linux/fs/direct-io.c
<<
>>
Prefs
   1/*
   2 * fs/direct-io.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 *
   6 * O_DIRECT
   7 *
   8 * 04Jul2002    Andrew Morton
   9 *              Initial version
  10 * 11Sep2002    janetinc@us.ibm.com
  11 *              added readv/writev support.
  12 * 29Oct2002    Andrew Morton
  13 *              rewrote bio_add_page() support.
  14 * 30Oct2002    pbadari@us.ibm.com
  15 *              added support for non-aligned IO.
  16 * 06Nov2002    pbadari@us.ibm.com
  17 *              added asynchronous IO support.
  18 * 21Jul2003    nathans@sgi.com
  19 *              added IO completion notifier.
  20 */
  21
  22#include <linux/kernel.h>
  23#include <linux/module.h>
  24#include <linux/types.h>
  25#include <linux/fs.h>
  26#include <linux/mm.h>
  27#include <linux/slab.h>
  28#include <linux/highmem.h>
  29#include <linux/pagemap.h>
  30#include <linux/task_io_accounting_ops.h>
  31#include <linux/bio.h>
  32#include <linux/wait.h>
  33#include <linux/err.h>
  34#include <linux/blkdev.h>
  35#include <linux/buffer_head.h>
  36#include <linux/rwsem.h>
  37#include <linux/uio.h>
  38#include <linux/atomic.h>
  39#include <linux/prefetch.h>
  40
  41/*
  42 * How many user pages to map in one call to get_user_pages().  This determines
  43 * the size of a structure in the slab cache
  44 */
  45#define DIO_PAGES       64
  46
  47/*
  48 * This code generally works in units of "dio_blocks".  A dio_block is
  49 * somewhere between the hard sector size and the filesystem block size.  it
  50 * is determined on a per-invocation basis.   When talking to the filesystem
  51 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
  52 * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
  53 * to bio_block quantities by shifting left by blkfactor.
  54 *
  55 * If blkfactor is zero then the user's request was aligned to the filesystem's
  56 * blocksize.
  57 */
  58
  59/* dio_state only used in the submission path */
  60
  61struct dio_submit {
  62        struct bio *bio;                /* bio under assembly */
  63        unsigned blkbits;               /* doesn't change */
  64        unsigned blkfactor;             /* When we're using an alignment which
  65                                           is finer than the filesystem's soft
  66                                           blocksize, this specifies how much
  67                                           finer.  blkfactor=2 means 1/4-block
  68                                           alignment.  Does not change */
  69        unsigned start_zero_done;       /* flag: sub-blocksize zeroing has
  70                                           been performed at the start of a
  71                                           write */
  72        int pages_in_io;                /* approximate total IO pages */
  73        sector_t block_in_file;         /* Current offset into the underlying
  74                                           file in dio_block units. */
  75        unsigned blocks_available;      /* At block_in_file.  changes */
  76        int reap_counter;               /* rate limit reaping */
  77        sector_t final_block_in_request;/* doesn't change */
  78        int boundary;                   /* prev block is at a boundary */
  79        get_block_t *get_block;         /* block mapping function */
  80        dio_submit_t *submit_io;        /* IO submition function */
  81
  82        loff_t logical_offset_in_bio;   /* current first logical block in bio */
  83        sector_t final_block_in_bio;    /* current final block in bio + 1 */
  84        sector_t next_block_for_io;     /* next block to be put under IO,
  85                                           in dio_blocks units */
  86
  87        /*
  88         * Deferred addition of a page to the dio.  These variables are
  89         * private to dio_send_cur_page(), submit_page_section() and
  90         * dio_bio_add_page().
  91         */
  92        struct page *cur_page;          /* The page */
  93        unsigned cur_page_offset;       /* Offset into it, in bytes */
  94        unsigned cur_page_len;          /* Nr of bytes at cur_page_offset */
  95        sector_t cur_page_block;        /* Where it starts */
  96        loff_t cur_page_fs_offset;      /* Offset in file */
  97
  98        struct iov_iter *iter;
  99        /*
 100         * Page queue.  These variables belong to dio_refill_pages() and
 101         * dio_get_page().
 102         */
 103        unsigned head;                  /* next page to process */
 104        unsigned tail;                  /* last valid page + 1 */
 105        size_t from, to;
 106};
 107
 108/* dio_state communicated between submission path and end_io */
 109struct dio {
 110        int flags;                      /* doesn't change */
 111        int rw;
 112        struct inode *inode;
 113        loff_t i_size;                  /* i_size when submitted */
 114        dio_iodone_t *end_io;           /* IO completion function */
 115
 116        void *private;                  /* copy from map_bh.b_private */
 117
 118        /* BIO completion state */
 119        spinlock_t bio_lock;            /* protects BIO fields below */
 120        int page_errors;                /* errno from get_user_pages() */
 121        int is_async;                   /* is IO async ? */
 122        bool defer_completion;          /* defer AIO completion to workqueue? */
 123        int io_error;                   /* IO error in completion path */
 124        unsigned long refcount;         /* direct_io_worker() and bios */
 125        struct bio *bio_list;           /* singly linked via bi_private */
 126        struct task_struct *waiter;     /* waiting task (NULL if none) */
 127
 128        /* AIO related stuff */
 129        struct kiocb *iocb;             /* kiocb */
 130        ssize_t result;                 /* IO result */
 131
 132        /*
 133         * pages[] (and any fields placed after it) are not zeroed out at
 134         * allocation time.  Don't add new fields after pages[] unless you
 135         * wish that they not be zeroed.
 136         */
 137        union {
 138                struct page *pages[DIO_PAGES];  /* page buffer */
 139                struct work_struct complete_work;/* deferred AIO completion */
 140        };
 141} ____cacheline_aligned_in_smp;
 142
 143static struct kmem_cache *dio_cache __read_mostly;
 144
 145/*
 146 * How many pages are in the queue?
