linux/fs/jbd2/transaction.c
<<
>>
Prefs
   1/*
   2 * linux/fs/jbd2/transaction.c
   3 *
   4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
   5 *
   6 * Copyright 1998 Red Hat corp --- All Rights Reserved
   7 *
   8 * This file is part of the Linux kernel and is made available under
   9 * the terms of the GNU General Public License, version 2, or at your
  10 * option, any later version, incorporated herein by reference.
  11 *
  12 * Generic filesystem transaction handling code; part of the ext2fs
  13 * journaling system.
  14 *
  15 * This file manages transactions (compound commits managed by the
  16 * journaling code) and handles (individual atomic operations by the
  17 * filesystem).
  18 */
  19
  20#include <linux/time.h>
  21#include <linux/fs.h>
  22#include <linux/jbd2.h>
  23#include <linux/errno.h>
  24#include <linux/slab.h>
  25#include <linux/timer.h>
  26#include <linux/mm.h>
  27#include <linux/highmem.h>
  28#include <linux/hrtimer.h>
  29#include <linux/backing-dev.h>
  30#include <linux/bug.h>
  31#include <linux/module.h>
  32
  33#include <trace/events/jbd2.h>
  34
  35static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
  36static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
  37
  38static struct kmem_cache *transaction_cache;
  39int __init jbd2_journal_init_transaction_cache(void)
  40{
  41        J_ASSERT(!transaction_cache);
  42        transaction_cache = kmem_cache_create("jbd2_transaction_s",
  43                                        sizeof(transaction_t),
  44                                        0,
  45                                        SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
  46                                        NULL);
  47        if (transaction_cache)
  48                return 0;
  49        return -ENOMEM;
  50}
  51
  52void jbd2_journal_destroy_transaction_cache(void)
  53{
  54        if (transaction_cache) {
  55                kmem_cache_destroy(transaction_cache);
  56                transaction_cache = NULL;
  57        }
  58}
  59
  60void jbd2_journal_free_transaction(transaction_t *transaction)
  61{
  62        if (unlikely(ZERO_OR_NULL_PTR(transaction)))
  63                return;
  64        kmem_cache_free(transaction_cache, transaction);
  65}
  66
  67/*
  68 * jbd2_get_transaction: obtain a new transaction_t object.
  69 *
  70 * Simply allocate and initialise a new transaction.  Create it in
  71 * RUNNING state and add it to the current journal (which should not
  72 * have an existing running transaction: we only make a new transaction
  73 * once we have started to commit the old one).
  74 *
  75 * Preconditions:
  76 *      The journal MUST be locked.  We don't perform atomic mallocs on the
  77 *      new transaction and we can't block without protecting against other
  78 *      processes trying to touch the journal while it is in transition.
  79 *
  80 */
  81
  82static transaction_t *
  83jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
  84{
  85        transaction->t_journal = journal;
  86        transaction->t_state = T_RUNNING;
  87        transaction->t_start_time = ktime_get();
  88        transaction->t_tid = journal->j_transaction_sequence++;
  89        transaction->t_expires = jiffies + journal->j_commit_interval;
  90        spin_lock_init(&transaction->t_handle_lock);
  91        atomic_set(&transaction->t_updates, 0);
  92        atomic_set(&transaction->t_outstanding_credits,
  93                   atomic_read(&journal->j_reserved_credits));
  94        atomic_set(&transaction->t_handle_count, 0);
  95        INIT_LIST_HEAD(&transaction->t_inode_list);
  96        INIT_LIST_HEAD(&transaction->t_private_list);
  97
  98        /* Set up the commit timer for the new transaction. */
  99        journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
 100        add_timer(&journal->j_commit_timer);
 101
 102        J_ASSERT(journal->j_running_transaction == NULL);
 103        journal->j_running_transaction = transaction;
 104        transaction->t_max_wait = 0;
 105        transaction->t_start = jiffies;
 106        transaction->t_requested = 0;
 107
 108        return transaction;
 109}
 110
 111/*
 112 * Handle management.
 113 *
 114 * A handle_t is an object which represents a single atomic update to a
 115 * filesystem, and which tracks all of the modifications which form part
 116 * of that one update.
 117 */
 118
 119/*
 120 * Update transaction's maximum wait time, if debugging is enabled.
 121 *
 122 * In order for t_max_wait to be reliable, it must be protected by a
 123 * lock.  But doing so will mean that start_this_handle() can not be
 124 * run in parallel on SMP systems, which limits our scalability.  So
 125 * unless debugging is enabled, we no longer update t_max_wait, which
 126 * means that maximum wait time reported by the jbd2_run_stats
 127 * tracepoint will always be zero.
 128 */
 129static inline void update_t_max_wait(transaction_t *transaction,
 130                                     unsigned long ts)
 131{
 132#ifdef CONFIG_JBD2_DEBUG
 133        if (jbd2_journal_enable_debug &&
 134            time_after(transaction->t_start, ts)) {
 135                ts = jbd2_time_diff(ts, transaction->t_start);
 136                spin_lock(&transaction->t_handle_lock);
 137                if (ts > transaction->t_max_wait)
 138                        transaction->t_max_wait = ts;
 139                spin_unlock(&transaction->t_handle_lock);
 140        }
 141#endif
 142}
 143
 144/*
 145 * Wait until running transaction passes T_LOCKED state. Also starts the commit
 146 * if needed. The function expects running transaction to exist and releases
 147 * j_state_lock.
 148 */
 149static void wait_transaction_locked(journal_t *journal)
 150        __releases(journal->j_state_lock)
 151{
 152        DEFINE_WAIT(wait);
 153        int need_to_start;
 154        tid_t tid = journal->j_running_transaction->t_tid;
 155
 156        prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
 157                        TASK_UNINTERRUPTIBLE);
 158        need_to_start = !tid_geq(journal->j_commit_request, tid);
 159        read_unlock(&journal->j_state_lock);
 160        if (need_to_start)
 161                jbd2_log_start_commit(journal, tid);
 162        schedule();
 163        finish_wait(&journal->j_wait_transaction_locked, &wait);
 164}
 165
 166static void sub_reserved_credits(journal_t *journal, int blocks)
 167{
 168        atomic_sub(blocks, &journal->j_reserved_credits);
 169        wake_up(&journal->j_wait_reserved);
 170}
 171
 172/*
 173 * Wait until we can add credits for handle to the running transaction.  Called
 174 * with j_state_lock held for reading. Returns 0 if handle joined the running
 175 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
 176 * caller must retry.
 177 */
 178static int add_transaction_credits(journal_t *journal, int blocks,
 179                                   int rsv_blocks)
 180{
 181        transaction_t *t = journal->j_running_transaction;
 182        int needed;
 183        int total = blocks + rsv_blocks;
 184
 185        /*
 186         * If the current transaction is locked down for commit, wait
 187         * for the lock to be released.
 188         */
 189        if (t->t_state == T_LOCKED) {
 190                wait_transaction_locked(journal);
 191                return 1;
 192        }
 193
 194        /*
 195         * If there is not enough space left in the log to write all
 196         * potential buffers requested by this operation, we need to
 197         * stall pending a log checkpoint to free some more log space.
 198         */
 199        needed = atomic_add_return(total, &t->t_outstanding_credits);
 200        if (needed > journal->j_max_transaction_buffers) {
 201                /*
 202                 * If the current transaction is already too large,
 203                 * then start to commit it: we can then go back and
 204                 * attach this handle to a new transaction.
 205                 */
 206                atomic_sub(total, &t->t_outstanding_credits);
 207                wait_transaction_locked(journal);
 208                return 1;
 209        }
 210
 211        /*
 212         * The commit code assumes that it can get enough log space
 213         * without forcing a checkpoint.  This is *critical* for
 214         * correctness: a checkpoint of a buffer which is also
 215         * associated with a committing transaction creates a deadlock,
 216         * so commit simply cannot force through checkpoints.
 217         *
 218         * We must therefore ensure the necessary space in the journal
 219         * *before* starting to dirty potentially checkpointed buffers
 220         * in the new transaction.
 221         */
 222        if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
 223                atomic_sub(total, &t->t_outstanding_credits);
 224                read_unlock(&journal->j_state_lock);
 225                write_lock(&journal->j_state_lock);
 226                if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
 227                        __jbd2_log_wait_for_space(journal);
 228                write_unlock(&journal->j_state_lock);
 229                return 1;
 230        }
 231
 232        /* No reservation? We are done... */
 233        if (!rsv_blocks)
 234                return 0;
 235
 236        needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
 237        /* We allow at most half of a transaction to be reserved */
 238        if (needed > journal->j_max_transaction_buffers / 2) {
 239                sub_reserved_credits(journal, rsv_blocks);
 240                atomic_sub(total, &t->t_outstanding_credits);
 241                read_unlock(&journal->j_state_lock);
 242                wait_event(journal->j_wait_reserved,
 243                         atomic_read(&journal->j_reserved_credits) + rsv_blocks
 244                         <= journal->j_max_transaction_buffers / 2);
 245                return 1;
 246        }
 247        return 0;
 248}
 249
 250/*
 251 * start_this_handle: Given a handle, deal with any locking or stalling
 252 * needed to make sure that there is enough journal space for the handle
 253 * to begin.  Attach the handle to a transaction and set up the
 254 * transaction's buffer credits.
 255 */
 256
 257static int start_this_handle(journal_t *journal, handle_t *handle,
 258                             gfp_t gfp_mask)
 259{
 260        transaction_t   *transaction, *new_transaction = NULL;
 261        int             blocks = handle->h_buffer_credits;
 262        int             rsv_blocks = 0;
 263        unsigned long ts = jiffies;
 264
 265        /*
 266         * 1/2 of transaction can be reserved so we can practically handle
 267         * only 1/2 of maximum transaction size per operation
 268         */
 269        if (WARN_ON(blocks > journal->j_max_transaction_buffers / 2)) {
 270                printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n",
 271                       current->comm, blocks,
 272                       journal->j_max_transaction_buffers / 2);
 273                return -ENOSPC;
 274        }
 275
 276        if (handle->h_rsv_handle)
 277                rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
 278
 279alloc_transaction:
 280        if (!journal->j_running_transaction) {
 281                new_transaction = kmem_cache_zalloc(transaction_cache,
 282                                                    gfp_mask);
 283                if (!new_transaction) {
 284                        /*
 285                         * If __GFP_FS is not present, then we may be
 286                         * being called from inside the fs writeback
 287                         * layer, so we MUST NOT fail.  Since
 288                         * __GFP_NOFAIL is going away, we will arrange
 289                         * to retry the allocation ourselves.
 290                         */
 291                        if ((gfp_mask & __GFP_FS) == 0) {
 292                                congestion_wait(BLK_RW_ASYNC, HZ/50);
 293                                goto alloc_transaction;
 294                        }
 295                        return -ENOMEM;
 296                }
 297        }
 298
 299        jbd_debug(3, "New handle %p going live.\n", handle);
 300
 301        /*
 302         * We need to hold j_state_lock until t_updates has been incremented,
 303         * for proper journal barrier handling
 304         */
 305repeat:
 306        read_lock(&journal->j_state_lock);
 307        BUG_ON(journal->j_flags & JBD2_UNMOUNT);
 308        if (is_journal_aborted(journal) ||
 309            (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
 310                read_unlock(&journal->j_state_lock);
 311                jbd2_journal_free_transaction(new_transaction);
 312                return -EROFS;
 313        }
 314
 315        /*
 316         * Wait on the journal's transaction barrier if necessary. Specifically
 317         * we allow reserved handles to proceed because otherwise commit could
 318         * deadlock on page writeback not being able to complete.
