffer(bh);
1777                }
1778        }
1779
1780        ret = 0;
1781
1782        if (bdev) {
1783                /* Notify udev that device has changed */
1784                btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1785
1786                /* Update ctime/mtime for device path for libblkid */
1787                update_dev_time(device_path);
1788        }
1789
1790error_brelse:
1791        brelse(bh);
1792        if (bdev)
1793                blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1794out:
1795        mutex_unlock(&uuid_mutex);
1796        return ret;
1797error_undo:
1798        if (device->writeable) {
1799                lock_chunks(root);
1800                list_add(&device->dev_alloc_list,
1801                         &root->fs_info->fs_devices->alloc_list);
1802                device->fs_devices->rw_devices++;
1803                unlock_chunks(root);
1804        }
1805        goto error_brelse;
1806}
1807
1808void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1809                                        struct btrfs_device *srcdev)
1810{
1811        struct btrfs_fs_devices *fs_devices;
1812
1813        WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1814
1815        /*
1816         * in case of fs with no seed, srcdev->fs_devices will point
1817         * to fs_devices of fs_info. However when the dev being replaced is
1818         * a seed dev it will point to the seed's local fs_devices. In short
1819         * srcdev will have its correct fs_devices in both the cases.
1820         */
1821        fs_devices = srcdev->fs_devices;
1822
1823        list_del_rcu(&srcdev->dev_list);
1824        list_del_rcu(&srcdev->dev_alloc_list);
1825        fs_devices->num_devices--;
1826        if (srcdev->missing)
1827                fs_devices->missing_devices--;
1828
1829        if (srcdev->writeable) {
1830                fs_devices->rw_devices--;
1831                /* zero out the old super if it is writable */
1832                btrfs_scratch_superblock(srcdev);
1833        }
1834
1835        if (srcdev->bdev)
1836                fs_devices->open_devices--;
1837}
1838
1839void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1840                                      struct btrfs_device *srcdev)
1841{
1842        struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
1843
1844        call_rcu(&srcdev->rcu, free_device);
1845
1846        /*
1847         * unless fs_devices is seed fs, num_devices shouldn't go
1848         * zero
1849         */
1850        BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1851
1852        /* if this is no devs we rather delete the fs_devices */
1853        if (!fs_devices->num_devices) {
1854                struct btrfs_fs_devices *tmp_fs_devices;
1855
1856                tmp_fs_devices = fs_info->fs_devices;
1857                while (tmp_fs_devices) {
1858                        if (tmp_fs_devices->seed == fs_devices) {
1859                                tmp_fs_devices->seed = fs_devices->seed;
1860                                break;
1861                        }
1862                        tmp_fs_devices = tmp_fs_devices->seed;
1863                }
1864                fs_devices->seed = NULL;
1865                __btrfs_close_devices(fs_devices);
1866                free_fs_devices(fs_devices);
1867        }
1868}
1869
1870void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1871                                      struct btrfs_device *tgtdev)
1872{
1873        struct btrfs_device *next_device;
1874
1875        mutex_lock(&uuid_mutex);
1876        WARN_ON(!tgtdev);
1877        mutex_lock(&fs_info->fs_devices->device_list_mutex);
1878        if (tgtdev->bdev) {
1879                btrfs_scratch_superblock(tgtdev);
1880                fs_info->fs_devices->open_devices--;
1881        }
1882        fs_info->fs_devices->num_devices--;
1883
1884        next_device = list_entry(fs_info->fs_devices->devices.next,
1885                                 struct btrfs_device, dev_list);
1886        if (tgtdev->bdev == fs_info->sb->s_bdev)
1887                fs_info->sb->s_bdev = next_device->bdev;
1888        if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1889                fs_info->fs_devices->latest_bdev = next_device->bdev;
1890        list_del_rcu(&tgtdev->dev_list);
1891
1892        call_rcu(&tgtdev->rcu, free_device);
1893
1894        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1895        mutex_unlock(&uuid_mutex);
1896}
1897
1898static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1899                                     struct btrfs_device **device)
1900{
1901        int ret = 0;
1902        struct btrfs_super_block *disk_super;
1903        u64 devid;
1904        u8 *dev_uuid;
1905        struct block_device *bdev;
1906        struct buffer_head *bh;
1907
1908        *device = NULL;
1909        ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1910                                    root->fs_info->bdev_holder, 0, &bdev, &bh);
1911        if (ret)
1912                return ret;
1913        disk_super = (struct btrfs_super_block *)bh->b_data;
1914        devid = btrfs_stack_device_id(&disk_super->dev_item);
1915        dev_uuid = disk_super->dev_item.uuid;
1916        *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1917                                    disk_super->fsid);
1918        brelse(bh);
1919        if (!*device)
1920                ret = -ENOENT;
1921        blkdev_put(bdev, FMODE_READ);
1922        return ret;
1923}
1924
1925int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1926                                         char *device_path,
1927                                         struct btrfs_device **device)
1928{
1929        *device = NULL;
1930        if (strcmp(device_path, "missing") == 0) {
1931                struct list_head *devices;
1932                struct btrfs_device *tmp;
1933
1934                devices = &root->fs_info->fs_devices->devices;
1935                /*
1936                 * It is safe to read the devices since the volume_mutex
1937                 * is held by the caller.
1938                 */
1939                list_for_each_entry(tmp, devices, dev_list) {
1940                        if (tmp->in_fs_metadata && !tmp->bdev) {
1941                                *device = tmp;
1942                                break;
1943                        }
1944                }
1945
1946                if (!*device) {
1947                        btrfs_err(root->fs_info, "no missing device found");
1948                        return -ENOENT;
1949                }
1950
1951                return 0;
1952        } else {
1953                return btrfs_find_device_by_path(root, device_path, device);
1954        }
1955}
1956
1957/*
1958 * does all the dirty work required for changing file system's UUID.
1959 */
1960static int btrfs_prepare_sprout(struct btrfs_root *root)
1961{
1962        struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1963        struct btrfs_fs_devices *old_devices;
1964        struct btrfs_fs_devices *seed_devices;
1965        struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1966        struct btrfs_device *device;
1967        u64 super_flags;
1968
1969        BUG_ON(!mutex_is_locked(&uuid_mutex));
1970        if (!fs_devices->seeding)
1971                return -EINVAL;
1972
1973        seed_devices = __alloc_fs_devices();
1974        if (IS_ERR(seed_devices))
1975                return PTR_ERR(seed_devices);
1976
1977        old_devices = clone_fs_devices(fs_devices);
1978        if (IS_ERR(old_devices)) {
1979                kfree(seed_devices);
1980                return PTR_ERR(old_devices);
1981        }
1982
1983        list_add(&old_devices->list, &fs_uuids);
1984
1985        memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1986        seed_devices->opened = 1;
1987        INIT_LIST_HEAD(&seed_devices->devices);
1988        INIT_LIST_HEAD(&seed_devices->alloc_list);
1989        mutex_init(&seed_devices->device_list_mutex);
1990
1991        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1992        list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1993                              synchronize_rcu);
1994        list_for_each_entry(device, &seed_devices->devices, dev_list)
1995                device->fs_devices = seed_devices;
1996
1997        lock_chunks(root);
1998        list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1999        unlock_chunks(root);
2000
2001        fs_devices->seeding = 0;
2002        fs_devices->num_devices = 0;
2003        fs_devices->open_devices = 0;
2004        fs_devices->missing_devices = 0;
2005        fs_devices->rotating = 0;
2006        fs_devices->seed = seed_devices;
2007
2008        generate_random_uuid(fs_devices->fsid);
2009        memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2010        memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2011        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2012
2013        super_flags = btrfs_super_flags(disk_super) &
2014                      ~BTRFS_SUPER_FLAG_SEEDING;
2015        btrfs_set_super_flags(disk_super, super_flags);
2016
2017        return 0;
2018}
2019
2020/*
2021 * strore the expected generation for seed devices in device items.
2022 */
2023static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2024                               struct btrfs_root *root)
2025{
2026        struct btrfs_path *path;
2027        struct extent_buffer *leaf;
2028        struct btrfs_dev_item *dev_item;
2029        struct btrfs_device *device;
2030        struct btrfs_key key;
2031        u8 fs_uuid[BTRFS_UUID_SIZE];
2032        u8 dev_uuid[BTRFS_UUID_SIZE];
2033        u64 devid;
2034        int ret;
2035
2036        path = btrfs_alloc_path();
2037        if (!path)
2038                return -ENOMEM;
2039
2040        root = root->fs_info->chunk_root;
2041        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2042        key.offset = 0;
2043        key.type = BTRFS_DEV_ITEM_KEY;
2044
2045        while (1) {
2046                ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2047                if (ret < 0)
2048                        goto error;
2049
2050                leaf = path->nodes[0];
2051next_slot:
2052                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2053                        ret = btrfs_next_leaf(root, path);
2054                        if (ret > 0)
2055                                break;
2056                        if (ret < 0)
2057                                goto error;
2058                        leaf = path->nodes[0];
2059                        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2060                        btrfs_release_path(path);
2061                        continue;
2062                }
2063
2064                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2065                if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2066                    key.type != BTRFS_DEV_ITEM_KEY)
2067                        break;
2068
2069                dev_item = btrfs_item_ptr(leaf, path->slots[0],
2070                                          struct btrfs_dev_item);
2071                devid = btrfs_device_id(leaf, dev_item);
2072                read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2073                                   BTRFS_UUID_SIZE);
2074                read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2075                                   BTRFS_UUID_SIZE);
2076                device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2077                                           fs_uuid);
2078                BUG_ON(!device); /* Logic error */
2079
2080                if (device->fs_devices->seeding) {
2081                        btrfs_set_device_generation(leaf, dev_item,
2082                                                    device->generation);
2083                        btrfs_mark_buffer_dirty(leaf);
2084                }
2085
2086                path->slots[0]++;
2087                goto next_slot;
2088        }
2089        ret = 0;
2090error:
2091        btrfs_free_path(path);
2092        return ret;
2093}
2094
2095int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2096{
2097        struct request_queue *q;
2098        struct btrfs_trans_handle *trans;
2099        struct btrfs_device *device;
2100        struct block_device *bdev;
2101        struct list_head *devices;
2102        struct super_block *sb = root->fs_info->sb;
2103        struct rcu_string *name;
2104        u64 tmp;
2105        int seeding_dev = 0;
2106        int ret = 0;
2107
2108        if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2109                return -EROFS;
2110
2111        bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2112                                  root->fs_info->bdev_holder);
2113        if (IS_ERR(bdev))
2114                return PTR_ERR(bdev);
2115
2116        if (root->fs_info->fs_devices->seeding) {
2117                seeding_dev = 1;
2118                down_write(&sb->s_umount);
2119                mutex_lock(&uuid_mutex);
2120        }
2121
2122        filemap_write_and_wait(bdev->bd_inode->i_mapping);
2123
2124        devices = &root->fs_info->fs_devices->devices;
2125
2126        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2127        list_for_each_entry(device, devices, dev_list) {
2128                if (device->bdev == bdev) {
2129                        ret = -EEXIST;
2130                        mutex_unlock(
2131                                &root->fs_info->fs_devices->device_list_mutex);
2132                        goto error;
2133                }
2134        }
2135        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2136
2137        device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2138        if (IS_ERR(device)) {
2139                /* we can safely leave the fs_devices entry around */
2140                ret = PTR_ERR(device);
2141                goto error;
2142        }
2143
2144        name = rcu_string_strdup(device_path, GFP_NOFS);
2145        if (!name) {
2146                kfree(device);
2147                ret = -ENOMEM;
2148                goto error;
2149        }
2150        rcu_assign_pointer(device->name, name);
2151
2152        trans = btrfs_start_transaction(root, 0);
2153        if (IS_ERR(trans)) {
2154                rcu_string_free(device->name);
2155                kfree(device);
2156                ret = PTR_ERR(trans);
2157                goto error;
2158        }
2159
2160        q = bdev_get_queue(bdev);
2161        if (blk_queue_discard(q))
2162                device->can_discard = 1;
2163        device->writeable = 1;
2164        device->generation = trans->transid;
2165        device->io_width = root->sectorsize;
2166        device->io_align = root->sectorsize;
2167        device->sector_size = root->sectorsize;
2168        device->total_bytes = i_size_read(bdev->bd_inode);
2169        device->disk_total_bytes = device->total_bytes;
2170        device->commit_total_bytes = device->total_bytes;
2171        device->dev_root = root->fs_info->dev_root;
2172        device->bdev = bdev;
2173        device->in_fs_metadata = 1;
2174        device->is_tgtdev_for_dev_replace = 0;
2175        device->mode = FMODE_EXCL;
2176        device->dev_stats_valid = 1;
2177        set_blocksize(device->bdev, 4096);
2178
2179        if (seeding_dev) {
2180                sb->s_flags &= ~MS_RDONLY;
2181                ret = btrfs_prepare_sprout(root);
2182                BUG_ON(ret); /* -ENOMEM */
2183        }
2184
2185        device->fs_devices = root->fs_info->fs_devices;
2186
2187        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2188        lock_chunks(root);
2189        list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2190        list_add(&device->dev_alloc_list,
2191                 &root->fs_info->fs_devices->alloc_list);
2192        root->fs_info->fs_devices->num_devices++;
2193        root->fs_info->fs_devices->open_devices++;
2194        root->fs_info->fs_devices->rw_devices++;
2195        root->fs_info->fs_devices->total_devices++;
2196        root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2197
2198        spin_lock(&root->fs_info->free_chunk_lock);
2199        root->fs_info->free_chunk_space += device->total_bytes;
2200        spin_unlock(&root->fs_info->free_chunk_lock);
2201
2202        if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2203                root->fs_info->fs_devices->rotating = 1;
2204
2205        tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2206        btrfs_set_super_total_bytes(root->fs_info->super_copy,
2207                                    tmp + device->total_bytes);
2208
2209        tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2210        btrfs_set_super_num_devices(root->fs_info->super_copy,
2211                                    tmp + 1);
2212
2213        /* add sysfs device entry */
2214        btrfs_kobj_add_device(root->fs_info, device);
2215
2216        /*
2217         * we've got more storage, clear any full flags on the space
2218         * infos
2219         */
2220        btrfs_clear_space_info_full(root->fs_info);
2221
2222        unlock_chunks(root);
2223        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2224
2225        if (seeding_dev) {
2226                lock_chunks(root);
2227                ret = init_first_rw_device(trans, root, device);
2228                unlock_chunks(root);
2229                if (ret) {
2230                        btrfs_abort_transaction(trans, root, ret);
2231                        goto error_trans;
2232                }
2233        }
2234
2235        ret = btrfs_add_device(trans, root, device);
2236        if (ret) {
2237                btrfs_abort_transaction(trans, root, ret);
2238                goto error_trans;
2239        }
2240
2241        if (seeding_dev) {
2242                char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2243
2244                ret = btrfs_finish_sprout(trans, root);
2245                if (ret) {
2246                        btrfs_abort_transaction(trans, root, ret);
2247                        goto error_trans;
2248                }
2249
2250                /* Sprouting would change fsid of the mounted root,
2251                 * so rename the fsid on the sysfs
2252                 */
2253                snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2254                                                root->fs_info->fsid);
2255                if (kobject_rename(&root->fs_info->super_kobj, fsid_buf))
2256                        goto error_trans;
2257        }
2258
2259        root->fs_info->num_tolerated_disk_barrier_failures =
2260                btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2261        ret = btrfs_commit_transaction(trans, root);
2262
2263        if (seeding_dev) {
2264                mutex_unlock(&uuid_mutex);
2265                up_write(&sb->s_umount);
2266
2267                if (ret) /* transaction commit */
2268                        return ret;
2269
2270                ret = btrfs_relocate_sys_chunks(root);
2271                if (ret < 0)
2272                        btrfs_error(root->fs_info, ret,
2273                                    "Failed to relocate sys chunks after "
2274                                    "device initialization. This can be fixed "
2275                                    "using the \"btrfs balance\" command.");
2276                trans = btrfs_attach_transaction(root);
2277                if (IS_ERR(trans)) {
2278                        if (PTR_ERR(trans) == -ENOENT)
2279                                return 0;
2280                        return PTR_ERR(trans);
2281                }
2282                ret = btrfs_commit_transaction(trans, root);
2283        }
2284
2285        /* Update ctime/mtime for libblkid */
2286        update_dev_time(device_path);
2287        return ret;
2288
2289error_trans:
2290        btrfs_end_transaction(trans, root);
2291        rcu_string_free(device->name);
2292        btrfs_kobj_rm_device(root->fs_info, device);
2293        kfree(device);
2294error:
2295        blkdev_put(bdev, FMODE_EXCL);
2296        if (seeding_dev) {
2297                mutex_unlock(&uuid_mutex);
2298                up_write(&sb->s_umount);
2299        }
2300        return ret;
2301}
2302
2303int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2304                                  struct btrfs_device *srcdev,
2305                                  struct btrfs_device **device_out)
2306{
2307        struct request_queue *q;
2308        struct btrfs_device *device;
2309        struct block_device *bdev;
2310        struct btrfs_fs_info *fs_info = root->fs_info;
2311        struct list_head *devices;
2312        struct rcu_string *name;
2313        u64 devid = BTRFS_DEV_REPLACE_DEVID;
2314        int ret = 0;
2315
2316        *device_out = NULL;
2317        if (fs_info->fs_devices->seeding) {
2318                btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2319                return -EINVAL;
2320        }
2321
2322        bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2323                                  fs_info->bdev_holder);
2324        if (IS_ERR(bdev)) {
2325                btrfs_err(fs_info, "target device %s is invalid!", device_path);
2326                return PTR_ERR(bdev);
2327        }
2328
2329        filemap_write_and_wait(bdev->bd_inode->i_mapping);
2330
2331        devices = &fs_info->fs_devices->devices;
2332        list_for_each_entry(device, devices, dev_list) {
2333                if (device->bdev == bdev) {
2334                        btrfs_err(fs_info, "target device is in the filesystem!");
2335                        ret = -EEXIST;
2336                        goto error;
2337                }
2338        }
2339
2340
2341        if (i_size_read(bdev->bd_inode) <
2342            btrfs_device_get_total_bytes(srcdev)) {
2343                btrfs_err(fs_info, "target device is smaller than source device!");
2344                ret = -EINVAL;
2345                goto error;
