linux/fs/jbd/journal.c
<<
>>
Prefs
   1/*
   2 * linux/fs/jbd/journal.c
   3 *
   4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
   5 *
   6 * Copyright 1998 Red Hat corp --- All Rights Reserved
   7 *
   8 * This file is part of the Linux kernel and is made available under
   9 * the terms of the GNU General Public License, version 2, or at your
  10 * option, any later version, incorporated herein by reference.
  11 *
  12 * Generic filesystem journal-writing code; part of the ext2fs
  13 * journaling system.
  14 *
  15 * This file manages journals: areas of disk reserved for logging
  16 * transactional updates.  This includes the kernel journaling thread
  17 * which is responsible for scheduling updates to the log.
  18 *
  19 * We do not actually manage the physical storage of the journal in this
  20 * file: that is left to a per-journal policy function, which allows us
  21 * to store the journal within a filesystem-specified area for ext2
  22 * journaling (ext2 can use a reserved inode for storing the log).
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/time.h>
  27#include <linux/fs.h>
  28#include <linux/jbd.h>
  29#include <linux/errno.h>
  30#include <linux/slab.h>
  31#include <linux/init.h>
  32#include <linux/mm.h>
  33#include <linux/freezer.h>
  34#include <linux/pagemap.h>
  35#include <linux/kthread.h>
  36#include <linux/poison.h>
  37#include <linux/proc_fs.h>
  38#include <linux/debugfs.h>
  39#include <linux/ratelimit.h>
  40
  41#define CREATE_TRACE_POINTS
  42#include <trace/events/jbd.h>
  43
  44#include <asm/uaccess.h>
  45#include <asm/page.h>
  46
  47EXPORT_SYMBOL(journal_start);
  48EXPORT_SYMBOL(journal_restart);
  49EXPORT_SYMBOL(journal_extend);
  50EXPORT_SYMBOL(journal_stop);
  51EXPORT_SYMBOL(journal_lock_updates);
  52EXPORT_SYMBOL(journal_unlock_updates);
  53EXPORT_SYMBOL(journal_get_write_access);
  54EXPORT_SYMBOL(journal_get_create_access);
  55EXPORT_SYMBOL(journal_get_undo_access);
  56EXPORT_SYMBOL(journal_dirty_data);
  57EXPORT_SYMBOL(journal_dirty_metadata);
  58EXPORT_SYMBOL(journal_release_buffer);
  59EXPORT_SYMBOL(journal_forget);
  60#if 0
  61EXPORT_SYMBOL(journal_sync_buffer);
  62#endif
  63EXPORT_SYMBOL(journal_flush);
  64EXPORT_SYMBOL(journal_revoke);
  65
  66EXPORT_SYMBOL(journal_init_dev);
  67EXPORT_SYMBOL(journal_init_inode);
  68EXPORT_SYMBOL(journal_update_format);
  69EXPORT_SYMBOL(journal_check_used_features);
  70EXPORT_SYMBOL(journal_check_available_features);
  71EXPORT_SYMBOL(journal_set_features);
  72EXPORT_SYMBOL(journal_create);
  73EXPORT_SYMBOL(journal_load);
  74EXPORT_SYMBOL(journal_destroy);
  75EXPORT_SYMBOL(journal_abort);
  76EXPORT_SYMBOL(journal_errno);
  77EXPORT_SYMBOL(journal_ack_err);
  78EXPORT_SYMBOL(journal_clear_err);
  79EXPORT_SYMBOL(log_wait_commit);
  80EXPORT_SYMBOL(log_start_commit);
  81EXPORT_SYMBOL(journal_start_commit);
  82EXPORT_SYMBOL(journal_force_commit_nested);
  83EXPORT_SYMBOL(journal_wipe);
  84EXPORT_SYMBOL(journal_blocks_per_page);
  85EXPORT_SYMBOL(journal_invalidatepage);
  86EXPORT_SYMBOL(journal_try_to_free_buffers);
  87EXPORT_SYMBOL(journal_force_commit);
  88
  89static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
  90static void __journal_abort_soft (journal_t *journal, int errno);
  91static const char *journal_dev_name(journal_t *journal, char *buffer);
  92
  93#ifdef CONFIG_JBD_DEBUG
  94void __jbd_debug(int level, const char *file, const char *func,
  95                 unsigned int line, const char *fmt, ...)
  96{
  97        struct va_format vaf;
  98        va_list args;
  99
 100        if (level > journal_enable_debug)
 101                return;
 102        va_start(args, fmt);
 103        vaf.fmt = fmt;
 104        vaf.va = &args;
 105        printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
 106        va_end(args);
 107}
 108EXPORT_SYMBOL(__jbd_debug);
 109#endif
 110
 111/*
 112 * Helper function used to manage commit timeouts
 113 */
 114
 115static void commit_timeout(unsigned long __data)
 116{
 117        struct task_struct * p = (struct task_struct *) __data;
 118
 119        wake_up_process(p);
 120}
 121
 122/*
 123 * kjournald: The main thread function used to manage a logging device
 124 * journal.
 125 *
 126 * This kernel thread is responsible for two things:
 127 *
 128 * 1) COMMIT:  Every so often we need to commit the current state of the
 129 *    filesystem to disk.  The journal thread is responsible for writing
 130 *    all of the metadata buffers to disk.
 131 *
 132 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
 133 *    of the data in that part of the log has been rewritten elsewhere on
 134 *    the disk.  Flushing these old buffers to reclaim space in the log is
 135 *    known as checkpointing, and this thread is responsible for that job.
 136 */
 137
 138static int kjournald(void *arg)
 139{
 140        journal_t *journal = arg;
 141        transaction_t *transaction;
 142
 143        /*
 144         * Set up an interval timer which can be used to trigger a commit wakeup
 145         * after the commit interval expires
 146         */
 147        setup_timer(&journal->j_commit_timer, commit_timeout,
 148                        (unsigned long)current);
 149
 150        set_freezable();
 151
 152        /* Record that the journal thread is running */
 153        journal->j_task = current;
 154        wake_up(&journal->j_wait_done_commit);
 155
 156        printk(KERN_INFO "kjournald starting.  Commit interval %ld seconds\n",
 157                        journal->j_commit_interval / HZ);
 158
 159        /*
 160         * And now, wait forever for commit wakeup events.
 161         */
 162        spin_lock(&journal->j_state_lock);
 163
 164loop:
 165        if (journal->j_flags & JFS_UNMOUNT)
 166                goto end_loop;
 167
 168        jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
 169                journal->j_commit_sequence, journal->j_commit_request);
 170
 171        if (journal->j_commit_sequence != journal->j_commit_request) {
 172                jbd_debug(1, "OK, requests differ\n");
 173                spin_unlock(&journal->j_state_lock);
 174                del_timer_sync(&journal->j_commit_timer);
 175                journal_commit_transaction(journal);
 176                spin_lock(&journal->j_state_lock);
 177                goto loop;
 178        }
 179
 180        wake_up(&journal->j_wait_done_commit);
 181        if (freezing(current)) {
 182                /*
 183                 * The simpler the better. Flushing journal isn't a
 184                 * good idea, because that depends on threads that may
 185                 * be already stopped.
 186                 */
 187                jbd_debug(1, "Now suspending kjournald\n");
 188                spin_unlock(&journal->j_state_lock);
 189                try_to_freeze();
 190                spin_lock(&journal->j_state_lock);
 191        } else {
 192                /*
 193                 * We assume on resume that commits are already there,
 194                 * so we don't sleep
 195                 */
 196                DEFINE_WAIT(wait);
 197                int should_sleep = 1;
 198
 199                prepare_to_wait(&journal->j_wait_commit, &wait,
 200                                TASK_INTERRUPTIBLE);
 201                if (journal->j_commit_sequence != journal->j_commit_request)
 202                        should_sleep = 0;
 203                transaction = journal->j_running_transaction;
 204                if (transaction && time_after_eq(jiffies,
 205                                                transaction->t_expires))
 206                        should_sleep = 0;
 207                if (journal->j_flags & JFS_UNMOUNT)
 208                        should_sleep = 0;
 209                if (should_sleep) {
 210                        spin_unlock(&journal->j_state_lock);
 211                        schedule();
 212                        spin_lock(&journal->j_state_lock);
 213                }
 214                finish_wait(&journal->j_wait_commit, &wait);
 215        }
 216
 217        jbd_debug(1, "kjournald wakes\n");
 218
 219        /*
 220         * Were we woken up by a commit wakeup event?
 221         */
 222        transaction = journal->j_running_transaction;
 223        if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
 224                journal->j_commit_request = transaction->t_tid;
 225                jbd_debug(1, "woke because of timeout\n");
 226        }
 227        goto loop;
 228
 229end_loop:
 230        spin_unlock(&journal->j_state_lock);
 231        del_timer_sync(&journal->j_commit_timer);
 232        journal->j_task = NULL;
 233        wake_up(&journal->j_wait_done_commit);
 234        jbd_debug(1, "Journal thread exiting.\n");
 235        return 0;
 236}
 237
 238static int journal_start_thread(journal_t *journal)
 239{
 240        struct task_struct *t;
 241
 242        t = kthread_run(kjournald, journal, "kjournald");
 243        if (IS_ERR(t))
 244                return PTR_ERR(t);
 245
 246        wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
 247        return 0;
 248}
 249
 250static void journal_kill_thread(journal_t *journal)
 251{
 252        spin_lock(&journal->j_state_lock);
 253        journal->j_flags |= JFS_UNMOUNT;
 254
 255        while (journal->j_task) {
 256                wake_up(&journal->j_wait_commit);
 257                spin_unlock(&journal->j_state_lock);
 258                wait_event(journal->j_wait_done_commit,
 259                                journal->j_task == NULL);
 260                spin_lock(&journal->j_state_lock);
 261        }
 262        spin_unlock(&journal->j_state_lock);
 263}
 264
 265/*
 266 * journal_write_metadata_buffer: write a metadata buffer to the journal.