 319         */
 320        if (!handle->h_reserved && journal->j_barrier_count) {
 321                read_unlock(&journal->j_state_lock);
 322                wait_event(journal->j_wait_transaction_locked,
 323                                journal->j_barrier_count == 0);
 324                goto repeat;
 325        }
 326
 327        if (!journal->j_running_transaction) {
 328                read_unlock(&journal->j_state_lock);
 329                if (!new_transaction)
 330                        goto alloc_transaction;
 331                write_lock(&journal->j_state_lock);
 332                if (!journal->j_running_transaction &&
 333                    (handle->h_reserved || !journal->j_barrier_count)) {
 334                        jbd2_get_transaction(journal, new_transaction);
 335                        new_transaction = NULL;
 336                }
 337                write_unlock(&journal->j_state_lock);
 338                goto repeat;
 339        }
 340
 341        transaction = journal->j_running_transaction;
 342
 343        if (!handle->h_reserved) {
 344                /* We may have dropped j_state_lock - restart in that case */
 345                if (add_transaction_credits(journal, blocks, rsv_blocks))
 346                        goto repeat;
 347        } else {
 348                /*
 349                 * We have handle reserved so we are allowed to join T_LOCKED
 350                 * transaction and we don't have to check for transaction size
 351                 * and journal space.
 352                 */
 353                sub_reserved_credits(journal, blocks);
 354                handle->h_reserved = 0;
 355        }
 356
 357        /* OK, account for the buffers that this operation expects to
 358         * use and add the handle to the running transaction. 
 359         */
 360        update_t_max_wait(transaction, ts);
 361        handle->h_transaction = transaction;
 362        handle->h_requested_credits = blocks;
 363        handle->h_start_jiffies = jiffies;
 364        atomic_inc(&transaction->t_updates);
 365        atomic_inc(&transaction->t_handle_count);
 366        jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
 367                  handle, blocks,
 368                  atomic_read(&transaction->t_outstanding_credits),
 369                  jbd2_log_space_left(journal));
 370        read_unlock(&journal->j_state_lock);
 371        current->journal_info = handle;
 372
 373        lock_map_acquire(&handle->h_lockdep_map);
 374        jbd2_journal_free_transaction(new_transaction);
 375        return 0;
 376}
 377
 378static struct lock_class_key jbd2_handle_key;
 379
 380/* Allocate a new handle.  This should probably be in a slab... */
 381static handle_t *new_handle(int nblocks)
 382{
 383        handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
 384        if (!handle)
 385                return NULL;
 386        handle->h_buffer_credits = nblocks;
 387        handle->h_ref = 1;
 388
 389        lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
 390                                                &jbd2_handle_key, 0);
 391
 392        return handle;
 393}
 394
 395/**
 396 * handle_t *jbd2_journal_start() - Obtain a new handle.
 397 * @journal: Journal to start transaction on.
 398 * @nblocks: number of block buffer we might modify
 399 *
 400 * We make sure that the transaction can guarantee at least nblocks of
 401 * modified buffers in the log.  We block until the log can guarantee
 402 * that much space. Additionally, if rsv_blocks > 0, we also create another
 403 * handle with rsv_blocks reserved blocks in the journal. This handle is
 404 * is stored in h_rsv_handle. It is not attached to any particular transaction
 405 * and thus doesn't block transaction commit. If the caller uses this reserved
 406 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
 407 * on the parent handle will dispose the reserved one. Reserved handle has to
 408 * be converted to a normal handle using jbd2_journal_start_reserved() before
 409 * it can be used.
 410 *
 411 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
 412 * on failure.
 413 */
 414handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
 415                              gfp_t gfp_mask, unsigned int type,
 416                              unsigned int line_no)
 417{
 418        handle_t *handle = journal_current_handle();
 419        int err;
 420
 421        if (!journal)
 422                return ERR_PTR(-EROFS);
 423
 424        if (handle) {
 425                J_ASSERT(handle->h_transaction->t_journal == journal);
 426                handle->h_ref++;
 427                return handle;
 428        }
 429
 430        handle = new_handle(nblocks);
 431        if (!handle)
 432                return ERR_PTR(-ENOMEM);
 433        if (rsv_blocks) {
 434                handle_t *rsv_handle;
 435
 436                rsv_handle = new_handle(rsv_blocks);
 437                if (!rsv_handle) {
 438                        jbd2_free_handle(handle);
 439                        return ERR_PTR(-ENOMEM);
 440                }
 441                rsv_handle->h_reserved = 1;
 442                rsv_handle->h_journal = journal;
 443                handle->h_rsv_handle = rsv_handle;
 444        }
 445
 446        err = start_this_handle(journal, handle, gfp_mask);
 447        if (err < 0) {
 448                if (handle->h_rsv_handle)
 449                        jbd2_free_handle(handle->h_rsv_handle);
 450                jbd2_free_handle(handle);
 451                return ERR_PTR(err);
 452        }
 453        handle->h_type = type;
 454        handle->h_line_no = line_no;
 455        trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
 456                                handle->h_transaction->t_tid, type,
 457                                line_no, nblocks);
 458        return handle;
 459}
 460EXPORT_SYMBOL(jbd2__journal_start);
 461
 462
 463handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
 464{
 465        return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
 466}
 467EXPORT_SYMBOL(jbd2_journal_start);
 468
 469void jbd2_journal_free_reserved(handle_t *handle)
 470{
 471        journal_t *journal = handle->h_journal;
 472
 473        WARN_ON(!handle->h_reserved);
 474        sub_reserved_credits(journal, handle->h_buffer_credits);
 475        jbd2_free_handle(handle);
 476}
 477EXPORT_SYMBOL(jbd2_journal_free_reserved);
 478
 479/**
 480 * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
 481 * @handle: handle to start
 482 *
 483 * Start handle that has been previously reserved with jbd2_journal_reserve().
 484 * This attaches @handle to the running transaction (or creates one if there's
 485 * not transaction running). Unlike jbd2_journal_start() this function cannot
 486 * block on journal commit, checkpointing, or similar stuff. It can block on
 487 * memory allocation or frozen journal though.
 488 *
 489 * Return 0 on success, non-zero on error - handle is freed in that case.
 490 */
 491int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
 492                                unsigned int line_no)
 493{
 494        journal_t *journal = handle->h_journal;
 495        int ret = -EIO;
 496
 497        if (WARN_ON(!handle->h_reserved)) {
 498                /* Someone passed in normal handle? Just stop it. */
 499                jbd2_journal_stop(handle);
 500                return ret;
 501        }
 502        /*
 503         * Usefulness of mixing of reserved and unreserved handles is
 504         * questionable. So far nobody seems to need it so just error out.
 505         */
 506        if (WARN_ON(current->journal_info)) {
 507                jbd2_journal_free_reserved(handle);
 508                return ret;
 509        }
 510
 511        handle->h_journal = NULL;
 512        /*
 513         * GFP_NOFS is here because callers are likely from writeback or
 514         * similarly constrained call sites
 515         */
 516        ret = start_this_handle(journal, handle, GFP_NOFS);
 517        if (ret < 0) {
 518                jbd2_journal_free_reserved(handle);
 519                return ret;
 520        }
 521        handle->h_type = type;
 522        handle->h_line_no = line_no;
 523        return 0;
 524}
 525EXPORT_SYMBOL(jbd2_journal_start_reserved);
 526
 527/**
 528 * int jbd2_journal_extend() - extend buffer credits.
 529 * @handle:  handle to 'extend'
 530 * @nblocks: nr blocks to try to extend by.
 531 *
 532 * Some transactions, such as large extends and truncates, can be done
 533 * atomically all at once or in several stages.  The operation requests
 534 * a credit for a number of buffer modications in advance, but can
 535 * extend its credit if it needs more.
 536 *
 537 * jbd2_journal_extend tries to give the running handle more buffer credits.
 538 * It does not guarantee that allocation - this is a best-effort only.
 539 * The calling process MUST be able to deal cleanly with a failure to
 540 * extend here.
 541 *
 542 * Return 0 on success, non-zero on failure.
 543 *
 544 * return code < 0 implies an error
 545 * return code > 0 implies normal transaction-full status.
 546 */
 547int jbd2_journal_extend(handle_t *handle, int nblocks)
 548{
 549        transaction_t *transaction = handle->h_transaction;
 550        journal_t *journal;
 551        int result;
 552        int wanted;
 553
 554        if (is_handle_aborted(handle))
 555                return -EROFS;
 556        journal = transaction->t_journal;
 557
 558        result = 1;
 559
 560        read_lock(&journal->j_state_lock);
 561
 562        /* Don't extend a locked-down transaction! */
 563        if (transaction->t_state != T_RUNNING) {
 564                jbd_debug(3, "denied handle %p %d blocks: "
 565                          "transaction not running\n", handle, nblocks);
 566                goto error_out;
 567        }
 568
 569        spin_lock(&transaction->t_handle_lock);
 570        wanted = atomic_add_return(nblocks,
 571                                   &transaction->t_outstanding_credits);
 572
 573        if (wanted > journal->j_max_transaction_buffers) {
 574                jbd_debug(3, "denied handle %p %d blocks: "
 575                          "transaction too large\n", handle, nblocks);
 576                atomic_sub(nblocks, &transaction->t_outstanding_credits);
 577                goto unlock;
 578        }
 579
 580        if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
 581            jbd2_log_space_left(journal)) {
 582                jbd_debug(3, "denied handle %p %d blocks: "
 583                          "insufficient log space\n", handle, nblocks);
 584                atomic_sub(nblocks, &transaction->t_outstanding_credits);
 585                goto unlock;
 586        }
 587
 588        trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
 589                                 transaction->t_tid,
 590                                 handle->h_type, handle->h_line_no,
 591                                 handle->h_buffer_credits,
 592                                 nblocks);
 593
 594        handle->h_buffer_credits += nblocks;
 595        handle->h_requested_credits += nblocks;
 596        result = 0;
 597
 598        jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
 599unlock:
 600        spin_unlock(&transaction->t_handle_lock);
 601error_out:
 602        read_unlock(&journal->j_state_lock);
 603        return result;
 604}
 605
 606
 607/**
 608 * int jbd2_journal_restart() - restart a handle .
 609 * @handle:  handle to restart
 610 * @nblocks: nr credits requested
 611 *
 612 * Restart a handle for a multi-transaction filesystem
 613 * operation.
 614 *
 615 * If the jbd2_journal_extend() call above fails to grant new buffer credits
 616 * to a running handle, a call to jbd2_journal_restart will commit the
 617 * handle's transaction so far and reattach the handle to a new
 618 * transaction capabable of guaranteeing the requested number of
 619 * credits. We preserve reserved handle if there's any attached to the
 620 * passed in handle.