 147 */
 148static inline unsigned dio_pages_present(struct dio_submit *sdio)
 149{
 150        return sdio->tail - sdio->head;
 151}
 152
 153/*
 154 * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
 155 */
 156static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
 157{
 158        ssize_t ret;
 159
 160        ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
 161                                &sdio->from);
 162
 163        if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
 164                struct page *page = ZERO_PAGE(0);
 165                /*
 166                 * A memory fault, but the filesystem has some outstanding
 167                 * mapped blocks.  We need to use those blocks up to avoid
 168                 * leaking stale data in the file.
 169                 */
 170                if (dio->page_errors == 0)
 171                        dio->page_errors = ret;
 172                page_cache_get(page);
 173                dio->pages[0] = page;
 174                sdio->head = 0;
 175                sdio->tail = 1;
 176                sdio->from = 0;
 177                sdio->to = PAGE_SIZE;
 178                return 0;
 179        }
 180
 181        if (ret >= 0) {
 182                iov_iter_advance(sdio->iter, ret);
 183                ret += sdio->from;
 184                sdio->head = 0;
 185                sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
 186                sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
 187                return 0;
 188        }
 189        return ret;     
 190}
 191
 192/*
 193 * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
 194 * buffered inside the dio so that we can call get_user_pages() against a
 195 * decent number of pages, less frequently.  To provide nicer use of the
 196 * L1 cache.
 197 */
 198static inline struct page *dio_get_page(struct dio *dio,
 199                                        struct dio_submit *sdio)
 200{
 201        if (dio_pages_present(sdio) == 0) {
 202                int ret;
 203
 204                ret = dio_refill_pages(dio, sdio);
 205                if (ret)
 206                        return ERR_PTR(ret);
 207                BUG_ON(dio_pages_present(sdio) == 0);
 208        }
 209        return dio->pages[sdio->head];
 210}
 211
 212/**
 213 * dio_complete() - called when all DIO BIO I/O has been completed
 214 * @offset: the byte offset in the file of the completed operation
 215 *
 216 * This drops i_dio_count, lets interested parties know that a DIO operation
 217 * has completed, and calculates the resulting return code for the operation.
 218 *
 219 * It lets the filesystem know if it registered an interest earlier via
 220 * get_block.  Pass the private field of the map buffer_head so that
 221 * filesystems can use it to hold additional state between get_block calls and
 222 * dio_complete.
 223 */
 224static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret,
 225                bool is_async)
 226{
 227        ssize_t transferred = 0;
 228
 229        /*
 230         * AIO submission can race with bio completion to get here while
 231         * expecting to have the last io completed by bio completion.
 232         * In that case -EIOCBQUEUED is in fact not an error we want
 233         * to preserve through this call.
 234         */
 235        if (ret == -EIOCBQUEUED)
 236                ret = 0;
 237
 238        if (dio->result) {
 239                transferred = dio->result;
 240
 241                /* Check for short read case */
 242                if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
 243                        transferred = dio->i_size - offset;
 244        }
 245
 246        if (ret == 0)
 247                ret = dio->page_errors;
 248        if (ret == 0)
 249                ret = dio->io_error;
 250        if (ret == 0)
 251                ret = transferred;
 252
 253        if (dio->end_io && dio->result)
 254                dio->end_io(dio->iocb, offset, transferred, dio->private);
 255
 256        if (!(dio->flags & DIO_SKIP_DIO_COUNT))
 257                inode_dio_end(dio->inode);
 258
 259        if (is_async) {
 260                if (dio->rw & WRITE) {
 261                        int err;
 262
 263                        err = generic_write_sync(dio->iocb->ki_filp, offset,
 264                                                 transferred);
 265                        if (err < 0 && ret > 0)
 266                                ret = err;
 267                }
 268
 269                dio->iocb->ki_complete(dio->iocb, ret, 0);
 270        }
 271
 272        kmem_cache_free(dio_cache, dio);
 273        return ret;
 274}
 275
 276static void dio_aio_complete_work(struct work_struct *work)
 277{
 278        struct dio *dio = container_of(work, struct dio, complete_work);
 279
 280        dio_complete(dio, dio->iocb->ki_pos, 0, true);
 281}
 282
 283static int dio_bio_complete(struct dio *dio, struct bio *bio);
 284
 285/*
 286 * Asynchronous IO callback. 
 287 */
 288static void dio_bio_end_aio(struct bio *bio, int error)
 289{
 290        struct dio *dio = bio->bi_private;
 291        unsigned long remaining;
 292        unsigned long flags;
 293
 294        /* cleanup the bio */
 295        dio_bio_complete(dio, bio);
 296
 297        spin_lock_irqsave(&dio->bio_lock, flags);
 298        remaining = --dio->refcount;
 299        if (remaining == 1 && dio->waiter)
 300                wake_up_process(dio->waiter);
 301        spin_unlock_irqrestore(&dio->bio_lock, flags);
 302
 303        if (remaining == 0) {
 304                if (dio->result && dio->defer_completion) {
 305                        INIT_WORK(&dio->complete_work, dio_aio_complete_work);
 306                        queue_work(dio->inode->i_sb->s_dio_done_wq,
 307                                   &dio->complete_work);
 308                } else {
 309                        dio_complete(dio, dio->iocb->ki_pos, 0, true);
 310                }
 311        }
 312}
 313
 314/*
 315 * The BIO completion handler simply queues the BIO up for the process-context
 316 * handler.
 317 *
 318 * During I/O bi_private points at the dio.  After I/O, bi_private is used to
 319 * implement a singly-linked list of completed BIOs, at dio->bio_list.