 267 *
 268 * Writes a metadata buffer to a given disk block.  The actual IO is not
 269 * performed but a new buffer_head is constructed which labels the data
 270 * to be written with the correct destination disk block.
 271 *
 272 * Any magic-number escaping which needs to be done will cause a
 273 * copy-out here.  If the buffer happens to start with the
 274 * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
 275 * magic number is only written to the log for descripter blocks.  In
 276 * this case, we copy the data and replace the first word with 0, and we
 277 * return a result code which indicates that this buffer needs to be
 278 * marked as an escaped buffer in the corresponding log descriptor
 279 * block.  The missing word can then be restored when the block is read
 280 * during recovery.
 281 *
 282 * If the source buffer has already been modified by a new transaction
 283 * since we took the last commit snapshot, we use the frozen copy of
 284 * that data for IO.  If we end up using the existing buffer_head's data
 285 * for the write, then we *have* to lock the buffer to prevent anyone
 286 * else from using and possibly modifying it while the IO is in
 287 * progress.
 288 *
 289 * The function returns a pointer to the buffer_heads to be used for IO.
 290 *
 291 * We assume that the journal has already been locked in this function.
 292 *
 293 * Return value:
 294 *  <0: Error
 295 * >=0: Finished OK
 296 *
 297 * On success:
 298 * Bit 0 set == escape performed on the data
 299 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
 300 */
 301
 302int journal_write_metadata_buffer(transaction_t *transaction,
 303                                  struct journal_head  *jh_in,
 304                                  struct journal_head **jh_out,
 305                                  unsigned int blocknr)
 306{
 307        int need_copy_out = 0;
 308        int done_copy_out = 0;
 309        int do_escape = 0;
 310        char *mapped_data;
 311        struct buffer_head *new_bh;
 312        struct journal_head *new_jh;
 313        struct page *new_page;
 314        unsigned int new_offset;
 315        struct buffer_head *bh_in = jh2bh(jh_in);
 316        journal_t *journal = transaction->t_journal;
 317
 318        /*
 319         * The buffer really shouldn't be locked: only the current committing
 320         * transaction is allowed to write it, so nobody else is allowed
 321         * to do any IO.
 322         *
 323         * akpm: except if we're journalling data, and write() output is
 324         * also part of a shared mapping, and another thread has
 325         * decided to launch a writepage() against this buffer.
 326         */
 327        J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
 328
 329        new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
 330        /* keep subsequent assertions sane */
 331        atomic_set(&new_bh->b_count, 1);
 332        new_jh = journal_add_journal_head(new_bh);      /* This sleeps */
 333
 334        /*
 335         * If a new transaction has already done a buffer copy-out, then
 336         * we use that version of the data for the commit.
 337         */
 338        jbd_lock_bh_state(bh_in);
 339repeat:
 340        if (jh_in->b_frozen_data) {
 341                done_copy_out = 1;
 342                new_page = virt_to_page(jh_in->b_frozen_data);
 343                new_offset = offset_in_page(jh_in->b_frozen_data);
 344        } else {
 345                new_page = jh2bh(jh_in)->b_page;
 346                new_offset = offset_in_page(jh2bh(jh_in)->b_data);
 347        }
 348
 349        mapped_data = kmap_atomic(new_page);
 350        /*
 351         * Check for escaping
 352         */
 353        if (*((__be32 *)(mapped_data + new_offset)) ==
 354                                cpu_to_be32(JFS_MAGIC_NUMBER)) {
 355                need_copy_out = 1;
 356                do_escape = 1;
 357        }
 358        kunmap_atomic(mapped_data);
 359
 360        /*
 361         * Do we need to do a data copy?
 362         */
 363        if (need_copy_out && !done_copy_out) {
 364                char *tmp;
 365
 366                jbd_unlock_bh_state(bh_in);
 367                tmp = jbd_alloc(bh_in->b_size, GFP_NOFS);
 368                jbd_lock_bh_state(bh_in);
 369                if (jh_in->b_frozen_data) {
 370                        jbd_free(tmp, bh_in->b_size);
 371                        goto repeat;
 372                }
 373
 374                jh_in->b_frozen_data = tmp;
 375                mapped_data = kmap_atomic(new_page);
 376                memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
 377                kunmap_atomic(mapped_data);
 378
 379                new_page = virt_to_page(tmp);
 380                new_offset = offset_in_page(tmp);
 381                done_copy_out = 1;
 382        }
 383
 384        /*
 385         * Did we need to do an escaping?  Now we've done all the
 386         * copying, we can finally do so.
 387         */
 388        if (do_escape) {
 389                mapped_data = kmap_atomic(new_page);
 390                *((unsigned int *)(mapped_data + new_offset)) = 0;
 391                kunmap_atomic(mapped_data);
 392        }
 393
 394        set_bh_page(new_bh, new_page, new_offset);
 395        new_jh->b_transaction = NULL;
 396        new_bh->b_size = jh2bh(jh_in)->b_size;
 397        new_bh->b_bdev = transaction->t_journal->j_dev;
 398        new_bh->b_blocknr = blocknr;
 399        set_buffer_mapped(new_bh);
 400        set_buffer_dirty(new_bh);
 401
 402        *jh_out = new_jh;
 403
 404        /*
 405         * The to-be-written buffer needs to get moved to the io queue,
 406         * and the original buffer whose contents we are shadowing or
 407         * copying is moved to the transaction's shadow queue.
 408         */
 409        JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
 410        spin_lock(&journal->j_list_lock);
 411        __journal_file_buffer(jh_in, transaction, BJ_Shadow);
 412        spin_unlock(&journal->j_list_lock);
 413        jbd_unlock_bh_state(bh_in);
 414
 415        JBUFFER_TRACE(new_jh, "file as BJ_IO");
 416        journal_file_buffer(new_jh, transaction, BJ_IO);
 417
 418        return do_escape | (done_copy_out << 1);
 419}
 420
 421/*
 422 * Allocation code for the journal file.  Manage the space left in the
 423 * journal, so that we can begin checkpointing when appropriate.
 424 */
 425
 426/*
 427 * __log_space_left: Return the number of free blocks left in the journal.
 428 *
 429 * Called with the journal already locked.
 430 *
 431 * Called under j_state_lock
 432 */
 433
 434int __log_space_left(journal_t *journal)
 435{
 436        int left = journal->j_free;
 437
 438        assert_spin_locked(&journal->j_state_lock);
 439
 440        /*
 441         * Be pessimistic here about the number of those free blocks which
 442         * might be required for log descriptor control blocks.
 443         */
 444
 445#define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
 446
 447        left -= MIN_LOG_RESERVED_BLOCKS;
 448
 449        if (left <= 0)
 450                return 0;
 451        left -= (left >> 3);
 452        return left;
 453}
 454
 455/*
 456 * Called under j_state_lock.  Returns true if a transaction commit was started.
 457 */
 458int __log_start_commit(journal_t *journal, tid_t target)
 459{
 460        /*
 461         * The only transaction we can possibly wait upon is the
 462         * currently running transaction (if it exists).  Otherwise,
 463         * the target tid must be an old one.
 464         */
 465        if (journal->j_commit_request != target &&
 466            journal->j_running_transaction &&
 467            journal->j_running_transaction->t_tid == target) {
 468                /*
 469                 * We want a new commit: OK, mark the request and wakeup the
 470                 * commit thread.  We do _not_ do the commit ourselves.
 471                 */
 472
 473                journal->j_commit_request = target;
 474                jbd_debug(1, "JBD: requesting commit %d/%d\n",
 475                          journal->j_commit_request,
 476                          journal->j_commit_sequence);
 477                wake_up(&journal->j_wait_commit);
 478                return 1;
 479        } else if (!tid_geq(journal->j_commit_request, target))
 480                /* This should never happen, but if it does, preserve
 481                   the evidence before kjournald goes into a loop and
 482                   increments j_commit_sequence beyond all recognition. */
 483                WARN_ONCE(1, "jbd: bad log_start_commit: %u %u %u %u\n",
 484                    journal->j_commit_request, journal->j_commit_sequence,
 485                    target, journal->j_running_transaction ?
 486                    journal->j_running_transaction->t_tid : 0);
 487        return 0;
 488}
 489
 490int log_start_commit(journal_t *journal, tid_t tid)
 491{
 492        int ret;
 493
 494        spin_lock(&journal->j_state_lock);
 495        ret = __log_start_commit(journal, tid);
 496        spin_unlock(&journal->j_state_lock);
 497        return ret;
 498}
 499
 500/*
 501 * Force and wait upon a commit if the calling process is not within
 502 * transaction.  This is used for forcing out undo-protected data which contains
 503 * bitmaps, when the fs is running out of space.