 621 */
 622int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
 623{
 624        transaction_t *transaction = handle->h_transaction;
 625        journal_t *journal;
 626        tid_t           tid;
 627        int             need_to_start, ret;
 628
 629        /* If we've had an abort of any type, don't even think about
 630         * actually doing the restart! */
 631        if (is_handle_aborted(handle))
 632                return 0;
 633        journal = transaction->t_journal;
 634
 635        /*
 636         * First unlink the handle from its current transaction, and start the
 637         * commit on that.
 638         */
 639        J_ASSERT(atomic_read(&transaction->t_updates) > 0);
 640        J_ASSERT(journal_current_handle() == handle);
 641
 642        read_lock(&journal->j_state_lock);
 643        spin_lock(&transaction->t_handle_lock);
 644        atomic_sub(handle->h_buffer_credits,
 645                   &transaction->t_outstanding_credits);
 646        if (handle->h_rsv_handle) {
 647                sub_reserved_credits(journal,
 648                                     handle->h_rsv_handle->h_buffer_credits);
 649        }
 650        if (atomic_dec_and_test(&transaction->t_updates))
 651                wake_up(&journal->j_wait_updates);
 652        tid = transaction->t_tid;
 653        spin_unlock(&transaction->t_handle_lock);
 654        handle->h_transaction = NULL;
 655        current->journal_info = NULL;
 656
 657        jbd_debug(2, "restarting handle %p\n", handle);
 658        need_to_start = !tid_geq(journal->j_commit_request, tid);
 659        read_unlock(&journal->j_state_lock);
 660        if (need_to_start)
 661                jbd2_log_start_commit(journal, tid);
 662
 663        lock_map_release(&handle->h_lockdep_map);
 664        handle->h_buffer_credits = nblocks;
 665        ret = start_this_handle(journal, handle, gfp_mask);
 666        return ret;
 667}
 668EXPORT_SYMBOL(jbd2__journal_restart);
 669
 670
 671int jbd2_journal_restart(handle_t *handle, int nblocks)
 672{
 673        return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
 674}
 675EXPORT_SYMBOL(jbd2_journal_restart);
 676
 677/**
 678 * void jbd2_journal_lock_updates () - establish a transaction barrier.
 679 * @journal:  Journal to establish a barrier on.
 680 *
 681 * This locks out any further updates from being started, and blocks
 682 * until all existing updates have completed, returning only once the
 683 * journal is in a quiescent state with no updates running.
 684 *
 685 * The journal lock should not be held on entry.
 686 */
 687void jbd2_journal_lock_updates(journal_t *journal)
 688{
 689        DEFINE_WAIT(wait);
 690
 691        write_lock(&journal->j_state_lock);
 692        ++journal->j_barrier_count;
 693
 694        /* Wait until there are no reserved handles */
 695        if (atomic_read(&journal->j_reserved_credits)) {
 696                write_unlock(&journal->j_state_lock);
 697                wait_event(journal->j_wait_reserved,
 698                           atomic_read(&journal->j_reserved_credits) == 0);
 699                write_lock(&journal->j_state_lock);
 700        }
 701
 702        /* Wait until there are no running updates */
 703        while (1) {
 704                transaction_t *transaction = journal->j_running_transaction;
 705
 706                if (!transaction)
 707                        break;
 708
 709                spin_lock(&transaction->t_handle_lock);
 710                prepare_to_wait(&journal->j_wait_updates, &wait,
 711                                TASK_UNINTERRUPTIBLE);
 712                if (!atomic_read(&transaction->t_updates)) {
 713                        spin_unlock(&transaction->t_handle_lock);
 714                        finish_wait(&journal->j_wait_updates, &wait);
 715                        break;
 716                }
 717                spin_unlock(&transaction->t_handle_lock);
 718                write_unlock(&journal->j_state_lock);
 719                schedule();
 720                finish_wait(&journal->j_wait_updates, &wait);
 721                write_lock(&journal->j_state_lock);
 722        }
 723        write_unlock(&journal->j_state_lock);
 724
 725        /*
 726         * We have now established a barrier against other normal updates, but
 727         * we also need to barrier against other jbd2_journal_lock_updates() calls
 728         * to make sure that we serialise special journal-locked operations
 729         * too.
 730         */
 731        mutex_lock(&journal->j_barrier);
 732}
 733
 734/**
 735 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
 736 * @journal:  Journal to release the barrier on.
 737 *
 738 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
 739 *
 740 * Should be called without the journal lock held.
 741 */
 742void jbd2_journal_unlock_updates (journal_t *journal)
 743{
 744        J_ASSERT(journal->j_barrier_count != 0);
 745
 746        mutex_unlock(&journal->j_barrier);
 747        write_lock(&journal->j_state_lock);
 748        --journal->j_barrier_count;
 749        write_unlock(&journal->j_state_lock);
 750        wake_up(&journal->j_wait_transaction_locked);
 751}
 752
 753static void warn_dirty_buffer(struct buffer_head *bh)
 754{
 755        char b[BDEVNAME_SIZE];
 756
 757        printk(KERN_WARNING
 758               "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
 759               "There's a risk of filesystem corruption in case of system "
 760               "crash.\n",
 761               bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
 762}
 763
 764/*
 765 * If the buffer is already part of the current transaction, then there
 766 * is nothing we need to do.  If it is already part of a prior
 767 * transaction which we are still committing to disk, then we need to
 768 * make sure that we do not overwrite the old copy: we do copy-out to
 769 * preserve the copy going to disk.  We also account the buffer against
 770 * the handle's metadata buffer credits (unless the buffer is already
 771 * part of the transaction, that is).
 772 *
 773 */
 774static int
 775do_get_write_access(handle_t *handle, struct journal_head *jh,
 776                        int force_copy)
 777{
 778        struct buffer_head *bh;
 779        transaction_t *transaction = handle->h_transaction;
 780        journal_t *journal;
 781        int error;
 782        char *frozen_buffer = NULL;
 783        int need_copy = 0;
 784        unsigned long start_lock, time_lock;
 785
 786        if (is_handle_aborted(handle))
 787                return -EROFS;
 788        journal = transaction->t_journal;
 789
 790        jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
 791
 792        JBUFFER_TRACE(jh, "entry");
 793repeat:
 794        bh = jh2bh(jh);
 795
 796        /* @@@ Need to check for errors here at some point. */
 797
 798        start_lock = jiffies;
 799        lock_buffer(bh);
 800        jbd_lock_bh_state(bh);
 801
 802        /* If it takes too long to lock the buffer, trace it */
 803        time_lock = jbd2_time_diff(start_lock, jiffies);
 804        if (time_lock > HZ/10)
 805                trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
 806                        jiffies_to_msecs(time_lock));
 807
 808        /* We now hold the buffer lock so it is safe to query the buffer
 809         * state.  Is the buffer dirty?
 810         *
 811         * If so, there are two possibilities.  The buffer may be
 812         * non-journaled, and undergoing a quite legitimate writeback.
 813         * Otherwise, it is journaled, and we don't expect dirty buffers
 814         * in that state (the buffers should be marked JBD_Dirty
 815         * instead.)  So either the IO is being done under our own
 816         * control and this is a bug, or it's a third party IO such as
 817         * dump(8) (which may leave the buffer scheduled for read ---
 818         * ie. locked but not dirty) or tune2fs (which may actually have
 819         * the buffer dirtied, ugh.)  */
 820
 821        if (buffer_dirty(bh)) {
 822                /*
 823                 * First question: is this buffer already part of the current
 824                 * transaction or the existing committing transaction?
 825                 */
 826                if (jh->b_transaction) {
 827                        J_ASSERT_JH(jh,
 828                                jh->b_transaction == transaction ||
 829                                jh->b_transaction ==
 830                                        journal->j_committing_transaction);
 831                        if (jh->b_next_transaction)
 832                                J_ASSERT_JH(jh, jh->b_next_transaction ==
 833                                                        transaction);
 834                        warn_dirty_buffer(bh);
 835                }
 836                /*
 837                 * In any case we need to clean the dirty flag and we must
 838                 * do it under the buffer lock to be sure we don't race
 839                 * with running write-out.
 840                 */
 841                JBUFFER_TRACE(jh, "Journalling dirty buffer");
 842                clear_buffer_dirty(bh);
 843                set_buffer_jbddirty(bh);
 844        }
 845
 846        unlock_buffer(bh);
 847
 848        error = -EROFS;
 849        if (is_handle_aborted(handle)) {
 850                jbd_unlock_bh_state(bh);
 851                goto out;
 852        }
 853        error = 0;
 854
 855        /*
 856         * The buffer is already part of this transaction if b_transaction or
 857         * b_next_transaction points to it
 858         */
 859        if (jh->b_transaction == transaction ||
 860            jh->b_next_transaction == transaction)
 861                goto done;
 862
 863        /*
 864         * this is the first time this transaction is touching this buffer,
 865         * reset the modified flag
 866         */
 867       jh->b_modified = 0;
 868
 869        /*
 870         * If there is already a copy-out version of this buffer, then we don't
 871         * need to make another one
 872         */
 873        if (jh->b_frozen_data) {
 874                JBUFFER_TRACE(jh, "has frozen data");
 875                J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
 876                jh->b_next_transaction = transaction;
 877                goto done;
 878        }
 879
 880        /* Is there data here we need to preserve? */
 881
 882        if (jh->b_transaction && jh->b_transaction != transaction) {
 883                JBUFFER_TRACE(jh, "owned by older transaction");
 884                J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
 885                J_ASSERT_JH(jh, jh->b_transaction ==
 886                                        journal->j_committing_transaction);
 887
 888                /* There is one case we have to be very careful about.
 889                 * If the committing transaction is currently writing
 890                 * this buffer out to disk and has NOT made a copy-out,
 891                 * then we cannot modify the buffer contents at all
 892                 * right now.  The essence of copy-out is that it is the
 893                 * extra copy, not the primary copy, which gets
 894                 * journaled.  If the primary copy is already going to
 895                 * disk then we cannot do copy-out here. */
 896
 897                if (buffer_shadow(bh)) {
 898                        JBUFFER_TRACE(jh, "on shadow: sleep");
 899                        jbd_unlock_bh_state(bh);
 900                        wait_on_bit_io(&bh->b_state, BH_Shadow,
 901                                       TASK_UNINTERRUPTIBLE);
 902                        goto repeat;
 903                }
 904
 905                /*
 906                 * Only do the copy if the currently-owning transaction still
 907                 * needs it. If buffer isn't on BJ_Metadata list, the
 908                 * committing transaction is past that stage (here we use the
 909                 * fact that BH_Shadow is set under bh_state lock together with
 910                 * refiling to BJ_Shadow list and at this point we know the
 911                 * buffer doesn't have BH_Shadow set).
 912                 *
 913                 * Subtle point, though: if this is a get_undo_access,
 914                 * then we will be relying on the frozen_data to contain
 915                 * the new value of the committed_data record after the
 916                 * transaction, so we HAVE to force the frozen_data copy
 917                 * in that case.