 320 */
 321static void dio_bio_end_io(struct bio *bio, int error)
 322{
 323        struct dio *dio = bio->bi_private;
 324        unsigned long flags;
 325
 326        spin_lock_irqsave(&dio->bio_lock, flags);
 327        bio->bi_private = dio->bio_list;
 328        dio->bio_list = bio;
 329        if (--dio->refcount == 1 && dio->waiter)
 330                wake_up_process(dio->waiter);
 331        spin_unlock_irqrestore(&dio->bio_lock, flags);
 332}
 333
 334/**
 335 * dio_end_io - handle the end io action for the given bio
 336 * @bio: The direct io bio thats being completed
 337 * @error: Error if there was one
 338 *
 339 * This is meant to be called by any filesystem that uses their own dio_submit_t
 340 * so that the DIO specific endio actions are dealt with after the filesystem
 341 * has done it's completion work.
 342 */
 343void dio_end_io(struct bio *bio, int error)
 344{
 345        struct dio *dio = bio->bi_private;
 346
 347        if (dio->is_async)
 348                dio_bio_end_aio(bio, error);
 349        else
 350                dio_bio_end_io(bio, error);
 351}
 352EXPORT_SYMBOL_GPL(dio_end_io);
 353
 354static inline void
 355dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
 356              struct block_device *bdev,
 357              sector_t first_sector, int nr_vecs)
 358{
 359        struct bio *bio;
 360
 361        /*
 362         * bio_alloc() is guaranteed to return a bio when called with
 363         * __GFP_WAIT and we request a valid number of vectors.
 364         */
 365        bio = bio_alloc(GFP_KERNEL, nr_vecs);
 366
 367        bio->bi_bdev = bdev;
 368        bio->bi_iter.bi_sector = first_sector;
 369        if (dio->is_async)
 370                bio->bi_end_io = dio_bio_end_aio;
 371        else
 372                bio->bi_end_io = dio_bio_end_io;
 373
 374        sdio->bio = bio;
 375        sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
 376}
 377
 378/*
 379 * In the AIO read case we speculatively dirty the pages before starting IO.
 380 * During IO completion, any of these pages which happen to have been written
 381 * back will be redirtied by bio_check_pages_dirty().
 382 *
 383 * bios hold a dio reference between submit_bio and ->end_io.
 384 */
 385static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
 386{
 387        struct bio *bio = sdio->bio;
 388        unsigned long flags;
 389
 390        bio->bi_private = dio;
 391
 392        spin_lock_irqsave(&dio->bio_lock, flags);
 393        dio->refcount++;
 394        spin_unlock_irqrestore(&dio->bio_lock, flags);
 395
 396        if (dio->is_async && dio->rw == READ)
 397                bio_set_pages_dirty(bio);
 398
 399        if (sdio->submit_io)
 400                sdio->submit_io(dio->rw, bio, dio->inode,
 401                               sdio->logical_offset_in_bio);
 402        else
 403                submit_bio(dio->rw, bio);
 404
 405        sdio->bio = NULL;
 406        sdio->boundary = 0;
 407        sdio->logical_offset_in_bio = 0;
 408}
 409
 410/*
 411 * Release any resources in case of a failure
 412 */
 413static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
 414{
 415        while (sdio->head < sdio->tail)
 416                page_cache_release(dio->pages[sdio->head++]);
 417}
 418
 419/*
 420 * Wait for the next BIO to complete.  Remove it and return it.  NULL is
 421 * returned once all BIOs have been completed.  This must only be called once
 422 * all bios have been issued so that dio->refcount can only decrease.  This
 423 * requires that that the caller hold a reference on the dio.
 424 */
 425static struct bio *dio_await_one(struct dio *dio)
 426{
 427        unsigned long flags;
 428        struct bio *bio = NULL;
 429
 430        spin_lock_irqsave(&dio->bio_lock, flags);
 431
 432        /*
 433         * Wait as long as the list is empty and there are bios in flight.  bio
 434         * completion drops the count, maybe adds to the list, and wakes while
 435         * holding the bio_lock so we don't need set_current_state()'s barrier
 436         * and can call it after testing our condition.
 437         */
 438        while (dio->refcount > 1 && dio->bio_list == NULL) {
 439                __set_current_state(TASK_UNINTERRUPTIBLE);
 440                dio->waiter = current;
 441                spin_unlock_irqrestore(&dio->bio_lock, flags);
 442                io_schedule();
 443                /* wake up sets us TASK_RUNNING */
 444                spin_lock_irqsave(&dio->bio_lock, flags);
 445                dio->waiter = NULL;
 446        }
 447        if (dio->bio_list) {
 448                bio = dio->bio_list;
 449                dio->bio_list = bio->bi_private;
 450        }
 451        spin_unlock_irqrestore(&dio->bio_lock, flags);
 452        return bio;
 453}
 454
 455/*
 456 * Process one completed BIO.  No locks are held.
 457 */
 458static int dio_bio_complete(struct dio *dio, struct bio *bio)
 459{
 460        const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 461        struct bio_vec *bvec;
 462        unsigned i;
 463
 464        if (!uptodate)
 465                dio->io_error = -EIO;
 466
 467        if (dio->is_async && dio->rw == READ) {
 468                bio_check_pages_dirty(bio);     /* transfers ownership */
 469        } else {
 470                bio_for_each_segment_all(bvec, bio, i) {
 471                        struct page *page = bvec->bv_page;
 472
 473                        if (dio->rw == READ && !PageCompound(page))
 474                                set_page_dirty_lock(page);
 475                        page_cache_release(page);
 476                }
 477                bio_put(bio);
 478        }
 479        return uptodate ? 0 : -EIO;
 480}
 481
 482/*
 483 * Wait on and process all in-flight BIOs.  This must only be called once
 484 * all bios have been issued so that the refcount can only decrease.
 485 * This just waits for all bios to make it through dio_bio_complete.  IO
 486 * errors are propagated through dio->io_error and should be propagated via
 487 * dio_complete().
 488 */
 489static void dio_await_completion(struct dio *dio)
 490{
 491        struct bio *bio;
 492        do {
 493                bio = dio_await_one(dio);
 494                if (bio)
 495                        dio_bio_complete(dio, bio);
 496        } while (bio);
 497}
 498
 499/*
 500 * A really large O_DIRECT read or write can generate a lot of BIOs.  So
 501 * to keep the memory consumption sane we periodically reap any completed BIOs
 502 * during the BIO generation phase.