 504 *
 505 * We can only force the running transaction if we don't have an active handle;
 506 * otherwise, we will deadlock.
 507 *
 508 * Returns true if a transaction was started.
 509 */
 510int journal_force_commit_nested(journal_t *journal)
 511{
 512        transaction_t *transaction = NULL;
 513        tid_t tid;
 514
 515        spin_lock(&journal->j_state_lock);
 516        if (journal->j_running_transaction && !current->journal_info) {
 517                transaction = journal->j_running_transaction;
 518                __log_start_commit(journal, transaction->t_tid);
 519        } else if (journal->j_committing_transaction)
 520                transaction = journal->j_committing_transaction;
 521
 522        if (!transaction) {
 523                spin_unlock(&journal->j_state_lock);
 524                return 0;       /* Nothing to retry */
 525        }
 526
 527        tid = transaction->t_tid;
 528        spin_unlock(&journal->j_state_lock);
 529        log_wait_commit(journal, tid);
 530        return 1;
 531}
 532
 533/*
 534 * Start a commit of the current running transaction (if any).  Returns true
 535 * if a transaction is going to be committed (or is currently already
 536 * committing), and fills its tid in at *ptid
 537 */
 538int journal_start_commit(journal_t *journal, tid_t *ptid)
 539{
 540        int ret = 0;
 541
 542        spin_lock(&journal->j_state_lock);
 543        if (journal->j_running_transaction) {
 544                tid_t tid = journal->j_running_transaction->t_tid;
 545
 546                __log_start_commit(journal, tid);
 547                /* There's a running transaction and we've just made sure
 548                 * it's commit has been scheduled. */
 549                if (ptid)
 550                        *ptid = tid;
 551                ret = 1;
 552        } else if (journal->j_committing_transaction) {
 553                /*
 554                 * If commit has been started, then we have to wait for
 555                 * completion of that transaction.
 556                 */
 557                if (ptid)
 558                        *ptid = journal->j_committing_transaction->t_tid;
 559                ret = 1;
 560        }
 561        spin_unlock(&journal->j_state_lock);
 562        return ret;
 563}
 564
 565/*
 566 * Wait for a specified commit to complete.
 567 * The caller may not hold the journal lock.
 568 */
 569int log_wait_commit(journal_t *journal, tid_t tid)
 570{
 571        int err = 0;
 572
 573#ifdef CONFIG_JBD_DEBUG
 574        spin_lock(&journal->j_state_lock);
 575        if (!tid_geq(journal->j_commit_request, tid)) {
 576                printk(KERN_ERR
 577                       "%s: error: j_commit_request=%d, tid=%d\n",
 578                       __func__, journal->j_commit_request, tid);
 579        }
 580        spin_unlock(&journal->j_state_lock);
 581#endif
 582        spin_lock(&journal->j_state_lock);
 583        /*
 584         * Not running or committing trans? Must be already committed. This
 585         * saves us from waiting for a *long* time when tid overflows.
 586         */
 587        if (!((journal->j_running_transaction &&
 588               journal->j_running_transaction->t_tid == tid) ||
 589              (journal->j_committing_transaction &&
 590               journal->j_committing_transaction->t_tid == tid)))
 591                goto out_unlock;
 592
 593        if (!tid_geq(journal->j_commit_waited, tid))
 594                journal->j_commit_waited = tid;
 595        while (tid_gt(tid, journal->j_commit_sequence)) {
 596                jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
 597                                  tid, journal->j_commit_sequence);
 598                wake_up(&journal->j_wait_commit);
 599                spin_unlock(&journal->j_state_lock);
 600                wait_event(journal->j_wait_done_commit,
 601                                !tid_gt(tid, journal->j_commit_sequence));
 602                spin_lock(&journal->j_state_lock);
 603        }
 604out_unlock:
 605        spin_unlock(&journal->j_state_lock);
 606
 607        if (unlikely(is_journal_aborted(journal)))
 608                err = -EIO;
 609        return err;
 610}
 611
 612/*
 613 * Return 1 if a given transaction has not yet sent barrier request
 614 * connected with a transaction commit. If 0 is returned, transaction
 615 * may or may not have sent the barrier. Used to avoid sending barrier
 616 * twice in common cases.
 617 */
 618int journal_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
 619{
 620        int ret = 0;
 621        transaction_t *commit_trans;
 622
 623        if (!(journal->j_flags & JFS_BARRIER))
 624                return 0;
 625        spin_lock(&journal->j_state_lock);
 626        /* Transaction already committed? */
 627        if (tid_geq(journal->j_commit_sequence, tid))
 628                goto out;
 629        /*
 630         * Transaction is being committed and we already proceeded to
 631         * writing commit record?
 632         */
 633        commit_trans = journal->j_committing_transaction;
 634        if (commit_trans && commit_trans->t_tid == tid &&
 635            commit_trans->t_state >= T_COMMIT_RECORD)
 636                goto out;
 637        ret = 1;
 638out:
 639        spin_unlock(&journal->j_state_lock);
 640        return ret;
 641}
 642EXPORT_SYMBOL(journal_trans_will_send_data_barrier);
 643
 644/*
 645 * Log buffer allocation routines:
 646 */
 647
 648int journal_next_log_block(journal_t *journal, unsigned int *retp)
 649{
 650        unsigned int blocknr;
 651
 652        spin_lock(&journal->j_state_lock);
 653        J_ASSERT(journal->j_free > 1);
 654
 655        blocknr = journal->j_head;
 656        journal->j_head++;
 657        journal->j_free--;
 658        if (journal->j_head == journal->j_last)
 659                journal->j_head = journal->j_first;
 660        spin_unlock(&journal->j_state_lock);
 661        return journal_bmap(journal, blocknr, retp);
 662}
 663
 664/*
 665 * Conversion of logical to physical block numbers for the journal
 666 *
 667 * On external journals the journal blocks are identity-mapped, so
 668 * this is a no-op.  If needed, we can use j_blk_offset - everything is
 669 * ready.
 670 */
 671int journal_bmap(journal_t *journal, unsigned int blocknr,
 672                 unsigned int *retp)
 673{
 674        int err = 0;
 675        unsigned int ret;
 676
 677        if (journal->j_inode) {
 678                ret = bmap(journal->j_inode, blocknr);
 679                if (ret)
 680                        *retp = ret;
 681                else {
 682                        char b[BDEVNAME_SIZE];
 683
 684                        printk(KERN_ALERT "%s: journal block not found "
 685                                        "at offset %u on %s\n",
 686                                __func__,
 687                                blocknr,
 688                                bdevname(journal->j_dev, b));
 689                        err = -EIO;
 690                        __journal_abort_soft(journal, err);
 691                }
 692        } else {
 693                *retp = blocknr; /* +journal->j_blk_offset */
 694        }
 695        return err;
 696}
 697
 698/*
 699 * We play buffer_head aliasing tricks to write data/metadata blocks to
 700 * the journal without copying their contents, but for journal
 701 * descriptor blocks we do need to generate bona fide buffers.
 702 *
 703 * After the caller of journal_get_descriptor_buffer() has finished modifying
 704 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
 705 * But we don't bother doing that, so there will be coherency problems with
 706 * mmaps of blockdevs which hold live JBD-controlled filesystems.
 707 */
 708struct journal_head *journal_get_descriptor_buffer(journal_t *journal)
 709{
 710        struct buffer_head *bh;
 711        unsigned int blocknr;
 712        int err;
 713
 714        err = journal_next_log_block(journal, &blocknr);
 715
 716        if (err)
 717                return NULL;
 718
 719        bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
 720        if (!bh)
 721                return NULL;
 722        lock_buffer(bh);
 723        memset(bh->b_data, 0, journal->j_blocksize);
 724        set_buffer_uptodate(bh);
 725        unlock_buffer(bh);
 726        BUFFER_TRACE(bh, "return this buffer");
 727        return journal_add_journal_head(bh);
 728}
 729
 730/*
 731 * Management for journal control blocks: functions to create and
 732 * destroy journal_t structures, and to initialise and read existing
 733 * journal blocks from disk.  */
 734
 735/* First: create and setup a journal_t object in memory.  We initialise
 736 * very few fields yet: that has to wait until we have created the
 737 * journal structures from from scratch, or loaded them from disk. */
 738
 739static journal_t * journal_init_common (void)
 740{
 741        journal_t *journal;
 742        int err;
 743
 744        journal = kzalloc(sizeof(*journal), GFP_KERNEL);
 745        if (!journal)
 746                goto fail;
 747
 748        init_waitqueue_head(&journal->j_wait_transaction_locked);
 749        init_waitqueue_head(&journal->j_wait_logspace);
 750        init_waitqueue_head(&journal->j_wait_done_commit);
 751        init_waitqueue_head(&journal->j_wait_checkpoint);
 752        init_waitqueue_head(&journal->j_wait_commit);
 753        init_waitqueue_head(&journal->j_wait_updates);
 754        mutex_init(&journal->j_checkpoint_mutex);
 755        spin_lock_init(&journal->j_revoke_lock);
 756        spin_lock_init(&journal->j_list_lock);
 757        spin_lock_init(&journal->j_state_lock);
 758
 759        journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE);
 760
 761        /* The journal is marked for error until we succeed with recovery! */
 762        journal->j_flags = JFS_ABORT;
 763
 764        /* Set up a default-sized revoke table for the new mount. */
 765        err = journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
 766        if (err) {
 767                kfree(journal);
 768                goto fail;
 769        }
 770        return journal;
 771fail:
 772        return NULL;
 773}
 774
 775/* journal_init_dev and journal_init_inode:
 776 *
 777 * Create a journal structure assigned some fixed set of disk blocks to
 778 * the journal.  We don't actually touch those disk blocks yet, but we
 779 * need to set up all of the mapping information to tell the journaling
 780 * system where the journal blocks are.