2346        }
2347
2348
2349        device = btrfs_alloc_device(NULL, &devid, NULL);
2350        if (IS_ERR(device)) {
2351                ret = PTR_ERR(device);
2352                goto error;
2353        }
2354
2355        name = rcu_string_strdup(device_path, GFP_NOFS);
2356        if (!name) {
2357                kfree(device);
2358                ret = -ENOMEM;
2359                goto error;
2360        }
2361        rcu_assign_pointer(device->name, name);
2362
2363        q = bdev_get_queue(bdev);
2364        if (blk_queue_discard(q))
2365                device->can_discard = 1;
2366        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2367        device->writeable = 1;
2368        device->generation = 0;
2369        device->io_width = root->sectorsize;
2370        device->io_align = root->sectorsize;
2371        device->sector_size = root->sectorsize;
2372        device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2373        device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2374        device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2375        ASSERT(list_empty(&srcdev->resized_list));
2376        device->commit_total_bytes = srcdev->commit_total_bytes;
2377        device->commit_bytes_used = device->bytes_used;
2378        device->dev_root = fs_info->dev_root;
2379        device->bdev = bdev;
2380        device->in_fs_metadata = 1;
2381        device->is_tgtdev_for_dev_replace = 1;
2382        device->mode = FMODE_EXCL;
2383        device->dev_stats_valid = 1;
2384        set_blocksize(device->bdev, 4096);
2385        device->fs_devices = fs_info->fs_devices;
2386        list_add(&device->dev_list, &fs_info->fs_devices->devices);
2387        fs_info->fs_devices->num_devices++;
2388        fs_info->fs_devices->open_devices++;
2389        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2390
2391        *device_out = device;
2392        return ret;
2393
2394error:
2395        blkdev_put(bdev, FMODE_EXCL);
2396        return ret;
2397}
2398
2399void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2400                                              struct btrfs_device *tgtdev)
2401{
2402        WARN_ON(fs_info->fs_devices->rw_devices == 0);
2403        tgtdev->io_width = fs_info->dev_root->sectorsize;
2404        tgtdev->io_align = fs_info->dev_root->sectorsize;
2405        tgtdev->sector_size = fs_info->dev_root->sectorsize;
2406        tgtdev->dev_root = fs_info->dev_root;
2407        tgtdev->in_fs_metadata = 1;
2408}
2409
2410static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2411                                        struct btrfs_device *device)
2412{
2413        int ret;
2414        struct btrfs_path *path;
2415        struct btrfs_root *root;
2416        struct btrfs_dev_item *dev_item;
2417        struct extent_buffer *leaf;
2418        struct btrfs_key key;
2419
2420        root = device->dev_root->fs_info->chunk_root;
2421
2422        path = btrfs_alloc_path();
2423        if (!path)
2424                return -ENOMEM;
2425
2426        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2427        key.type = BTRFS_DEV_ITEM_KEY;
2428        key.offset = device->devid;
2429
2430        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2431        if (ret < 0)
2432                goto out;
2433
2434        if (ret > 0) {
2435                ret = -ENOENT;
2436                goto out;
2437        }
2438
2439        leaf = path->nodes[0];
2440        dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2441
2442        btrfs_set_device_id(leaf, dev_item, device->devid);
2443        btrfs_set_device_type(leaf, dev_item, device->type);
2444        btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2445        btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2446        btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2447        btrfs_set_device_total_bytes(leaf, dev_item,
2448                                     btrfs_device_get_disk_total_bytes(device));
2449        btrfs_set_device_bytes_used(leaf, dev_item,
2450                                    btrfs_device_get_bytes_used(device));
2451        btrfs_mark_buffer_dirty(leaf);
2452
2453out:
2454        btrfs_free_path(path);
2455        return ret;
2456}
2457
2458int btrfs_grow_device(struct btrfs_trans_handle *trans,
2459                      struct btrfs_device *device, u64 new_size)
2460{
2461        struct btrfs_super_block *super_copy =
2462                device->dev_root->fs_info->super_copy;
2463        struct btrfs_fs_devices *fs_devices;
2464        u64 old_total;
2465        u64 diff;
2466
2467        if (!device->writeable)
2468                return -EACCES;
2469
2470        lock_chunks(device->dev_root);
2471        old_total = btrfs_super_total_bytes(super_copy);
2472        diff = new_size - device->total_bytes;
2473
2474        if (new_size <= device->total_bytes ||
2475            device->is_tgtdev_for_dev_replace) {
2476                unlock_chunks(device->dev_root);
2477                return -EINVAL;
2478        }
2479
2480        fs_devices = device->dev_root->fs_info->fs_devices;
2481
2482        btrfs_set_super_total_bytes(super_copy, old_total + diff);
2483        device->fs_devices->total_rw_bytes += diff;
2484
2485        btrfs_device_set_total_bytes(device, new_size);
2486        btrfs_device_set_disk_total_bytes(device, new_size);
2487        btrfs_clear_space_info_full(device->dev_root->fs_info);
2488        if (list_empty(&device->resized_list))
2489                list_add_tail(&device->resized_list,
2490                              &fs_devices->resized_devices);
2491        unlock_chunks(device->dev_root);
2492
2493        return btrfs_update_device(trans, device);
2494}
2495
2496static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2497                            struct btrfs_root *root, u64 chunk_objectid,
2498                            u64 chunk_offset)
2499{
2500        int ret;
2501        struct btrfs_path *path;
2502        struct btrfs_key key;
2503
2504        root = root->fs_info->chunk_root;
2505        path = btrfs_alloc_path();
2506        if (!path)
2507                return -ENOMEM;
2508
2509        key.objectid = chunk_objectid;
2510        key.offset = chunk_offset;
2511        key.type = BTRFS_CHUNK_ITEM_KEY;
2512
2513        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2514        if (ret < 0)
2515                goto out;
2516        else if (ret > 0) { /* Logic error or corruption */
2517                btrfs_error(root->fs_info, -ENOENT,
2518                            "Failed lookup while freeing chunk.");
2519                ret = -ENOENT;
2520                goto out;
2521        }
2522
2523        ret = btrfs_del_item(trans, root, path);
2524        if (ret < 0)
2525                btrfs_error(root->fs_info, ret,
2526                            "Failed to delete chunk item.");
2527out:
2528        btrfs_free_path(path);
2529        return ret;
2530}
2531
2532static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2533                        chunk_offset)
2534{
2535        struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2536        struct btrfs_disk_key *disk_key;
2537        struct btrfs_chunk *chunk;
2538        u8 *ptr;
2539        int ret = 0;
2540        u32 num_stripes;
2541        u32 array_size;
2542        u32 len = 0;
2543        u32 cur;
2544        struct btrfs_key key;
2545
2546        lock_chunks(root);
2547        array_size = btrfs_super_sys_array_size(super_copy);
2548
2549        ptr = super_copy->sys_chunk_array;
2550        cur = 0;
2551
2552        while (cur < array_size) {
2553                disk_key = (struct btrfs_disk_key *)ptr;
2554                btrfs_disk_key_to_cpu(&key, disk_key);
2555
2556                len = sizeof(*disk_key);
2557
2558                if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2559                        chunk = (struct btrfs_chunk *)(ptr + len);
2560                        num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2561                        len += btrfs_chunk_item_size(num_stripes);
2562                } else {
2563                        ret = -EIO;
2564                        break;
2565                }
2566                if (key.objectid == chunk_objectid &&
2567                    key.offset == chunk_offset) {
2568                        memmove(ptr, ptr + len, array_size - (cur + len));
2569                        array_size -= len;
2570                        btrfs_set_super_sys_array_size(super_copy, array_size);
2571                } else {
2572                        ptr += len;
2573                        cur += len;
2574                }
2575        }
2576        unlock_chunks(root);
2577        return ret;
2578}
2579
2580int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2581                       struct btrfs_root *root, u64 chunk_offset)
2582{
2583        struct extent_map_tree *em_tree;
2584        struct extent_map *em;
2585        struct btrfs_root *extent_root = root->fs_info->extent_root;
2586        struct map_lookup *map;
2587        u64 dev_extent_len = 0;
2588        u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2589        int i, ret = 0;
2590
2591        /* Just in case */
2592        root = root->fs_info->chunk_root;
2593        em_tree = &root->fs_info->mapping_tree.map_tree;
2594
2595        read_lock(&em_tree->lock);
2596        em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2597        read_unlock(&em_tree->lock);
2598
2599        if (!em || em->start > chunk_offset ||
2600            em->start + em->len < chunk_offset) {
2601                /*
2602                 * This is a logic error, but we don't want to just rely on the
2603                 * user having built with ASSERT enabled, so if ASSERT doens't
2604                 * do anything we still error out.
2605                 */
2606                ASSERT(0);
2607                if (em)
2608                        free_extent_map(em);
2609                return -EINVAL;
2610        }
2611        map = (struct map_lookup *)em->bdev;
2612
2613        for (i = 0; i < map->num_stripes; i++) {
2614                struct btrfs_device *device = map->stripes[i].dev;
2615                ret = btrfs_free_dev_extent(trans, device,
2616                                            map->stripes[i].physical,
2617                                            &dev_extent_len);
2618                if (ret) {
2619                        btrfs_abort_transaction(trans, root, ret);
2620                        goto out;
2621                }
2622
2623                if (device->bytes_used > 0) {
2624                        lock_chunks(root);
2625                        btrfs_device_set_bytes_used(device,
2626                                        device->bytes_used - dev_extent_len);
2627                        spin_lock(&root->fs_info->free_chunk_lock);
2628                        root->fs_info->free_chunk_space += dev_extent_len;
2629                        spin_unlock(&root->fs_info->free_chunk_lock);
2630                        btrfs_clear_space_info_full(root->fs_info);
2631                        unlock_chunks(root);
2632                }
2633
2634                if (map->stripes[i].dev) {
2635                        ret = btrfs_update_device(trans, map->stripes[i].dev);
2636                        if (ret) {
2637                                btrfs_abort_transaction(trans, root, ret);
2638                                goto out;
2639                        }
2640                }
2641        }
2642        ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2643        if (ret) {
2644                btrfs_abort_transaction(trans, root, ret);
2645                goto out;
2646        }
2647
2648        trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2649
2650        if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2651                ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2652                if (ret) {
2653                        btrfs_abort_transaction(trans, root, ret);
2654                        goto out;
2655                }
2656        }
2657
2658        ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2659        if (ret) {
2660                btrfs_abort_transaction(trans, extent_root, ret);
2661                goto out;
2662        }
2663
2664out:
2665        /* once for us */
2666        free_extent_map(em);
2667        return ret;
2668}
2669
2670static int btrfs_relocate_chunk(struct btrfs_root *root,
2671                                u64 chunk_objectid,
2672                                u64 chunk_offset)
2673{
2674        struct btrfs_root *extent_root;
2675        struct btrfs_trans_handle *trans;
2676        int ret;
2677
2678        root = root->fs_info->chunk_root;
2679        extent_root = root->fs_info->extent_root;
2680
2681        ret = btrfs_can_relocate(extent_root, chunk_offset);
2682        if (ret)
2683                return -ENOSPC;
2684
2685        /* step one, relocate all the extents inside this chunk */
2686        ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2687        if (ret)
2688                return ret;
2689
2690        trans = btrfs_start_transaction(root, 0);
2691        if (IS_ERR(trans)) {
2692                ret = PTR_ERR(trans);
2693                btrfs_std_error(root->fs_info, ret);
2694                return ret;
2695        }
2696
2697        /*
2698         * step two, delete the device extents and the
2699         * chunk tree entries
2700         */
2701        ret = btrfs_remove_chunk(trans, root, chunk_offset);
2702        btrfs_end_transaction(trans, root);
2703        return ret;
2704}
2705
2706static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2707{
2708        struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2709        struct btrfs_path *path;
2710        struct extent_buffer *leaf;
2711        struct btrfs_chunk *chunk;
2712        struct btrfs_key key;
2713        struct btrfs_key found_key;
2714        u64 chunk_type;
2715        bool retried = false;
2716        int failed = 0;
2717        int ret;
2718
2719        path = btrfs_alloc_path();
2720        if (!path)
2721                return -ENOMEM;
2722
2723again:
2724        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2725        key.offset = (u64)-1;
2726        key.type = BTRFS_CHUNK_ITEM_KEY;
2727
2728        while (1) {
2729                ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2730                if (ret < 0)
2731                        goto error;
2732                BUG_ON(ret == 0); /* Corruption */
2733
2734                ret = btrfs_previous_item(chunk_root, path, key.objectid,
2735                                          key.type);
2736                if (ret < 0)
2737                        goto error;
2738                if (ret > 0)
2739                        break;
2740
2741                leaf = path->nodes[0];
2742                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2743
2744                chunk = btrfs_item_ptr(leaf, path->slots[0],
2745                                       struct btrfs_chunk);
2746                chunk_type = btrfs_chunk_type(leaf, chunk);
2747                btrfs_release_path(path);
2748
2749                if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2750                        ret = btrfs_relocate_chunk(chunk_root,
2751                                                   found_key.objectid,
2752                                                   found_key.offset);
2753                        if (ret == -ENOSPC)
2754                                failed++;
2755                        else
2756                                BUG_ON(ret);
2757                }
2758
2759                if (found_key.offset == 0)
2760                        break;
2761                key.offset = found_key.offset - 1;
2762        }
2763        ret = 0;
2764        if (failed && !retried) {
2765                failed = 0;
2766                retried = true;
2767                goto again;
2768        } else if (WARN_ON(failed && retried)) {
2769                ret = -ENOSPC;
2770        }
2771error:
2772        btrfs_free_path(path);
2773        return ret;
2774}
2775
2776static int insert_balance_item(struct btrfs_root *root,
2777                               struct btrfs_balance_control *bctl)
2778{
2779        struct btrfs_trans_handle *trans;
2780        struct btrfs_balance_item *item;
2781        struct btrfs_disk_balance_args disk_bargs;
2782        struct btrfs_path *path;
2783        struct extent_buffer *leaf;
2784        struct btrfs_key key;
2785        int ret, err;
2786
2787        path = btrfs_alloc_path();
2788        if (!path)
2789                return -ENOMEM;
2790
2791        trans = btrfs_start_transaction(root, 0);
2792        if (IS_ERR(trans)) {
2793                btrfs_free_path(path);
2794                return PTR_ERR(trans);
2795        }
2796
2797        key.objectid = BTRFS_BALANCE_OBJECTID;
2798        key.type = BTRFS_BALANCE_ITEM_KEY;
2799        key.offset = 0;
2800
2801        ret = btrfs_insert_empty_item(trans, root, path, &key,
2802                                      sizeof(*item));
2803        if (ret)
2804                goto out;
2805
2806        leaf = path->nodes[0];
2807        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2808
2809        memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2810
2811        btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2812        btrfs_set_balance_data(leaf, item, &disk_bargs);
2813        btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2814        btrfs_set_balance_meta(leaf, item, &disk_bargs);
2815        btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2816        btrfs_set_balance_sys(leaf, item, &disk_bargs);
2817
2818        btrfs_set_balance_flags(leaf, item, bctl->flags);
2819
2820        btrfs_mark_buffer_dirty(leaf);
2821out:
2822        btrfs_free_path(path);
2823        err = btrfs_commit_transaction(trans, root);
2824        if (err && !ret)
2825                ret = err;
2826        return ret;
2827}
2828
2829static int del_balance_item(struct btrfs_root *root)
2830{
2831        struct btrfs_trans_handle *trans;
2832        struct btrfs_path *path;
2833        struct btrfs_key key;
2834        int ret, err;
2835
2836        path = btrfs_alloc_path();
2837        if (!path)
2838                return -ENOMEM;
2839
2840        trans = btrfs_start_transaction(root, 0);
2841        if (IS_ERR(trans)) {
2842                btrfs_free_path(path);
2843                return PTR_ERR(trans);
2844        }
2845
2846        key.objectid = BTRFS_BALANCE_OBJECTID;
2847        key.type = BTRFS_BALANCE_ITEM_KEY;
2848        key.offset = 0;
2849
2850        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2851        if (ret < 0)
2852                goto out;
2853        if (ret > 0) {
2854                ret = -ENOENT;
2855                goto out;
2856        }
2857
2858        ret = btrfs_del_item(trans, root, path);
2859out:
2860        btrfs_free_path(path);
2861        err = btrfs_commit_transaction(trans, root);
2862        if (err && !ret)
2863                ret = err;
2864        return ret;
2865}
2866
2867/*
2868 * This is a heuristic used to reduce the number of chunks balanced on
2869 * resume after balance was interrupted.
2870 */
2871static void update_balance_args(struct btrfs_balance_control *bctl)
2872{
2873        /*
2874         * Turn on soft mode for chunk types that were being converted.
2875         */
2876        if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2877                bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2878        if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2879                bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2880        if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2881                bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2882
2883        /*
2884         * Turn on usage filter if is not already used.  The idea is
2885         * that chunks that we have already balanced should be
2886         * reasonably full.  Don't do it for chunks that are being
2887         * converted - that will keep us from relocating unconverted
2888         * (albeit full) chunks.
2889         */
2890        if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2891            !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2892                bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2893                bctl->data.usage = 90;
2894        }
2895        if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2896            !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2897                bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2898                bctl->sys.usage = 90;
2899        }
2900        if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2901            !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2902                bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2903                bctl->meta.usage = 90;
2904        }
2905}
2906
2907/*
2908 * Should be called with both balance and volume mutexes held to
2909 * serialize other volume operations (add_dev/rm_dev/resize) with
2910 * restriper.  Same goes for unset_balance_control.
2911 */
2912static void set_balance_control(struct btrfs_balance_control *bctl)
2913{
2914        struct btrfs_fs_info *fs_info = bctl->fs_info;
2915
2916        BUG_ON(fs_info->balance_ctl);
2917
2918        spin_lock(&fs_info->balance_lock);
2919        fs_info->balance_ctl = bctl;
2920        spin_unlock(&fs_info->balance_lock);
2921}
2922
2923static void unset_balance_control(struct btrfs_fs_info *fs_info)
2924{
2925        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2926
2927        BUG_ON(!fs_info->balance_ctl);
2928
2929        spin_lock(&fs_info->balance_lock);
2930        fs_info->balance_ctl = NULL;
2931        spin_unlock(&fs_info->balance_lock);
2932
2933        kfree(bctl);
2934}
2935
2936/*
2937 * Balance filters.  Return 1 if chunk should be filtered out
2938 * (should not be balanced).