 503 *
 504 * This also helps to limit the peak amount of pinned userspace memory.
 505 */
 506static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
 507{
 508        int ret = 0;
 509
 510        if (sdio->reap_counter++ >= 64) {
 511                while (dio->bio_list) {
 512                        unsigned long flags;
 513                        struct bio *bio;
 514                        int ret2;
 515
 516                        spin_lock_irqsave(&dio->bio_lock, flags);
 517                        bio = dio->bio_list;
 518                        dio->bio_list = bio->bi_private;
 519                        spin_unlock_irqrestore(&dio->bio_lock, flags);
 520                        ret2 = dio_bio_complete(dio, bio);
 521                        if (ret == 0)
 522                                ret = ret2;
 523                }
 524                sdio->reap_counter = 0;
 525        }
 526        return ret;
 527}
 528
 529/*
 530 * Create workqueue for deferred direct IO completions. We allocate the
 531 * workqueue when it's first needed. This avoids creating workqueue for
 532 * filesystems that don't need it and also allows us to create the workqueue
 533 * late enough so the we can include s_id in the name of the workqueue.
 534 */
 535static int sb_init_dio_done_wq(struct super_block *sb)
 536{
 537        struct workqueue_struct *old;
 538        struct workqueue_struct *wq = alloc_workqueue("dio/%s",
 539                                                      WQ_MEM_RECLAIM, 0,
 540                                                      sb->s_id);
 541        if (!wq)
 542                return -ENOMEM;
 543        /*
 544         * This has to be atomic as more DIOs can race to create the workqueue
 545         */
 546        old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
 547        /* Someone created workqueue before us? Free ours... */
 548        if (old)
 549                destroy_workqueue(wq);
 550        return 0;
 551}
 552
 553static int dio_set_defer_completion(struct dio *dio)
 554{
 555        struct super_block *sb = dio->inode->i_sb;
 556
 557        if (dio->defer_completion)
 558                return 0;
 559        dio->defer_completion = true;
 560        if (!sb->s_dio_done_wq)
 561                return sb_init_dio_done_wq(sb);
 562        return 0;
 563}
 564
 565/*
 566 * Call into the fs to map some more disk blocks.  We record the current number
 567 * of available blocks at sdio->blocks_available.  These are in units of the
 568 * fs blocksize, (1 << inode->i_blkbits).
 569 *
 570 * The fs is allowed to map lots of blocks at once.  If it wants to do that,
 571 * it uses the passed inode-relative block number as the file offset, as usual.
 572 *
 573 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
 574 * has remaining to do.  The fs should not map more than this number of blocks.
 575 *
 576 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
 577 * indicate how much contiguous disk space has been made available at
 578 * bh->b_blocknr.
 579 *
 580 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
 581 * This isn't very efficient...
 582 *
 583 * In the case of filesystem holes: the fs may return an arbitrarily-large
 584 * hole by returning an appropriate value in b_size and by clearing
 585 * buffer_mapped().  However the direct-io code will only process holes one
 586 * block at a time - it will repeatedly call get_block() as it walks the hole.
 587 */
 588static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
 589                           struct buffer_head *map_bh)
 590{
 591        int ret;
 592        sector_t fs_startblk;   /* Into file, in filesystem-sized blocks */
 593        sector_t fs_endblk;     /* Into file, in filesystem-sized blocks */
 594        unsigned long fs_count; /* Number of filesystem-sized blocks */
 595        int create;
 596        unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
 597
 598        /*
 599         * If there was a memory error and we've overwritten all the
 600         * mapped blocks then we can now return that memory error
 601         */
 602        ret = dio->page_errors;
 603        if (ret == 0) {
 604                BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
 605                fs_startblk = sdio->block_in_file >> sdio->blkfactor;
 606                fs_endblk = (sdio->final_block_in_request - 1) >>
 607                                        sdio->blkfactor;
 608                fs_count = fs_endblk - fs_startblk + 1;
 609
 610                map_bh->b_state = 0;
 611                map_bh->b_size = fs_count << i_blkbits;
 612
 613                /*
 614                 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
 615                 * forbid block creations: only overwrites are permitted.
 616                 * We will return early to the caller once we see an
 617                 * unmapped buffer head returned, and the caller will fall
 618                 * back to buffered I/O.
 619                 *
 620                 * Otherwise the decision is left to the get_blocks method,
 621                 * which may decide to handle it or also return an unmapped
 622                 * buffer head.
 623                 */
 624                create = dio->rw & WRITE;
 625                if (dio->flags & DIO_SKIP_HOLES) {
 626                        if (sdio->block_in_file < (i_size_read(dio->inode) >>
 627                                                        sdio->blkbits))
 628                                create = 0;
 629                }
 630
 631                ret = (*sdio->get_block)(dio->inode, fs_startblk,
 632                                                map_bh, create);
 633
 634                /* Store for completion */
 635                dio->private = map_bh->b_private;
 636
 637                if (ret == 0 && buffer_defer_completion(map_bh))
 638                        ret = dio_set_defer_completion(dio);
 639        }
 640        return ret;
 641}
 642
 643/*
 644 * There is no bio.  Make one now.
 645 */
 646static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
 647                sector_t start_sector, struct buffer_head *map_bh)
 648{
 649        sector_t sector;
 650        int ret, nr_pages;
 651
 652        ret = dio_bio_reap(dio, sdio);
 653        if (ret)
 654                goto out;
 655        sector = start_sector << (sdio->blkbits - 9);
 656        nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(map_bh->b_bdev));
 657        BUG_ON(nr_pages <= 0);
 658        dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
 659        sdio->boundary = 0;
 660out:
 661        return ret;
 662}
 663
 664/*
 665 * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
 666 * that was successful then update final_block_in_bio and take a ref against
 667 * the just-added page.