 918                 */
 919                if (jh->b_jlist == BJ_Metadata || force_copy) {
 920                        JBUFFER_TRACE(jh, "generate frozen data");
 921                        if (!frozen_buffer) {
 922                                JBUFFER_TRACE(jh, "allocate memory for buffer");
 923                                jbd_unlock_bh_state(bh);
 924                                frozen_buffer =
 925                                        jbd2_alloc(jh2bh(jh)->b_size,
 926                                                         GFP_NOFS);
 927                                if (!frozen_buffer) {
 928                                        printk(KERN_ERR
 929                                               "%s: OOM for frozen_buffer\n",
 930                                               __func__);
 931                                        JBUFFER_TRACE(jh, "oom!");
 932                                        error = -ENOMEM;
 933                                        jbd_lock_bh_state(bh);
 934                                        goto done;
 935                                }
 936                                goto repeat;
 937                        }
 938                        jh->b_frozen_data = frozen_buffer;
 939                        frozen_buffer = NULL;
 940                        need_copy = 1;
 941                }
 942                jh->b_next_transaction = transaction;
 943        }
 944
 945
 946        /*
 947         * Finally, if the buffer is not journaled right now, we need to make
 948         * sure it doesn't get written to disk before the caller actually
 949         * commits the new data
 950         */
 951        if (!jh->b_transaction) {
 952                JBUFFER_TRACE(jh, "no transaction");
 953                J_ASSERT_JH(jh, !jh->b_next_transaction);
 954                JBUFFER_TRACE(jh, "file as BJ_Reserved");
 955                spin_lock(&journal->j_list_lock);
 956                __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
 957                spin_unlock(&journal->j_list_lock);
 958        }
 959
 960done:
 961        if (need_copy) {
 962                struct page *page;
 963                int offset;
 964                char *source;
 965
 966                J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
 967                            "Possible IO failure.\n");
 968                page = jh2bh(jh)->b_page;
 969                offset = offset_in_page(jh2bh(jh)->b_data);
 970                source = kmap_atomic(page);
 971                /* Fire data frozen trigger just before we copy the data */
 972                jbd2_buffer_frozen_trigger(jh, source + offset,
 973                                           jh->b_triggers);
 974                memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
 975                kunmap_atomic(source);
 976
 977                /*
 978                 * Now that the frozen data is saved off, we need to store
 979                 * any matching triggers.
 980                 */
 981                jh->b_frozen_triggers = jh->b_triggers;
 982        }
 983        jbd_unlock_bh_state(bh);
 984
 985        /*
 986         * If we are about to journal a buffer, then any revoke pending on it is
 987         * no longer valid
 988         */
 989        jbd2_journal_cancel_revoke(handle, jh);
 990
 991out:
 992        if (unlikely(frozen_buffer))    /* It's usually NULL */
 993                jbd2_free(frozen_buffer, bh->b_size);
 994
 995        JBUFFER_TRACE(jh, "exit");
 996        return error;
 997}
 998
 999/**
1000 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1001 * @handle: transaction to add buffer modifications to
1002 * @bh:     bh to be used for metadata writes
1003 *
1004 * Returns an error code or 0 on success.
1005 *
1006 * In full data journalling mode the buffer may be of type BJ_AsyncData,
1007 * because we're write()ing a buffer which is also part of a shared mapping.
1008 */
1009
1010int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1011{
1012        struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1013        int rc;
1014
1015        /* We do not want to get caught playing with fields which the
1016         * log thread also manipulates.  Make sure that the buffer
1017         * completes any outstanding IO before proceeding. */
1018        rc = do_get_write_access(handle, jh, 0);
1019        jbd2_journal_put_journal_head(jh);
1020        return rc;
1021}
1022
1023
1024/*
1025 * When the user wants to journal a newly created buffer_head
1026 * (ie. getblk() returned a new buffer and we are going to populate it
1027 * manually rather than reading off disk), then we need to keep the
1028 * buffer_head locked until it has been completely filled with new
1029 * data.  In this case, we should be able to make the assertion that
1030 * the bh is not already part of an existing transaction.
1031 *
1032 * The buffer should already be locked by the caller by this point.
1033 * There is no lock ranking violation: it was a newly created,
1034 * unlocked buffer beforehand. */
1035
1036/**
1037 * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1038 * @handle: transaction to new buffer to
1039 * @bh: new buffer.
1040 *
1041 * Call this if you create a new bh.
1042 */
1043int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1044{
1045        transaction_t *transaction = handle->h_transaction;
1046        journal_t *journal;
1047        struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1048        int err;
1049
1050        jbd_debug(5, "journal_head %p\n", jh);
1051        err = -EROFS;
1052        if (is_handle_aborted(handle))
1053                goto out;
1054        journal = transaction->t_journal;
1055        err = 0;
1056
1057        JBUFFER_TRACE(jh, "entry");
1058        /*
1059         * The buffer may already belong to this transaction due to pre-zeroing
1060         * in the filesystem's new_block code.  It may also be on the previous,
1061         * committing transaction's lists, but it HAS to be in Forget state in
1062         * that case: the transaction must have deleted the buffer for it to be
1063         * reused here.
1064         */
1065        jbd_lock_bh_state(bh);
1066        J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1067                jh->b_transaction == NULL ||
1068                (jh->b_transaction == journal->j_committing_transaction &&
1069                          jh->b_jlist == BJ_Forget)));
1070
1071        J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1072        J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1073
1074        if (jh->b_transaction == NULL) {
1075                /*
1076                 * Previous jbd2_journal_forget() could have left the buffer
1077                 * with jbddirty bit set because it was being committed. When
1078                 * the commit finished, we've filed the buffer for
1079                 * checkpointing and marked it dirty. Now we are reallocating
1080                 * the buffer so the transaction freeing it must have
1081                 * committed and so it's safe to clear the dirty bit.
1082                 */
1083                clear_buffer_dirty(jh2bh(jh));
1084                /* first access by this transaction */
1085                jh->b_modified = 0;
1086
1087                JBUFFER_TRACE(jh, "file as BJ_Reserved");
1088                spin_lock(&journal->j_list_lock);
1089                __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1090        } else if (jh->b_transaction == journal->j_committing_transaction) {
1091                /* first access by this transaction */
1092                jh->b_modified = 0;
1093
1094                JBUFFER_TRACE(jh, "set next transaction");
1095                spin_lock(&journal->j_list_lock);
1096                jh->b_next_transaction = transaction;
1097        }
1098        spin_unlock(&journal->j_list_lock);
1099        jbd_unlock_bh_state(bh);
1100
1101        /*
1102         * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1103         * blocks which contain freed but then revoked metadata.  We need
1104         * to cancel the revoke in case we end up freeing it yet again
1105         * and the reallocating as data - this would cause a second revoke,
1106         * which hits an assertion error.
1107         */
1108        JBUFFER_TRACE(jh, "cancelling revoke");
1109        jbd2_journal_cancel_revoke(handle, jh);
1110out:
1111        jbd2_journal_put_journal_head(jh);
1112        return err;
1113}
1114
1115/**
1116 * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1117 *     non-rewindable consequences
1118 * @handle: transaction
1119 * @bh: buffer to undo
1120 *
1121 * Sometimes there is a need to distinguish between metadata which has
1122 * been committed to disk and that which has not.  The ext3fs code uses
1123 * this for freeing and allocating space, we have to make sure that we
1124 * do not reuse freed space until the deallocation has been committed,
1125 * since if we overwrote that space we would make the delete
1126 * un-rewindable in case of a crash.
1127 *
1128 * To deal with that, jbd2_journal_get_undo_access requests write access to a
1129 * buffer for parts of non-rewindable operations such as delete
1130 * operations on the bitmaps.  The journaling code must keep a copy of
1131 * the buffer's contents prior to the undo_access call until such time
1132 * as we know that the buffer has definitely been committed to disk.
1133 *
1134 * We never need to know which transaction the committed data is part
1135 * of, buffers touched here are guaranteed to be dirtied later and so
1136 * will be committed to a new transaction in due course, at which point
1137 * we can discard the old committed data pointer.
1138 *
1139 * Returns error number or 0 on success.
1140 */
1141int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1142{
1143        int err;
1144        struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1145        char *committed_data = NULL;
1146
1147        JBUFFER_TRACE(jh, "entry");
1148
1149        /*
1150         * Do this first --- it can drop the journal lock, so we want to
1151         * make sure that obtaining the committed_data is done
1152         * atomically wrt. completion of any outstanding commits.
1153         */
1154        err = do_get_write_access(handle, jh, 1);
1155        if (err)
1156                goto out;
1157
1158repeat:
1159        if (!jh->b_committed_data) {
1160                committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1161                if (!committed_data) {
1162                        printk(KERN_ERR "%s: No memory for committed data\n",
1163                                __func__);
1164                        err = -ENOMEM;
1165                        goto out;
1166                }
1167        }
1168
1169        jbd_lock_bh_state(bh);
1170        if (!jh->b_committed_data) {
1171                /* Copy out the current buffer contents into the
1172                 * preserved, committed copy. */
1173                JBUFFER_TRACE(jh, "generate b_committed data");
1174                if (!committed_data) {
1175                        jbd_unlock_bh_state(bh);
1176                        goto repeat;
1177                }
1178
1179                jh->b_committed_data = committed_data;
1180                committed_data = NULL;
1181                memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1182        }
1183        jbd_unlock_bh_state(bh);
1184out:
1185        jbd2_journal_put_journal_head(jh);
1186        if (unlikely(committed_data))
1187                jbd2_free(committed_data, bh->b_size);
1188        return err;
1189}
1190
1191/**
1192 * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1193 * @bh: buffer to trigger on
1194 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1195 *
1196 * Set any triggers on this journal_head.  This is always safe, because
1197 * triggers for a committing buffer will be saved off, and triggers for
1198 * a running transaction will match the buffer in that transaction.
1199 *
1200 * Call with NULL to clear the triggers.
1201 */
1202void jbd2_journal_set_triggers(struct buffer_head *bh,
1203                               struct jbd2_buffer_trigger_type *type)
1204{
1205        struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1206
1207        if (WARN_ON(!jh))
1208                return;
1209        jh->b_triggers = type;
1210        jbd2_journal_put_journal_head(jh);
1211}
1212
1213void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1214                                struct jbd2_buffer_trigger_type *triggers)
1215{
1216        struct buffer_head *bh = jh2bh(jh);
1217
1218        if (!triggers || !triggers->t_frozen)
1219                return;
1220
1221        triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1222}
1223
1224void jbd2_buffer_abort_trigger(struct journal_head *jh,
1225                               struct jbd2_buffer_trigger_type *triggers)
1226{
1227        if (!triggers || !triggers->t_abort)
1228                return;
1229
1230        triggers->t_abort(triggers, jh2bh(jh));
1231}
1232
1233
1234
1235/**
1236 * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1237 * @handle: transaction to add buffer to.
1238 * @bh: buffer to mark
1239 *
1240 * mark dirty metadata which needs to be journaled as part of the current
1241 * transaction.
1242 *
1243 * The buffer must have previously had jbd2_journal_get_write_access()
1244 * called so that it has a valid journal_head attached to the buffer
1245 * head.