2939 */
2940static int chunk_profiles_filter(u64 chunk_type,
2941                                 struct btrfs_balance_args *bargs)
2942{
2943        chunk_type = chunk_to_extended(chunk_type) &
2944                                BTRFS_EXTENDED_PROFILE_MASK;
2945
2946        if (bargs->profiles & chunk_type)
2947                return 0;
2948
2949        return 1;
2950}
2951
2952static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2953                              struct btrfs_balance_args *bargs)
2954{
2955        struct btrfs_block_group_cache *cache;
2956        u64 chunk_used, user_thresh;
2957        int ret = 1;
2958
2959        cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2960        chunk_used = btrfs_block_group_used(&cache->item);
2961
2962        if (bargs->usage == 0)
2963                user_thresh = 1;
2964        else if (bargs->usage > 100)
2965                user_thresh = cache->key.offset;
2966        else
2967                user_thresh = div_factor_fine(cache->key.offset,
2968                                              bargs->usage);
2969
2970        if (chunk_used < user_thresh)
2971                ret = 0;
2972
2973        btrfs_put_block_group(cache);
2974        return ret;
2975}
2976
2977static int chunk_devid_filter(struct extent_buffer *leaf,
2978                              struct btrfs_chunk *chunk,
2979                              struct btrfs_balance_args *bargs)
2980{
2981        struct btrfs_stripe *stripe;
2982        int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2983        int i;
2984
2985        for (i = 0; i < num_stripes; i++) {
2986                stripe = btrfs_stripe_nr(chunk, i);
2987                if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2988                        return 0;
2989        }
2990
2991        return 1;
2992}
2993
2994/* [pstart, pend) */
2995static int chunk_drange_filter(struct extent_buffer *leaf,
2996                               struct btrfs_chunk *chunk,
2997                               u64 chunk_offset,
2998                               struct btrfs_balance_args *bargs)
2999{
3000        struct btrfs_stripe *stripe;
3001        int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3002        u64 stripe_offset;
3003        u64 stripe_length;
3004        int factor;
3005        int i;
3006
3007        if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3008                return 0;
3009
3010        if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3011             BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3012                factor = num_stripes / 2;
3013        } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3014                factor = num_stripes - 1;
3015        } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3016                factor = num_stripes - 2;
3017        } else {
3018                factor = num_stripes;
3019        }
3020
3021        for (i = 0; i < num_stripes; i++) {
3022                stripe = btrfs_stripe_nr(chunk, i);
3023                if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3024                        continue;
3025
3026                stripe_offset = btrfs_stripe_offset(leaf, stripe);
3027                stripe_length = btrfs_chunk_length(leaf, chunk);
3028                stripe_length = div_u64(stripe_length, factor);
3029
3030                if (stripe_offset < bargs->pend &&
3031                    stripe_offset + stripe_length > bargs->pstart)
3032                        return 0;
3033        }
3034
3035        return 1;
3036}
3037
3038/* [vstart, vend) */
3039static int chunk_vrange_filter(struct extent_buffer *leaf,
3040                               struct btrfs_chunk *chunk,
3041                               u64 chunk_offset,
3042                               struct btrfs_balance_args *bargs)
3043{
3044        if (chunk_offset < bargs->vend &&
3045            chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3046                /* at least part of the chunk is inside this vrange */
3047                return 0;
3048
3049        return 1;
3050}
3051
3052static int chunk_soft_convert_filter(u64 chunk_type,
3053                                     struct btrfs_balance_args *bargs)
3054{
3055        if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3056                return 0;
3057
3058        chunk_type = chunk_to_extended(chunk_type) &
3059                                BTRFS_EXTENDED_PROFILE_MASK;
3060
3061        if (bargs->target == chunk_type)
3062                return 1;
3063
3064        return 0;
3065}
3066
3067static int should_balance_chunk(struct btrfs_root *root,
3068                                struct extent_buffer *leaf,
3069                                struct btrfs_chunk *chunk, u64 chunk_offset)
3070{
3071        struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3072        struct btrfs_balance_args *bargs = NULL;
3073        u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3074
3075        /* type filter */
3076        if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3077              (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3078                return 0;
3079        }
3080
3081        if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3082                bargs = &bctl->data;
3083        else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3084                bargs = &bctl->sys;
3085        else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3086                bargs = &bctl->meta;
3087
3088        /* profiles filter */
3089        if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3090            chunk_profiles_filter(chunk_type, bargs)) {
3091                return 0;
3092        }
3093
3094        /* usage filter */
3095        if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3096            chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3097                return 0;
3098        }
3099
3100        /* devid filter */
3101        if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3102            chunk_devid_filter(leaf, chunk, bargs)) {
3103                return 0;
3104        }
3105
3106        /* drange filter, makes sense only with devid filter */
3107        if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3108            chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3109                return 0;
3110        }
3111
3112        /* vrange filter */
3113        if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3114            chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3115                return 0;
3116        }
3117
3118        /* soft profile changing mode */
3119        if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3120            chunk_soft_convert_filter(chunk_type, bargs)) {
3121                return 0;
3122        }
3123
3124        /*
3125         * limited by count, must be the last filter
3126         */
3127        if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3128                if (bargs->limit == 0)
3129                        return 0;
3130                else
3131                        bargs->limit--;
3132        }
3133
3134        return 1;
3135}
3136
3137static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3138{
3139        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3140        struct btrfs_root *chunk_root = fs_info->chunk_root;
3141        struct btrfs_root *dev_root = fs_info->dev_root;
3142        struct list_head *devices;
3143        struct btrfs_device *device;
3144        u64 old_size;
3145        u64 size_to_free;
3146        struct btrfs_chunk *chunk;
3147        struct btrfs_path *path;
3148        struct btrfs_key key;
3149        struct btrfs_key found_key;
3150        struct btrfs_trans_handle *trans;
3151        struct extent_buffer *leaf;
3152        int slot;
3153        int ret;
3154        int enospc_errors = 0;
3155        bool counting = true;
3156        u64 limit_data = bctl->data.limit;
3157        u64 limit_meta = bctl->meta.limit;
3158        u64 limit_sys = bctl->sys.limit;
3159
3160        /* step one make some room on all the devices */
3161        devices = &fs_info->fs_devices->devices;
3162        list_for_each_entry(device, devices, dev_list) {
3163                old_size = btrfs_device_get_total_bytes(device);
3164                size_to_free = div_factor(old_size, 1);
3165                size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
3166                if (!device->writeable ||
3167                    btrfs_device_get_total_bytes(device) -
3168                    btrfs_device_get_bytes_used(device) > size_to_free ||
3169                    device->is_tgtdev_for_dev_replace)
3170                        continue;
3171
3172                ret = btrfs_shrink_device(device, old_size - size_to_free);
3173                if (ret == -ENOSPC)
3174                        break;
3175                BUG_ON(ret);
3176
3177                trans = btrfs_start_transaction(dev_root, 0);
3178                BUG_ON(IS_ERR(trans));
3179
3180                ret = btrfs_grow_device(trans, device, old_size);
3181                BUG_ON(ret);
3182
3183                btrfs_end_transaction(trans, dev_root);
3184        }
3185
3186        /* step two, relocate all the chunks */
3187        path = btrfs_alloc_path();
3188        if (!path) {
3189                ret = -ENOMEM;
3190                goto error;
3191        }
3192
3193        /* zero out stat counters */
3194        spin_lock(&fs_info->balance_lock);
3195        memset(&bctl->stat, 0, sizeof(bctl->stat));
3196        spin_unlock(&fs_info->balance_lock);
3197again:
3198        if (!counting) {
3199                bctl->data.limit = limit_data;
3200                bctl->meta.limit = limit_meta;
3201                bctl->sys.limit = limit_sys;
3202        }
3203        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3204        key.offset = (u64)-1;
3205        key.type = BTRFS_CHUNK_ITEM_KEY;
3206
3207        while (1) {
3208                if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3209                    atomic_read(&fs_info->balance_cancel_req)) {
3210                        ret = -ECANCELED;
3211                        goto error;
3212                }
3213
3214                ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3215                if (ret < 0)
3216                        goto error;
3217
3218                /*
3219                 * this shouldn't happen, it means the last relocate
3220                 * failed
3221                 */
3222                if (ret == 0)
3223                        BUG(); /* FIXME break ? */
3224
3225                ret = btrfs_previous_item(chunk_root, path, 0,
3226                                          BTRFS_CHUNK_ITEM_KEY);
3227                if (ret) {
3228                        ret = 0;
3229                        break;
3230                }
3231
3232                leaf = path->nodes[0];
3233                slot = path->slots[0];
3234                btrfs_item_key_to_cpu(leaf, &found_key, slot);
3235
3236                if (found_key.objectid != key.objectid)
3237                        break;
3238
3239                chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3240
3241                if (!counting) {
3242                        spin_lock(&fs_info->balance_lock);
3243                        bctl->stat.considered++;
3244                        spin_unlock(&fs_info->balance_lock);
3245                }
3246
3247                ret = should_balance_chunk(chunk_root, leaf, chunk,
3248                                           found_key.offset);
3249                btrfs_release_path(path);
3250                if (!ret)
3251                        goto loop;
3252
3253                if (counting) {
3254                        spin_lock(&fs_info->balance_lock);
3255                        bctl->stat.expected++;
3256                        spin_unlock(&fs_info->balance_lock);
3257                        goto loop;
3258                }
3259
3260                ret = btrfs_relocate_chunk(chunk_root,
3261                                           found_key.objectid,
3262                                           found_key.offset);
3263                if (ret && ret != -ENOSPC)
3264                        goto error;
3265                if (ret == -ENOSPC) {
3266                        enospc_errors++;
3267                } else {
3268                        spin_lock(&fs_info->balance_lock);
3269                        bctl->stat.completed++;
3270                        spin_unlock(&fs_info->balance_lock);
3271                }
3272loop:
3273                if (found_key.offset == 0)
3274                        break;
3275                key.offset = found_key.offset - 1;
3276        }
3277
3278        if (counting) {
3279                btrfs_release_path(path);
3280                counting = false;
3281                goto again;
3282        }
3283error:
3284        btrfs_free_path(path);
3285        if (enospc_errors) {
3286                btrfs_info(fs_info, "%d enospc errors during balance",
3287                       enospc_errors);
3288                if (!ret)
3289                        ret = -ENOSPC;
3290        }
3291
3292        return ret;
3293}
3294
3295/**
3296 * alloc_profile_is_valid - see if a given profile is valid and reduced
3297 * @flags: profile to validate
3298 * @extended: if true @flags is treated as an extended profile
3299 */
3300static int alloc_profile_is_valid(u64 flags, int extended)
3301{
3302        u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3303                               BTRFS_BLOCK_GROUP_PROFILE_MASK);
3304
3305        flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3306
3307        /* 1) check that all other bits are zeroed */
3308        if (flags & ~mask)
3309                return 0;
3310
3311        /* 2) see if profile is reduced */
3312        if (flags == 0)
3313                return !extended; /* "0" is valid for usual profiles */
3314
3315        /* true if exactly one bit set */
3316        return (flags & (flags - 1)) == 0;
3317}
3318
3319static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3320{
3321        /* cancel requested || normal exit path */
3322        return atomic_read(&fs_info->balance_cancel_req) ||
3323                (atomic_read(&fs_info->balance_pause_req) == 0 &&
3324                 atomic_read(&fs_info->balance_cancel_req) == 0);
3325}
3326
3327static void __cancel_balance(struct btrfs_fs_info *fs_info)
3328{
3329        int ret;
3330
3331        unset_balance_control(fs_info);
3332        ret = del_balance_item(fs_info->tree_root);
3333        if (ret)
3334                btrfs_std_error(fs_info, ret);
3335
3336        atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3337}
3338
3339/*
3340 * Should be called with both balance and volume mutexes held
3341 */
3342int btrfs_balance(struct btrfs_balance_control *bctl,
3343                  struct btrfs_ioctl_balance_args *bargs)
3344{
3345        struct btrfs_fs_info *fs_info = bctl->fs_info;
3346        u64 allowed;
3347        int mixed = 0;
3348        int ret;
3349        u64 num_devices;
3350        unsigned seq;
3351
3352        if (btrfs_fs_closing(fs_info) ||
3353            atomic_read(&fs_info->balance_pause_req) ||
3354            atomic_read(&fs_info->balance_cancel_req)) {
3355                ret = -EINVAL;
3356                goto out;
3357        }
3358
3359        allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3360        if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3361                mixed = 1;
3362
3363        /*
3364         * In case of mixed groups both data and meta should be picked,
3365         * and identical options should be given for both of them.
3366         */
3367        allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3368        if (mixed && (bctl->flags & allowed)) {
3369                if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3370                    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3371                    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3372                        btrfs_err(fs_info, "with mixed groups data and "
3373                                   "metadata balance options must be the same");
3374                        ret = -EINVAL;
3375                        goto out;
3376                }
3377        }
3378
3379        num_devices = fs_info->fs_devices->num_devices;
3380        btrfs_dev_replace_lock(&fs_info->dev_replace);
3381        if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3382                BUG_ON(num_devices < 1);
3383                num_devices--;
3384        }
3385        btrfs_dev_replace_unlock(&fs_info->dev_replace);
3386        allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3387        if (num_devices == 1)
3388                allowed |= BTRFS_BLOCK_GROUP_DUP;
3389        else if (num_devices > 1)
3390                allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3391        if (num_devices > 2)
3392                allowed |= BTRFS_BLOCK_GROUP_RAID5;
3393        if (num_devices > 3)
3394                allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3395                            BTRFS_BLOCK_GROUP_RAID6);
3396        if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3397            (!alloc_profile_is_valid(bctl->data.target, 1) ||
3398             (bctl->data.target & ~allowed))) {
3399                btrfs_err(fs_info, "unable to start balance with target "
3400                           "data profile %llu",
3401                       bctl->data.target);
3402                ret = -EINVAL;
3403                goto out;
3404        }
3405        if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3406            (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3407             (bctl->meta.target & ~allowed))) {
3408                btrfs_err(fs_info,
3409                           "unable to start balance with target metadata profile %llu",
3410                       bctl->meta.target);
3411                ret = -EINVAL;
3412                goto out;
3413        }
3414        if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3415            (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3416             (bctl->sys.target & ~allowed))) {
3417                btrfs_err(fs_info,
3418                           "unable to start balance with target system profile %llu",
3419                       bctl->sys.target);
3420                ret = -EINVAL;
3421                goto out;
3422        }
3423
3424        /* allow dup'ed data chunks only in mixed mode */
3425        if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3426            (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3427                btrfs_err(fs_info, "dup for data is not allowed");
3428                ret = -EINVAL;
3429                goto out;
3430        }
3431
3432        /* allow to reduce meta or sys integrity only if force set */
3433        allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3434                        BTRFS_BLOCK_GROUP_RAID10 |
3435                        BTRFS_BLOCK_GROUP_RAID5 |
3436                        BTRFS_BLOCK_GROUP_RAID6;
3437        do {
3438                seq = read_seqbegin(&fs_info->profiles_lock);
3439
3440                if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3441                     (fs_info->avail_system_alloc_bits & allowed) &&
3442                     !(bctl->sys.target & allowed)) ||
3443                    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3444                     (fs_info->avail_metadata_alloc_bits & allowed) &&
3445                     !(bctl->meta.target & allowed))) {
3446                        if (bctl->flags & BTRFS_BALANCE_FORCE) {
3447                                btrfs_info(fs_info, "force reducing metadata integrity");
3448                        } else {
3449                                btrfs_err(fs_info, "balance will reduce metadata "
3450                                           "integrity, use force if you want this");
3451                                ret = -EINVAL;
3452                                goto out;
3453                        }
3454                }
3455        } while (read_seqretry(&fs_info->profiles_lock, seq));
3456
3457        if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3458                int num_tolerated_disk_barrier_failures;
3459                u64 target = bctl->sys.target;
3460
3461                num_tolerated_disk_barrier_failures =
3462                        btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3463                if (num_tolerated_disk_barrier_failures > 0 &&
3464                    (target &
3465                     (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3466                      BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3467                        num_tolerated_disk_barrier_failures = 0;
3468                else if (num_tolerated_disk_barrier_failures > 1 &&
3469                         (target &
3470                          (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3471                        num_tolerated_disk_barrier_failures = 1;
3472
3473                fs_info->num_tolerated_disk_barrier_failures =
3474                        num_tolerated_disk_barrier_failures;
3475        }
3476
3477        ret = insert_balance_item(fs_info->tree_root, bctl);
3478        if (ret && ret != -EEXIST)
3479                goto out;
3480
3481        if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3482                BUG_ON(ret == -EEXIST);
3483                set_balance_control(bctl);
3484        } else {
3485                BUG_ON(ret != -EEXIST);
3486                spin_lock(&fs_info->balance_lock);
3487                update_balance_args(bctl);
3488                spin_unlock(&fs_info->balance_lock);
3489        }
3490
3491        atomic_inc(&fs_info->balance_running);
3492        mutex_unlock(&fs_info->balance_mutex);
3493
3494        ret = __btrfs_balance(fs_info);
3495
3496        mutex_lock(&fs_info->balance_mutex);
3497        atomic_dec(&fs_info->balance_running);
3498
3499        if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3500                fs_info->num_tolerated_disk_barrier_failures =
3501                        btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3502        }
3503
3504        if (bargs) {
3505                memset(bargs, 0, sizeof(*bargs));
3506                update_ioctl_balance_args(fs_info, 0, bargs);
3507        }
3508
3509        if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3510            balance_need_close(fs_info)) {
3511                __cancel_balance(fs_info);
3512        }
3513
3514        wake_up(&fs_info->balance_wait_q);
3515
3516        return ret;
3517out:
3518        if (bctl->flags & BTRFS_BALANCE_RESUME)
3519                __cancel_balance(fs_info);
3520        else {
3521                kfree(bctl);
3522                atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3523        }
3524        return ret;
3525}
3526
3527static int balance_kthread(void *data)
3528{
3529        struct btrfs_fs_info *fs_info = data;
3530        int ret = 0;
3531
3532        mutex_lock(&fs_info->volume_mutex);
3533        mutex_lock(&fs_info->balance_mutex);
3534
3535        if (fs_info->balance_ctl) {
3536                btrfs_info(fs_info, "continuing balance");
3537                ret = btrfs_balance(fs_info->balance_ctl, NULL);
3538        }
3539
3540        mutex_unlock(&fs_info->balance_mutex);
3541        mutex_unlock(&fs_info->volume_mutex);
3542
3543        return ret;
3544}
3545
3546int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3547{
3548        struct task_struct *tsk;
3549
3550        spin_lock(&fs_info->balance_lock);
3551        if (!fs_info->balance_ctl) {
3552                spin_unlock(&fs_info->balance_lock);
3553                return 0;
3554        }
3555        spin_unlock(&fs_info->balance_lock);
3556
3557        if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3558                btrfs_info(fs_info, "force skipping balance");
3559                return 0;
3560        }
3561
3562        tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3563        return PTR_ERR_OR_ZERO(tsk);
3564}
3565
3566int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3567{
3568        struct btrfs_balance_control *bctl;
3569        struct btrfs_balance_item *item;
3570        struct btrfs_disk_balance_args disk_bargs;
3571        struct btrfs_path *path;
3572        struct extent_buffer *leaf;
3573        struct btrfs_key key;
3574        int ret;
3575
3576        path = btrfs_alloc_path();
3577        if (!path)
3578                return -ENOMEM;
3579
3580        key.objectid = BTRFS_BALANCE_OBJECTID;
3581        key.type = BTRFS_BALANCE_ITEM_KEY;
3582        key.offset = 0;
3583
3584        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3585        if (ret < 0)
3586                goto out;
3587        if (ret > 0) { /* ret = -ENOENT; */
3588                ret = 0;
3589                goto out;
3590        }
3591
3592        bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3593        if (!bctl) {
3594                ret = -ENOMEM;
3595                goto out;
3596        }
3597
3598        leaf = path->nodes[0];
3599        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3600
3601        bctl->fs_info = fs_info;
3602        bctl->flags = btrfs_balance_flags(leaf, item);
3603        bctl->flags |= BTRFS_BALANCE_RESUME;
3604
3605        btrfs_balance_data(leaf, item, &disk_bargs);
3606        btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3607        btrfs_balance_meta(leaf, item, &disk_bargs);
3608        btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3609        btrfs_balance_sys(leaf, item, &disk_bargs);
3610        btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3611
3612        WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3613
3614        mutex_lock(&fs_info->volume_mutex);
3615        mutex_lock(&fs_info->balance_mutex);
3616
3617        set_balance_control(bctl);
3618
3619        mutex_unlock(&fs_info->balance_mutex);
3620        mutex_unlock(&fs_info->volume_mutex);
3621out:
3622        btrfs_free_path(path);
3623        return ret;
3624}
3625
3626int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3627{
3628        int ret = 0;
3629
3630        mutex_lock(&fs_info->balance_mutex);
3631        if (!fs_info->balance_ctl) {
3632                mutex_unlock(&fs_info->balance_mutex);
3633                return -ENOTCONN;
3634        }
3635
3636        if (atomic_read(&fs_info->balance_running)) {
3637                atomic_inc(&fs_info->balance_pause_req);
3638                mutex_unlock(&fs_info->balance_mutex);
3639
3640                wait_event(fs_info->balance_wait_q,
3641                           atomic_read(&fs_info->balance_running) == 0);
3642
3643                mutex_lock(&fs_info->balance_mutex);
3644                /* we are good with balance_ctl ripped off from under us */
3645                BUG_ON(atomic_read(&fs_info->balance_running));
3646                atomic_dec(&fs_info->balance_pause_req);
3647        } else {
3648                ret = -ENOTCONN;
3649        }
3650
3651        mutex_unlock(&fs_info->balance_mutex);
3652        return ret;
3653}
3654
3655int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3656{
3657        if (fs_info->sb->s_flags & MS_RDONLY)
3658                return -EROFS;
3659
3660        mutex_lock(&fs_info->balance_mutex);
3661        if (!fs_info->balance_ctl) {
3662                mutex_unlock(&fs_info->balance_mutex);
3663                return -ENOTCONN;
3664        }
3665
3666        atomic_inc(&fs_info->balance_cancel_req);
3667        /*
3668         * if we are running just wait and return, balance item is
3669         * deleted in btrfs_balance in this case
3670         */
3671        if (atomic_read(&fs_info->balance_running)) {
3672                mutex_unlock(&fs_info->balance_mutex);
3673                wait_event(fs_info->balance_wait_q,
3674                           atomic_read(&fs_info->balance_running) == 0);
3675                mutex_lock(&fs_info->balance_mutex);
3676        } else {
3677                /* __cancel_balance needs volume_mutex */
3678                mutex_unlock(&fs_info->balance_mutex);
3679                mutex_lock(&fs_info->volume_mutex);
3680                mutex_lock(&fs_info->balance_mutex);
3681
3682                if (fs_info->balance_ctl)
3683                        __cancel_balance(fs_info);
3684
3685                mutex_unlock(&fs_info->volume_mutex);
3686        }
3687
3688        BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3689        atomic_dec(&fs_info->balance_cancel_req);
3690        mutex_unlock(&fs_info->balance_mutex);
3691        return 0;
3692}
3693
3694static int btrfs_uuid_scan_kthread(void *data)
3695{
3696        struct btrfs_fs_info *fs_info = data;
3697        struct btrfs_root *root = fs_info->tree_root;
3698        struct btrfs_key key;
3699        struct btrfs_key max_key;
3700        struct btrfs_path *path = NULL;
3701        int ret = 0;
3702        struct extent_buffer *eb;
3703        int slot;
3704        struct btrfs_root_item root_item;
3705        u32 item_size;
3706        struct btrfs_trans_handle *trans = NULL;
3707
3708        path = btrfs_alloc_path();
3709        if (!path) {
3710                ret = -ENOMEM;
3711                goto out;
3712        }
3713
3714        key.objectid = 0;
3715        key.type = BTRFS_ROOT_ITEM_KEY;
3716        key.offset = 0;
3717
3718        max_key.objectid = (u64)-1;
3719        max_key.type = BTRFS_ROOT_ITEM_KEY;
3720        max_key.offset = (u64)-1;
3721
3722        while (1) {
3723                ret = btrfs_search_forward(root, &key, path, 0);
3724                if (ret) {
3725                        if (ret > 0)
3726                                ret = 0;
3727                        break;
3728                }
3729
3730                if (key.type != BTRFS_ROOT_ITEM_KEY ||
3731                    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3732                     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3733                    key.objectid > BTRFS_LAST_FREE_OBJECTID)
3734                        goto skip;
3735
3736                eb = path->nodes[0];
3737                slot = path->slots[0];
3738                item_size = btrfs_item_size_nr(eb, slot);
3739                if (item_size < sizeof(root_item))
3740                        goto skip;
3741
3742                read_extent_buffer(eb, &root_item,
3743                                   btrfs_item_ptr_offset(eb, slot),
3744                                   (int)sizeof(root_item));
3745                if (btrfs_root_refs(&root_item) == 0)
3746                        goto skip;
3747
3748                if (!btrfs_is_empty_uuid(root_item.uuid) ||
3749                    !btrfs_is_empty_uuid(root_item.received_uuid)) {
3750                        if (trans)
3751                                goto update_tree;
3752
3753                        btrfs_release_path(path);
3754                        /*
3755                         * 1 - subvol uuid item
3756                         * 1 - received_subvol uuid item
3757                         */
3758                        trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3759                        if (IS_ERR(trans)) {
3760                                ret = PTR_ERR(trans);
3761                                break;
3762                        }
3763                        continue;
3764                } else {
3765                        goto skip;
3766                }
3767update_tree:
3768                if (!btrfs_is_empty_uuid(root_item.uuid)) {
3769                        ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3770                                                  root_item.uuid,
3771                                                  BTRFS_UUID_KEY_SUBVOL,
3772                                                  key.objectid);
3773                        if (ret < 0) {
3774                                btrfs_warn(fs_info, "uuid_tree_add failed %d",
3775                                        ret);
3776                                break;
3777                        }
3778                }
3779
3780                if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3781                        ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3782                                                  root_item.received_uuid,
3783                                                 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3784                                                  key.objectid);
3785                        if (ret < 0) {
3786                                btrfs_warn(fs_info, "uuid_tree_add failed %d",
3787                                        ret);
3788                                break;
3789                        }
3790                }
3791
3792skip:
3793                if (trans) {
3794                        ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3795                        trans = NULL;
3796                        if (ret)
3797                                break;
3798                }
3799
3800                btrfs_release_path(path);
3801                if (key.offset < (u64)-1) {
3802                        key.offset++;
3803                } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3804                        key.offset = 0;
3805                        key.type = BTRFS_ROOT_ITEM_KEY;
3806                } else if (key.objectid < (u64)-1) {
3807                        key.offset = 0;
3808                        key.type = BTRFS_ROOT_ITEM_KEY;
3809                        key.objectid++;
3810                } else {
3811                        break;
3812                }
3813                cond_resched();
3814        }
3815
3816out:
3817        btrfs_free_path(path);
3818        if (trans && !IS_ERR(trans))
3819                btrfs_end_transaction(trans, fs_info->uuid_root);
3820        if (ret)
3821                btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
3822        else
3823                fs_info->update_uuid_tree_gen = 1;
3824        up(&fs_info->uuid_tree_rescan_sem);
3825        return 0;
3826}
3827
3828/*
3829 * Callback for btrfs_uuid_tree_iterate().