 668 *
 669 * Return zero on success.  Non-zero means the caller needs to start a new BIO.
 670 */
 671static inline int dio_bio_add_page(struct dio_submit *sdio)
 672{
 673        int ret;
 674
 675        ret = bio_add_page(sdio->bio, sdio->cur_page,
 676                        sdio->cur_page_len, sdio->cur_page_offset);
 677        if (ret == sdio->cur_page_len) {
 678                /*
 679                 * Decrement count only, if we are done with this page
 680                 */
 681                if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
 682                        sdio->pages_in_io--;
 683                page_cache_get(sdio->cur_page);
 684                sdio->final_block_in_bio = sdio->cur_page_block +
 685                        (sdio->cur_page_len >> sdio->blkbits);
 686                ret = 0;
 687        } else {
 688                ret = 1;
 689        }
 690        return ret;
 691}
 692                
 693/*
 694 * Put cur_page under IO.  The section of cur_page which is described by
 695 * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
 696 * starts on-disk at cur_page_block.
 697 *
 698 * We take a ref against the page here (on behalf of its presence in the bio).
 699 *
 700 * The caller of this function is responsible for removing cur_page from the
 701 * dio, and for dropping the refcount which came from that presence.
 702 */
 703static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
 704                struct buffer_head *map_bh)
 705{
 706        int ret = 0;
 707
 708        if (sdio->bio) {
 709                loff_t cur_offset = sdio->cur_page_fs_offset;
 710                loff_t bio_next_offset = sdio->logical_offset_in_bio +
 711                        sdio->bio->bi_iter.bi_size;
 712
 713                /*
 714                 * See whether this new request is contiguous with the old.
 715                 *
 716                 * Btrfs cannot handle having logically non-contiguous requests
 717                 * submitted.  For example if you have
 718                 *
 719                 * Logical:  [0-4095][HOLE][8192-12287]
 720                 * Physical: [0-4095]      [4096-8191]
 721                 *
 722                 * We cannot submit those pages together as one BIO.  So if our
 723                 * current logical offset in the file does not equal what would
 724                 * be the next logical offset in the bio, submit the bio we
 725                 * have.
 726                 */
 727                if (sdio->final_block_in_bio != sdio->cur_page_block ||
 728                    cur_offset != bio_next_offset)
 729                        dio_bio_submit(dio, sdio);
 730        }
 731
 732        if (sdio->bio == NULL) {
 733                ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
 734                if (ret)
 735                        goto out;
 736        }
 737
 738        if (dio_bio_add_page(sdio) != 0) {
 739                dio_bio_submit(dio, sdio);
 740                ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
 741                if (ret == 0) {
 742                        ret = dio_bio_add_page(sdio);
 743                        BUG_ON(ret != 0);
 744                }
 745        }
 746out:
 747        return ret;
 748}
 749
 750/*
 751 * An autonomous function to put a chunk of a page under deferred IO.
 752 *
 753 * The caller doesn't actually know (or care) whether this piece of page is in
 754 * a BIO, or is under IO or whatever.  We just take care of all possible 
 755 * situations here.  The separation between the logic of do_direct_IO() and
 756 * that of submit_page_section() is important for clarity.  Please don't break.
 757 *
 758 * The chunk of page starts on-disk at blocknr.
 759 *
 760 * We perform deferred IO, by recording the last-submitted page inside our
 761 * private part of the dio structure.  If possible, we just expand the IO
 762 * across that page here.
 763 *
 764 * If that doesn't work out then we put the old page into the bio and add this
 765 * page to the dio instead.
 766 */
 767static inline int
 768submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
 769                    unsigned offset, unsigned len, sector_t blocknr,
 770                    struct buffer_head *map_bh)
 771{
 772        int ret = 0;
 773
 774        if (dio->rw & WRITE) {
 775                /*
 776                 * Read accounting is performed in submit_bio()
 777                 */
 778                task_io_account_write(len);
 779        }
 780
 781        /*
 782         * Can we just grow the current page's presence in the dio?
 783         */
 784        if (sdio->cur_page == page &&
 785            sdio->cur_page_offset + sdio->cur_page_len == offset &&
 786            sdio->cur_page_block +
 787            (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
 788                sdio->cur_page_len += len;
 789                goto out;
 790        }
 791
 792        /*
 793         * If there's a deferred page already there then send it.
 794         */
 795        if (sdio->cur_page) {
 796                ret = dio_send_cur_page(dio, sdio, map_bh);
 797                page_cache_release(sdio->cur_page);
 798                sdio->cur_page = NULL;
 799                if (ret)
 800                        return ret;
 801        }
 802
 803        page_cache_get(page);           /* It is in dio */
 804        sdio->cur_page = page;
 805        sdio->cur_page_offset = offset;
 806        sdio->cur_page_len = len;
 807        sdio->cur_page_block = blocknr;
 808        sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
 809out:
 810        /*
 811         * If sdio->boundary then we want to schedule the IO now to
 812         * avoid metadata seeks.
 813         */
 814        if (sdio->boundary) {
 815                ret = dio_send_cur_page(dio, sdio, map_bh);
 816                dio_bio_submit(dio, sdio);
 817                page_cache_release(sdio->cur_page);
 818                sdio->cur_page = NULL;
 819        }
 820        return ret;
 821}
 822
 823/*
 824 * Clean any dirty buffers in the blockdev mapping which alias newly-created
 825 * file blocks.  Only called for S_ISREG files - blockdevs do not set
 826 * buffer_new
 827 */
 828static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
 829{
 830        unsigned i;
 831        unsigned nblocks;
 832
 833        nblocks = map_bh->b_size >> dio->inode->i_blkbits;
 834
 835        for (i = 0; i < nblocks; i++) {
 836                unmap_underlying_metadata(map_bh->b_bdev,
 837                                          map_bh->b_blocknr + i);
 838        }
 839}
 840
 841/*
 842 * If we are not writing the entire block and get_block() allocated
 843 * the block for us, we need to fill-in the unused portion of the
 844 * block with zeros. This happens only if user-buffer, fileoffset or
 845 * io length is not filesystem block-size multiple.