1246 *
1247 * The buffer is placed on the transaction's metadata list and is marked
1248 * as belonging to the transaction.
1249 *
1250 * Returns error number or 0 on success.
1251 *
1252 * Special care needs to be taken if the buffer already belongs to the
1253 * current committing transaction (in which case we should have frozen
1254 * data present for that commit).  In that case, we don't relink the
1255 * buffer: that only gets done when the old transaction finally
1256 * completes its commit.
1257 */
1258int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1259{
1260        transaction_t *transaction = handle->h_transaction;
1261        journal_t *journal;
1262        struct journal_head *jh;
1263        int ret = 0;
1264
1265        if (is_handle_aborted(handle))
1266                return -EROFS;
1267        journal = transaction->t_journal;
1268        jh = jbd2_journal_grab_journal_head(bh);
1269        if (!jh) {
1270                ret = -EUCLEAN;
1271                goto out;
1272        }
1273        jbd_debug(5, "journal_head %p\n", jh);
1274        JBUFFER_TRACE(jh, "entry");
1275
1276        jbd_lock_bh_state(bh);
1277
1278        if (jh->b_modified == 0) {
1279                /*
1280                 * This buffer's got modified and becoming part
1281                 * of the transaction. This needs to be done
1282                 * once a transaction -bzzz
1283                 */
1284                jh->b_modified = 1;
1285                if (handle->h_buffer_credits <= 0) {
1286                        ret = -ENOSPC;
1287                        goto out_unlock_bh;
1288                }
1289                handle->h_buffer_credits--;
1290        }
1291
1292        /*
1293         * fastpath, to avoid expensive locking.  If this buffer is already
1294         * on the running transaction's metadata list there is nothing to do.
1295         * Nobody can take it off again because there is a handle open.
1296         * I _think_ we're OK here with SMP barriers - a mistaken decision will
1297         * result in this test being false, so we go in and take the locks.
1298         */
1299        if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1300                JBUFFER_TRACE(jh, "fastpath");
1301                if (unlikely(jh->b_transaction !=
1302                             journal->j_running_transaction)) {
1303                        printk(KERN_ERR "JBD2: %s: "
1304                               "jh->b_transaction (%llu, %p, %u) != "
1305                               "journal->j_running_transaction (%p, %u)\n",
1306                               journal->j_devname,
1307                               (unsigned long long) bh->b_blocknr,
1308                               jh->b_transaction,
1309                               jh->b_transaction ? jh->b_transaction->t_tid : 0,
1310                               journal->j_running_transaction,
1311                               journal->j_running_transaction ?
1312                               journal->j_running_transaction->t_tid : 0);
1313                        ret = -EINVAL;
1314                }
1315                goto out_unlock_bh;
1316        }
1317
1318        set_buffer_jbddirty(bh);
1319
1320        /*
1321         * Metadata already on the current transaction list doesn't
1322         * need to be filed.  Metadata on another transaction's list must
1323         * be committing, and will be refiled once the commit completes:
1324         * leave it alone for now.
1325         */
1326        if (jh->b_transaction != transaction) {
1327                JBUFFER_TRACE(jh, "already on other transaction");
1328                if (unlikely(((jh->b_transaction !=
1329                               journal->j_committing_transaction)) ||
1330                             (jh->b_next_transaction != transaction))) {
1331                        printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1332                               "bad jh for block %llu: "
1333                               "transaction (%p, %u), "
1334                               "jh->b_transaction (%p, %u), "
1335                               "jh->b_next_transaction (%p, %u), jlist %u\n",
1336                               journal->j_devname,
1337                               (unsigned long long) bh->b_blocknr,
1338                               transaction, transaction->t_tid,
1339                               jh->b_transaction,
1340                               jh->b_transaction ?
1341                               jh->b_transaction->t_tid : 0,
1342                               jh->b_next_transaction,
1343                               jh->b_next_transaction ?
1344                               jh->b_next_transaction->t_tid : 0,
1345                               jh->b_jlist);
1346                        WARN_ON(1);
1347                        ret = -EINVAL;
1348                }
1349                /* And this case is illegal: we can't reuse another
1350                 * transaction's data buffer, ever. */
1351                goto out_unlock_bh;
1352        }
1353
1354        /* That test should have eliminated the following case: */
1355        J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1356
1357        JBUFFER_TRACE(jh, "file as BJ_Metadata");
1358        spin_lock(&journal->j_list_lock);
1359        __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1360        spin_unlock(&journal->j_list_lock);
1361out_unlock_bh:
1362        jbd_unlock_bh_state(bh);
1363        jbd2_journal_put_journal_head(jh);
1364out:
1365        JBUFFER_TRACE(jh, "exit");
1366        return ret;
1367}
1368
1369/**
1370 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1371 * @handle: transaction handle
1372 * @bh:     bh to 'forget'
1373 *
1374 * We can only do the bforget if there are no commits pending against the
1375 * buffer.  If the buffer is dirty in the current running transaction we
1376 * can safely unlink it.
1377 *
1378 * bh may not be a journalled buffer at all - it may be a non-JBD
1379 * buffer which came off the hashtable.  Check for this.
1380 *
1381 * Decrements bh->b_count by one.
1382 *
1383 * Allow this call even if the handle has aborted --- it may be part of
1384 * the caller's cleanup after an abort.
1385 */
1386int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1387{
1388        transaction_t *transaction = handle->h_transaction;
1389        journal_t *journal;
1390        struct journal_head *jh;
1391        int drop_reserve = 0;
1392        int err = 0;
1393        int was_modified = 0;
1394
1395        if (is_handle_aborted(handle))
1396                return -EROFS;
1397        journal = transaction->t_journal;
1398
1399        BUFFER_TRACE(bh, "entry");
1400
1401        jbd_lock_bh_state(bh);
1402
1403        if (!buffer_jbd(bh))
1404                goto not_jbd;
1405        jh = bh2jh(bh);
1406
1407        /* Critical error: attempting to delete a bitmap buffer, maybe?
1408         * Don't do any jbd operations, and return an error. */
1409        if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1410                         "inconsistent data on disk")) {
1411                err = -EIO;
1412                goto not_jbd;
1413        }
1414
1415        /* keep track of whether or not this transaction modified us */
1416        was_modified = jh->b_modified;
1417
1418        /*
1419         * The buffer's going from the transaction, we must drop
1420         * all references -bzzz
1421         */
1422        jh->b_modified = 0;
1423
1424        if (jh->b_transaction == transaction) {
1425                J_ASSERT_JH(jh, !jh->b_frozen_data);
1426
1427                /* If we are forgetting a buffer which is already part
1428                 * of this transaction, then we can just drop it from
1429                 * the transaction immediately. */
1430                clear_buffer_dirty(bh);
1431                clear_buffer_jbddirty(bh);
1432
1433                JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1434
1435                /*
1436                 * we only want to drop a reference if this transaction
1437                 * modified the buffer
1438                 */
1439                if (was_modified)
1440                        drop_reserve = 1;
1441
1442                /*
1443                 * We are no longer going to journal this buffer.
1444                 * However, the commit of this transaction is still
1445                 * important to the buffer: the delete that we are now
1446                 * processing might obsolete an old log entry, so by
1447                 * committing, we can satisfy the buffer's checkpoint.
1448                 *
1449                 * So, if we have a checkpoint on the buffer, we should
1450                 * now refile the buffer on our BJ_Forget list so that
1451                 * we know to remove the checkpoint after we commit.
1452                 */
1453
1454                spin_lock(&journal->j_list_lock);
1455                if (jh->b_cp_transaction) {
1456                        __jbd2_journal_temp_unlink_buffer(jh);
1457                        __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1458                } else {
1459                        __jbd2_journal_unfile_buffer(jh);
1460                        if (!buffer_jbd(bh)) {
1461                                spin_unlock(&journal->j_list_lock);
1462                                jbd_unlock_bh_state(bh);
1463                                __bforget(bh);
1464                                goto drop;
1465                        }
1466                }
1467                spin_unlock(&journal->j_list_lock);
1468        } else if (jh->b_transaction) {
1469                J_ASSERT_JH(jh, (jh->b_transaction ==
1470                                 journal->j_committing_transaction));
1471                /* However, if the buffer is still owned by a prior
1472                 * (committing) transaction, we can't drop it yet... */
1473                JBUFFER_TRACE(jh, "belongs to older transaction");
1474                /* ... but we CAN drop it from the new transaction if we
1475                 * have also modified it since the original commit. */
1476
1477                if (jh->b_next_transaction) {
1478                        J_ASSERT(jh->b_next_transaction == transaction);
1479                        spin_lock(&journal->j_list_lock);
1480                        jh->b_next_transaction = NULL;
1481                        spin_unlock(&journal->j_list_lock);
1482
1483                        /*
1484                         * only drop a reference if this transaction modified
1485                         * the buffer
1486                         */
1487                        if (was_modified)
1488                                drop_reserve = 1;
1489                }
1490        }
1491
1492not_jbd:
1493        jbd_unlock_bh_state(bh);
1494        __brelse(bh);
1495drop:
1496        if (drop_reserve) {
1497                /* no need to reserve log space for this block -bzzz */
1498                handle->h_buffer_credits++;
1499        }
1500        return err;
1501}
1502
1503/**
1504 * int jbd2_journal_stop() - complete a transaction
1505 * @handle: tranaction to complete.
1506 *
1507 * All done for a particular handle.
1508 *
1509 * There is not much action needed here.  We just return any remaining
1510 * buffer credits to the transaction and remove the handle.  The only
1511 * complication is that we need to start a commit operation if the
1512 * filesystem is marked for synchronous update.
1513 *
1514 * jbd2_journal_stop itself will not usually return an error, but it may
1515 * do so in unusual circumstances.  In particular, expect it to
1516 * return -EIO if a jbd2_journal_abort has been executed since the
1517 * transaction began.
1518 */
1519int jbd2_journal_stop(handle_t *handle)
1520{
1521        transaction_t *transaction = handle->h_transaction;
1522        journal_t *journal;
1523        int err = 0, wait_for_commit = 0;
1524        tid_t tid;
1525        pid_t pid;
1526
1527        if (!transaction) {
1528                /*
1529                 * Handle is already detached from the transaction so
1530                 * there is nothing to do other than decrease a refcount,
1531                 * or free the handle if refcount drops to zero
1532                 */
1533                if (--handle->h_ref > 0) {
1534                        jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1535                                                         handle->h_ref);
1536                        return err;
1537                } else {
1538                        if (handle->h_rsv_handle)
1539                                jbd2_free_handle(handle->h_rsv_handle);
1540                        goto free_and_exit;
1541                }
1542        }
1543        journal = transaction->t_journal;
1544
1545        J_ASSERT(journal_current_handle() == handle);
1546
1547        if (is_handle_aborted(handle))
1548                err = -EIO;
1549        else
1550                J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1551
1552        if (--handle->h_ref > 0) {
1553                jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1554                          handle->h_ref);
1555                return err;
1556        }
1557
1558        jbd_debug(4, "Handle %p going down\n", handle);
1559        trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1560                                transaction->t_tid,
1561                                handle->h_type, handle->h_line_no,
1562                                jiffies - handle->h_start_jiffies,
1563                                handle->h_sync, handle->h_requested_credits,
1564                                (handle->h_requested_credits -
1565                                 handle->h_buffer_credits));
1566
1567        /*
1568         * Implement synchronous transaction batching.  If the handle
1569         * was synchronous, don't force a commit immediately.  Let's
1570         * yield and let another thread piggyback onto this
1571         * transaction.  Keep doing that while new threads continue to
1572         * arrive.  It doesn't cost much - we're about to run a commit
1573         * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1574         * operations by 30x or more...