3830 * returns:
3831 * 0    check succeeded, the entry is not outdated.
3832 * < 0  if an error occured.
3833 * > 0  if the check failed, which means the caller shall remove the entry.
3834 */
3835static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3836                                       u8 *uuid, u8 type, u64 subid)
3837{
3838        struct btrfs_key key;
3839        int ret = 0;
3840        struct btrfs_root *subvol_root;
3841
3842        if (type != BTRFS_UUID_KEY_SUBVOL &&
3843            type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3844                goto out;
3845
3846        key.objectid = subid;
3847        key.type = BTRFS_ROOT_ITEM_KEY;
3848        key.offset = (u64)-1;
3849        subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3850        if (IS_ERR(subvol_root)) {
3851                ret = PTR_ERR(subvol_root);
3852                if (ret == -ENOENT)
3853                        ret = 1;
3854                goto out;
3855        }
3856
3857        switch (type) {
3858        case BTRFS_UUID_KEY_SUBVOL:
3859                if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3860                        ret = 1;
3861                break;
3862        case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3863                if (memcmp(uuid, subvol_root->root_item.received_uuid,
3864                           BTRFS_UUID_SIZE))
3865                        ret = 1;
3866                break;
3867        }
3868
3869out:
3870        return ret;
3871}
3872
3873static int btrfs_uuid_rescan_kthread(void *data)
3874{
3875        struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3876        int ret;
3877
3878        /*
3879         * 1st step is to iterate through the existing UUID tree and
3880         * to delete all entries that contain outdated data.
3881         * 2nd step is to add all missing entries to the UUID tree.
3882         */
3883        ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3884        if (ret < 0) {
3885                btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
3886                up(&fs_info->uuid_tree_rescan_sem);
3887                return ret;
3888        }
3889        return btrfs_uuid_scan_kthread(data);
3890}
3891
3892int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3893{
3894        struct btrfs_trans_handle *trans;
3895        struct btrfs_root *tree_root = fs_info->tree_root;
3896        struct btrfs_root *uuid_root;
3897        struct task_struct *task;
3898        int ret;
3899
3900        /*
3901         * 1 - root node
3902         * 1 - root item
3903         */
3904        trans = btrfs_start_transaction(tree_root, 2);
3905        if (IS_ERR(trans))
3906                return PTR_ERR(trans);
3907
3908        uuid_root = btrfs_create_tree(trans, fs_info,
3909                                      BTRFS_UUID_TREE_OBJECTID);
3910        if (IS_ERR(uuid_root)) {
3911                btrfs_abort_transaction(trans, tree_root,
3912                                        PTR_ERR(uuid_root));
3913                return PTR_ERR(uuid_root);
3914        }
3915
3916        fs_info->uuid_root = uuid_root;
3917
3918        ret = btrfs_commit_transaction(trans, tree_root);
3919        if (ret)
3920                return ret;
3921
3922        down(&fs_info->uuid_tree_rescan_sem);
3923        task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3924        if (IS_ERR(task)) {
3925                /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3926                btrfs_warn(fs_info, "failed to start uuid_scan task");
3927                up(&fs_info->uuid_tree_rescan_sem);
3928                return PTR_ERR(task);
3929        }
3930
3931        return 0;
3932}
3933
3934int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3935{
3936        struct task_struct *task;
3937
3938        down(&fs_info->uuid_tree_rescan_sem);
3939        task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3940        if (IS_ERR(task)) {
3941                /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3942                btrfs_warn(fs_info, "failed to start uuid_rescan task");
3943                up(&fs_info->uuid_tree_rescan_sem);
3944                return PTR_ERR(task);
3945        }
3946
3947        return 0;
3948}
3949
3950/*
3951 * shrinking a device means finding all of the device extents past
3952 * the new size, and then following the back refs to the chunks.
3953 * The chunk relocation code actually frees the device extent
3954 */
3955int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3956{
3957        struct btrfs_trans_handle *trans;
3958        struct btrfs_root *root = device->dev_root;
3959        struct btrfs_dev_extent *dev_extent = NULL;
3960        struct btrfs_path *path;
3961        u64 length;
3962        u64 chunk_objectid;
3963        u64 chunk_offset;
3964        int ret;
3965        int slot;
3966        int failed = 0;
3967        bool retried = false;
3968        struct extent_buffer *l;
3969        struct btrfs_key key;
3970        struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3971        u64 old_total = btrfs_super_total_bytes(super_copy);
3972        u64 old_size = btrfs_device_get_total_bytes(device);
3973        u64 diff = old_size - new_size;
3974
3975        if (device->is_tgtdev_for_dev_replace)
3976                return -EINVAL;
3977
3978        path = btrfs_alloc_path();
3979        if (!path)
3980                return -ENOMEM;
3981
3982        path->reada = 2;
3983
3984        lock_chunks(root);
3985
3986        btrfs_device_set_total_bytes(device, new_size);
3987        if (device->writeable) {
3988                device->fs_devices->total_rw_bytes -= diff;
3989                spin_lock(&root->fs_info->free_chunk_lock);
3990                root->fs_info->free_chunk_space -= diff;
3991                spin_unlock(&root->fs_info->free_chunk_lock);
3992        }
3993        unlock_chunks(root);
3994
3995again:
3996        key.objectid = device->devid;
3997        key.offset = (u64)-1;
3998        key.type = BTRFS_DEV_EXTENT_KEY;
3999
4000        do {
4001                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4002                if (ret < 0)
4003                        goto done;
4004
4005                ret = btrfs_previous_item(root, path, 0, key.type);
4006                if (ret < 0)
4007                        goto done;
4008                if (ret) {
4009                        ret = 0;
4010                        btrfs_release_path(path);
4011                        break;
4012                }
4013
4014                l = path->nodes[0];
4015                slot = path->slots[0];
4016                btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4017
4018                if (key.objectid != device->devid) {
4019                        btrfs_release_path(path);
4020                        break;
4021                }
4022
4023                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4024                length = btrfs_dev_extent_length(l, dev_extent);
4025
4026                if (key.offset + length <= new_size) {
4027                        btrfs_release_path(path);
4028                        break;
4029                }
4030
4031                chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
4032                chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4033                btrfs_release_path(path);
4034
4035                ret = btrfs_relocate_chunk(root, chunk_objectid, chunk_offset);
4036                if (ret && ret != -ENOSPC)
4037                        goto done;
4038                if (ret == -ENOSPC)
4039                        failed++;
4040        } while (key.offset-- > 0);
4041
4042        if (failed && !retried) {
4043                failed = 0;
4044                retried = true;
4045                goto again;
4046        } else if (failed && retried) {
4047                ret = -ENOSPC;
4048                lock_chunks(root);
4049
4050                btrfs_device_set_total_bytes(device, old_size);
4051                if (device->writeable)
4052                        device->fs_devices->total_rw_bytes += diff;
4053                spin_lock(&root->fs_info->free_chunk_lock);
4054                root->fs_info->free_chunk_space += diff;
4055                spin_unlock(&root->fs_info->free_chunk_lock);
4056                unlock_chunks(root);
4057                goto done;
4058        }
4059
4060        /* Shrinking succeeded, else we would be at "done". */
4061        trans = btrfs_start_transaction(root, 0);
4062        if (IS_ERR(trans)) {
4063                ret = PTR_ERR(trans);
4064                goto done;
4065        }
4066
4067        lock_chunks(root);
4068        btrfs_device_set_disk_total_bytes(device, new_size);
4069        if (list_empty(&device->resized_list))
4070                list_add_tail(&device->resized_list,
4071                              &root->fs_info->fs_devices->resized_devices);
4072
4073        WARN_ON(diff > old_total);
4074        btrfs_set_super_total_bytes(super_copy, old_total - diff);
4075        unlock_chunks(root);
4076
4077        /* Now btrfs_update_device() will change the on-disk size. */
4078        ret = btrfs_update_device(trans, device);
4079        btrfs_end_transaction(trans, root);
4080done:
4081        btrfs_free_path(path);
4082        return ret;
4083}
4084
4085static int btrfs_add_system_chunk(struct btrfs_root *root,
4086                           struct btrfs_key *key,
4087                           struct btrfs_chunk *chunk, int item_size)
4088{
4089        struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4090        struct btrfs_disk_key disk_key;
4091        u32 array_size;
4092        u8 *ptr;
4093
4094        lock_chunks(root);
4095        array_size = btrfs_super_sys_array_size(super_copy);
4096        if (array_size + item_size + sizeof(disk_key)
4097                        > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4098                unlock_chunks(root);
4099                return -EFBIG;
4100        }
4101
4102        ptr = super_copy->sys_chunk_array + array_size;
4103        btrfs_cpu_key_to_disk(&disk_key, key);
4104        memcpy(ptr, &disk_key, sizeof(disk_key));
4105        ptr += sizeof(disk_key);
4106        memcpy(ptr, chunk, item_size);
4107        item_size += sizeof(disk_key);
4108        btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4109        unlock_chunks(root);
4110
4111        return 0;
4112}
4113
4114/*
4115 * sort the devices in descending order by max_avail, total_avail
4116 */
4117static int btrfs_cmp_device_info(const void *a, const void *b)
4118{
4119        const struct btrfs_device_info *di_a = a;
4120        const struct btrfs_device_info *di_b = b;
4121
4122        if (di_a->max_avail > di_b->max_avail)
4123                return -1;
4124        if (di_a->max_avail < di_b->max_avail)
4125                return 1;
4126        if (di_a->total_avail > di_b->total_avail)
4127                return -1;
4128        if (di_a->total_avail < di_b->total_avail)
4129                return 1;
4130        return 0;
4131}
4132
4133static const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
4134        [BTRFS_RAID_RAID10] = {
4135                .sub_stripes    = 2,
4136                .dev_stripes    = 1,
4137                .devs_max       = 0,    /* 0 == as many as possible */
4138                .devs_min       = 4,
4139                .devs_increment = 2,
4140                .ncopies        = 2,
4141        },
4142        [BTRFS_RAID_RAID1] = {
4143                .sub_stripes    = 1,
4144                .dev_stripes    = 1,
4145                .devs_max       = 2,
4146                .devs_min       = 2,
4147                .devs_increment = 2,
4148                .ncopies        = 2,
4149        },
4150        [BTRFS_RAID_DUP] = {
4151                .sub_stripes    = 1,
4152                .dev_stripes    = 2,
4153                .devs_max       = 1,
4154                .devs_min       = 1,
4155                .devs_increment = 1,
4156                .ncopies        = 2,
4157        },
4158        [BTRFS_RAID_RAID0] = {
4159                .sub_stripes    = 1,
4160                .dev_stripes    = 1,
4161                .devs_max       = 0,
4162                .devs_min       = 2,
4163                .devs_increment = 1,
4164                .ncopies        = 1,
4165        },
4166        [BTRFS_RAID_SINGLE] = {
4167                .sub_stripes    = 1,
4168                .dev_stripes    = 1,
4169                .devs_max       = 1,
4170                .devs_min       = 1,
4171                .devs_increment = 1,
4172                .ncopies        = 1,
4173        },
4174        [BTRFS_RAID_RAID5] = {
4175                .sub_stripes    = 1,
4176                .dev_stripes    = 1,
4177                .devs_max       = 0,
4178                .devs_min       = 2,
4179                .devs_increment = 1,
4180                .ncopies        = 2,
4181        },
4182        [BTRFS_RAID_RAID6] = {
4183                .sub_stripes    = 1,
4184                .dev_stripes    = 1,
4185                .devs_max       = 0,
4186                .devs_min       = 3,
4187                .devs_increment = 1,
4188                .ncopies        = 3,
4189        },
4190};
4191
4192static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4193{
4194        /* TODO allow them to set a preferred stripe size */
4195        return 64 * 1024;
4196}
4197
4198static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4199{
4200        if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4201                return;
4202
4203        btrfs_set_fs_incompat(info, RAID56);
4204}
4205
4206#define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r)             \
4207                        - sizeof(struct btrfs_item)             \
4208                        - sizeof(struct btrfs_chunk))           \
4209                        / sizeof(struct btrfs_stripe) + 1)
4210
4211#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4212                                - 2 * sizeof(struct btrfs_disk_key)     \
4213                                - 2 * sizeof(struct btrfs_chunk))       \
4214                                / sizeof(struct btrfs_stripe) + 1)
4215
4216static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4217                               struct btrfs_root *extent_root, u64 start,
4218                               u64 type)
4219{
4220        struct btrfs_fs_info *info = extent_root->fs_info;
4221        struct btrfs_fs_devices *fs_devices = info->fs_devices;
4222        struct list_head *cur;
4223        struct map_lookup *map = NULL;
4224        struct extent_map_tree *em_tree;
4225        struct extent_map *em;
4226        struct btrfs_device_info *devices_info = NULL;
4227        u64 total_avail;
4228        int num_stripes;        /* total number of stripes to allocate */
4229        int data_stripes;       /* number of stripes that count for
4230                                   block group size */
4231        int sub_stripes;        /* sub_stripes info for map */
4232        int dev_stripes;        /* stripes per dev */
4233        int devs_max;           /* max devs to use */
4234        int devs_min;           /* min devs needed */
4235        int devs_increment;     /* ndevs has to be a multiple of this */
4236        int ncopies;            /* how many copies to data has */
4237        int ret;
4238        u64 max_stripe_size;
4239        u64 max_chunk_size;
4240        u64 stripe_size;
4241        u64 num_bytes;
4242        u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4243        int ndevs;
4244        int i;
4245        int j;
4246        int index;
4247
4248        BUG_ON(!alloc_profile_is_valid(type, 0));
4249
4250        if (list_empty(&fs_devices->alloc_list))
4251                return -ENOSPC;
4252
4253        index = __get_raid_index(type);
4254
4255        sub_stripes = btrfs_raid_array[index].sub_stripes;
4256        dev_stripes = btrfs_raid_array[index].dev_stripes;
4257        devs_max = btrfs_raid_array[index].devs_max;
4258        devs_min = btrfs_raid_array[index].devs_min;
4259        devs_increment = btrfs_raid_array[index].devs_increment;
4260        ncopies = btrfs_raid_array[index].ncopies;
4261
4262        if (type & BTRFS_BLOCK_GROUP_DATA) {
4263                max_stripe_size = 1024 * 1024 * 1024;
4264                max_chunk_size = 10 * max_stripe_size;
4265                if (!devs_max)
4266                        devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4267        } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4268                /* for larger filesystems, use larger metadata chunks */
4269                if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4270                        max_stripe_size = 1024 * 1024 * 1024;
4271                else
4272                        max_stripe_size = 256 * 1024 * 1024;
4273                max_chunk_size = max_stripe_size;
4274                if (!devs_max)
4275                        devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4276        } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4277                max_stripe_size = 32 * 1024 * 1024;
4278                max_chunk_size = 2 * max_stripe_size;
4279                if (!devs_max)
4280                        devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4281        } else {
4282                btrfs_err(info, "invalid chunk type 0x%llx requested",
4283                       type);
4284                BUG_ON(1);
4285        }
4286
4287        /* we don't want a chunk larger than 10% of writeable space */
4288        max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4289                             max_chunk_size);
4290
4291        devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4292                               GFP_NOFS);
4293        if (!devices_info)
4294                return -ENOMEM;
4295
4296        cur = fs_devices->alloc_list.next;
4297
4298        /*
4299         * in the first pass through the devices list, we gather information
4300         * about the available holes on each device.