 781 *
 782 */
 783
 784/**
 785 *  journal_t * journal_init_dev() - creates and initialises a journal structure
 786 *  @bdev: Block device on which to create the journal
 787 *  @fs_dev: Device which hold journalled filesystem for this journal.
 788 *  @start: Block nr Start of journal.
 789 *  @len:  Length of the journal in blocks.
 790 *  @blocksize: blocksize of journalling device
 791 *
 792 *  Returns: a newly created journal_t *
 793 *
 794 *  journal_init_dev creates a journal which maps a fixed contiguous
 795 *  range of blocks on an arbitrary block device.
 796 *
 797 */
 798journal_t * journal_init_dev(struct block_device *bdev,
 799                        struct block_device *fs_dev,
 800                        int start, int len, int blocksize)
 801{
 802        journal_t *journal = journal_init_common();
 803        struct buffer_head *bh;
 804        int n;
 805
 806        if (!journal)
 807                return NULL;
 808
 809        /* journal descriptor can store up to n blocks -bzzz */
 810        journal->j_blocksize = blocksize;
 811        n = journal->j_blocksize / sizeof(journal_block_tag_t);
 812        journal->j_wbufsize = n;
 813        journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
 814        if (!journal->j_wbuf) {
 815                printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
 816                        __func__);
 817                goto out_err;
 818        }
 819        journal->j_dev = bdev;
 820        journal->j_fs_dev = fs_dev;
 821        journal->j_blk_offset = start;
 822        journal->j_maxlen = len;
 823
 824        bh = __getblk(journal->j_dev, start, journal->j_blocksize);
 825        if (!bh) {
 826                printk(KERN_ERR
 827                       "%s: Cannot get buffer for journal superblock\n",
 828                       __func__);
 829                goto out_err;
 830        }
 831        journal->j_sb_buffer = bh;
 832        journal->j_superblock = (journal_superblock_t *)bh->b_data;
 833
 834        return journal;
 835out_err:
 836        kfree(journal->j_wbuf);
 837        kfree(journal);
 838        return NULL;
 839}
 840
 841/**
 842 *  journal_t * journal_init_inode () - creates a journal which maps to a inode.
 843 *  @inode: An inode to create the journal in
 844 *
 845 * journal_init_inode creates a journal which maps an on-disk inode as
 846 * the journal.  The inode must exist already, must support bmap() and
 847 * must have all data blocks preallocated.
 848 */
 849journal_t * journal_init_inode (struct inode *inode)
 850{
 851        struct buffer_head *bh;
 852        journal_t *journal = journal_init_common();
 853        int err;
 854        int n;
 855        unsigned int blocknr;
 856
 857        if (!journal)
 858                return NULL;
 859
 860        journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
 861        journal->j_inode = inode;
 862        jbd_debug(1,
 863                  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
 864                  journal, inode->i_sb->s_id, inode->i_ino,
 865                  (long long) inode->i_size,
 866                  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
 867
 868        journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
 869        journal->j_blocksize = inode->i_sb->s_blocksize;
 870
 871        /* journal descriptor can store up to n blocks -bzzz */
 872        n = journal->j_blocksize / sizeof(journal_block_tag_t);
 873        journal->j_wbufsize = n;
 874        journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
 875        if (!journal->j_wbuf) {
 876                printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
 877                        __func__);
 878                goto out_err;
 879        }
 880
 881        err = journal_bmap(journal, 0, &blocknr);
 882        /* If that failed, give up */
 883        if (err) {
 884                printk(KERN_ERR "%s: Cannot locate journal superblock\n",
 885                       __func__);
 886                goto out_err;
 887        }
 888
 889        bh = getblk_unmovable(journal->j_dev, blocknr, journal->j_blocksize);
 890        if (!bh) {
 891                printk(KERN_ERR
 892                       "%s: Cannot get buffer for journal superblock\n",
 893                       __func__);
 894                goto out_err;
 895        }
 896        journal->j_sb_buffer = bh;
 897        journal->j_superblock = (journal_superblock_t *)bh->b_data;
 898
 899        return journal;
 900out_err:
 901        kfree(journal->j_wbuf);
 902        kfree(journal);
 903        return NULL;
 904}
 905
 906/*
 907 * If the journal init or create aborts, we need to mark the journal
 908 * superblock as being NULL to prevent the journal destroy from writing
 909 * back a bogus superblock.
 910 */
 911static void journal_fail_superblock (journal_t *journal)
 912{
 913        struct buffer_head *bh = journal->j_sb_buffer;
 914        brelse(bh);
 915        journal->j_sb_buffer = NULL;
 916}
 917
 918/*
 919 * Given a journal_t structure, initialise the various fields for
 920 * startup of a new journaling session.  We use this both when creating
 921 * a journal, and after recovering an old journal to reset it for
 922 * subsequent use.
 923 */
 924
 925static int journal_reset(journal_t *journal)
 926{
 927        journal_superblock_t *sb = journal->j_superblock;
 928        unsigned int first, last;
 929
 930        first = be32_to_cpu(sb->s_first);
 931        last = be32_to_cpu(sb->s_maxlen);
 932        if (first + JFS_MIN_JOURNAL_BLOCKS > last + 1) {
 933                printk(KERN_ERR "JBD: Journal too short (blocks %u-%u).\n",
 934                       first, last);
 935                journal_fail_superblock(journal);
 936                return -EINVAL;
 937        }
 938
 939        journal->j_first = first;
 940        journal->j_last = last;
 941
 942        journal->j_head = first;
 943        journal->j_tail = first;
 944        journal->j_free = last - first;
 945
 946        journal->j_tail_sequence = journal->j_transaction_sequence;
 947        journal->j_commit_sequence = journal->j_transaction_sequence - 1;
 948        journal->j_commit_request = journal->j_commit_sequence;
 949
 950        journal->j_max_transaction_buffers = journal->j_maxlen / 4;
 951
 952        /*
 953         * As a special case, if the on-disk copy is already marked as needing
 954         * no recovery (s_start == 0), then we can safely defer the superblock
 955         * update until the next commit by setting JFS_FLUSHED.  This avoids
 956         * attempting a write to a potential-readonly device.
 957         */
 958        if (sb->s_start == 0) {
 959                jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
 960                        "(start %u, seq %d, errno %d)\n",
 961                        journal->j_tail, journal->j_tail_sequence,
 962                        journal->j_errno);
 963                journal->j_flags |= JFS_FLUSHED;
 964        } else {
 965                /* Lock here to make assertions happy... */
 966                mutex_lock(&journal->j_checkpoint_mutex);
 967                /*
 968                 * Update log tail information. We use WRITE_FUA since new
 969                 * transaction will start reusing journal space and so we
 970                 * must make sure information about current log tail is on
 971                 * disk before that.
 972                 */
 973                journal_update_sb_log_tail(journal,
 974                                           journal->j_tail_sequence,
 975                                           journal->j_tail,
 976                                           WRITE_FUA);
 977                mutex_unlock(&journal->j_checkpoint_mutex);
 978        }
 979        return journal_start_thread(journal);
 980}
 981
 982/**
 983 * int journal_create() - Initialise the new journal file
 984 * @journal: Journal to create. This structure must have been initialised
 985 *
 986 * Given a journal_t structure which tells us which disk blocks we can
 987 * use, create a new journal superblock and initialise all of the
 988 * journal fields from scratch.
 989 **/
 990int journal_create(journal_t *journal)
 991{
 992        unsigned int blocknr;
 993        struct buffer_head *bh;
 994        journal_superblock_t *sb;
 995        int i, err;
 996
 997        if (journal->j_maxlen < JFS_MIN_JOURNAL_BLOCKS) {
 998                printk (KERN_ERR "Journal length (%d blocks) too short.\n",
 999                        journal->j_maxlen);
1000                journal_fail_superblock(journal);
1001                return -EINVAL;
1002        }
1003
1004        if (journal->j_inode == NULL) {
1005                /*
1006                 * We don't know what block to start at!