1575         *
1576         * We try and optimize the sleep time against what the
1577         * underlying disk can do, instead of having a static sleep
1578         * time.  This is useful for the case where our storage is so
1579         * fast that it is more optimal to go ahead and force a flush
1580         * and wait for the transaction to be committed than it is to
1581         * wait for an arbitrary amount of time for new writers to
1582         * join the transaction.  We achieve this by measuring how
1583         * long it takes to commit a transaction, and compare it with
1584         * how long this transaction has been running, and if run time
1585         * < commit time then we sleep for the delta and commit.  This
1586         * greatly helps super fast disks that would see slowdowns as
1587         * more threads started doing fsyncs.
1588         *
1589         * But don't do this if this process was the most recent one
1590         * to perform a synchronous write.  We do this to detect the
1591         * case where a single process is doing a stream of sync
1592         * writes.  No point in waiting for joiners in that case.
1593         *
1594         * Setting max_batch_time to 0 disables this completely.
1595         */
1596        pid = current->pid;
1597        if (handle->h_sync && journal->j_last_sync_writer != pid &&
1598            journal->j_max_batch_time) {
1599                u64 commit_time, trans_time;
1600
1601                journal->j_last_sync_writer = pid;
1602
1603                read_lock(&journal->j_state_lock);
1604                commit_time = journal->j_average_commit_time;
1605                read_unlock(&journal->j_state_lock);
1606
1607                trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1608                                                   transaction->t_start_time));
1609
1610                commit_time = max_t(u64, commit_time,
1611                                    1000*journal->j_min_batch_time);
1612                commit_time = min_t(u64, commit_time,
1613                                    1000*journal->j_max_batch_time);
1614
1615                if (trans_time < commit_time) {
1616                        ktime_t expires = ktime_add_ns(ktime_get(),
1617                                                       commit_time);
1618                        set_current_state(TASK_UNINTERRUPTIBLE);
1619                        schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1620                }
1621        }
1622
1623        if (handle->h_sync)
1624                transaction->t_synchronous_commit = 1;
1625        current->journal_info = NULL;
1626        atomic_sub(handle->h_buffer_credits,
1627                   &transaction->t_outstanding_credits);
1628
1629        /*
1630         * If the handle is marked SYNC, we need to set another commit
1631         * going!  We also want to force a commit if the current
1632         * transaction is occupying too much of the log, or if the
1633         * transaction is too old now.
1634         */
1635        if (handle->h_sync ||
1636            (atomic_read(&transaction->t_outstanding_credits) >
1637             journal->j_max_transaction_buffers) ||
1638            time_after_eq(jiffies, transaction->t_expires)) {
1639                /* Do this even for aborted journals: an abort still
1640                 * completes the commit thread, it just doesn't write
1641                 * anything to disk. */
1642
1643                jbd_debug(2, "transaction too old, requesting commit for "
1644                                        "handle %p\n", handle);
1645                /* This is non-blocking */
1646                jbd2_log_start_commit(journal, transaction->t_tid);
1647
1648                /*
1649                 * Special case: JBD2_SYNC synchronous updates require us
1650                 * to wait for the commit to complete.
1651                 */
1652                if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1653                        wait_for_commit = 1;
1654        }
1655
1656        /*
1657         * Once we drop t_updates, if it goes to zero the transaction
1658         * could start committing on us and eventually disappear.  So
1659         * once we do this, we must not dereference transaction
1660         * pointer again.
1661         */
1662        tid = transaction->t_tid;
1663        if (atomic_dec_and_test(&transaction->t_updates)) {
1664                wake_up(&journal->j_wait_updates);
1665                if (journal->j_barrier_count)
1666                        wake_up(&journal->j_wait_transaction_locked);
1667        }
1668
1669        if (wait_for_commit)
1670                err = jbd2_log_wait_commit(journal, tid);
1671
1672        lock_map_release(&handle->h_lockdep_map);
1673
1674        if (handle->h_rsv_handle)
1675                jbd2_journal_free_reserved(handle->h_rsv_handle);
1676free_and_exit:
1677        jbd2_free_handle(handle);
1678        return err;
1679}
1680
1681/*
1682 *
1683 * List management code snippets: various functions for manipulating the
1684 * transaction buffer lists.
1685 *
1686 */
1687
1688/*
1689 * Append a buffer to a transaction list, given the transaction's list head
1690 * pointer.
1691 *
1692 * j_list_lock is held.
1693 *
1694 * jbd_lock_bh_state(jh2bh(jh)) is held.
1695 */
1696
1697static inline void
1698__blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1699{
1700        if (!*list) {
1701                jh->b_tnext = jh->b_tprev = jh;
1702                *list = jh;
1703        } else {
1704                /* Insert at the tail of the list to preserve order */
1705                struct journal_head *first = *list, *last = first->b_tprev;
1706                jh->b_tprev = last;
1707                jh->b_tnext = first;
1708                last->b_tnext = first->b_tprev = jh;
1709        }
1710}
1711
1712/*
1713 * Remove a buffer from a transaction list, given the transaction's list
1714 * head pointer.
1715 *
1716 * Called with j_list_lock held, and the journal may not be locked.
1717 *
1718 * jbd_lock_bh_state(jh2bh(jh)) is held.
1719 */
1720
1721static inline void
1722__blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1723{
1724        if (*list == jh) {
1725                *list = jh->b_tnext;
1726                if (*list == jh)
1727                        *list = NULL;
1728        }
1729        jh->b_tprev->b_tnext = jh->b_tnext;
1730        jh->b_tnext->b_tprev = jh->b_tprev;
1731}
1732
1733/*
1734 * Remove a buffer from the appropriate transaction list.
1735 *
1736 * Note that this function can *change* the value of
1737 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1738 * t_reserved_list.  If the caller is holding onto a copy of one of these
1739 * pointers, it could go bad.  Generally the caller needs to re-read the
1740 * pointer from the transaction_t.
1741 *
1742 * Called under j_list_lock.
1743 */
1744static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1745{
1746        struct journal_head **list = NULL;
1747        transaction_t *transaction;
1748        struct buffer_head *bh = jh2bh(jh);
1749
1750        J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1751        transaction = jh->b_transaction;
1752        if (transaction)
1753                assert_spin_locked(&transaction->t_journal->j_list_lock);
1754
1755        J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1756        if (jh->b_jlist != BJ_None)
1757                J_ASSERT_JH(jh, transaction != NULL);
1758
1759        switch (jh->b_jlist) {
1760        case BJ_None:
1761                return;
1762        case BJ_Metadata:
1763                transaction->t_nr_buffers--;
1764                J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1765                list = &transaction->t_buffers;
1766                break;
1767        case BJ_Forget:
1768                list = &transaction->t_forget;
1769                break;
1770        case BJ_Shadow:
1771                list = &transaction->t_shadow_list;
1772                break;
1773        case BJ_Reserved:
1774                list = &transaction->t_reserved_list;
1775                break;
1776        }
1777
1778        __blist_del_buffer(list, jh);
1779        jh->b_jlist = BJ_None;
1780        if (test_clear_buffer_jbddirty(bh))
1781                mark_buffer_dirty(bh);  /* Expose it to the VM */
1782}
1783
1784/*
1785 * Remove buffer from all transactions.
1786 *
1787 * Called with bh_state lock and j_list_lock
1788 *
1789 * jh and bh may be already freed when this function returns.
1790 */
1791static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1792{
1793        __jbd2_journal_temp_unlink_buffer(jh);
1794        jh->b_transaction = NULL;
1795        jbd2_journal_put_journal_head(jh);
1796}
1797
1798void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1799{
1800        struct buffer_head *bh = jh2bh(jh);
1801
1802        /* Get reference so that buffer cannot be freed before we unlock it */
1803        get_bh(bh);
1804        jbd_lock_bh_state(bh);
1805        spin_lock(&journal->j_list_lock);
1806        __jbd2_journal_unfile_buffer(jh);
1807        spin_unlock(&journal->j_list_lock);
1808        jbd_unlock_bh_state(bh);
1809        __brelse(bh);
1810}
1811
1812/*
1813 * Called from jbd2_journal_try_to_free_buffers().
1814 *
1815 * Called under jbd_lock_bh_state(bh)
1816 */
1817static void
1818__journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1819{
1820        struct journal_head *jh;
1821
1822        jh = bh2jh(bh);
1823
1824        if (buffer_locked(bh) || buffer_dirty(bh))
1825                goto out;
1826
1827        if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1828                goto out;
1829
1830        spin_lock(&journal->j_list_lock);
1831        if (jh->b_cp_transaction != NULL) {
1832                /* written-back checkpointed metadata buffer */
1833                JBUFFER_TRACE(jh, "remove from checkpoint list");
1834                __jbd2_journal_remove_checkpoint(jh);
1835        }
1836        spin_unlock(&journal->j_list_lock);
1837out:
1838        return;
1839}
1840
1841/**
1842 * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1843 * @journal: journal for operation
1844 * @page: to try and free
1845 * @gfp_mask: we use the mask to detect how hard should we try to release
1846 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1847 * release the buffers.
1848 *
1849 *
1850 * For all the buffers on this page,
1851 * if they are fully written out ordered data, move them onto BUF_CLEAN
1852 * so try_to_free_buffers() can reap them.
1853 *
1854 * This function returns non-zero if we wish try_to_free_buffers()
1855 * to be called. We do this if the page is releasable by try_to_free_buffers().
1856 * We also do it if the page has locked or dirty buffers and the caller wants
1857 * us to perform sync or async writeout.
1858 *
1859 * This complicates JBD locking somewhat.  We aren't protected by the
1860 * BKL here.  We wish to remove the buffer from its committing or
1861 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1862 *
1863 * This may *change* the value of transaction_t->t_datalist, so anyone
1864 * who looks at t_datalist needs to lock against this function.
1865 *
1866 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1867 * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1868 * will come out of the lock with the buffer dirty, which makes it
1869 * ineligible for release here.
1870 *
1871 * Who else is affected by this?  hmm...  Really the only contender
1872 * is do_get_write_access() - it could be looking at the buffer while
1873 * journal_try_to_free_buffer() is changing its state.  But that
1874 * cannot happen because we never reallocate freed data as metadata
1875 * while the data is part of a transaction.  Yes?
1876 *
1877 * Return 0 on failure, 1 on success
1878 */
1879int jbd2_journal_try_to_free_buffers(journal_t *journal,
1880                                struct page *page, gfp_t gfp_mask)
1881{
1882        struct buffer_head *head;
1883        struct buffer_head *bh;
1884        int ret = 0;
1885
1886        J_ASSERT(PageLocked(page));
1887
1888        head = page_buffers(page);
1889        bh = head;
1890        do {
1891                struct journal_head *jh;
1892
1893                /*
1894                 * We take our own ref against the journal_head here to avoid
1895                 * having to add tons of locking around each instance of
1896                 * jbd2_journal_put_journal_head().