4301         */
4302        ndevs = 0;
4303        while (cur != &fs_devices->alloc_list) {
4304                struct btrfs_device *device;
4305                u64 max_avail;
4306                u64 dev_offset;
4307
4308                device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4309
4310                cur = cur->next;
4311
4312                if (!device->writeable) {
4313                        WARN(1, KERN_ERR
4314                               "BTRFS: read-only device in alloc_list\n");
4315                        continue;
4316                }
4317
4318                if (!device->in_fs_metadata ||
4319                    device->is_tgtdev_for_dev_replace)
4320                        continue;
4321
4322                if (device->total_bytes > device->bytes_used)
4323                        total_avail = device->total_bytes - device->bytes_used;
4324                else
4325                        total_avail = 0;
4326
4327                /* If there is no space on this device, skip it. */
4328                if (total_avail == 0)
4329                        continue;
4330
4331                ret = find_free_dev_extent(trans, device,
4332                                           max_stripe_size * dev_stripes,
4333                                           &dev_offset, &max_avail);
4334                if (ret && ret != -ENOSPC)
4335                        goto error;
4336
4337                if (ret == 0)
4338                        max_avail = max_stripe_size * dev_stripes;
4339
4340                if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4341                        continue;
4342
4343                if (ndevs == fs_devices->rw_devices) {
4344                        WARN(1, "%s: found more than %llu devices\n",
4345                             __func__, fs_devices->rw_devices);
4346                        break;
4347                }
4348                devices_info[ndevs].dev_offset = dev_offset;
4349                devices_info[ndevs].max_avail = max_avail;
4350                devices_info[ndevs].total_avail = total_avail;
4351                devices_info[ndevs].dev = device;
4352                ++ndevs;
4353        }
4354
4355        /*
4356         * now sort the devices by hole size / available space
4357         */
4358        sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4359             btrfs_cmp_device_info, NULL);
4360
4361        /* round down to number of usable stripes */
4362        ndevs -= ndevs % devs_increment;
4363
4364        if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4365                ret = -ENOSPC;
4366                goto error;
4367        }
4368
4369        if (devs_max && ndevs > devs_max)
4370                ndevs = devs_max;
4371        /*
4372         * the primary goal is to maximize the number of stripes, so use as many
4373         * devices as possible, even if the stripes are not maximum sized.
4374         */
4375        stripe_size = devices_info[ndevs-1].max_avail;
4376        num_stripes = ndevs * dev_stripes;
4377
4378        /*
4379         * this will have to be fixed for RAID1 and RAID10 over
4380         * more drives
4381         */
4382        data_stripes = num_stripes / ncopies;
4383
4384        if (type & BTRFS_BLOCK_GROUP_RAID5) {
4385                raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4386                                 btrfs_super_stripesize(info->super_copy));
4387                data_stripes = num_stripes - 1;
4388        }
4389        if (type & BTRFS_BLOCK_GROUP_RAID6) {
4390                raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4391                                 btrfs_super_stripesize(info->super_copy));
4392                data_stripes = num_stripes - 2;
4393        }
4394
4395        /*
4396         * Use the number of data stripes to figure out how big this chunk
4397         * is really going to be in terms of logical address space,
4398         * and compare that answer with the max chunk size
4399         */
4400        if (stripe_size * data_stripes > max_chunk_size) {
4401                u64 mask = (1ULL << 24) - 1;
4402
4403                stripe_size = div_u64(max_chunk_size, data_stripes);
4404
4405                /* bump the answer up to a 16MB boundary */
4406                stripe_size = (stripe_size + mask) & ~mask;
4407
4408                /* but don't go higher than the limits we found
4409                 * while searching for free extents
4410                 */
4411                if (stripe_size > devices_info[ndevs-1].max_avail)
4412                        stripe_size = devices_info[ndevs-1].max_avail;
4413        }
4414
4415        stripe_size = div_u64(stripe_size, dev_stripes);
4416
4417        /* align to BTRFS_STRIPE_LEN */
4418        stripe_size = div_u64(stripe_size, raid_stripe_len);
4419        stripe_size *= raid_stripe_len;
4420
4421        map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4422        if (!map) {
4423                ret = -ENOMEM;
4424                goto error;
4425        }
4426        map->num_stripes = num_stripes;
4427
4428        for (i = 0; i < ndevs; ++i) {
4429                for (j = 0; j < dev_stripes; ++j) {
4430                        int s = i * dev_stripes + j;
4431                        map->stripes[s].dev = devices_info[i].dev;
4432                        map->stripes[s].physical = devices_info[i].dev_offset +
4433                                                   j * stripe_size;
4434                }
4435        }
4436        map->sector_size = extent_root->sectorsize;
4437        map->stripe_len = raid_stripe_len;
4438        map->io_align = raid_stripe_len;
4439        map->io_width = raid_stripe_len;
4440        map->type = type;
4441        map->sub_stripes = sub_stripes;
4442
4443        num_bytes = stripe_size * data_stripes;
4444
4445        trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4446
4447        em = alloc_extent_map();
4448        if (!em) {
4449                kfree(map);
4450                ret = -ENOMEM;
4451                goto error;
4452        }
4453        set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4454        em->bdev = (struct block_device *)map;
4455        em->start = start;
4456        em->len = num_bytes;
4457        em->block_start = 0;
4458        em->block_len = em->len;
4459        em->orig_block_len = stripe_size;
4460
4461        em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4462        write_lock(&em_tree->lock);
4463        ret = add_extent_mapping(em_tree, em, 0);
4464        if (!ret) {
4465                list_add_tail(&em->list, &trans->transaction->pending_chunks);
4466                atomic_inc(&em->refs);
4467        }
4468        write_unlock(&em_tree->lock);
4469        if (ret) {
4470                free_extent_map(em);
4471                goto error;
4472        }
4473
4474        ret = btrfs_make_block_group(trans, extent_root, 0, type,
4475                                     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4476                                     start, num_bytes);
4477        if (ret)
4478                goto error_del_extent;
4479
4480        for (i = 0; i < map->num_stripes; i++) {
4481                num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4482                btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4483        }
4484
4485        spin_lock(&extent_root->fs_info->free_chunk_lock);
4486        extent_root->fs_info->free_chunk_space -= (stripe_size *
4487                                                   map->num_stripes);
4488        spin_unlock(&extent_root->fs_info->free_chunk_lock);
4489
4490        free_extent_map(em);
4491        check_raid56_incompat_flag(extent_root->fs_info, type);
4492
4493        kfree(devices_info);
4494        return 0;
4495
4496error_del_extent:
4497        write_lock(&em_tree->lock);
4498        remove_extent_mapping(em_tree, em);
4499        write_unlock(&em_tree->lock);
4500
4501        /* One for our allocation */
4502        free_extent_map(em);
4503        /* One for the tree reference */
4504        free_extent_map(em);
4505        /* One for the pending_chunks list reference */
4506        free_extent_map(em);
4507error:
4508        kfree(devices_info);
4509        return ret;
4510}
4511
4512int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4513                                struct btrfs_root *extent_root,
4514                                u64 chunk_offset, u64 chunk_size)
4515{
4516        struct btrfs_key key;
4517        struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4518        struct btrfs_device *device;
4519        struct btrfs_chunk *chunk;
4520        struct btrfs_stripe *stripe;
4521        struct extent_map_tree *em_tree;
4522        struct extent_map *em;
4523        struct map_lookup *map;
4524        size_t item_size;
4525        u64 dev_offset;
4526        u64 stripe_size;
4527        int i = 0;
4528        int ret;
4529
4530        em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4531        read_lock(&em_tree->lock);
4532        em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4533        read_unlock(&em_tree->lock);
4534
4535        if (!em) {
4536                btrfs_crit(extent_root->fs_info, "unable to find logical "
4537                           "%Lu len %Lu", chunk_offset, chunk_size);
4538                return -EINVAL;
4539        }
4540
4541        if (em->start != chunk_offset || em->len != chunk_size) {
4542                btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4543                          " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4544                          chunk_size, em->start, em->len);
4545                free_extent_map(em);
4546                return -EINVAL;
4547        }
4548
4549        map = (struct map_lookup *)em->bdev;
4550        item_size = btrfs_chunk_item_size(map->num_stripes);
4551        stripe_size = em->orig_block_len;
4552
4553        chunk = kzalloc(item_size, GFP_NOFS);
4554        if (!chunk) {
4555                ret = -ENOMEM;
4556                goto out;
4557        }
4558
4559        for (i = 0; i < map->num_stripes; i++) {
4560                device = map->stripes[i].dev;
4561                dev_offset = map->stripes[i].physical;
4562
4563                ret = btrfs_update_device(trans, device);
4564                if (ret)
4565                        goto out;
4566                ret = btrfs_alloc_dev_extent(trans, device,
4567                                             chunk_root->root_key.objectid,
4568                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4569                                             chunk_offset, dev_offset,
4570                                             stripe_size);
4571                if (ret)
4572                        goto out;
4573        }
4574
4575        stripe = &chunk->stripe;
4576        for (i = 0; i < map->num_stripes; i++) {
4577                device = map->stripes[i].dev;
4578                dev_offset = map->stripes[i].physical;
4579
4580                btrfs_set_stack_stripe_devid(stripe, device->devid);
4581                btrfs_set_stack_stripe_offset(stripe, dev_offset);
4582                memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4583                stripe++;
4584        }
4585
4586        btrfs_set_stack_chunk_length(chunk, chunk_size);
4587        btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4588        btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4589        btrfs_set_stack_chunk_type(chunk, map->type);
4590        btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4591        btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4592        btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4593        btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4594        btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4595
4596        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4597        key.type = BTRFS_CHUNK_ITEM_KEY;
4598        key.offset = chunk_offset;
4599
4600        ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4601        if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4602                /*
4603                 * TODO: Cleanup of inserted chunk root in case of
4604                 * failure.
4605                 */
4606                ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4607                                             item_size);
4608        }
4609
4610out:
4611        kfree(chunk);
4612        free_extent_map(em);
4613        return ret;
4614}
4615
4616/*
4617 * Chunk allocation falls into two parts. The first part does works
4618 * that make the new allocated chunk useable, but not do any operation
4619 * that modifies the chunk tree. The second part does the works that
4620 * require modifying the chunk tree. This division is important for the
4621 * bootstrap process of adding storage to a seed btrfs.
4622 */
4623int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4624                      struct btrfs_root *extent_root, u64 type)
4625{
4626        u64 chunk_offset;
4627
4628        ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
4629        chunk_offset = find_next_chunk(extent_root->fs_info);
4630        return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4631}
4632
4633static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4634                                         struct btrfs_root *root,
4635                                         struct btrfs_device *device)
4636{
4637        u64 chunk_offset;
4638        u64 sys_chunk_offset;
4639        u64 alloc_profile;
4640        struct btrfs_fs_info *fs_info = root->fs_info;
4641        struct btrfs_root *extent_root = fs_info->extent_root;
4642        int ret;
4643
4644        chunk_offset = find_next_chunk(fs_info);
4645        alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4646        ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4647                                  alloc_profile);
4648        if (ret)
4649                return ret;
4650
4651        sys_chunk_offset = find_next_chunk(root->fs_info);
4652        alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4653        ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4654                                  alloc_profile);
4655        return ret;
4656}
4657
4658static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4659{
4660        int max_errors;
4661
4662        if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4663                         BTRFS_BLOCK_GROUP_RAID10 |
4664                         BTRFS_BLOCK_GROUP_RAID5 |
4665                         BTRFS_BLOCK_GROUP_DUP)) {
4666                max_errors = 1;
4667        } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4668                max_errors = 2;
4669        } else {
4670                max_errors = 0;
4671        }
4672
4673        return max_errors;
4674}
4675
4676int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4677{
4678        struct extent_map *em;
4679        struct map_lookup *map;
4680        struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4681        int readonly = 0;
4682        int miss_ndevs = 0;
4683        int i;
4684
4685        read_lock(&map_tree->map_tree.lock);
4686        em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4687        read_unlock(&map_tree->map_tree.lock);
4688        if (!em)
4689                return 1;
4690
4691        map = (struct map_lookup *)em->bdev;
4692        for (i = 0; i < map->num_stripes; i++) {
4693                if (map->stripes[i].dev->missing) {
4694                        miss_ndevs++;
4695                        continue;
4696                }
4697
4698                if (!map->stripes[i].dev->writeable) {
4699                        readonly = 1;
4700                        goto end;
4701                }
4702        }
4703
4704        /*
4705         * If the number of missing devices is larger than max errors,
4706         * we can not write the data into that chunk successfully, so
4707         * set it readonly.
4708         */
4709        if (miss_ndevs > btrfs_chunk_max_errors(map))
4710                readonly = 1;
4711end:
4712        free_extent_map(em);
4713        return readonly;
4714}
4715
4716void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4717{
4718        extent_map_tree_init(&tree->map_tree);
4719}
4720
4721void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4722{
4723        struct extent_map *em;
4724
4725        while (1) {
4726                write_lock(&tree->map_tree.lock);
4727                em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4728                if (em)
4729                        remove_extent_mapping(&tree->map_tree, em);
4730                write_unlock(&tree->map_tree.lock);
4731                if (!em)
4732                        break;
4733                /* once for us */
4734                free_extent_map(em);
4735                /* once for the tree */
4736                free_extent_map(em);
4737        }
4738}
4739
4740int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4741{
4742        struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4743        struct extent_map *em;
4744        struct map_lookup *map;
4745        struct extent_map_tree *em_tree = &map_tree->map_tree;
4746        int ret;
4747
4748        read_lock(&em_tree->lock);
4749        em = lookup_extent_mapping(em_tree, logical, len);
4750        read_unlock(&em_tree->lock);
4751
4752        /*
4753         * We could return errors for these cases, but that could get ugly and
4754         * we'd probably do the same thing which is just not do anything else
4755         * and exit, so return 1 so the callers don't try to use other copies.
4756         */
4757        if (!em) {
4758                btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
4759                            logical+len);
4760                return 1;
4761        }
4762
4763        if (em->start > logical || em->start + em->len < logical) {
4764                btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
4765                            "%Lu-%Lu", logical, logical+len, em->start,
4766                            em->start + em->len);
4767                free_extent_map(em);
4768                return 1;
4769        }
4770
4771        map = (struct map_lookup *)em->bdev;
4772        if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4773                ret = map->num_stripes;
4774        else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4775                ret = map->sub_stripes;
4776        else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4777                ret = 2;
4778        else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4779                ret = 3;
4780        else
4781                ret = 1;
4782        free_extent_map(em);
4783
4784        btrfs_dev_replace_lock(&fs_info->dev_replace);
4785        if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4786                ret++;
4787        btrfs_dev_replace_unlock(&fs_info->dev_replace);
4788
4789        return ret;
4790}
4791
4792unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4793                                    struct btrfs_mapping_tree *map_tree,
4794                                    u64 logical)
4795{
4796        struct extent_map *em;
4797        struct map_lookup *map;
4798        struct extent_map_tree *em_tree = &map_tree->map_tree;
4799        unsigned long len = root->sectorsize;
4800
4801        read_lock(&em_tree->lock);
4802        em = lookup_extent_mapping(em_tree, logical, len);
4803        read_unlock(&em_tree->lock);
4804        BUG_ON(!em);
4805
4806        BUG_ON(em->start > logical || em->start + em->len < logical);
4807        map = (struct map_lookup *)em->bdev;
4808        if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
4809                len = map->stripe_len * nr_data_stripes(map);
4810        free_extent_map(em);
4811        return len;
4812}
4813
4814int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4815                           u64 logical, u64 len, int mirror_num)
4816{
4817        struct extent_map *em;
4818        struct map_lookup *map;
4819        struct extent_map_tree *em_tree = &map_tree->map_tree;
4820        int ret = 0;
4821
4822        read_lock(&em_tree->lock);
4823        em = lookup_extent_mapping(em_tree, logical, len);
4824        read_unlock(&em_tree->lock);
4825        BUG_ON(!em);
4826
4827        BUG_ON(em->start > logical || em->start + em->len < logical);
4828        map = (struct map_lookup *)em->bdev;
4829        if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
4830                ret = 1;
4831        free_extent_map(em);
4832        return ret;
4833}
4834
4835static int find_live_mirror(struct btrfs_fs_info *fs_info,
4836                            struct map_lookup *map, int first, int num,
4837                            int optimal, int dev_replace_is_ongoing)
4838{
4839        int i;
4840        int tolerance;
4841        struct btrfs_device *srcdev;
4842
4843        if (dev_replace_is_ongoing &&
4844            fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4845             BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4846                srcdev = fs_info->dev_replace.srcdev;
4847        else
4848                srcdev = NULL;
4849
4850        /*
4851         * try to avoid the drive that is the source drive for a
4852         * dev-replace procedure, only choose it if no other non-missing
4853         * mirror is available
4854         */
4855        for (tolerance = 0; tolerance < 2; tolerance++) {
4856                if (map->stripes[optimal].dev->bdev &&
4857                    (tolerance || map->stripes[optimal].dev != srcdev))
4858                        return optimal;
4859                for (i = first; i < first + num; i++) {
4860                        if (map->stripes[i].dev->bdev &&
4861                            (tolerance || map->stripes[i].dev != srcdev))
4862                                return i;
4863                }
4864        }
4865
4866        /* we couldn't find one that doesn't fail.  Just return something
4867         * and the io error handling code will clean up eventually
4868         */
4869        return optimal;
4870}
4871
4872static inline int parity_smaller(u64 a, u64 b)
4873{
4874        return a > b;
4875}
4876
4877/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4878static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
4879{
4880        struct btrfs_bio_stripe s;
4881        int i;
4882        u64 l;
4883        int again = 1;
4884
4885        while (again) {
4886                again = 0;
4887                for (i = 0; i < num_stripes - 1; i++) {
4888                        if (parity_smaller(bbio->raid_map[i],
4889                                           bbio->raid_map[i+1])) {
4890                                s = bbio->stripes[i];
4891                                l = bbio->raid_map[i];
4892                                bbio->stripes[i] = bbio->stripes[i+1];
4893                                bbio->raid_map[i] = bbio->raid_map[i+1];
4894                                bbio->stripes[i+1] = s;
4895                                bbio->raid_map[i+1] = l;
4896
4897                                again = 1;
4898                        }
4899                }
4900        }
4901}
4902
4903static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
4904{
4905        struct btrfs_bio *bbio = kzalloc(
4906                 /* the size of the btrfs_bio */
4907                sizeof(struct btrfs_bio) +
4908                /* plus the variable array for the stripes */
4909                sizeof(struct btrfs_bio_stripe) * (total_stripes) +
4910                /* plus the variable array for the tgt dev */
4911                sizeof(int) * (real_stripes) +
4912                /*
4913                 * plus the raid_map, which includes both the tgt dev
4914                 * and the stripes
4915                 */
4916                sizeof(u64) * (total_stripes),
4917                GFP_NOFS);
4918        if (!bbio)
4919                return NULL;
4920
4921        atomic_set(&bbio->error, 0);
4922        atomic_set(&bbio->refs, 1);
4923
4924        return bbio;
4925}
4926
4927void btrfs_get_bbio(struct btrfs_bio *bbio)
4928{
4929        WARN_ON(!atomic_read(&bbio->refs));
4930        atomic_inc(&bbio->refs);
4931}
4932
4933void btrfs_put_bbio(struct btrfs_bio *bbio)
4934{
4935        if (!bbio)
4936                return;
4937        if (atomic_dec_and_test(&bbio->refs))
4938                kfree(bbio);
4939}
4940
4941static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
4942                             u64 logical, u64 *length,
4943                             struct btrfs_bio **bbio_ret,
4944                             int mirror_num, int need_raid_map)
4945{
4946        struct extent_map *em;
4947        struct map_lookup *map;
4948        struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4949        struct extent_map_tree *em_tree = &map_tree->map_tree;
4950        u64 offset;
4951        u64 stripe_offset;
4952        u64 stripe_end_offset;
4953        u64 stripe_nr;
4954        u64 stripe_nr_orig;
4955        u64 stripe_nr_end;
4956        u64 stripe_len;
4957        u32 stripe_index;
4958        int i;
4959        int ret = 0;
4960        int num_stripes;
4961        int max_errors = 0;
4962        int tgtdev_indexes = 0;
4963        struct btrfs_bio *bbio = NULL;
4964        struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4965        int dev_replace_is_ongoing = 0;
4966        int num_alloc_stripes;
4967        int patch_the_first_stripe_for_dev_replace = 0;
4968        u64 physical_to_patch_in_first_stripe = 0;
4969        u64 raid56_full_stripe_start = (u64)-1;
4970
4971        read_lock(&em_tree->lock);
4972        em = lookup_extent_mapping(em_tree, logical, *length);
4973        read_unlock(&em_tree->lock);
4974
4975        if (!em) {
4976                btrfs_crit(fs_info, "unable to find logical %llu len %llu",
4977                        logical, *length);
4978                return -EINVAL;
4979        }
4980
4981        if (em->start > logical || em->start + em->len < logical) {
4982                btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4983                           "found %Lu-%Lu", logical, em->start,
4984                           em->start + em->len);
4985                free_extent_map(em);
4986                return -EINVAL;
4987        }
4988
4989        map = (struct map_lookup *)em->bdev;
4990        offset = logical - em->start;
4991
4992        stripe_len = map->stripe_len;
4993        stripe_nr = offset;
4994        /*
4995         * stripe_nr counts the total number of stripes we have to stride
4996         * to get to this block
4997         */
4998        stripe_nr = div64_u64(stripe_nr, stripe_len);
4999
5000        stripe_offset = stripe_nr * stripe_len;
5001        BUG_ON(offset < stripe_offset);
5002
5003        /* stripe_offset is the offset of this block in its stripe*/
5004        stripe_offset = offset - stripe_offset;
5005
5006        /* if we're here for raid56, we need to know the stripe aligned start */
5007        if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5008                unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5009                raid56_full_stripe_start = offset;
5010
5011                /* allow a write of a full stripe, but make sure we don't
5012                 * allow straddling of stripes
5013                 */
5014                raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5015                                full_stripe_len);
5016                raid56_full_stripe_start *= full_stripe_len;
5017        }
5018
5019        if (rw & REQ_DISCARD) {
5020                /* we don't discard raid56 yet */
5021                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5022                        ret = -EOPNOTSUPP;
5023                        goto out;
5024                }
5025                *length = min_t(u64, em->len - offset, *length);
5026        } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5027                u64 max_len;
5028                /* For writes to RAID[56], allow a full stripeset across all disks.