1007                 */
1008                printk(KERN_EMERG
1009                       "%s: creation of journal on external device!\n",
1010                       __func__);
1011                BUG();
1012        }
1013
1014        /* Zero out the entire journal on disk.  We cannot afford to
1015           have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
1016        jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
1017        for (i = 0; i < journal->j_maxlen; i++) {
1018                err = journal_bmap(journal, i, &blocknr);
1019                if (err)
1020                        return err;
1021                bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1022                if (unlikely(!bh))
1023                        return -ENOMEM;
1024                lock_buffer(bh);
1025                memset (bh->b_data, 0, journal->j_blocksize);
1026                BUFFER_TRACE(bh, "marking dirty");
1027                mark_buffer_dirty(bh);
1028                BUFFER_TRACE(bh, "marking uptodate");
1029                set_buffer_uptodate(bh);
1030                unlock_buffer(bh);
1031                __brelse(bh);
1032        }
1033
1034        sync_blockdev(journal->j_dev);
1035        jbd_debug(1, "JBD: journal cleared.\n");
1036
1037        /* OK, fill in the initial static fields in the new superblock */
1038        sb = journal->j_superblock;
1039
1040        sb->s_header.h_magic     = cpu_to_be32(JFS_MAGIC_NUMBER);
1041        sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1042
1043        sb->s_blocksize = cpu_to_be32(journal->j_blocksize);
1044        sb->s_maxlen    = cpu_to_be32(journal->j_maxlen);
1045        sb->s_first     = cpu_to_be32(1);
1046
1047        journal->j_transaction_sequence = 1;
1048
1049        journal->j_flags &= ~JFS_ABORT;
1050        journal->j_format_version = 2;
1051
1052        return journal_reset(journal);
1053}
1054
1055static void journal_write_superblock(journal_t *journal, int write_op)
1056{
1057        struct buffer_head *bh = journal->j_sb_buffer;
1058        int ret;
1059
1060        trace_journal_write_superblock(journal, write_op);
1061        if (!(journal->j_flags & JFS_BARRIER))
1062                write_op &= ~(REQ_FUA | REQ_FLUSH);
1063        lock_buffer(bh);
1064        if (buffer_write_io_error(bh)) {
1065                char b[BDEVNAME_SIZE];
1066                /*
1067                 * Oh, dear.  A previous attempt to write the journal
1068                 * superblock failed.  This could happen because the
1069                 * USB device was yanked out.  Or it could happen to
1070                 * be a transient write error and maybe the block will
1071                 * be remapped.  Nothing we can do but to retry the
1072                 * write and hope for the best.
1073                 */
1074                printk(KERN_ERR "JBD: previous I/O error detected "
1075                       "for journal superblock update for %s.\n",
1076                       journal_dev_name(journal, b));
1077                clear_buffer_write_io_error(bh);
1078                set_buffer_uptodate(bh);
1079        }
1080
1081        get_bh(bh);
1082        bh->b_end_io = end_buffer_write_sync;
1083        ret = submit_bh(write_op, bh);
1084        wait_on_buffer(bh);
1085        if (buffer_write_io_error(bh)) {
1086                clear_buffer_write_io_error(bh);
1087                set_buffer_uptodate(bh);
1088                ret = -EIO;
1089        }
1090        if (ret) {
1091                char b[BDEVNAME_SIZE];
1092                printk(KERN_ERR "JBD: Error %d detected "
1093                       "when updating journal superblock for %s.\n",
1094                       ret, journal_dev_name(journal, b));
1095        }
1096}
1097
1098/**
1099 * journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1100 * @journal: The journal to update.
1101 * @tail_tid: TID of the new transaction at the tail of the log
1102 * @tail_block: The first block of the transaction at the tail of the log
1103 * @write_op: With which operation should we write the journal sb
1104 *
1105 * Update a journal's superblock information about log tail and write it to
1106 * disk, waiting for the IO to complete.
1107 */
1108void journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1109                                unsigned int tail_block, int write_op)
1110{
1111        journal_superblock_t *sb = journal->j_superblock;
1112
1113        BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1114        jbd_debug(1,"JBD: updating superblock (start %u, seq %u)\n",
1115                  tail_block, tail_tid);
1116
1117        sb->s_sequence = cpu_to_be32(tail_tid);
1118        sb->s_start    = cpu_to_be32(tail_block);
1119
1120        journal_write_superblock(journal, write_op);
1121
1122        /* Log is no longer empty */
1123        spin_lock(&journal->j_state_lock);
1124        WARN_ON(!sb->s_sequence);
1125        journal->j_flags &= ~JFS_FLUSHED;
1126        spin_unlock(&journal->j_state_lock);
1127}
1128
1129/**
1130 * mark_journal_empty() - Mark on disk journal as empty.
1131 * @journal: The journal to update.
1132 *
1133 * Update a journal's dynamic superblock fields to show that journal is empty.
1134 * Write updated superblock to disk waiting for IO to complete.
1135 */
1136static void mark_journal_empty(journal_t *journal)
1137{
1138        journal_superblock_t *sb = journal->j_superblock;
1139
1140        BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1141        spin_lock(&journal->j_state_lock);
1142        /* Is it already empty? */
1143        if (sb->s_start == 0) {
1144                spin_unlock(&journal->j_state_lock);
1145                return;
1146        }
1147        jbd_debug(1, "JBD: Marking journal as empty (seq %d)\n",
1148                  journal->j_tail_sequence);
1149
1150        sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1151        sb->s_start    = cpu_to_be32(0);
1152        spin_unlock(&journal->j_state_lock);
1153
1154        journal_write_superblock(journal, WRITE_FUA);
1155
1156        spin_lock(&journal->j_state_lock);
1157        /* Log is empty */
1158        journal->j_flags |= JFS_FLUSHED;
1159        spin_unlock(&journal->j_state_lock);
1160}
1161
1162/**
1163 * journal_update_sb_errno() - Update error in the journal.
1164 * @journal: The journal to update.
1165 *
1166 * Update a journal's errno.  Write updated superblock to disk waiting for IO
1167 * to complete.
1168 */
1169static void journal_update_sb_errno(journal_t *journal)
1170{
1171        journal_superblock_t *sb = journal->j_superblock;
1172
1173        spin_lock(&journal->j_state_lock);
1174        jbd_debug(1, "JBD: updating superblock error (errno %d)\n",
1175                  journal->j_errno);
1176        sb->s_errno = cpu_to_be32(journal->j_errno);
1177        spin_unlock(&journal->j_state_lock);
1178
1179        journal_write_superblock(journal, WRITE_SYNC);
1180}
1181
1182/*
1183 * Read the superblock for a given journal, performing initial
1184 * validation of the format.
1185 */
1186
1187static int journal_get_superblock(journal_t *journal)
1188{
1189        struct buffer_head *bh;
1190        journal_superblock_t *sb;
1191        int err = -EIO;
1192
1193        bh = journal->j_sb_buffer;
1194
1195        J_ASSERT(bh != NULL);
1196        if (!buffer_uptodate(bh)) {
1197                ll_rw_block(READ, 1, &bh);
1198                wait_on_buffer(bh);
1199                if (!buffer_uptodate(bh)) {
1200                        printk (KERN_ERR
1201                                "JBD: IO error reading journal superblock\n");
1202                        goto out;
1203                }
1204        }
1205
1206        sb = journal->j_superblock;
1207
1208        err = -EINVAL;
1209
1210        if (sb->s_header.h_magic != cpu_to_be32(JFS_MAGIC_NUMBER) ||
1211            sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1212                printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1213                goto out;
1214        }
1215
1216        switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1217        case JFS_SUPERBLOCK_V1:
1218                journal->j_format_version = 1;
1219                break;
1220        case JFS_SUPERBLOCK_V2:
1221                journal->j_format_version = 2;
1222                break;
1223        default:
1224                printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1225                goto out;
1226        }
1227
1228        if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1229                journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1230        else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1231                printk (KERN_WARNING "JBD: journal file too short\n");
1232                goto out;
1233        }
1234
1235        if (be32_to_cpu(sb->s_first) == 0 ||
1236            be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1237                printk(KERN_WARNING
1238                        "JBD: Invalid start block of journal: %u\n",
1239                        be32_to_cpu(sb->s_first));
1240                goto out;
1241        }
1242
1243        return 0;
1244
1245out:
1246        journal_fail_superblock(journal);
1247        return err;
1248}
1249
1250/*
1251 * Load the on-disk journal superblock and read the key fields into the
1252 * journal_t.
1253 */
1254
1255static int load_superblock(journal_t *journal)
1256{
1257        int err;
1258        journal_superblock_t *sb;
1259
1260        err = journal_get_superblock(journal);
1261        if (err)
1262                return err;
1263
1264        sb = journal->j_superblock;
1265
1266        journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1267        journal->j_tail = be32_to_cpu(sb->s_start);
1268        journal->j_first = be32_to_cpu(sb->s_first);
1269        journal->j_last = be32_to_cpu(sb->s_maxlen);
1270        journal->j_errno = be32_to_cpu(sb->s_errno);
1271
1272        return 0;
1273}
1274
1275
1276/**
1277 * int journal_load() - Read journal from disk.
1278 * @journal: Journal to act on.
1279 *
1280 * Given a journal_t structure which tells us which disk blocks contain
1281 * a journal, read the journal from disk to initialise the in-memory
1282 * structures.