1897                 */
1898                jh = jbd2_journal_grab_journal_head(bh);
1899                if (!jh)
1900                        continue;
1901
1902                jbd_lock_bh_state(bh);
1903                __journal_try_to_free_buffer(journal, bh);
1904                jbd2_journal_put_journal_head(jh);
1905                jbd_unlock_bh_state(bh);
1906                if (buffer_jbd(bh))
1907                        goto busy;
1908        } while ((bh = bh->b_this_page) != head);
1909
1910        ret = try_to_free_buffers(page);
1911
1912busy:
1913        return ret;
1914}
1915
1916/*
1917 * This buffer is no longer needed.  If it is on an older transaction's
1918 * checkpoint list we need to record it on this transaction's forget list
1919 * to pin this buffer (and hence its checkpointing transaction) down until
1920 * this transaction commits.  If the buffer isn't on a checkpoint list, we
1921 * release it.
1922 * Returns non-zero if JBD no longer has an interest in the buffer.
1923 *
1924 * Called under j_list_lock.
1925 *
1926 * Called under jbd_lock_bh_state(bh).
1927 */
1928static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1929{
1930        int may_free = 1;
1931        struct buffer_head *bh = jh2bh(jh);
1932
1933        if (jh->b_cp_transaction) {
1934                JBUFFER_TRACE(jh, "on running+cp transaction");
1935                __jbd2_journal_temp_unlink_buffer(jh);
1936                /*
1937                 * We don't want to write the buffer anymore, clear the
1938                 * bit so that we don't confuse checks in
1939                 * __journal_file_buffer
1940                 */
1941                clear_buffer_dirty(bh);
1942                __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1943                may_free = 0;
1944        } else {
1945                JBUFFER_TRACE(jh, "on running transaction");
1946                __jbd2_journal_unfile_buffer(jh);
1947        }
1948        return may_free;
1949}
1950
1951/*
1952 * jbd2_journal_invalidatepage
1953 *
1954 * This code is tricky.  It has a number of cases to deal with.
1955 *
1956 * There are two invariants which this code relies on:
1957 *
1958 * i_size must be updated on disk before we start calling invalidatepage on the
1959 * data.
1960 *
1961 *  This is done in ext3 by defining an ext3_setattr method which
1962 *  updates i_size before truncate gets going.  By maintaining this
1963 *  invariant, we can be sure that it is safe to throw away any buffers
1964 *  attached to the current transaction: once the transaction commits,
1965 *  we know that the data will not be needed.
1966 *
1967 *  Note however that we can *not* throw away data belonging to the
1968 *  previous, committing transaction!
1969 *
1970 * Any disk blocks which *are* part of the previous, committing
1971 * transaction (and which therefore cannot be discarded immediately) are
1972 * not going to be reused in the new running transaction
1973 *
1974 *  The bitmap committed_data images guarantee this: any block which is
1975 *  allocated in one transaction and removed in the next will be marked
1976 *  as in-use in the committed_data bitmap, so cannot be reused until
1977 *  the next transaction to delete the block commits.  This means that
1978 *  leaving committing buffers dirty is quite safe: the disk blocks
1979 *  cannot be reallocated to a different file and so buffer aliasing is
1980 *  not possible.
1981 *
1982 *
1983 * The above applies mainly to ordered data mode.  In writeback mode we
1984 * don't make guarantees about the order in which data hits disk --- in
1985 * particular we don't guarantee that new dirty data is flushed before
1986 * transaction commit --- so it is always safe just to discard data
1987 * immediately in that mode.  --sct
1988 */
1989
1990/*
1991 * The journal_unmap_buffer helper function returns zero if the buffer
1992 * concerned remains pinned as an anonymous buffer belonging to an older
1993 * transaction.
1994 *
1995 * We're outside-transaction here.  Either or both of j_running_transaction
1996 * and j_committing_transaction may be NULL.
1997 */
1998static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
1999                                int partial_page)
2000{
2001        transaction_t *transaction;
2002        struct journal_head *jh;
2003        int may_free = 1;
2004
2005        BUFFER_TRACE(bh, "entry");
2006
2007        /*
2008         * It is safe to proceed here without the j_list_lock because the
2009         * buffers cannot be stolen by try_to_free_buffers as long as we are
2010         * holding the page lock. --sct
2011         */
2012
2013        if (!buffer_jbd(bh))
2014                goto zap_buffer_unlocked;
2015
2016        /* OK, we have data buffer in journaled mode */
2017        write_lock(&journal->j_state_lock);
2018        jbd_lock_bh_state(bh);
2019        spin_lock(&journal->j_list_lock);
2020
2021        jh = jbd2_journal_grab_journal_head(bh);
2022        if (!jh)
2023                goto zap_buffer_no_jh;
2024
2025        /*
2026         * We cannot remove the buffer from checkpoint lists until the
2027         * transaction adding inode to orphan list (let's call it T)
2028         * is committed.  Otherwise if the transaction changing the
2029         * buffer would be cleaned from the journal before T is
2030         * committed, a crash will cause that the correct contents of
2031         * the buffer will be lost.  On the other hand we have to
2032         * clear the buffer dirty bit at latest at the moment when the
2033         * transaction marking the buffer as freed in the filesystem
2034         * structures is committed because from that moment on the
2035         * block can be reallocated and used by a different page.
2036         * Since the block hasn't been freed yet but the inode has
2037         * already been added to orphan list, it is safe for us to add
2038         * the buffer to BJ_Forget list of the newest transaction.
2039         *
2040         * Also we have to clear buffer_mapped flag of a truncated buffer
2041         * because the buffer_head may be attached to the page straddling
2042         * i_size (can happen only when blocksize < pagesize) and thus the
2043         * buffer_head can be reused when the file is extended again. So we end
2044         * up keeping around invalidated buffers attached to transactions'
2045         * BJ_Forget list just to stop checkpointing code from cleaning up
2046         * the transaction this buffer was modified in.
2047         */
2048        transaction = jh->b_transaction;
2049        if (transaction == NULL) {
2050                /* First case: not on any transaction.  If it
2051                 * has no checkpoint link, then we can zap it:
2052                 * it's a writeback-mode buffer so we don't care
2053                 * if it hits disk safely. */
2054                if (!jh->b_cp_transaction) {
2055                        JBUFFER_TRACE(jh, "not on any transaction: zap");
2056                        goto zap_buffer;
2057                }
2058
2059                if (!buffer_dirty(bh)) {
2060                        /* bdflush has written it.  We can drop it now */
2061                        goto zap_buffer;
2062                }
2063
2064                /* OK, it must be in the journal but still not
2065                 * written fully to disk: it's metadata or
2066                 * journaled data... */
2067
2068                if (journal->j_running_transaction) {
2069                        /* ... and once the current transaction has
2070                         * committed, the buffer won't be needed any
2071                         * longer. */
2072                        JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2073                        may_free = __dispose_buffer(jh,
2074                                        journal->j_running_transaction);
2075                        goto zap_buffer;
2076                } else {
2077                        /* There is no currently-running transaction. So the
2078                         * orphan record which we wrote for this file must have
2079                         * passed into commit.  We must attach this buffer to
2080                         * the committing transaction, if it exists. */
2081                        if (journal->j_committing_transaction) {
2082                                JBUFFER_TRACE(jh, "give to committing trans");
2083                                may_free = __dispose_buffer(jh,
2084                                        journal->j_committing_transaction);
2085                                goto zap_buffer;
2086                        } else {
2087                                /* The orphan record's transaction has
2088                                 * committed.  We can cleanse this buffer */
2089                                clear_buffer_jbddirty(bh);
2090                                goto zap_buffer;
2091                        }
2092                }
2093        } else if (transaction == journal->j_committing_transaction) {
2094                JBUFFER_TRACE(jh, "on committing transaction");
2095                /*
2096                 * The buffer is committing, we simply cannot touch
2097                 * it. If the page is straddling i_size we have to wait
2098                 * for commit and try again.
2099                 */
2100                if (partial_page) {
2101                        jbd2_journal_put_journal_head(jh);
2102                        spin_unlock(&journal->j_list_lock);
2103                        jbd_unlock_bh_state(bh);
2104                        write_unlock(&journal->j_state_lock);
2105                        return -EBUSY;
2106                }
2107                /*
2108                 * OK, buffer won't be reachable after truncate. We just set
2109                 * j_next_transaction to the running transaction (if there is
2110                 * one) and mark buffer as freed so that commit code knows it
2111                 * should clear dirty bits when it is done with the buffer.
2112                 */
2113                set_buffer_freed(bh);
2114                if (journal->j_running_transaction && buffer_jbddirty(bh))
2115                        jh->b_next_transaction = journal->j_running_transaction;
2116                jbd2_journal_put_journal_head(jh);
2117                spin_unlock(&journal->j_list_lock);
2118                jbd_unlock_bh_state(bh);
2119                write_unlock(&journal->j_state_lock);
2120                return 0;
2121        } else {
2122                /* Good, the buffer belongs to the running transaction.
2123                 * We are writing our own transaction's data, not any
2124                 * previous one's, so it is safe to throw it away
2125                 * (remember that we expect the filesystem to have set
2126                 * i_size already for this truncate so recovery will not
2127                 * expose the disk blocks we are discarding here.) */
2128                J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2129                JBUFFER_TRACE(jh, "on running transaction");
2130                may_free = __dispose_buffer(jh, transaction);
2131        }
2132
2133zap_buffer:
2134        /*
2135         * This is tricky. Although the buffer is truncated, it may be reused
2136         * if blocksize < pagesize and it is attached to the page straddling
2137         * EOF. Since the buffer might have been added to BJ_Forget list of the
2138         * running transaction, journal_get_write_access() won't clear
2139         * b_modified and credit accounting gets confused. So clear b_modified
2140         * here.
2141         */
2142        jh->b_modified = 0;
2143        jbd2_journal_put_journal_head(jh);
2144zap_buffer_no_jh:
2145        spin_unlock(&journal->j_list_lock);
2146        jbd_unlock_bh_state(bh);
2147        write_unlock(&journal->j_state_lock);
2148zap_buffer_unlocked:
2149        clear_buffer_dirty(bh);
2150        J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2151        clear_buffer_mapped(bh);
2152        clear_buffer_req(bh);
2153        clear_buffer_new(bh);
2154        clear_buffer_delay(bh);
2155        clear_buffer_unwritten(bh);
2156        bh->b_bdev = NULL;
2157        return may_free;
2158}
2159
2160/**
2161 * void jbd2_journal_invalidatepage()
2162 * @journal: journal to use for flush...
2163 * @page:    page to flush
2164 * @offset:  start of the range to invalidate
2165 * @length:  length of the range to invalidate
2166 *
2167 * Reap page buffers containing data after in the specified range in page.
2168 * Can return -EBUSY if buffers are part of the committing transaction and
2169 * the page is straddling i_size. Caller then has to wait for current commit
2170 * and try again.