 846 *
 847 * `end' is zero if we're doing the start of the IO, 1 at the end of the
 848 * IO.
 849 */
 850static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
 851                int end, struct buffer_head *map_bh)
 852{
 853        unsigned dio_blocks_per_fs_block;
 854        unsigned this_chunk_blocks;     /* In dio_blocks */
 855        unsigned this_chunk_bytes;
 856        struct page *page;
 857
 858        sdio->start_zero_done = 1;
 859        if (!sdio->blkfactor || !buffer_new(map_bh))
 860                return;
 861
 862        dio_blocks_per_fs_block = 1 << sdio->blkfactor;
 863        this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
 864
 865        if (!this_chunk_blocks)
 866                return;
 867
 868        /*
 869         * We need to zero out part of an fs block.  It is either at the
 870         * beginning or the end of the fs block.
 871         */
 872        if (end) 
 873                this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
 874
 875        this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
 876
 877        page = ZERO_PAGE(0);
 878        if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
 879                                sdio->next_block_for_io, map_bh))
 880                return;
 881
 882        sdio->next_block_for_io += this_chunk_blocks;
 883}
 884
 885/*
 886 * Walk the user pages, and the file, mapping blocks to disk and generating
 887 * a sequence of (page,offset,len,block) mappings.  These mappings are injected
 888 * into submit_page_section(), which takes care of the next stage of submission
 889 *
 890 * Direct IO against a blockdev is different from a file.  Because we can
 891 * happily perform page-sized but 512-byte aligned IOs.  It is important that
 892 * blockdev IO be able to have fine alignment and large sizes.
 893 *
 894 * So what we do is to permit the ->get_block function to populate bh.b_size
 895 * with the size of IO which is permitted at this offset and this i_blkbits.
 896 *
 897 * For best results, the blockdev should be set up with 512-byte i_blkbits and
 898 * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
 899 * fine alignment but still allows this function to work in PAGE_SIZE units.
 900 */
 901static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
 902                        struct buffer_head *map_bh)
 903{
 904        const unsigned blkbits = sdio->blkbits;
 905        int ret = 0;
 906
 907        while (sdio->block_in_file < sdio->final_block_in_request) {
 908                struct page *page;
 909                size_t from, to;
 910
 911                page = dio_get_page(dio, sdio);
 912                if (IS_ERR(page)) {
 913                        ret = PTR_ERR(page);
 914                        goto out;
 915                }
 916                from = sdio->head ? 0 : sdio->from;
 917                to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
 918                sdio->head++;
 919
 920                while (from < to) {
 921                        unsigned this_chunk_bytes;      /* # of bytes mapped */
 922                        unsigned this_chunk_blocks;     /* # of blocks */
 923                        unsigned u;
 924
 925                        if (sdio->blocks_available == 0) {
 926                                /*
 927                                 * Need to go and map some more disk
 928                                 */
 929                                unsigned long blkmask;
 930                                unsigned long dio_remainder;
 931
 932                                ret = get_more_blocks(dio, sdio, map_bh);
 933                                if (ret) {
 934                                        page_cache_release(page);
 935                                        goto out;
 936                                }
 937                                if (!buffer_mapped(map_bh))
 938                                        goto do_holes;
 939
 940                                sdio->blocks_available =
 941                                                map_bh->b_size >> sdio->blkbits;
 942                                sdio->next_block_for_io =
 943                                        map_bh->b_blocknr << sdio->blkfactor;
 944                                if (buffer_new(map_bh))
 945                                        clean_blockdev_aliases(dio, map_bh);
 946
 947                                if (!sdio->blkfactor)
 948                                        goto do_holes;
 949
 950                                blkmask = (1 << sdio->blkfactor) - 1;
 951                                dio_remainder = (sdio->block_in_file & blkmask);
 952
 953                                /*
 954                                 * If we are at the start of IO and that IO
 955                                 * starts partway into a fs-block,
 956                                 * dio_remainder will be non-zero.  If the IO
 957                                 * is a read then we can simply advance the IO
 958                                 * cursor to the first block which is to be
 959                                 * read.  But if the IO is a write and the
 960                                 * block was newly allocated we cannot do that;
 961                                 * the start of the fs block must be zeroed out
 962                                 * on-disk
 963                                 */
 964                                if (!buffer_new(map_bh))
 965                                        sdio->next_block_for_io += dio_remainder;
 966                                sdio->blocks_available -= dio_remainder;
 967                        }
 968do_holes:
 969                        /* Handle holes */
 970                        if (!buffer_mapped(map_bh)) {
 971                                loff_t i_size_aligned;
 972
 973                                /* AKPM: eargh, -ENOTBLK is a hack */
 974                                if (dio->rw & WRITE) {
 975                                        page_cache_release(page);
 976                                        return -ENOTBLK;
 977                                }
 978
 979                                /*
 980                                 * Be sure to account for a partial block as the
 981                                 * last block in the file
 982                                 */
 983                                i_size_aligned = ALIGN(i_size_read(dio->inode),
 984                                                        1 << blkbits);
 985                                if (sdio->block_in_file >=
 986                                                i_size_aligned >> blkbits) {
 987                                        /* We hit eof */
 988                                        page_cache_release(page);
 989                                        goto out;
 990                                }
 991                                zero_user(page, from, 1 << blkbits);
 992                                sdio->block_in_file++;
 993                                from += 1 << blkbits;
 994                                dio->result += 1 << blkbits;
 995                                goto next_block;
 996                        }
 997
 998                        /*
 999                         * If we're performing IO which has an alignment which
1000                         * is finer than the underlying fs, go check to see if
1001                         * we must zero out the start of this block.