5029                   For other RAID types and for RAID[56] reads, just allow a single
5030                   stripe (on a single disk). */
5031                if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5032                    (rw & REQ_WRITE)) {
5033                        max_len = stripe_len * nr_data_stripes(map) -
5034                                (offset - raid56_full_stripe_start);
5035                } else {
5036                        /* we limit the length of each bio to what fits in a stripe */
5037                        max_len = stripe_len - stripe_offset;
5038                }
5039                *length = min_t(u64, em->len - offset, max_len);
5040        } else {
5041                *length = em->len - offset;
5042        }
5043
5044        /* This is for when we're called from btrfs_merge_bio_hook() and all
5045           it cares about is the length */
5046        if (!bbio_ret)
5047                goto out;
5048
5049        btrfs_dev_replace_lock(dev_replace);
5050        dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5051        if (!dev_replace_is_ongoing)
5052                btrfs_dev_replace_unlock(dev_replace);
5053
5054        if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5055            !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5056            dev_replace->tgtdev != NULL) {
5057                /*
5058                 * in dev-replace case, for repair case (that's the only
5059                 * case where the mirror is selected explicitly when
5060                 * calling btrfs_map_block), blocks left of the left cursor
5061                 * can also be read from the target drive.
5062                 * For REQ_GET_READ_MIRRORS, the target drive is added as
5063                 * the last one to the array of stripes. For READ, it also
5064                 * needs to be supported using the same mirror number.
5065                 * If the requested block is not left of the left cursor,
5066                 * EIO is returned. This can happen because btrfs_num_copies()
5067                 * returns one more in the dev-replace case.
5068                 */
5069                u64 tmp_length = *length;
5070                struct btrfs_bio *tmp_bbio = NULL;
5071                int tmp_num_stripes;
5072                u64 srcdev_devid = dev_replace->srcdev->devid;
5073                int index_srcdev = 0;
5074                int found = 0;
5075                u64 physical_of_found = 0;
5076
5077                ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5078                             logical, &tmp_length, &tmp_bbio, 0, 0);
5079                if (ret) {
5080                        WARN_ON(tmp_bbio != NULL);
5081                        goto out;
5082                }
5083
5084                tmp_num_stripes = tmp_bbio->num_stripes;
5085                if (mirror_num > tmp_num_stripes) {
5086                        /*
5087                         * REQ_GET_READ_MIRRORS does not contain this
5088                         * mirror, that means that the requested area
5089                         * is not left of the left cursor
5090                         */
5091                        ret = -EIO;
5092                        btrfs_put_bbio(tmp_bbio);
5093                        goto out;
5094                }
5095
5096                /*
5097                 * process the rest of the function using the mirror_num
5098                 * of the source drive. Therefore look it up first.
5099                 * At the end, patch the device pointer to the one of the
5100                 * target drive.
5101                 */
5102                for (i = 0; i < tmp_num_stripes; i++) {
5103                        if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
5104                                /*
5105                                 * In case of DUP, in order to keep it
5106                                 * simple, only add the mirror with the
5107                                 * lowest physical address
5108                                 */
5109                                if (found &&
5110                                    physical_of_found <=
5111                                     tmp_bbio->stripes[i].physical)
5112                                        continue;
5113                                index_srcdev = i;
5114                                found = 1;
5115                                physical_of_found =
5116                                        tmp_bbio->stripes[i].physical;
5117                        }
5118                }
5119
5120                if (found) {
5121                        mirror_num = index_srcdev + 1;
5122                        patch_the_first_stripe_for_dev_replace = 1;
5123                        physical_to_patch_in_first_stripe = physical_of_found;
5124                } else {
5125                        WARN_ON(1);
5126                        ret = -EIO;
5127                        btrfs_put_bbio(tmp_bbio);
5128                        goto out;
5129                }
5130
5131                btrfs_put_bbio(tmp_bbio);
5132        } else if (mirror_num > map->num_stripes) {
5133                mirror_num = 0;
5134        }
5135
5136        num_stripes = 1;
5137        stripe_index = 0;
5138        stripe_nr_orig = stripe_nr;
5139        stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5140        stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5141        stripe_end_offset = stripe_nr_end * map->stripe_len -
5142                            (offset + *length);
5143
5144        if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5145                if (rw & REQ_DISCARD)
5146                        num_stripes = min_t(u64, map->num_stripes,
5147                                            stripe_nr_end - stripe_nr_orig);
5148                stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5149                                &stripe_index);
5150                if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5151                        mirror_num = 1;
5152        } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5153                if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5154                        num_stripes = map->num_stripes;
5155                else if (mirror_num)
5156                        stripe_index = mirror_num - 1;
5157                else {
5158                        stripe_index = find_live_mirror(fs_info, map, 0,
5159                                            map->num_stripes,
5160                                            current->pid % map->num_stripes,
5161                                            dev_replace_is_ongoing);
5162                        mirror_num = stripe_index + 1;
5163                }
5164
5165        } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5166                if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5167                        num_stripes = map->num_stripes;
5168                } else if (mirror_num) {
5169                        stripe_index = mirror_num - 1;
5170                } else {
5171                        mirror_num = 1;
5172                }
5173
5174        } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5175                u32 factor = map->num_stripes / map->sub_stripes;
5176
5177                stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5178                stripe_index *= map->sub_stripes;
5179
5180                if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5181                        num_stripes = map->sub_stripes;
5182                else if (rw & REQ_DISCARD)
5183                        num_stripes = min_t(u64, map->sub_stripes *
5184                                            (stripe_nr_end - stripe_nr_orig),
5185                                            map->num_stripes);
5186                else if (mirror_num)
5187                        stripe_index += mirror_num - 1;
5188                else {
5189                        int old_stripe_index = stripe_index;
5190                        stripe_index = find_live_mirror(fs_info, map,
5191                                              stripe_index,
5192                                              map->sub_stripes, stripe_index +
5193                                              current->pid % map->sub_stripes,
5194                                              dev_replace_is_ongoing);
5195                        mirror_num = stripe_index - old_stripe_index + 1;
5196                }
5197
5198        } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5199                if (need_raid_map &&
5200                    ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5201                     mirror_num > 1)) {
5202                        /* push stripe_nr back to the start of the full stripe */
5203                        stripe_nr = div_u64(raid56_full_stripe_start,
5204                                        stripe_len * nr_data_stripes(map));
5205
5206                        /* RAID[56] write or recovery. Return all stripes */
5207                        num_stripes = map->num_stripes;
5208                        max_errors = nr_parity_stripes(map);
5209
5210                        *length = map->stripe_len;
5211                        stripe_index = 0;
5212                        stripe_offset = 0;
5213                } else {
5214                        /*
5215                         * Mirror #0 or #1 means the original data block.
5216                         * Mirror #2 is RAID5 parity block.
5217                         * Mirror #3 is RAID6 Q block.
5218                         */
5219                        stripe_nr = div_u64_rem(stripe_nr,
5220                                        nr_data_stripes(map), &stripe_index);
5221                        if (mirror_num > 1)
5222                                stripe_index = nr_data_stripes(map) +
5223                                                mirror_num - 2;
5224
5225                        /* We distribute the parity blocks across stripes */
5226                        div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5227                                        &stripe_index);
5228                        if (!(rw & (REQ_WRITE | REQ_DISCARD |
5229                                    REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5230                                mirror_num = 1;
5231                }
5232        } else {
5233                /*
5234                 * after this, stripe_nr is the number of stripes on this
5235                 * device we have to walk to find the data, and stripe_index is
5236                 * the number of our device in the stripe array
5237                 */
5238                stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5239                                &stripe_index);
5240                mirror_num = stripe_index + 1;
5241        }
5242        BUG_ON(stripe_index >= map->num_stripes);
5243
5244        num_alloc_stripes = num_stripes;
5245        if (dev_replace_is_ongoing) {
5246                if (rw & (REQ_WRITE | REQ_DISCARD))
5247                        num_alloc_stripes <<= 1;
5248                if (rw & REQ_GET_READ_MIRRORS)
5249                        num_alloc_stripes++;
5250                tgtdev_indexes = num_stripes;
5251        }
5252
5253        bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5254        if (!bbio) {
5255                ret = -ENOMEM;
5256                goto out;
5257        }
5258        if (dev_replace_is_ongoing)
5259                bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5260
5261        /* build raid_map */
5262        if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5263            need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5264            mirror_num > 1)) {
5265                u64 tmp;
5266                unsigned rot;
5267
5268                bbio->raid_map = (u64 *)((void *)bbio->stripes +
5269                                 sizeof(struct btrfs_bio_stripe) *
5270                                 num_alloc_stripes +
5271                                 sizeof(int) * tgtdev_indexes);
5272
5273                /* Work out the disk rotation on this stripe-set */
5274                div_u64_rem(stripe_nr, num_stripes, &rot);
5275
5276                /* Fill in the logical address of each stripe */
5277                tmp = stripe_nr * nr_data_stripes(map);
5278                for (i = 0; i < nr_data_stripes(map); i++)
5279                        bbio->raid_map[(i+rot) % num_stripes] =
5280                                em->start + (tmp + i) * map->stripe_len;
5281
5282                bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5283                if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5284                        bbio->raid_map[(i+rot+1) % num_stripes] =
5285                                RAID6_Q_STRIPE;
5286        }
5287
5288        if (rw & REQ_DISCARD) {
5289                u32 factor = 0;
5290                u32 sub_stripes = 0;
5291                u64 stripes_per_dev = 0;
5292                u32 remaining_stripes = 0;
5293                u32 last_stripe = 0;
5294
5295                if (map->type &
5296                    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5297                        if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5298                                sub_stripes = 1;
5299                        else
5300                                sub_stripes = map->sub_stripes;
5301
5302                        factor = map->num_stripes / sub_stripes;
5303                        stripes_per_dev = div_u64_rem(stripe_nr_end -
5304                                                      stripe_nr_orig,
5305                                                      factor,
5306                                                      &remaining_stripes);
5307                        div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5308                        last_stripe *= sub_stripes;
5309                }
5310
5311                for (i = 0; i < num_stripes; i++) {
5312                        bbio->stripes[i].physical =
5313                                map->stripes[stripe_index].physical +
5314                                stripe_offset + stripe_nr * map->stripe_len;
5315                        bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5316
5317                        if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5318                                         BTRFS_BLOCK_GROUP_RAID10)) {
5319                                bbio->stripes[i].length = stripes_per_dev *
5320                                                          map->stripe_len;
5321
5322                                if (i / sub_stripes < remaining_stripes)
5323                                        bbio->stripes[i].length +=
5324                                                map->stripe_len;
5325
5326                                /*
5327                                 * Special for the first stripe and
5328                                 * the last stripe:
5329                                 *
5330                                 * |-------|...|-------|
5331                                 *     |----------|
5332                                 *    off     end_off
5333                                 */
5334                                if (i < sub_stripes)
5335                                        bbio->stripes[i].length -=
5336                                                stripe_offset;
5337
5338                                if (stripe_index >= last_stripe &&
5339                                    stripe_index <= (last_stripe +
5340                                                     sub_stripes - 1))
5341                                        bbio->stripes[i].length -=
5342                                                stripe_end_offset;
5343
5344                                if (i == sub_stripes - 1)
5345                                        stripe_offset = 0;
5346                        } else
5347                                bbio->stripes[i].length = *length;
5348
5349                        stripe_index++;
5350                        if (stripe_index == map->num_stripes) {
5351                                /* This could only happen for RAID0/10 */
5352                                stripe_index = 0;
5353                                stripe_nr++;
5354                        }
5355                }
5356        } else {
5357                for (i = 0; i < num_stripes; i++) {
5358                        bbio->stripes[i].physical =
5359                                map->stripes[stripe_index].physical +
5360                                stripe_offset +
5361                                stripe_nr * map->stripe_len;
5362                        bbio->stripes[i].dev =
5363                                map->stripes[stripe_index].dev;
5364                        stripe_index++;
5365                }
5366        }
5367
5368        if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5369                max_errors = btrfs_chunk_max_errors(map);
5370
5371        if (bbio->raid_map)
5372                sort_parity_stripes(bbio, num_stripes);
5373
5374        tgtdev_indexes = 0;
5375        if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5376            dev_replace->tgtdev != NULL) {
5377                int index_where_to_add;
5378                u64 srcdev_devid = dev_replace->srcdev->devid;
5379
5380                /*
5381                 * duplicate the write operations while the dev replace
5382                 * procedure is running. Since the copying of the old disk
5383                 * to the new disk takes place at run time while the
5384                 * filesystem is mounted writable, the regular write
5385                 * operations to the old disk have to be duplicated to go
5386                 * to the new disk as well.
5387                 * Note that device->missing is handled by the caller, and
5388                 * that the write to the old disk is already set up in the
5389                 * stripes array.
5390                 */
5391                index_where_to_add = num_stripes;
5392                for (i = 0; i < num_stripes; i++) {
5393                        if (bbio->stripes[i].dev->devid == srcdev_devid) {
5394                                /* write to new disk, too */
5395                                struct btrfs_bio_stripe *new =
5396                                        bbio->stripes + index_where_to_add;
5397                                struct btrfs_bio_stripe *old =
5398                                        bbio->stripes + i;
5399
5400                                new->physical = old->physical;
5401                                new->length = old->length;
5402                                new->dev = dev_replace->tgtdev;
5403                                bbio->tgtdev_map[i] = index_where_to_add;
5404                                index_where_to_add++;
5405                                max_errors++;
5406                                tgtdev_indexes++;
5407                        }
5408                }
5409                num_stripes = index_where_to_add;
5410        } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5411                   dev_replace->tgtdev != NULL) {
5412                u64 srcdev_devid = dev_replace->srcdev->devid;
5413                int index_srcdev = 0;
5414                int found = 0;
5415                u64 physical_of_found = 0;
5416
5417                /*
5418                 * During the dev-replace procedure, the target drive can
5419                 * also be used to read data in case it is needed to repair
5420                 * a corrupt block elsewhere. This is possible if the
5421                 * requested area is left of the left cursor. In this area,
5422                 * the target drive is a full copy of the source drive.