1283 */
1284int journal_load(journal_t *journal)
1285{
1286        int err;
1287        journal_superblock_t *sb;
1288
1289        err = load_superblock(journal);
1290        if (err)
1291                return err;
1292
1293        sb = journal->j_superblock;
1294        /* If this is a V2 superblock, then we have to check the
1295         * features flags on it. */
1296
1297        if (journal->j_format_version >= 2) {
1298                if ((sb->s_feature_ro_compat &
1299                     ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES)) ||
1300                    (sb->s_feature_incompat &
1301                     ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES))) {
1302                        printk (KERN_WARNING
1303                                "JBD: Unrecognised features on journal\n");
1304                        return -EINVAL;
1305                }
1306        }
1307
1308        /* Let the recovery code check whether it needs to recover any
1309         * data from the journal. */
1310        if (journal_recover(journal))
1311                goto recovery_error;
1312
1313        /* OK, we've finished with the dynamic journal bits:
1314         * reinitialise the dynamic contents of the superblock in memory
1315         * and reset them on disk. */
1316        if (journal_reset(journal))
1317                goto recovery_error;
1318
1319        journal->j_flags &= ~JFS_ABORT;
1320        journal->j_flags |= JFS_LOADED;
1321        return 0;
1322
1323recovery_error:
1324        printk (KERN_WARNING "JBD: recovery failed\n");
1325        return -EIO;
1326}
1327
1328/**
1329 * void journal_destroy() - Release a journal_t structure.
1330 * @journal: Journal to act on.
1331 *
1332 * Release a journal_t structure once it is no longer in use by the
1333 * journaled object.
1334 * Return <0 if we couldn't clean up the journal.
1335 */
1336int journal_destroy(journal_t *journal)
1337{
1338        int err = 0;
1339
1340        
1341        /* Wait for the commit thread to wake up and die. */
1342        journal_kill_thread(journal);
1343
1344        /* Force a final log commit */
1345        if (journal->j_running_transaction)
1346                journal_commit_transaction(journal);
1347
1348        /* Force any old transactions to disk */
1349
1350        /* We cannot race with anybody but must keep assertions happy */
1351        mutex_lock(&journal->j_checkpoint_mutex);
1352        /* Totally anal locking here... */
1353        spin_lock(&journal->j_list_lock);
1354        while (journal->j_checkpoint_transactions != NULL) {
1355                spin_unlock(&journal->j_list_lock);
1356                log_do_checkpoint(journal);
1357                spin_lock(&journal->j_list_lock);
1358        }
1359
1360        J_ASSERT(journal->j_running_transaction == NULL);
1361        J_ASSERT(journal->j_committing_transaction == NULL);
1362        J_ASSERT(journal->j_checkpoint_transactions == NULL);
1363        spin_unlock(&journal->j_list_lock);
1364
1365        if (journal->j_sb_buffer) {
1366                if (!is_journal_aborted(journal)) {
1367                        journal->j_tail_sequence =
1368                                ++journal->j_transaction_sequence;
1369                        mark_journal_empty(journal);
1370                } else
1371                        err = -EIO;
1372                brelse(journal->j_sb_buffer);
1373        }
1374        mutex_unlock(&journal->j_checkpoint_mutex);
1375
1376        iput(journal->j_inode);
1377        if (journal->j_revoke)
1378                journal_destroy_revoke(journal);
1379        kfree(journal->j_wbuf);
1380        kfree(journal);
1381
1382        return err;
1383}
1384
1385
1386/**
1387 *int journal_check_used_features () - Check if features specified are used.
1388 * @journal: Journal to check.
1389 * @compat: bitmask of compatible features
1390 * @ro: bitmask of features that force read-only mount
1391 * @incompat: bitmask of incompatible features
1392 *
1393 * Check whether the journal uses all of a given set of
1394 * features.  Return true (non-zero) if it does.
1395 **/
1396
1397int journal_check_used_features (journal_t *journal, unsigned long compat,
1398                                 unsigned long ro, unsigned long incompat)
1399{
1400        journal_superblock_t *sb;
1401
1402        if (!compat && !ro && !incompat)
1403                return 1;
1404        if (journal->j_format_version == 1)
1405                return 0;
1406
1407        sb = journal->j_superblock;
1408
1409        if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1410            ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1411            ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1412                return 1;
1413
1414        return 0;
1415}
1416
1417/**
1418 * int journal_check_available_features() - Check feature set in journalling layer
1419 * @journal: Journal to check.
1420 * @compat: bitmask of compatible features
1421 * @ro: bitmask of features that force read-only mount
1422 * @incompat: bitmask of incompatible features
1423 *
1424 * Check whether the journaling code supports the use of
1425 * all of a given set of features on this journal.  Return true
1426 * (non-zero) if it can. */
1427
1428int journal_check_available_features (journal_t *journal, unsigned long compat,
1429                                      unsigned long ro, unsigned long incompat)
1430{
1431        if (!compat && !ro && !incompat)
1432                return 1;
1433
1434        /* We can support any known requested features iff the
1435         * superblock is in version 2.  Otherwise we fail to support any
1436         * extended sb features. */
1437
1438        if (journal->j_format_version != 2)
1439                return 0;
1440
1441        if ((compat   & JFS_KNOWN_COMPAT_FEATURES) == compat &&
1442            (ro       & JFS_KNOWN_ROCOMPAT_FEATURES) == ro &&
1443            (incompat & JFS_KNOWN_INCOMPAT_FEATURES) == incompat)
1444                return 1;
1445
1446        return 0;
1447}
1448
1449/**
1450 * int journal_set_features () - Mark a given journal feature in the superblock
1451 * @journal: Journal to act on.
1452 * @compat: bitmask of compatible features
1453 * @ro: bitmask of features that force read-only mount
1454 * @incompat: bitmask of incompatible features
1455 *
1456 * Mark a given journal feature as present on the
1457 * superblock.  Returns true if the requested features could be set.
1458 *
1459 */
1460
1461int journal_set_features (journal_t *journal, unsigned long compat,
1462                          unsigned long ro, unsigned long incompat)
1463{
1464        journal_superblock_t *sb;
1465
1466        if (journal_check_used_features(journal, compat, ro, incompat))
1467                return 1;
1468
1469        if (!journal_check_available_features(journal, compat, ro, incompat))
1470                return 0;
1471
1472        jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1473                  compat, ro, incompat);
1474
1475        sb = journal->j_superblock;
1476
1477        sb->s_feature_compat    |= cpu_to_be32(compat);
1478        sb->s_feature_ro_compat |= cpu_to_be32(ro);
1479        sb->s_feature_incompat  |= cpu_to_be32(incompat);
1480
1481        return 1;
1482}
1483
1484
1485/**
1486 * int journal_update_format () - Update on-disk journal structure.
1487 * @journal: Journal to act on.
1488 *
1489 * Given an initialised but unloaded journal struct, poke about in the
1490 * on-disk structure to update it to the most recent supported version.
1491 */
1492int journal_update_format (journal_t *journal)
1493{
1494        journal_superblock_t *sb;
1495        int err;
1496
1497        err = journal_get_superblock(journal);
1498        if (err)
1499                return err;
1500
1501        sb = journal->j_superblock;
1502
1503        switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1504        case JFS_SUPERBLOCK_V2:
1505                return 0;
1506        case JFS_SUPERBLOCK_V1:
1507                return journal_convert_superblock_v1(journal, sb);
1508        default:
1509                break;
1510        }
1511        return -EINVAL;
1512}
1513
1514static int journal_convert_superblock_v1(journal_t *journal,
1515                                         journal_superblock_t *sb)
1516{
1517        int offset, blocksize;
1518        struct buffer_head *bh;
1519
1520        printk(KERN_WARNING
1521                "JBD: Converting superblock from version 1 to 2.\n");
1522
1523        /* Pre-initialise new fields to zero */
1524        offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1525        blocksize = be32_to_cpu(sb->s_blocksize);
1526        memset(&sb->s_feature_compat, 0, blocksize-offset);
1527
1528        sb->s_nr_users = cpu_to_be32(1);
1529        sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1530        journal->j_format_version = 2;
1531
1532        bh = journal->j_sb_buffer;
1533        BUFFER_TRACE(bh, "marking dirty");
1534        mark_buffer_dirty(bh);
1535        sync_dirty_buffer(bh);
1536        return 0;
1537}
1538
1539
1540/**
1541 * int journal_flush () - Flush journal
1542 * @journal: Journal to act on.
1543 *
1544 * Flush all data for a given journal to disk and empty the journal.
1545 * Filesystems can use this when remounting readonly to ensure that
1546 * recovery does not need to happen on remount.
1547 */
1548
1549int journal_flush(journal_t *journal)
1550{
1551        int err = 0;
1552        transaction_t *transaction = NULL;
1553
1554        spin_lock(&journal->j_state_lock);
1555
1556        /* Force everything buffered to the log... */
1557        if (journal->j_running_transaction) {
1558                transaction = journal->j_running_transaction;
1559                __log_start_commit(journal, transaction->t_tid);
1560        } else if (journal->j_committing_transaction)
1561                transaction = journal->j_committing_transaction;
1562
1563        /* Wait for the log commit to complete... */
1564        if (transaction) {
1565                tid_t tid = transaction->t_tid;
1566
1567                spin_unlock(&journal->j_state_lock);
1568                log_wait_commit(journal, tid);
1569        } else {
1570                spin_unlock(&journal->j_state_lock);
1571        }
1572
1573        /* ...and flush everything in the log out to disk. */
1574        spin_lock(&journal->j_list_lock);
1575        while (!err && journal->j_checkpoint_transactions != NULL) {
1576                spin_unlock(&journal->j_list_lock);
1577                mutex_lock(&journal->j_checkpoint_mutex);
1578                err = log_do_checkpoint(journal);
1579                mutex_unlock(&journal->j_checkpoint_mutex);
1580                spin_lock(&journal->j_list_lock);
1581        }
1582        spin_unlock(&journal->j_list_lock);
1583
1584        if (is_journal_aborted(journal))
1585                return -EIO;
1586
1587        mutex_lock(&journal->j_checkpoint_mutex);
1588        cleanup_journal_tail(journal);
1589
1590        /* Finally, mark the journal as really needing no recovery.