1002                         */
1003                        if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1004                                dio_zero_block(dio, sdio, 0, map_bh);
1005
1006                        /*
1007                         * Work out, in this_chunk_blocks, how much disk we
1008                         * can add to this page
1009                         */
1010                        this_chunk_blocks = sdio->blocks_available;
1011                        u = (to - from) >> blkbits;
1012                        if (this_chunk_blocks > u)
1013                                this_chunk_blocks = u;
1014                        u = sdio->final_block_in_request - sdio->block_in_file;
1015                        if (this_chunk_blocks > u)
1016                                this_chunk_blocks = u;
1017                        this_chunk_bytes = this_chunk_blocks << blkbits;
1018                        BUG_ON(this_chunk_bytes == 0);
1019
1020                        if (this_chunk_blocks == sdio->blocks_available)
1021                                sdio->boundary = buffer_boundary(map_bh);
1022                        ret = submit_page_section(dio, sdio, page,
1023                                                  from,
1024                                                  this_chunk_bytes,
1025                                                  sdio->next_block_for_io,
1026                                                  map_bh);
1027                        if (ret) {
1028                                page_cache_release(page);
1029                                goto out;
1030                        }
1031                        sdio->next_block_for_io += this_chunk_blocks;
1032
1033                        sdio->block_in_file += this_chunk_blocks;
1034                        from += this_chunk_bytes;
1035                        dio->result += this_chunk_bytes;
1036                        sdio->blocks_available -= this_chunk_blocks;
1037next_block:
1038                        BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1039                        if (sdio->block_in_file == sdio->final_block_in_request)
1040                                break;
1041                }
1042
1043                /* Drop the ref which was taken in get_user_pages() */
1044                page_cache_release(page);
1045        }
1046out:
1047        return ret;
1048}
1049
1050static inline int drop_refcount(struct dio *dio)
1051{
1052        int ret2;
1053        unsigned long flags;
1054
1055        /*
1056         * Sync will always be dropping the final ref and completing the
1057         * operation.  AIO can if it was a broken operation described above or
1058         * in fact if all the bios race to complete before we get here.  In
1059         * that case dio_complete() translates the EIOCBQUEUED into the proper
1060         * return code that the caller will hand to ->complete().
1061         *
1062         * This is managed by the bio_lock instead of being an atomic_t so that
1063         * completion paths can drop their ref and use the remaining count to
1064         * decide to wake the submission path atomically.
1065         */
1066        spin_lock_irqsave(&dio->bio_lock, flags);
1067        ret2 = --dio->refcount;
1068        spin_unlock_irqrestore(&dio->bio_lock, flags);
1069        return ret2;
1070}
1071
1072/*
1073 * This is a library function for use by filesystem drivers.
1074 *
1075 * The locking rules are governed by the flags parameter:
1076 *  - if the flags value contains DIO_LOCKING we use a fancy locking
1077 *    scheme for dumb filesystems.
1078 *    For writes this function is called under i_mutex and returns with
1079 *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1080 *    taken and dropped again before returning.
1081 *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1082 *    internal locking but rather rely on the filesystem to synchronize
1083 *    direct I/O reads/writes versus each other and truncate.
1084 *
1085 * To help with locking against truncate we incremented the i_dio_count
1086 * counter before starting direct I/O, and decrement it once we are done.
1087 * Truncate can wait for it to reach zero to provide exclusion.  It is
1088 * expected that filesystem provide exclusion between new direct I/O
1089 * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1090 * but other filesystems need to take care of this on their own.
1091 *
1092 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1093 * is always inlined. Otherwise gcc is unable to split the structure into
1094 * individual fields and will generate much worse code. This is important
1095 * for the whole file.
1096 */
1097static inline ssize_t
1098do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1099                      struct block_device *bdev, struct iov_iter *iter,
1100                      loff_t offset, get_block_t get_block, dio_iodone_t end_io,
1101                      dio_submit_t submit_io, int flags)
1102{
1103        unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1104        unsigned blkbits = i_blkbits;
1105        unsigned blocksize_mask = (1 << blkbits) - 1;
1106        ssize_t retval = -EINVAL;
1107        size_t count = iov_iter_count(iter);
1108        loff_t end = offset + count;
1109        struct dio *dio;
1110        struct dio_submit sdio = { 0, };
1111        struct buffer_head map_bh = { 0, };
1112        struct blk_plug plug;
1113        unsigned long align = offset | iov_iter_alignment(iter);
1114
1115        /*
1116         * Avoid references to bdev if not absolutely needed to give
1117         * the early prefetch in the caller enough time.
1118         */
1119
1120        if (align & blocksize_mask) {
1121                if (bdev)
1122                        blkbits = blksize_bits(bdev_logical_block_size(bdev));
1123                blocksize_mask = (1 << blkbits) - 1;
1124                if (align & blocksize_mask)
1125                        goto out;
1126        }
1127
1128        /* watch out for a 0 len io from a tricksy fs */
1129        if (iov_iter_rw(iter) == READ && !iov_iter_count(iter))
1130                return 0;
1131
1132        dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1133        retval = -ENOMEM;
1134        if (!dio)
1135                goto out;
1136        /*
1137         * Believe it or not, zeroing out the page array caused a .5%
1138         * performance regression in a database benchmark.  So, we take
1139         * care to only zero out what's needed.
1140         */
1141        memset(dio, 0, offsetof(struct dio, pages));
1142
1143        dio->flags = flags;
1144        if (dio->flags & DIO_LOCKING) {
1145                if (iov_iter_rw(iter) == READ) {
1146                        struct address_space *mapping =
1147                                        iocb->ki_filp->f_mapping;
1148
1149                        /* will be released by direct_io_worker */
1150                        mutex_lock(&inode->i_mutex);
1151
1152                        retval = filemap_write_and_wait_range(mapping, offset,
1153                                                              end - 1);
1154                        if (retval) {
1155                                mutex_unlock(&inode->i_mutex);
1156                                kmem_cache_free(dio_cache, dio);
1157                                goto out;
1158                        }
1159                }
1160        }
1161
1162        /*
1163         * For file extending writes updating i_size before data writeouts
1164         * complete can expose uninitialized blocks in dumb filesystems.