5423                 */
5424                for (i = 0; i < num_stripes; i++) {
5425                        if (bbio->stripes[i].dev->devid == srcdev_devid) {
5426                                /*
5427                                 * In case of DUP, in order to keep it
5428                                 * simple, only add the mirror with the
5429                                 * lowest physical address
5430                                 */
5431                                if (found &&
5432                                    physical_of_found <=
5433                                     bbio->stripes[i].physical)
5434                                        continue;
5435                                index_srcdev = i;
5436                                found = 1;
5437                                physical_of_found = bbio->stripes[i].physical;
5438                        }
5439                }
5440                if (found) {
5441                        if (physical_of_found + map->stripe_len <=
5442                            dev_replace->cursor_left) {
5443                                struct btrfs_bio_stripe *tgtdev_stripe =
5444                                        bbio->stripes + num_stripes;
5445
5446                                tgtdev_stripe->physical = physical_of_found;
5447                                tgtdev_stripe->length =
5448                                        bbio->stripes[index_srcdev].length;
5449                                tgtdev_stripe->dev = dev_replace->tgtdev;
5450                                bbio->tgtdev_map[index_srcdev] = num_stripes;
5451
5452                                tgtdev_indexes++;
5453                                num_stripes++;
5454                        }
5455                }
5456        }
5457
5458        *bbio_ret = bbio;
5459        bbio->map_type = map->type;
5460        bbio->num_stripes = num_stripes;
5461        bbio->max_errors = max_errors;
5462        bbio->mirror_num = mirror_num;
5463        bbio->num_tgtdevs = tgtdev_indexes;
5464
5465        /*
5466         * this is the case that REQ_READ && dev_replace_is_ongoing &&
5467         * mirror_num == num_stripes + 1 && dev_replace target drive is
5468         * available as a mirror
5469         */
5470        if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5471                WARN_ON(num_stripes > 1);
5472                bbio->stripes[0].dev = dev_replace->tgtdev;
5473                bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5474                bbio->mirror_num = map->num_stripes + 1;
5475        }
5476out:
5477        if (dev_replace_is_ongoing)
5478                btrfs_dev_replace_unlock(dev_replace);
5479        free_extent_map(em);
5480        return ret;
5481}
5482
5483int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5484                      u64 logical, u64 *length,
5485                      struct btrfs_bio **bbio_ret, int mirror_num)
5486{
5487        return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5488                                 mirror_num, 0);
5489}
5490
5491/* For Scrub/replace */
5492int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5493                     u64 logical, u64 *length,
5494                     struct btrfs_bio **bbio_ret, int mirror_num,
5495                     int need_raid_map)
5496{
5497        return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5498                                 mirror_num, need_raid_map);
5499}
5500
5501int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5502                     u64 chunk_start, u64 physical, u64 devid,
5503                     u64 **logical, int *naddrs, int *stripe_len)
5504{
5505        struct extent_map_tree *em_tree = &map_tree->map_tree;
5506        struct extent_map *em;
5507        struct map_lookup *map;
5508        u64 *buf;
5509        u64 bytenr;
5510        u64 length;
5511        u64 stripe_nr;
5512        u64 rmap_len;
5513        int i, j, nr = 0;
5514
5515        read_lock(&em_tree->lock);
5516        em = lookup_extent_mapping(em_tree, chunk_start, 1);
5517        read_unlock(&em_tree->lock);
5518
5519        if (!em) {
5520                printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5521                       chunk_start);
5522                return -EIO;
5523        }
5524
5525        if (em->start != chunk_start) {
5526                printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5527                       em->start, chunk_start);
5528                free_extent_map(em);
5529                return -EIO;
5530        }
5531        map = (struct map_lookup *)em->bdev;
5532
5533        length = em->len;
5534        rmap_len = map->stripe_len;
5535
5536        if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5537                length = div_u64(length, map->num_stripes / map->sub_stripes);
5538        else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5539                length = div_u64(length, map->num_stripes);
5540        else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5541                length = div_u64(length, nr_data_stripes(map));
5542                rmap_len = map->stripe_len * nr_data_stripes(map);
5543        }
5544
5545        buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5546        BUG_ON(!buf); /* -ENOMEM */
5547
5548        for (i = 0; i < map->num_stripes; i++) {
5549                if (devid && map->stripes[i].dev->devid != devid)
5550                        continue;
5551                if (map->stripes[i].physical > physical ||
5552                    map->stripes[i].physical + length <= physical)
5553                        continue;
5554
5555                stripe_nr = physical - map->stripes[i].physical;
5556                stripe_nr = div_u64(stripe_nr, map->stripe_len);
5557
5558                if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5559                        stripe_nr = stripe_nr * map->num_stripes + i;
5560                        stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5561                } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5562                        stripe_nr = stripe_nr * map->num_stripes + i;
5563                } /* else if RAID[56], multiply by nr_data_stripes().
5564                   * Alternatively, just use rmap_len below instead of
5565                   * map->stripe_len */
5566
5567                bytenr = chunk_start + stripe_nr * rmap_len;
5568                WARN_ON(nr >= map->num_stripes);
5569                for (j = 0; j < nr; j++) {
5570                        if (buf[j] == bytenr)
5571                                break;
5572                }
5573                if (j == nr) {
5574                        WARN_ON(nr >= map->num_stripes);
5575                        buf[nr++] = bytenr;
5576                }
5577        }
5578
5579        *logical = buf;
5580        *naddrs = nr;
5581        *stripe_len = rmap_len;
5582
5583        free_extent_map(em);
5584        return 0;
5585}
5586
5587static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio, int err)
5588{
5589        if (likely(bbio->flags & BTRFS_BIO_ORIG_BIO_SUBMITTED))
5590                bio_endio_nodec(bio, err);
5591        else
5592                bio_endio(bio, err);
5593        btrfs_put_bbio(bbio);
5594}
5595
5596static void btrfs_end_bio(struct bio *bio, int err)
5597{
5598        struct btrfs_bio *bbio = bio->bi_private;
5599        struct btrfs_device *dev = bbio->stripes[0].dev;
5600        int is_orig_bio = 0;
5601
5602        if (err) {
5603                atomic_inc(&bbio->error);
5604                if (err == -EIO || err == -EREMOTEIO) {
5605                        unsigned int stripe_index =
5606                                btrfs_io_bio(bio)->stripe_index;
5607
5608                        BUG_ON(stripe_index >= bbio->num_stripes);
5609                        dev = bbio->stripes[stripe_index].dev;
5610                        if (dev->bdev) {
5611                                if (bio->bi_rw & WRITE)
5612                                        btrfs_dev_stat_inc(dev,
5613                                                BTRFS_DEV_STAT_WRITE_ERRS);
5614                                else
5615                                        btrfs_dev_stat_inc(dev,
5616                                                BTRFS_DEV_STAT_READ_ERRS);
5617                                if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5618                                        btrfs_dev_stat_inc(dev,
5619                                                BTRFS_DEV_STAT_FLUSH_ERRS);
5620                                btrfs_dev_stat_print_on_error(dev);
5621                        }
5622                }
5623        }
5624
5625        if (bio == bbio->orig_bio)
5626                is_orig_bio = 1;
5627
5628        btrfs_bio_counter_dec(bbio->fs_info);
5629
5630        if (atomic_dec_and_test(&bbio->stripes_pending)) {
5631                if (!is_orig_bio) {
5632                        bio_put(bio);
5633                        bio = bbio->orig_bio;
5634                }
5635
5636                bio->bi_private = bbio->private;
5637                bio->bi_end_io = bbio->end_io;
5638                btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5639                /* only send an error to the higher layers if it is
5640                 * beyond the tolerance of the btrfs bio
5641                 */
5642                if (atomic_read(&bbio->error) > bbio->max_errors) {
5643                        err = -EIO;
5644                } else {
5645                        /*
5646                         * this bio is actually up to date, we didn't
5647                         * go over the max number of errors
5648                         */
5649                        set_bit(BIO_UPTODATE, &bio->bi_flags);
5650                        err = 0;
5651                }
5652
5653                btrfs_end_bbio(bbio, bio, err);
5654        } else if (!is_orig_bio) {
5655                bio_put(bio);
5656        }
5657}
5658
5659/*
5660 * see run_scheduled_bios for a description of why bios are collected for
5661 * async submit.
5662 *
5663 * This will add one bio to the pending list for a device and make sure
5664 * the work struct is scheduled.
5665 */
5666static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5667                                        struct btrfs_device *device,
5668                                        int rw, struct bio *bio)
5669{
5670        int should_queue = 1;
5671        struct btrfs_pending_bios *pending_bios;
5672
5673        if (device->missing || !device->bdev) {
5674                bio_endio(bio, -EIO);
5675                return;
5676        }
5677
5678        /* don't bother with additional async steps for reads, right now */
5679        if (!(rw & REQ_WRITE)) {
5680                bio_get(bio);
5681                btrfsic_submit_bio(rw, bio);
5682                bio_put(bio);
5683                return;
5684        }
5685
5686        /*
5687         * nr_async_bios allows us to reliably return congestion to the
5688         * higher layers.  Otherwise, the async bio makes it appear we have
5689         * made progress against dirty pages when we've really just put it
5690         * on a queue for later
5691         */
5692        atomic_inc(&root->fs_info->nr_async_bios);
5693        WARN_ON(bio->bi_next);
5694        bio->bi_next = NULL;
5695        bio->bi_rw |= rw;
5696
5697        spin_lock(&device->io_lock);
5698        if (bio->bi_rw & REQ_SYNC)
5699                pending_bios = &device->pending_sync_bios;
5700        else
5701                pending_bios = &device->pending_bios;
5702
5703        if (pending_bios->tail)
5704                pending_bios->tail->bi_next = bio;
5705
5706        pending_bios->tail = bio;
5707        if (!pending_bios->head)
5708                pending_bios->head = bio;
5709        if (device->running_pending)
5710                should_queue = 0;
5711
5712        spin_unlock(&device->io_lock);
5713
5714        if (should_queue)
5715                btrfs_queue_work(root->fs_info->submit_workers,
5716                                 &device->work);
5717}
5718
5719static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5720                       sector_t sector)
5721{
5722        struct bio_vec *prev;
5723        struct request_queue *q = bdev_get_queue(bdev);
5724        unsigned int max_sectors = queue_max_sectors(q);
5725        struct bvec_merge_data bvm = {
5726                .bi_bdev = bdev,
5727                .bi_sector = sector,
5728                .bi_rw = bio->bi_rw,
5729        };
5730
5731        if (WARN_ON(bio->bi_vcnt == 0))
5732                return 1;
5733
5734        prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
5735        if (bio_sectors(bio) > max_sectors)
5736                return 0;
5737
5738        if (!q->merge_bvec_fn)
5739                return 1;
5740
5741        bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len;
5742        if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5743                return 0;
5744        return 1;
5745}
5746
5747static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5748                              struct bio *bio, u64 physical, int dev_nr,
5749                              int rw, int async)
5750{
5751        struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5752
5753        bio->bi_private = bbio;
5754        btrfs_io_bio(bio)->stripe_index = dev_nr;
5755        bio->bi_end_io = btrfs_end_bio;
5756        bio->bi_iter.bi_sector = physical >> 9;
5757#ifdef DEBUG
5758        {
5759                struct rcu_string *name;
5760
5761                rcu_read_lock();
5762                name = rcu_dereference(dev->name);
5763                pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5764                         "(%s id %llu), size=%u\n", rw,
5765                         (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
5766                         name->str, dev->devid, bio->bi_iter.bi_size);
5767                rcu_read_unlock();
5768        }
5769#endif
5770        bio->bi_bdev = dev->bdev;
5771
5772        btrfs_bio_counter_inc_noblocked(root->fs_info);
5773
5774        if (async)
5775                btrfs_schedule_bio(root, dev, rw, bio);
5776        else
5777                btrfsic_submit_bio(rw, bio);
5778}
5779
5780static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5781                              struct bio *first_bio, struct btrfs_device *dev,
5782                              int dev_nr, int rw, int async)
5783{
5784        struct bio_vec *bvec = first_bio->bi_io_vec;
5785        struct bio *bio;
5786        int nr_vecs = bio_get_nr_vecs(dev->bdev);
5787        u64 physical = bbio->stripes[dev_nr].physical;
5788
5789again:
5790        bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5791        if (!bio)
5792                return -ENOMEM;
5793
5794        while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5795                if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5796                                 bvec->bv_offset) < bvec->bv_len) {
5797                        u64 len = bio->bi_iter.bi_size;
5798
5799                        atomic_inc(&bbio->stripes_pending);
5800                        submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5801                                          rw, async);
5802                        physical += len;
5803                        goto again;
5804                }
5805                bvec++;
5806        }
5807
5808        submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5809        return 0;
5810}
5811
5812static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5813{
5814        atomic_inc(&bbio->error);
5815        if (atomic_dec_and_test(&bbio->stripes_pending)) {
5816                /* Shoud be the original bio. */
5817                WARN_ON(bio != bbio->orig_bio);
5818
5819                bio->bi_private = bbio->private;
5820                bio->bi_end_io = bbio->end_io;
5821                btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5822                bio->bi_iter.bi_sector = logical >> 9;
5823
5824                btrfs_end_bbio(bbio, bio, -EIO);
5825        }
5826}
5827
5828int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5829                  int mirror_num, int async_submit)
5830{
5831        struct btrfs_device *dev;
5832        struct bio *first_bio = bio;
5833        u64 logical = (u64)bio->bi_iter.bi_sector << 9;
5834        u64 length = 0;
5835        u64 map_length;
5836        int ret;
5837        int dev_nr;
5838        int total_devs;
5839        struct btrfs_bio *bbio = NULL;
5840
5841        length = bio->bi_iter.bi_size;
5842        map_length = length;
5843
5844        btrfs_bio_counter_inc_blocked(root->fs_info);
5845        ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5846                              mirror_num, 1);
5847        if (ret) {
5848                btrfs_bio_counter_dec(root->fs_info);
5849                return ret;
5850        }
5851
5852        total_devs = bbio->num_stripes;
5853        bbio->orig_bio = first_bio;
5854        bbio->private = first_bio->bi_private;
5855        bbio->end_io = first_bio->bi_end_io;
5856        bbio->fs_info = root->fs_info;
5857        atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5858
5859        if (bbio->raid_map) {
5860                /* In this case, map_length has been set to the length of
5861                   a single stripe; not the whole write */
5862                if (rw & WRITE) {
5863                        ret = raid56_parity_write(root, bio, bbio, map_length);
5864                } else {
5865                        ret = raid56_parity_recover(root, bio, bbio, map_length,
5866                                                    mirror_num, 1);
5867                }
5868
5869                btrfs_bio_counter_dec(root->fs_info);
5870                return ret;
5871        }
5872
5873        if (map_length < length) {
5874                btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5875                        logical, length, map_length);
5876                BUG();
5877        }
5878
5879        for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
5880                dev = bbio->stripes[dev_nr].dev;
5881                if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5882                        bbio_error(bbio, first_bio, logical);
5883                        continue;
5884                }
5885
5886                /*
5887                 * Check and see if we're ok with this bio based on it's size
5888                 * and offset with the given device.
5889                 */
5890                if (!bio_size_ok(dev->bdev, first_bio,
5891                                 bbio->stripes[dev_nr].physical >> 9)) {
5892                        ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5893                                                 dev_nr, rw, async_submit);
5894                        BUG_ON(ret);
5895                        continue;
5896                }
5897
5898                if (dev_nr < total_devs - 1) {
5899                        bio = btrfs_bio_clone(first_bio, GFP_NOFS);
5900                        BUG_ON(!bio); /* -ENOMEM */
5901                } else {
5902                        bio = first_bio;
5903                        bbio->flags |= BTRFS_BIO_ORIG_BIO_SUBMITTED;
5904                }
5905
5906                submit_stripe_bio(root, bbio, bio,
5907                                  bbio->stripes[dev_nr].physical, dev_nr, rw,
5908                                  async_submit);
5909        }
5910        btrfs_bio_counter_dec(root->fs_info);
5911        return 0;
5912}
5913
5914struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
5915                                       u8 *uuid, u8 *fsid)
5916{
5917        struct btrfs_device *device;
5918        struct btrfs_fs_devices *cur_devices;
5919
5920        cur_devices = fs_info->fs_devices;
5921        while (cur_devices) {
5922                if (!fsid ||
5923                    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5924                        device = __find_device(&cur_devices->devices,
5925                                               devid, uuid);
5926                        if (device)
5927                                return device;
5928                }
5929                cur_devices = cur_devices->seed;
5930        }
5931        return NULL;
5932}
5933
5934static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5935                                            struct btrfs_fs_devices *fs_devices,
5936                                            u64 devid, u8 *dev_uuid)
5937{
5938        struct btrfs_device *device;
5939
5940        device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5941        if (IS_ERR(device))
5942                return NULL;
5943
5944        list_add(&device->dev_list, &fs_devices->devices);
5945        device->fs_devices = fs_devices;
5946        fs_devices->num_devices++;
5947
5948        device->missing = 1;
5949        fs_devices->missing_devices++;
5950
5951        return device;
5952}
5953
5954/**
5955 * btrfs_alloc_device - allocate struct btrfs_device
5956 * @fs_info:    used only for generating a new devid, can be NULL if
5957 *              devid is provided (i.e. @devid != NULL).
5958 * @devid:      a pointer to devid for this device.  If NULL a new devid
5959 *              is generated.
5960 * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
5961 *              is generated.
5962 *
5963 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5964 * on error.  Returned struct is not linked onto any lists and can be
5965 * destroyed with kfree() right away.
5966 */
5967struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5968                                        const u64 *devid,
5969                                        const u8 *uuid)
5970{
5971        struct btrfs_device *dev;
5972        u64 tmp;
5973
5974        if (WARN_ON(!devid && !fs_info))
5975                return ERR_PTR(-EINVAL);
5976
5977        dev = __alloc_device();
5978        if (IS_ERR(dev))
5979                return dev;
5980
5981        if (devid)
5982                tmp = *devid;
5983        else {
5984                int ret;
5985
5986                ret = find_next_devid(fs_info, &tmp);
5987                if (ret) {
5988                        kfree(dev);
5989                        return ERR_PTR(ret);
5990                }
5991        }
5992        dev->devid = tmp;
5993
5994        if (uuid)
5995                memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5996        else
5997                generate_random_uuid(dev->uuid);
5998
5999        btrfs_init_work(&dev->work, btrfs_submit_helper,
6000                        pending_bios_fn, NULL, NULL);
6001
6002        return dev;
6003}
6004
6005static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6006                          struct extent_buffer *leaf,
6007                          struct btrfs_chunk *chunk)
6008{
6009        struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6010        struct map_lookup *map;
6011        struct extent_map *em;
6012        u64 logical;
6013        u64 length;
6014        u64 devid;
6015        u8 uuid[BTRFS_UUID_SIZE];
6016        int num_stripes;
6017        int ret;
6018        int i;
6019
6020        logical = key->offset;
6021        length = btrfs_chunk_length(leaf, chunk);
6022
6023        read_lock(&map_tree->map_tree.lock);
6024        em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6025        read_unlock(&map_tree->map_tree.lock);
6026
6027        /* already mapped? */
6028        if (em && em->start <= logical && em->start + em->len > logical) {
6029                free_extent_map(em);
6030                return 0;
6031        } else if (em) {
6032                free_extent_map(em);
6033        }
6034
6035        em = alloc_extent_map();
6036        if (!em)
6037                return -ENOMEM;
6038        num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6039        map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6040        if (!map) {
6041                free_extent_map(em);
6042                return -ENOMEM;
6043        }
6044
6045        set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6046        em->bdev = (struct block_device *)map;
6047        em->start = logical;
6048        em->len = length;
6049        em->orig_start = 0;
6050        em->block_start = 0;
6051        em->block_len = em->len;
6052
6053        map->num_stripes = num_stripes;
6054        map->io_width = btrfs_chunk_io_width(leaf, chunk);
6055        map->io_align = btrfs_chunk_io_align(leaf, chunk);
6056        map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6057        map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6058        map->type = btrfs_chunk_type(leaf, chunk);
6059        map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6060        for (i = 0; i < num_stripes; i++) {
6061                map->stripes[i].physical =
6062                        btrfs_stripe_offset_nr(leaf, chunk, i);
6063                devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6064                read_extent_buffer(leaf, uuid, (unsigned long)
6065                                   btrfs_stripe_dev_uuid_nr(chunk, i),
6066                                   BTRFS_UUID_SIZE);
6067                map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6068                                                        uuid, NULL);
6069                if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
6070                        free_extent_map(em);
6071                        return -EIO;
6072                }
6073                if (!map->stripes[i].dev) {
6074                        map->stripes[i].dev =
6075                                add_missing_dev(root, root->fs_info->fs_devices,
6076                                                devid, uuid);
6077                        if (!map->stripes[i].dev) {
6078                                free_extent_map(em);
6079                                return -EIO;
6080                        }
6081                }
6082                map->stripes[i].dev->in_fs_metadata = 1;
6083        }
6084
6085        write_lock(&map_tree->map_tree.lock);
6086        ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6087        write_unlock(&map_tree->map_tree.lock);
6088        BUG_ON(ret); /* Tree corruption */
6089        free_extent_map(em);
6090
6091        return 0;
6092}
6093
6094static void fill_device_from_item(struct extent_buffer *leaf,
6095                                 struct btrfs_dev_item *dev_item,
6096                                 struct btrfs_device *device)
6097{
6098        unsigned long ptr;
6099
6100        device->devid = btrfs_device_id(leaf, dev_item);
6101        device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6102        device->total_bytes = device->disk_total_bytes;
6103        device->commit_total_bytes = device->disk_total_bytes;
6104        device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6105        device->commit_bytes_used = device->bytes_used;
6106        device->type = btrfs_device_type(leaf, dev_item);
6107        device->io_align = btrfs_device_io_align(leaf, dev_item);
6108        device->io_width = btrfs_device_io_width(leaf, dev_item);
6109        device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6110        WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6111        device->is_tgtdev_for_dev_replace = 0;
6112
6113        ptr = btrfs_device_uuid(dev_item);
6114        read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6115}
6116
6117static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6118                                                  u8 *fsid)
6119{
6120        struct btrfs_fs_devices *fs_devices;
6121        int ret;
6122
6123        BUG_ON(!mutex_is_locked(&uuid_mutex));
6124
6125        fs_devices = root->fs_info->fs_devices->seed;
6126        while (fs_devices) {
6127                if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6128                        return fs_devices;
6129
6130                fs_devices = fs_devices->seed;
6131        }
6132
6133        fs_devices = find_fsid(fsid);
6134        if (!fs_devices) {
6135                if (!btrfs_test_opt(root, DEGRADED))
6136                        return ERR_PTR(-ENOENT);
6137
6138                fs_devices = alloc_fs_devices(fsid);
6139                if (IS_ERR(fs_devices))
6140                        return fs_devices;
6141
6142                fs_devices->seeding = 1;
6143                fs_devices->opened = 1;
6144                return fs_devices;
6145        }
6146
6147        fs_devices = clone_fs_devices(fs_devices);
6148        if (IS_ERR(fs_devices))
6149                return fs_devices;
6150
6151        ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6152                                   root->fs_info->bdev_holder);
6153        if (ret) {
6154                free_fs_devices(fs_devices);
6155                fs_devices = ERR_PTR(ret);
6156                goto out;
6157        }
6158
6159        if (!fs_devices->seeding) {
6160                __btrfs_close_devices(fs_devices);
6161                free_fs_devices(fs_devices);
6162                fs_devices = ERR_PTR(-EINVAL);
6163                goto out;
6164        }
6165
6166        fs_devices->seed = root->fs_info->fs_devices->seed;
6167        root->fs_info->fs_devices->seed = fs_devices;
6168out:
6169        return fs_devices;
6170}
6171
6172static int read_one_dev(struct btrfs_root *root,
6173                        struct extent_buffer *leaf,
6174                        struct btrfs_dev_item *dev_item)
6175{
6176        struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6177        struct btrfs_device *device;
6178        u64 devid;
6179        int ret;
6180        u8 fs_uuid[BTRFS_UUID_SIZE];
6181        u8 dev_uuid[BTRFS_UUID_SIZE];
6182
6183        devid = btrfs_device_id(leaf, dev_item);
6184        read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6185                           BTRFS_UUID_SIZE);
6186        read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6187                           BTRFS_UUID_SIZE);
6188
6189        if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6190                fs_devices = open_seed_devices(root, fs_uuid);
6191                if (IS_ERR(fs_devices))
6192                        return PTR_ERR(fs_devices);
6193        }
6194
6195        device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6196        if (!device) {
6197                if (!btrfs_test_opt(root, DEGRADED))
6198                        return -EIO;
6199
6200                btrfs_warn(root->fs_info, "devid %llu missing", devid);
6201                device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6202                if (!device)
6203                        return -ENOMEM;
6204        } else {
6205                if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6206                        return -EIO;
6207
6208                if(!device->bdev && !device->missing) {
6209                        /*
6210                         * this happens when a device that was properly setup
6211                         * in the device info lists suddenly goes bad.