1591         * This sets s_start==0 in the underlying superblock, which is
1592         * the magic code for a fully-recovered superblock.  Any future
1593         * commits of data to the journal will restore the current
1594         * s_start value. */
1595        mark_journal_empty(journal);
1596        mutex_unlock(&journal->j_checkpoint_mutex);
1597        spin_lock(&journal->j_state_lock);
1598        J_ASSERT(!journal->j_running_transaction);
1599        J_ASSERT(!journal->j_committing_transaction);
1600        J_ASSERT(!journal->j_checkpoint_transactions);
1601        J_ASSERT(journal->j_head == journal->j_tail);
1602        J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1603        spin_unlock(&journal->j_state_lock);
1604        return 0;
1605}
1606
1607/**
1608 * int journal_wipe() - Wipe journal contents
1609 * @journal: Journal to act on.
1610 * @write: flag (see below)
1611 *
1612 * Wipe out all of the contents of a journal, safely.  This will produce
1613 * a warning if the journal contains any valid recovery information.
1614 * Must be called between journal_init_*() and journal_load().
1615 *
1616 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1617 * we merely suppress recovery.
1618 */
1619
1620int journal_wipe(journal_t *journal, int write)
1621{
1622        int err = 0;
1623
1624        J_ASSERT (!(journal->j_flags & JFS_LOADED));
1625
1626        err = load_superblock(journal);
1627        if (err)
1628                return err;
1629
1630        if (!journal->j_tail)
1631                goto no_recovery;
1632
1633        printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1634                write ? "Clearing" : "Ignoring");
1635
1636        err = journal_skip_recovery(journal);
1637        if (write) {
1638                /* Lock to make assertions happy... */
1639                mutex_lock(&journal->j_checkpoint_mutex);
1640                mark_journal_empty(journal);
1641                mutex_unlock(&journal->j_checkpoint_mutex);
1642        }
1643
1644 no_recovery:
1645        return err;
1646}
1647
1648/*
1649 * journal_dev_name: format a character string to describe on what
1650 * device this journal is present.
1651 */
1652
1653static const char *journal_dev_name(journal_t *journal, char *buffer)
1654{
1655        struct block_device *bdev;
1656
1657        if (journal->j_inode)
1658                bdev = journal->j_inode->i_sb->s_bdev;
1659        else
1660                bdev = journal->j_dev;
1661
1662        return bdevname(bdev, buffer);
1663}
1664
1665/*
1666 * Journal abort has very specific semantics, which we describe
1667 * for journal abort.
1668 *
1669 * Two internal function, which provide abort to te jbd layer
1670 * itself are here.
1671 */
1672
1673/*
1674 * Quick version for internal journal use (doesn't lock the journal).
1675 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1676 * and don't attempt to make any other journal updates.
1677 */
1678static void __journal_abort_hard(journal_t *journal)
1679{
1680        transaction_t *transaction;
1681        char b[BDEVNAME_SIZE];
1682
1683        if (journal->j_flags & JFS_ABORT)
1684                return;
1685
1686        printk(KERN_ERR "Aborting journal on device %s.\n",
1687                journal_dev_name(journal, b));
1688
1689        spin_lock(&journal->j_state_lock);
1690        journal->j_flags |= JFS_ABORT;
1691        transaction = journal->j_running_transaction;
1692        if (transaction)
1693                __log_start_commit(journal, transaction->t_tid);
1694        spin_unlock(&journal->j_state_lock);
1695}
1696
1697/* Soft abort: record the abort error status in the journal superblock,
1698 * but don't do any other IO. */
1699static void __journal_abort_soft (journal_t *journal, int errno)
1700{
1701        if (journal->j_flags & JFS_ABORT)
1702                return;
1703
1704        if (!journal->j_errno)
1705                journal->j_errno = errno;
1706
1707        __journal_abort_hard(journal);
1708
1709        if (errno)
1710                journal_update_sb_errno(journal);
1711}
1712
1713/**
1714 * void journal_abort () - Shutdown the journal immediately.
1715 * @journal: the journal to shutdown.
1716 * @errno:   an error number to record in the journal indicating
1717 *           the reason for the shutdown.
1718 *
1719 * Perform a complete, immediate shutdown of the ENTIRE
1720 * journal (not of a single transaction).  This operation cannot be
1721 * undone without closing and reopening the journal.
1722 *
1723 * The journal_abort function is intended to support higher level error
1724 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1725 * mode.
1726 *
1727 * Journal abort has very specific semantics.  Any existing dirty,
1728 * unjournaled buffers in the main filesystem will still be written to
1729 * disk by bdflush, but the journaling mechanism will be suspended
1730 * immediately and no further transaction commits will be honoured.
1731 *
1732 * Any dirty, journaled buffers will be written back to disk without
1733 * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1734 * filesystem, but we _do_ attempt to leave as much data as possible
1735 * behind for fsck to use for cleanup.
1736 *
1737 * Any attempt to get a new transaction handle on a journal which is in
1738 * ABORT state will just result in an -EROFS error return.  A
1739 * journal_stop on an existing handle will return -EIO if we have
1740 * entered abort state during the update.
1741 *
1742 * Recursive transactions are not disturbed by journal abort until the
1743 * final journal_stop, which will receive the -EIO error.
1744 *
1745 * Finally, the journal_abort call allows the caller to supply an errno
1746 * which will be recorded (if possible) in the journal superblock.  This
1747 * allows a client to record failure conditions in the middle of a
1748 * transaction without having to complete the transaction to record the
1749 * failure to disk.  ext3_error, for example, now uses this
1750 * functionality.
1751 *
1752 * Errors which originate from within the journaling layer will NOT
1753 * supply an errno; a null errno implies that absolutely no further
1754 * writes are done to the journal (unless there are any already in
1755 * progress).
1756 *
1757 */
1758
1759void journal_abort(journal_t *journal, int errno)
1760{
1761        __journal_abort_soft(journal, errno);
1762}
1763
1764/**
1765 * int journal_errno () - returns the journal's error state.
1766 * @journal: journal to examine.
1767 *
1768 * This is the errno numbet set with journal_abort(), the last
1769 * time the journal was mounted - if the journal was stopped
1770 * without calling abort this will be 0.
1771 *
1772 * If the journal has been aborted on this mount time -EROFS will
1773 * be returned.
1774 */
1775int journal_errno(journal_t *journal)
1776{
1777        int err;
1778
1779        spin_lock(&journal->j_state_lock);
1780        if (journal->j_flags & JFS_ABORT)
1781                err = -EROFS;
1782        else
1783                err = journal->j_errno;
1784        spin_unlock(&journal->j_state_lock);
1785        return err;
1786}
1787
1788/**
1789 * int journal_clear_err () - clears the journal's error state
1790 * @journal: journal to act on.
1791 *
1792 * An error must be cleared or Acked to take a FS out of readonly
1793 * mode.
1794 */
1795int journal_clear_err(journal_t *journal)
1796{
1797        int err = 0;
1798
1799        spin_lock(&journal->j_state_lock);
1800        if (journal->j_flags & JFS_ABORT)
1801                err = -EROFS;
1802        else
1803                journal->j_errno = 0;
1804        spin_unlock(&journal->j_state_lock);
1805        return err;
1806}
1807
1808/**
1809 * void journal_ack_err() - Ack journal err.
1810 * @journal: journal to act on.
1811 *
1812 * An error must be cleared or Acked to take a FS out of readonly
1813 * mode.
1814 */
1815void journal_ack_err(journal_t *journal)
1816{
1817        spin_lock(&journal->j_state_lock);
1818        if (journal->j_errno)
1819                journal->j_flags |= JFS_ACK_ERR;
1820        spin_unlock(&journal->j_state_lock);
1821}
1822
1823int journal_blocks_per_page(struct inode *inode)
1824{
1825        return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1826}
1827
1828/*
1829 * Journal_head storage management
1830 */
1831static struct kmem_cache *journal_head_cache;
1832#ifdef CONFIG_JBD_DEBUG
1833static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1834#endif
1835
1836static int journal_init_journal_head_cache(void)
1837{
1838        int retval;
1839
1840        J_ASSERT(journal_head_cache == NULL);
1841        journal_head_cache = kmem_cache_create("journal_head",
1842                                sizeof(struct journal_head),
1843                                0,              /* offset */
1844                                SLAB_TEMPORARY, /* flags */
1845                                NULL);          /* ctor */
1846        retval = 0;
1847        if (!journal_head_cache) {
1848                retval = -ENOMEM;
1849                printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1850        }
1851        return retval;
1852}
1853
1854static void journal_destroy_journal_head_cache(void)
1855{
1856        if (journal_head_cache) {
1857                kmem_cache_destroy(journal_head_cache);
1858                journal_head_cache = NULL;
1859        }
1860}
1861
1862/*
1863 * journal_head splicing and dicing
1864 */
1865static struct journal_head *journal_alloc_journal_head(void)
1866{
1867        struct journal_head *ret;
1868
1869#ifdef CONFIG_JBD_DEBUG
1870        atomic_inc(&nr_journal_heads);
1871#endif
1872        ret = kmem_cache_zalloc(journal_head_cache, GFP_NOFS);
1873        if (ret == NULL) {
1874                jbd_debug(1, "out of memory for journal_head\n");
1875                printk_ratelimited(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1876                                   __func__);
1877
1878                while (ret == NULL) {
1879                        yield();
1880                        ret = kmem_cache_zalloc(journal_head_cache, GFP_NOFS);
1881                }
1882        }
1883        return ret;
1884}
1885
1886static void journal_free_journal_head(struct journal_head *jh)
1887{
1888#ifdef CONFIG_JBD_DEBUG
1889        atomic_dec(&nr_journal_heads);
1890        memset(jh, JBD_POISON_FREE, sizeof(*jh));
1891#endif
1892        kmem_cache_free(journal_head_cache, jh);
1893}
1894
1895/*
1896 * A journal_head is attached to a buffer_head whenever JBD has an
1897 * interest in the buffer.