2171 */
2172int jbd2_journal_invalidatepage(journal_t *journal,
2173                                struct page *page,
2174                                unsigned int offset,
2175                                unsigned int length)
2176{
2177        struct buffer_head *head, *bh, *next;
2178        unsigned int stop = offset + length;
2179        unsigned int curr_off = 0;
2180        int partial_page = (offset || length < PAGE_CACHE_SIZE);
2181        int may_free = 1;
2182        int ret = 0;
2183
2184        if (!PageLocked(page))
2185                BUG();
2186        if (!page_has_buffers(page))
2187                return 0;
2188
2189        BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
2190
2191        /* We will potentially be playing with lists other than just the
2192         * data lists (especially for journaled data mode), so be
2193         * cautious in our locking. */
2194
2195        head = bh = page_buffers(page);
2196        do {
2197                unsigned int next_off = curr_off + bh->b_size;
2198                next = bh->b_this_page;
2199
2200                if (next_off > stop)
2201                        return 0;
2202
2203                if (offset <= curr_off) {
2204                        /* This block is wholly outside the truncation point */
2205                        lock_buffer(bh);
2206                        ret = journal_unmap_buffer(journal, bh, partial_page);
2207                        unlock_buffer(bh);
2208                        if (ret < 0)
2209                                return ret;
2210                        may_free &= ret;
2211                }
2212                curr_off = next_off;
2213                bh = next;
2214
2215        } while (bh != head);
2216
2217        if (!partial_page) {
2218                if (may_free && try_to_free_buffers(page))
2219                        J_ASSERT(!page_has_buffers(page));
2220        }
2221        return 0;
2222}
2223
2224/*
2225 * File a buffer on the given transaction list.
2226 */
2227void __jbd2_journal_file_buffer(struct journal_head *jh,
2228                        transaction_t *transaction, int jlist)
2229{
2230        struct journal_head **list = NULL;
2231        int was_dirty = 0;
2232        struct buffer_head *bh = jh2bh(jh);
2233
2234        J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2235        assert_spin_locked(&transaction->t_journal->j_list_lock);
2236
2237        J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2238        J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2239                                jh->b_transaction == NULL);
2240
2241        if (jh->b_transaction && jh->b_jlist == jlist)
2242                return;
2243
2244        if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2245            jlist == BJ_Shadow || jlist == BJ_Forget) {
2246                /*
2247                 * For metadata buffers, we track dirty bit in buffer_jbddirty
2248                 * instead of buffer_dirty. We should not see a dirty bit set
2249                 * here because we clear it in do_get_write_access but e.g.
2250                 * tune2fs can modify the sb and set the dirty bit at any time
2251                 * so we try to gracefully handle that.
2252                 */
2253                if (buffer_dirty(bh))
2254                        warn_dirty_buffer(bh);
2255                if (test_clear_buffer_dirty(bh) ||
2256                    test_clear_buffer_jbddirty(bh))
2257                        was_dirty = 1;
2258        }
2259
2260        if (jh->b_transaction)
2261                __jbd2_journal_temp_unlink_buffer(jh);
2262        else
2263                jbd2_journal_grab_journal_head(bh);
2264        jh->b_transaction = transaction;
2265
2266        switch (jlist) {
2267        case BJ_None:
2268                J_ASSERT_JH(jh, !jh->b_committed_data);
2269                J_ASSERT_JH(jh, !jh->b_frozen_data);
2270                return;
2271        case BJ_Metadata:
2272                transaction->t_nr_buffers++;
2273                list = &transaction->t_buffers;
2274                break;
2275        case BJ_Forget:
2276                list = &transaction->t_forget;
2277                break;
2278        case BJ_Shadow:
2279                list = &transaction->t_shadow_list;
2280                break;
2281        case BJ_Reserved:
2282                list = &transaction->t_reserved_list;
2283                break;
2284        }
2285
2286        __blist_add_buffer(list, jh);
2287        jh->b_jlist = jlist;
2288
2289        if (was_dirty)
2290                set_buffer_jbddirty(bh);
2291}
2292
2293void jbd2_journal_file_buffer(struct journal_head *jh,
2294                                transaction_t *transaction, int jlist)
2295{
2296        jbd_lock_bh_state(jh2bh(jh));
2297        spin_lock(&transaction->t_journal->j_list_lock);
2298        __jbd2_journal_file_buffer(jh, transaction, jlist);
2299        spin_unlock(&transaction->t_journal->j_list_lock);
2300        jbd_unlock_bh_state(jh2bh(jh));
2301}
2302
2303/*
2304 * Remove a buffer from its current buffer list in preparation for
2305 * dropping it from its current transaction entirely.  If the buffer has
2306 * already started to be used by a subsequent transaction, refile the
2307 * buffer on that transaction's metadata list.
2308 *
2309 * Called under j_list_lock
2310 * Called under jbd_lock_bh_state(jh2bh(jh))
2311 *
2312 * jh and bh may be already free when this function returns
2313 */
2314void __jbd2_journal_refile_buffer(struct journal_head *jh)
2315{
2316        int was_dirty, jlist;
2317        struct buffer_head *bh = jh2bh(jh);
2318
2319        J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2320        if (jh->b_transaction)
2321                assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2322
2323        /* If the buffer is now unused, just drop it. */
2324        if (jh->b_next_transaction == NULL) {
2325                __jbd2_journal_unfile_buffer(jh);
2326                return;
2327        }
2328
2329        /*
2330         * It has been modified by a later transaction: add it to the new
2331         * transaction's metadata list.
2332         */
2333
2334        was_dirty = test_clear_buffer_jbddirty(bh);
2335        __jbd2_journal_temp_unlink_buffer(jh);
2336        /*
2337         * We set b_transaction here because b_next_transaction will inherit
2338         * our jh reference and thus __jbd2_journal_file_buffer() must not
2339         * take a new one.
2340         */
2341        jh->b_transaction = jh->b_next_transaction;
2342        jh->b_next_transaction = NULL;
2343        if (buffer_freed(bh))
2344                jlist = BJ_Forget;
2345        else if (jh->b_modified)
2346                jlist = BJ_Metadata;
2347        else
2348                jlist = BJ_Reserved;
2349        __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2350        J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2351
2352        if (was_dirty)
2353                set_buffer_jbddirty(bh);
2354}
2355
2356/*
2357 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2358 * bh reference so that we can safely unlock bh.
2359 *
2360 * The jh and bh may be freed by this call.
2361 */
2362void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2363{
2364        struct buffer_head *bh = jh2bh(jh);
2365
2366        /* Get reference so that buffer cannot be freed before we unlock it */
2367        get_bh(bh);
2368        jbd_lock_bh_state(bh);
2369        spin_lock(&journal->j_list_lock);
2370        __jbd2_journal_refile_buffer(jh);
2371        jbd_unlock_bh_state(bh);
2372        spin_unlock(&journal->j_list_lock);
2373        __brelse(bh);
2374}
2375
2376/*
2377 * File inode in the inode list of the handle's transaction
2378 */
2379int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2380{
2381        transaction_t *transaction = handle->h_transaction;
2382        journal_t *journal;
2383
2384        if (is_handle_aborted(handle))
2385                return -EROFS;
2386        journal = transaction->t_journal;
2387
2388        jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2389                        transaction->t_tid);
2390
2391        /*
2392         * First check whether inode isn't already on the transaction's
2393         * lists without taking the lock. Note that this check is safe
2394         * without the lock as we cannot race with somebody removing inode
2395         * from the transaction. The reason is that we remove inode from the
2396         * transaction only in journal_release_jbd_inode() and when we commit
2397         * the transaction. We are guarded from the first case by holding
2398         * a reference to the inode. We are safe against the second case
2399         * because if jinode->i_transaction == transaction, commit code
2400         * cannot touch the transaction because we hold reference to it,
2401         * and if jinode->i_next_transaction == transaction, commit code
2402         * will only file the inode where we want it.
2403         */
2404        if (jinode->i_transaction == transaction ||
2405            jinode->i_next_transaction == transaction)
2406                return 0;
2407
2408        spin_lock(&journal->j_list_lock);
2409
2410        if (jinode->i_transaction == transaction ||
2411            jinode->i_next_transaction == transaction)
2412                goto done;
2413
2414        /*
2415         * We only ever set this variable to 1 so the test is safe. Since
2416         * t_need_data_flush is likely to be set, we do the test to save some
2417         * cacheline bouncing
2418         */
2419        if (!transaction->t_need_data_flush)
2420                transaction->t_need_data_flush = 1;
2421        /* On some different transaction's list - should be
2422         * the committing one */
2423        if (jinode->i_transaction) {
2424                J_ASSERT(jinode->i_next_transaction == NULL);
2425                J_ASSERT(jinode->i_transaction ==
2426                                        journal->j_committing_transaction);
2427                jinode->i_next_transaction = transaction;
2428                goto done;
2429        }
2430        /* Not on any transaction list... */
2431        J_ASSERT(!jinode->i_next_transaction);
2432        jinode->i_transaction = transaction;
2433        list_add(&jinode->i_list, &transaction->t_inode_list);
2434done:
2435        spin_unlock(&journal->j_list_lock);
2436
2437        return 0;
2438}
2439
2440/*
2441 * File truncate and transaction commit interact with each other in a
2442 * non-trivial way.  If a transaction writing data block A is
2443 * committing, we cannot discard the data by truncate until we have
2444 * written them.  Otherwise if we crashed after the transaction with
2445 * write has committed but before the transaction with truncate has
2446 * committed, we could see stale data in block A.  This function is a
2447 * helper to solve this problem.  It starts writeout of the truncated
2448 * part in case it is in the committing transaction.
2449 *
2450 * Filesystem code must call this function when inode is journaled in
2451 * ordered mode before truncation happens and after the inode has been
2452 * placed on orphan list with the new inode size. The second condition
2453 * avoids the race that someone writes new data and we start
2454 * committing the transaction after this function has been called but
2455 * before a transaction for truncate is started (and furthermore it
2456 * allows us to optimize the case where the addition to orphan list
2457 * happens in the same transaction as write --- we don't have to write
2458 * any data in such case).
2459 */
2460int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2461                                        struct jbd2_inode *jinode,
2462                                        loff_t new_size)
2463{
2464        transaction_t *inode_trans, *commit_trans;
2465        int ret = 0;
2466
2467        /* This is a quick check to avoid locking if not necessary */
2468        if (!jinode->i_transaction)
2469                goto out;
2470        /* Locks are here just to force reading of recent values, it is
2471         * enough that the transaction was not committing before we started
2472         * a transaction adding the inode to orphan list */
2473        read_lock(&journal->j_state_lock);
2474        commit_trans = journal->j_committing_transaction;
2475        read_unlock(&journal->j_state_lock);
2476        spin_lock(&journal->j_list_lock);
2477        inode_trans = jinode->i_transaction;
2478        spin_unlock(&journal->j_list_lock);
2479        if (inode_trans == commit_trans) {
2480                ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2481                        new_size, LLONG_MAX);
2482                if (ret)
2483                        jbd2_journal_abort(journal, ret);
2484        }
2485out:
2486        return ret;
2487}
2488