1165         * In that case we need to wait for I/O completion even if asked
1166         * for an asynchronous write.
1167         */
1168        if (is_sync_kiocb(iocb))
1169                dio->is_async = false;
1170        else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
1171                 iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1172                dio->is_async = false;
1173        else
1174                dio->is_async = true;
1175
1176        dio->inode = inode;
1177        dio->rw = iov_iter_rw(iter) == WRITE ? WRITE_ODIRECT : READ;
1178
1179        /*
1180         * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1181         * so that we can call ->fsync.
1182         */
1183        if (dio->is_async && iov_iter_rw(iter) == WRITE &&
1184            ((iocb->ki_filp->f_flags & O_DSYNC) ||
1185             IS_SYNC(iocb->ki_filp->f_mapping->host))) {
1186                retval = dio_set_defer_completion(dio);
1187                if (retval) {
1188                        /*
1189                         * We grab i_mutex only for reads so we don't have
1190                         * to release it here
1191                         */
1192                        kmem_cache_free(dio_cache, dio);
1193                        goto out;
1194                }
1195        }
1196
1197        /*
1198         * Will be decremented at I/O completion time.
1199         */
1200        if (!(dio->flags & DIO_SKIP_DIO_COUNT))
1201                inode_dio_begin(inode);
1202
1203        retval = 0;
1204        sdio.blkbits = blkbits;
1205        sdio.blkfactor = i_blkbits - blkbits;
1206        sdio.block_in_file = offset >> blkbits;
1207
1208        sdio.get_block = get_block;
1209        dio->end_io = end_io;
1210        sdio.submit_io = submit_io;
1211        sdio.final_block_in_bio = -1;
1212        sdio.next_block_for_io = -1;
1213
1214        dio->iocb = iocb;
1215        dio->i_size = i_size_read(inode);
1216
1217        spin_lock_init(&dio->bio_lock);
1218        dio->refcount = 1;
1219
1220        sdio.iter = iter;
1221        sdio.final_block_in_request =
1222                (offset + iov_iter_count(iter)) >> blkbits;
1223
1224        /*
1225         * In case of non-aligned buffers, we may need 2 more
1226         * pages since we need to zero out first and last block.
1227         */
1228        if (unlikely(sdio.blkfactor))
1229                sdio.pages_in_io = 2;
1230
1231        sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1232
1233        blk_start_plug(&plug);
1234
1235        retval = do_direct_IO(dio, &sdio, &map_bh);
1236        if (retval)
1237                dio_cleanup(dio, &sdio);
1238
1239        if (retval == -ENOTBLK) {
1240                /*
1241                 * The remaining part of the request will be
1242                 * be handled by buffered I/O when we return
1243                 */
1244                retval = 0;
1245        }
1246        /*
1247         * There may be some unwritten disk at the end of a part-written
1248         * fs-block-sized block.  Go zero that now.
1249         */
1250        dio_zero_block(dio, &sdio, 1, &map_bh);
1251
1252        if (sdio.cur_page) {
1253                ssize_t ret2;
1254
1255                ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1256                if (retval == 0)
1257                        retval = ret2;
1258                page_cache_release(sdio.cur_page);
1259                sdio.cur_page = NULL;
1260        }
1261        if (sdio.bio)
1262                dio_bio_submit(dio, &sdio);
1263
1264        blk_finish_plug(&plug);
1265
1266        /*
1267         * It is possible that, we return short IO due to end of file.
1268         * In that case, we need to release all the pages we got hold on.
1269         */
1270        dio_cleanup(dio, &sdio);
1271
1272        /*
1273         * All block lookups have been performed. For READ requests
1274         * we can let i_mutex go now that its achieved its purpose
1275         * of protecting us from looking up uninitialized blocks.
1276         */
1277        if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1278                mutex_unlock(&dio->inode->i_mutex);
1279
1280        /*
1281         * The only time we want to leave bios in flight is when a successful
1282         * partial aio read or full aio write have been setup.  In that case
1283         * bio completion will call aio_complete.  The only time it's safe to
1284         * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1285         * This had *better* be the only place that raises -EIOCBQUEUED.
1286         */
1287        BUG_ON(retval == -EIOCBQUEUED);
1288        if (dio->is_async && retval == 0 && dio->result &&
1289            (iov_iter_rw(iter) == READ || dio->result == count))
1290                retval = -EIOCBQUEUED;
1291        else
1292                dio_await_completion(dio);
1293
1294        if (drop_refcount(dio) == 0) {
1295                retval = dio_complete(dio, offset, retval, false);
1296        } else
1297                BUG_ON(retval != -EIOCBQUEUED);
1298
1299out:
1300        return retval;
1301}
1302
1303ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1304                             struct block_device *bdev, struct iov_iter *iter,
1305                             loff_t offset, get_block_t get_block,
1306                             dio_iodone_t end_io, dio_submit_t submit_io,
1307                             int flags)
1308{
1309        /*
1310         * The block device state is needed in the end to finally
1311         * submit everything.  Since it's likely to be cache cold
1312         * prefetch it here as first thing to hide some of the
1313         * latency.
1314         *
1315         * Attempt to prefetch the pieces we likely need later.
1316         */
1317        prefetch(&bdev->bd_disk->part_tbl);
1318        prefetch(bdev->bd_queue);
1319        prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1320
1321        return do_blockdev_direct_IO(iocb, inode, bdev, iter, offset, get_block,
1322                                     end_io, submit_io, flags);
1323}
1324
1325EXPORT_SYMBOL(__blockdev_direct_IO);
1326
1327static __init int dio_init(void)
1328{
1329        dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1330        return 0;
1331}
1332module_init(dio_init)
1333