1898 *
1899 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1900 * is set.  This bit is tested in core kernel code where we need to take
1901 * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
1902 * there.
1903 *
1904 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1905 *
1906 * When a buffer has its BH_JBD bit set it is immune from being released by
1907 * core kernel code, mainly via ->b_count.
1908 *
1909 * A journal_head is detached from its buffer_head when the journal_head's
1910 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
1911 * transaction (b_cp_transaction) hold their references to b_jcount.
1912 *
1913 * Various places in the kernel want to attach a journal_head to a buffer_head
1914 * _before_ attaching the journal_head to a transaction.  To protect the
1915 * journal_head in this situation, journal_add_journal_head elevates the
1916 * journal_head's b_jcount refcount by one.  The caller must call
1917 * journal_put_journal_head() to undo this.
1918 *
1919 * So the typical usage would be:
1920 *
1921 *      (Attach a journal_head if needed.  Increments b_jcount)
1922 *      struct journal_head *jh = journal_add_journal_head(bh);
1923 *      ...
1924 *      (Get another reference for transaction)
1925 *      journal_grab_journal_head(bh);
1926 *      jh->b_transaction = xxx;
1927 *      (Put original reference)
1928 *      journal_put_journal_head(jh);
1929 */
1930
1931/*
1932 * Give a buffer_head a journal_head.
1933 *
1934 * May sleep.
1935 */
1936struct journal_head *journal_add_journal_head(struct buffer_head *bh)
1937{
1938        struct journal_head *jh;
1939        struct journal_head *new_jh = NULL;
1940
1941repeat:
1942        if (!buffer_jbd(bh))
1943                new_jh = journal_alloc_journal_head();
1944
1945        jbd_lock_bh_journal_head(bh);
1946        if (buffer_jbd(bh)) {
1947                jh = bh2jh(bh);
1948        } else {
1949                J_ASSERT_BH(bh,
1950                        (atomic_read(&bh->b_count) > 0) ||
1951                        (bh->b_page && bh->b_page->mapping));
1952
1953                if (!new_jh) {
1954                        jbd_unlock_bh_journal_head(bh);
1955                        goto repeat;
1956                }
1957
1958                jh = new_jh;
1959                new_jh = NULL;          /* We consumed it */
1960                set_buffer_jbd(bh);
1961                bh->b_private = jh;
1962                jh->b_bh = bh;
1963                get_bh(bh);
1964                BUFFER_TRACE(bh, "added journal_head");
1965        }
1966        jh->b_jcount++;
1967        jbd_unlock_bh_journal_head(bh);
1968        if (new_jh)
1969                journal_free_journal_head(new_jh);
1970        return bh->b_private;
1971}
1972
1973/*
1974 * Grab a ref against this buffer_head's journal_head.  If it ended up not
1975 * having a journal_head, return NULL
1976 */
1977struct journal_head *journal_grab_journal_head(struct buffer_head *bh)
1978{
1979        struct journal_head *jh = NULL;
1980
1981        jbd_lock_bh_journal_head(bh);
1982        if (buffer_jbd(bh)) {
1983                jh = bh2jh(bh);
1984                jh->b_jcount++;
1985        }
1986        jbd_unlock_bh_journal_head(bh);
1987        return jh;
1988}
1989
1990static void __journal_remove_journal_head(struct buffer_head *bh)
1991{
1992        struct journal_head *jh = bh2jh(bh);
1993
1994        J_ASSERT_JH(jh, jh->b_jcount >= 0);
1995        J_ASSERT_JH(jh, jh->b_transaction == NULL);
1996        J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1997        J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
1998        J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
1999        J_ASSERT_BH(bh, buffer_jbd(bh));
2000        J_ASSERT_BH(bh, jh2bh(jh) == bh);
2001        BUFFER_TRACE(bh, "remove journal_head");
2002        if (jh->b_frozen_data) {
2003                printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2004                jbd_free(jh->b_frozen_data, bh->b_size);
2005        }
2006        if (jh->b_committed_data) {
2007                printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2008                jbd_free(jh->b_committed_data, bh->b_size);
2009        }
2010        bh->b_private = NULL;
2011        jh->b_bh = NULL;        /* debug, really */
2012        clear_buffer_jbd(bh);
2013        journal_free_journal_head(jh);
2014}
2015
2016/*
2017 * Drop a reference on the passed journal_head.  If it fell to zero then
2018 * release the journal_head from the buffer_head.
2019 */
2020void journal_put_journal_head(struct journal_head *jh)
2021{
2022        struct buffer_head *bh = jh2bh(jh);
2023
2024        jbd_lock_bh_journal_head(bh);
2025        J_ASSERT_JH(jh, jh->b_jcount > 0);
2026        --jh->b_jcount;
2027        if (!jh->b_jcount) {
2028                __journal_remove_journal_head(bh);
2029                jbd_unlock_bh_journal_head(bh);
2030                __brelse(bh);
2031        } else
2032                jbd_unlock_bh_journal_head(bh);
2033}
2034
2035/*
2036 * debugfs tunables
2037 */
2038#ifdef CONFIG_JBD_DEBUG
2039
2040u8 journal_enable_debug __read_mostly;
2041EXPORT_SYMBOL(journal_enable_debug);
2042
2043static struct dentry *jbd_debugfs_dir;
2044static struct dentry *jbd_debug;
2045
2046static void __init jbd_create_debugfs_entry(void)
2047{
2048        jbd_debugfs_dir = debugfs_create_dir("jbd", NULL);
2049        if (jbd_debugfs_dir)
2050                jbd_debug = debugfs_create_u8("jbd-debug", S_IRUGO | S_IWUSR,
2051                                               jbd_debugfs_dir,
2052                                               &journal_enable_debug);
2053}
2054
2055static void __exit jbd_remove_debugfs_entry(void)
2056{
2057        debugfs_remove(jbd_debug);
2058        debugfs_remove(jbd_debugfs_dir);
2059}
2060
2061#else
2062
2063static inline void jbd_create_debugfs_entry(void)
2064{
2065}
2066
2067static inline void jbd_remove_debugfs_entry(void)
2068{
2069}
2070
2071#endif
2072
2073struct kmem_cache *jbd_handle_cache;
2074
2075static int __init journal_init_handle_cache(void)
2076{
2077        jbd_handle_cache = kmem_cache_create("journal_handle",
2078                                sizeof(handle_t),
2079                                0,              /* offset */
2080                                SLAB_TEMPORARY, /* flags */
2081                                NULL);          /* ctor */
2082        if (jbd_handle_cache == NULL) {
2083                printk(KERN_EMERG "JBD: failed to create handle cache\n");
2084                return -ENOMEM;
2085        }
2086        return 0;
2087}
2088
2089static void journal_destroy_handle_cache(void)
2090{
2091        if (jbd_handle_cache)
2092                kmem_cache_destroy(jbd_handle_cache);
2093}
2094
2095/*
2096 * Module startup and shutdown
2097 */
2098
2099static int __init journal_init_caches(void)
2100{
2101        int ret;
2102
2103        ret = journal_init_revoke_caches();
2104        if (ret == 0)
2105                ret = journal_init_journal_head_cache();
2106        if (ret == 0)
2107                ret = journal_init_handle_cache();
2108        return ret;
2109}
2110
2111static void journal_destroy_caches(void)
2112{
2113        journal_destroy_revoke_caches();
2114        journal_destroy_journal_head_cache();
2115        journal_destroy_handle_cache();
2116}
2117
2118static int __init journal_init(void)
2119{
2120        int ret;
2121
2122        BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2123
2124        ret = journal_init_caches();
2125        if (ret != 0)
2126                journal_destroy_caches();
2127        jbd_create_debugfs_entry();
2128        return ret;
2129}
2130
2131static void __exit journal_exit(void)
2132{
2133#ifdef CONFIG_JBD_DEBUG
2134        int n = atomic_read(&nr_journal_heads);
2135        if (n)
2136                printk(KERN_ERR "JBD: leaked %d journal_heads!\n", n);
2137#endif
2138        jbd_remove_debugfs_entry();
2139        journal_destroy_caches();
2140}
2141
2142MODULE_LICENSE("GPL");
2143module_init(journal_init);
2144module_exit(journal_exit);
2145
2146