6212                         * device->bdev is NULL, and so we have to set
6213                         * device->missing to one here
6214                         */
6215                        device->fs_devices->missing_devices++;
6216                        device->missing = 1;
6217                }
6218
6219                /* Move the device to its own fs_devices */
6220                if (device->fs_devices != fs_devices) {
6221                        ASSERT(device->missing);
6222
6223                        list_move(&device->dev_list, &fs_devices->devices);
6224                        device->fs_devices->num_devices--;
6225                        fs_devices->num_devices++;
6226
6227                        device->fs_devices->missing_devices--;
6228                        fs_devices->missing_devices++;
6229
6230                        device->fs_devices = fs_devices;
6231                }
6232        }
6233
6234        if (device->fs_devices != root->fs_info->fs_devices) {
6235                BUG_ON(device->writeable);
6236                if (device->generation !=
6237                    btrfs_device_generation(leaf, dev_item))
6238                        return -EINVAL;
6239        }
6240
6241        fill_device_from_item(leaf, dev_item, device);
6242        device->in_fs_metadata = 1;
6243        if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6244                device->fs_devices->total_rw_bytes += device->total_bytes;
6245                spin_lock(&root->fs_info->free_chunk_lock);
6246                root->fs_info->free_chunk_space += device->total_bytes -
6247                        device->bytes_used;
6248                spin_unlock(&root->fs_info->free_chunk_lock);
6249        }
6250        ret = 0;
6251        return ret;
6252}
6253
6254int btrfs_read_sys_array(struct btrfs_root *root)
6255{
6256        struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6257        struct extent_buffer *sb;
6258        struct btrfs_disk_key *disk_key;
6259        struct btrfs_chunk *chunk;
6260        u8 *array_ptr;
6261        unsigned long sb_array_offset;
6262        int ret = 0;
6263        u32 num_stripes;
6264        u32 array_size;
6265        u32 len = 0;
6266        u32 cur_offset;
6267        struct btrfs_key key;
6268
6269        ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6270        /*
6271         * This will create extent buffer of nodesize, superblock size is
6272         * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6273         * overallocate but we can keep it as-is, only the first page is used.
6274         */
6275        sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6276        if (!sb)
6277                return -ENOMEM;
6278        btrfs_set_buffer_uptodate(sb);
6279        btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6280        /*
6281         * The sb extent buffer is artifical and just used to read the system array.
6282         * btrfs_set_buffer_uptodate() call does not properly mark all it's
6283         * pages up-to-date when the page is larger: extent does not cover the
6284         * whole page and consequently check_page_uptodate does not find all
6285         * the page's extents up-to-date (the hole beyond sb),
6286         * write_extent_buffer then triggers a WARN_ON.
6287         *
6288         * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6289         * but sb spans only this function. Add an explicit SetPageUptodate call
6290         * to silence the warning eg. on PowerPC 64.
6291         */
6292        if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6293                SetPageUptodate(sb->pages[0]);
6294
6295        write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6296        array_size = btrfs_super_sys_array_size(super_copy);
6297
6298        array_ptr = super_copy->sys_chunk_array;
6299        sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6300        cur_offset = 0;
6301
6302        while (cur_offset < array_size) {
6303                disk_key = (struct btrfs_disk_key *)array_ptr;
6304                len = sizeof(*disk_key);
6305                if (cur_offset + len > array_size)
6306                        goto out_short_read;
6307
6308                btrfs_disk_key_to_cpu(&key, disk_key);
6309
6310                array_ptr += len;
6311                sb_array_offset += len;
6312                cur_offset += len;
6313
6314                if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6315                        chunk = (struct btrfs_chunk *)sb_array_offset;
6316                        /*
6317                         * At least one btrfs_chunk with one stripe must be
6318                         * present, exact stripe count check comes afterwards
6319                         */
6320                        len = btrfs_chunk_item_size(1);
6321                        if (cur_offset + len > array_size)
6322                                goto out_short_read;
6323
6324                        num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6325                        len = btrfs_chunk_item_size(num_stripes);
6326                        if (cur_offset + len > array_size)
6327                                goto out_short_read;
6328
6329                        ret = read_one_chunk(root, &key, sb, chunk);
6330                        if (ret)
6331                                break;
6332                } else {
6333                        ret = -EIO;
6334                        break;
6335                }
6336                array_ptr += len;
6337                sb_array_offset += len;
6338                cur_offset += len;
6339        }
6340        free_extent_buffer(sb);
6341        return ret;
6342
6343out_short_read:
6344        printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6345                        len, cur_offset);
6346        free_extent_buffer(sb);
6347        return -EIO;
6348}
6349
6350int btrfs_read_chunk_tree(struct btrfs_root *root)
6351{
6352        struct btrfs_path *path;
6353        struct extent_buffer *leaf;
6354        struct btrfs_key key;
6355        struct btrfs_key found_key;
6356        int ret;
6357        int slot;
6358
6359        root = root->fs_info->chunk_root;
6360
6361        path = btrfs_alloc_path();
6362        if (!path)
6363                return -ENOMEM;
6364
6365        mutex_lock(&uuid_mutex);
6366        lock_chunks(root);
6367
6368        /*
6369         * Read all device items, and then all the chunk items. All
6370         * device items are found before any chunk item (their object id
6371         * is smaller than the lowest possible object id for a chunk
6372         * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6373         */
6374        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6375        key.offset = 0;
6376        key.type = 0;
6377        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6378        if (ret < 0)
6379                goto error;
6380        while (1) {
6381                leaf = path->nodes[0];
6382                slot = path->slots[0];
6383                if (slot >= btrfs_header_nritems(leaf)) {
6384                        ret = btrfs_next_leaf(root, path);
6385                        if (ret == 0)
6386                                continue;
6387                        if (ret < 0)
6388                                goto error;
6389                        break;
6390                }
6391                btrfs_item_key_to_cpu(leaf, &found_key, slot);
6392                if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6393                        struct btrfs_dev_item *dev_item;
6394                        dev_item = btrfs_item_ptr(leaf, slot,
6395                                                  struct btrfs_dev_item);
6396                        ret = read_one_dev(root, leaf, dev_item);
6397                        if (ret)
6398                                goto error;
6399                } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6400                        struct btrfs_chunk *chunk;
6401                        chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6402                        ret = read_one_chunk(root, &found_key, leaf, chunk);
6403                        if (ret)
6404                                goto error;
6405                }
6406                path->slots[0]++;
6407        }
6408        ret = 0;
6409error:
6410        unlock_chunks(root);
6411        mutex_unlock(&uuid_mutex);
6412
6413        btrfs_free_path(path);
6414        return ret;
6415}
6416
6417void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6418{
6419        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6420        struct btrfs_device *device;
6421
6422        while (fs_devices) {
6423                mutex_lock(&fs_devices->device_list_mutex);
6424                list_for_each_entry(device, &fs_devices->devices, dev_list)
6425                        device->dev_root = fs_info->dev_root;
6426                mutex_unlock(&fs_devices->device_list_mutex);
6427
6428                fs_devices = fs_devices->seed;
6429        }
6430}
6431
6432static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6433{
6434        int i;
6435
6436        for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6437                btrfs_dev_stat_reset(dev, i);
6438}
6439
6440int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6441{
6442        struct btrfs_key key;
6443        struct btrfs_key found_key;
6444        struct btrfs_root *dev_root = fs_info->dev_root;
6445        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6446        struct extent_buffer *eb;
6447        int slot;
6448        int ret = 0;
6449        struct btrfs_device *device;
6450        struct btrfs_path *path = NULL;
6451        int i;
6452
6453        path = btrfs_alloc_path();
6454        if (!path) {
6455                ret = -ENOMEM;
6456                goto out;
6457        }
6458
6459        mutex_lock(&fs_devices->device_list_mutex);
6460        list_for_each_entry(device, &fs_devices->devices, dev_list) {
6461                int item_size;
6462                struct btrfs_dev_stats_item *ptr;
6463
6464                key.objectid = 0;
6465                key.type = BTRFS_DEV_STATS_KEY;
6466                key.offset = device->devid;
6467                ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6468                if (ret) {
6469                        __btrfs_reset_dev_stats(device);
6470                        device->dev_stats_valid = 1;
6471                        btrfs_release_path(path);
6472                        continue;
6473                }
6474                slot = path->slots[0];
6475                eb = path->nodes[0];
6476                btrfs_item_key_to_cpu(eb, &found_key, slot);
6477                item_size = btrfs_item_size_nr(eb, slot);
6478
6479                ptr = btrfs_item_ptr(eb, slot,
6480                                     struct btrfs_dev_stats_item);
6481
6482                for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6483                        if (item_size >= (1 + i) * sizeof(__le64))
6484                                btrfs_dev_stat_set(device, i,
6485                                        btrfs_dev_stats_value(eb, ptr, i));
6486                        else
6487                                btrfs_dev_stat_reset(device, i);
6488                }
6489
6490                device->dev_stats_valid = 1;
6491                btrfs_dev_stat_print_on_load(device);
6492                btrfs_release_path(path);
6493        }
6494        mutex_unlock(&fs_devices->device_list_mutex);
6495
6496out:
6497        btrfs_free_path(path);
6498        return ret < 0 ? ret : 0;
6499}
6500
6501static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6502                                struct btrfs_root *dev_root,
6503                                struct btrfs_device *device)
6504{
6505        struct btrfs_path *path;
6506        struct btrfs_key key;
6507        struct extent_buffer *eb;
6508        struct btrfs_dev_stats_item *ptr;
6509        int ret;
6510        int i;
6511
6512        key.objectid = 0;
6513        key.type = BTRFS_DEV_STATS_KEY;
6514        key.offset = device->devid;
6515
6516        path = btrfs_alloc_path();
6517        BUG_ON(!path);
6518        ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6519        if (ret < 0) {
6520                printk_in_rcu(KERN_WARNING "BTRFS: "
6521                        "error %d while searching for dev_stats item for device %s!\n",
6522                              ret, rcu_str_deref(device->name));
6523                goto out;
6524        }
6525
6526        if (ret == 0 &&
6527            btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6528                /* need to delete old one and insert a new one */
6529                ret = btrfs_del_item(trans, dev_root, path);
6530                if (ret != 0) {
6531                        printk_in_rcu(KERN_WARNING "BTRFS: "
6532                                "delete too small dev_stats item for device %s failed %d!\n",
6533                                      rcu_str_deref(device->name), ret);
6534                        goto out;
6535                }
6536                ret = 1;
6537        }
6538
6539        if (ret == 1) {
6540                /* need to insert a new item */
6541                btrfs_release_path(path);
6542                ret = btrfs_insert_empty_item(trans, dev_root, path,
6543                                              &key, sizeof(*ptr));
6544                if (ret < 0) {
6545                        printk_in_rcu(KERN_WARNING "BTRFS: "
6546                                          "insert dev_stats item for device %s failed %d!\n",
6547                                      rcu_str_deref(device->name), ret);
6548                        goto out;
6549                }
6550        }
6551
6552        eb = path->nodes[0];
6553        ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6554        for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6555                btrfs_set_dev_stats_value(eb, ptr, i,
6556                                          btrfs_dev_stat_read(device, i));
6557        btrfs_mark_buffer_dirty(eb);
6558
6559out:
6560        btrfs_free_path(path);
6561        return ret;
6562}
6563
6564/*
6565 * called from commit_transaction. Writes all changed device stats to disk.
6566 */
6567int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6568                        struct btrfs_fs_info *fs_info)
6569{
6570        struct btrfs_root *dev_root = fs_info->dev_root;
6571        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6572        struct btrfs_device *device;
6573        int stats_cnt;
6574        int ret = 0;
6575
6576        mutex_lock(&fs_devices->device_list_mutex);
6577        list_for_each_entry(device, &fs_devices->devices, dev_list) {
6578                if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
6579                        continue;
6580
6581                stats_cnt = atomic_read(&device->dev_stats_ccnt);
6582                ret = update_dev_stat_item(trans, dev_root, device);
6583                if (!ret)
6584                        atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6585        }
6586        mutex_unlock(&fs_devices->device_list_mutex);
6587
6588        return ret;
6589}
6590
6591void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6592{
6593        btrfs_dev_stat_inc(dev, index);
6594        btrfs_dev_stat_print_on_error(dev);
6595}
6596
6597static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6598{
6599        if (!dev->dev_stats_valid)
6600                return;
6601        printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6602                           "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6603                           rcu_str_deref(dev->name),
6604                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6605                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6606                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6607                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6608                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6609}
6610
6611static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6612{
6613        int i;
6614
6615        for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6616                if (btrfs_dev_stat_read(dev, i) != 0)
6617                        break;
6618        if (i == BTRFS_DEV_STAT_VALUES_MAX)
6619                return; /* all values == 0, suppress message */
6620
6621        printk_in_rcu(KERN_INFO "BTRFS: "
6622                   "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6623               rcu_str_deref(dev->name),
6624               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6625               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6626               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6627               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6628               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6629}
6630
6631int btrfs_get_dev_stats(struct btrfs_root *root,
6632                        struct btrfs_ioctl_get_dev_stats *stats)
6633{
6634        struct btrfs_device *dev;
6635        struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6636        int i;
6637
6638        mutex_lock(&fs_devices->device_list_mutex);
6639        dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6640        mutex_unlock(&fs_devices->device_list_mutex);
6641
6642        if (!dev) {
6643                btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6644                return -ENODEV;
6645        } else if (!dev->dev_stats_valid) {
6646                btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6647                return -ENODEV;
6648        } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6649                for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6650                        if (stats->nr_items > i)
6651                                stats->values[i] =
6652                                        btrfs_dev_stat_read_and_reset(dev, i);
6653                        else
6654                                btrfs_dev_stat_reset(dev, i);
6655                }
6656        } else {
6657                for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6658                        if (stats->nr_items > i)
6659                                stats->values[i] = btrfs_dev_stat_read(dev, i);
6660        }
6661        if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6662                stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6663        return 0;
6664}
6665
6666int btrfs_scratch_superblock(struct btrfs_device *device)
6667{
6668        struct buffer_head *bh;
6669        struct btrfs_super_block *disk_super;
6670
6671        bh = btrfs_read_dev_super(device->bdev);
6672        if (!bh)
6673                return -EINVAL;
6674        disk_super = (struct btrfs_super_block *)bh->b_data;
6675
6676        memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6677        set_buffer_dirty(bh);
6678        sync_dirty_buffer(bh);
6679        brelse(bh);
6680
6681        return 0;
6682}
6683
6684/*
6685 * Update the size of all devices, which is used for writing out the
6686 * super blocks.
6687 */
6688void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6689{
6690        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6691        struct btrfs_device *curr, *next;
6692
6693        if (list_empty(&fs_devices->resized_devices))
6694                return;
6695
6696        mutex_lock(&fs_devices->device_list_mutex);
6697        lock_chunks(fs_info->dev_root);
6698        list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6699                                 resized_list) {
6700                list_del_init(&curr->resized_list);
6701                curr->commit_total_bytes = curr->disk_total_bytes;
6702        }
6703        unlock_chunks(fs_info->dev_root);
6704        mutex_unlock(&fs_devices->device_list_mutex);
6705}
6706
6707/* Must be invoked during the transaction commit */
6708void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6709                                        struct btrfs_transaction *transaction)
6710{
6711        struct extent_map *em;
6712        struct map_lookup *map;
6713        struct btrfs_device *dev;
6714        int i;
6715
6716        if (list_empty(&transaction->pending_chunks))
6717                return;
6718
6719        /* In order to kick the device replace finish process */
6720        lock_chunks(root);
6721        list_for_each_entry(em, &transaction->pending_chunks, list) {
6722                map = (struct map_lookup *)em->bdev;
6723
6724                for (i = 0; i < map->num_stripes; i++) {
6725                        dev = map->stripes[i].dev;
6726                        dev->commit_bytes_used = dev->bytes_used;
6727                }
6728        }
6729        unlock_chunks(root);
6730}
6731