linux/fs/nfs/dir.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/nfs/dir.c
   3 *
   4 *  Copyright (C) 1992  Rick Sladkey
   5 *
   6 *  nfs directory handling functions
   7 *
   8 * 10 Apr 1996  Added silly rename for unlink   --okir
   9 * 28 Sep 1996  Improved directory cache --okir
  10 * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de 
  11 *              Re-implemented silly rename for unlink, newly implemented
  12 *              silly rename for nfs_rename() following the suggestions
  13 *              of Olaf Kirch (okir) found in this file.
  14 *              Following Linus comments on my original hack, this version
  15 *              depends only on the dcache stuff and doesn't touch the inode
  16 *              layer (iput() and friends).
  17 *  6 Jun 1999  Cache readdir lookups in the page cache. -DaveM
  18 */
  19
  20#include <linux/module.h>
  21#include <linux/time.h>
  22#include <linux/errno.h>
  23#include <linux/stat.h>
  24#include <linux/fcntl.h>
  25#include <linux/string.h>
  26#include <linux/kernel.h>
  27#include <linux/slab.h>
  28#include <linux/mm.h>
  29#include <linux/sunrpc/clnt.h>
  30#include <linux/nfs_fs.h>
  31#include <linux/nfs_mount.h>
  32#include <linux/pagemap.h>
  33#include <linux/pagevec.h>
  34#include <linux/namei.h>
  35#include <linux/mount.h>
  36#include <linux/swap.h>
  37#include <linux/sched.h>
  38#include <linux/kmemleak.h>
  39#include <linux/xattr.h>
  40
  41#include "delegation.h"
  42#include "iostat.h"
  43#include "internal.h"
  44#include "fscache.h"
  45
  46#include "nfstrace.h"
  47
  48/* #define NFS_DEBUG_VERBOSE 1 */
  49
  50static int nfs_opendir(struct inode *, struct file *);
  51static int nfs_closedir(struct inode *, struct file *);
  52static int nfs_readdir(struct file *, struct dir_context *);
  53static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
  54static loff_t nfs_llseek_dir(struct file *, loff_t, int);
  55static void nfs_readdir_clear_array(struct page*);
  56
  57const struct file_operations nfs_dir_operations = {
  58        .llseek         = nfs_llseek_dir,
  59        .read           = generic_read_dir,
  60        .iterate        = nfs_readdir,
  61        .open           = nfs_opendir,
  62        .release        = nfs_closedir,
  63        .fsync          = nfs_fsync_dir,
  64};
  65
  66const struct address_space_operations nfs_dir_aops = {
  67        .freepage = nfs_readdir_clear_array,
  68};
  69
  70static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
  71{
  72        struct nfs_inode *nfsi = NFS_I(dir);
  73        struct nfs_open_dir_context *ctx;
  74        ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
  75        if (ctx != NULL) {
  76                ctx->duped = 0;
  77                ctx->attr_gencount = nfsi->attr_gencount;
  78                ctx->dir_cookie = 0;
  79                ctx->dup_cookie = 0;
  80                ctx->cred = get_rpccred(cred);
  81                spin_lock(&dir->i_lock);
  82                list_add(&ctx->list, &nfsi->open_files);
  83                spin_unlock(&dir->i_lock);
  84                return ctx;
  85        }
  86        return  ERR_PTR(-ENOMEM);
  87}
  88
  89static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
  90{
  91        spin_lock(&dir->i_lock);
  92        list_del(&ctx->list);
  93        spin_unlock(&dir->i_lock);
  94        put_rpccred(ctx->cred);
  95        kfree(ctx);
  96}
  97
  98/*
  99 * Open file
 100 */
 101static int
 102nfs_opendir(struct inode *inode, struct file *filp)
 103{
 104        int res = 0;
 105        struct nfs_open_dir_context *ctx;
 106        struct rpc_cred *cred;
 107
 108        dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
 109
 110        nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 111
 112        cred = rpc_lookup_cred();
 113        if (IS_ERR(cred))
 114                return PTR_ERR(cred);
 115        ctx = alloc_nfs_open_dir_context(inode, cred);
 116        if (IS_ERR(ctx)) {
 117                res = PTR_ERR(ctx);
 118                goto out;
 119        }
 120        filp->private_data = ctx;
 121        if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
 122                /* This is a mountpoint, so d_revalidate will never
 123                 * have been called, so we need to refresh the
 124                 * inode (for close-open consistency) ourselves.
 125                 */
 126                __nfs_revalidate_inode(NFS_SERVER(inode), inode);
 127        }
 128out:
 129        put_rpccred(cred);
 130        return res;
 131}
 132
 133static int
 134nfs_closedir(struct inode *inode, struct file *filp)
 135{
 136        put_nfs_open_dir_context(file_inode(filp), filp->private_data);
 137        return 0;
 138}
 139
 140struct nfs_cache_array_entry {
 141        u64 cookie;
 142        u64 ino;
 143        struct qstr string;
 144        unsigned char d_type;
 145};
 146
 147struct nfs_cache_array {
 148        int size;
 149        int eof_index;
 150        u64 last_cookie;
 151        struct nfs_cache_array_entry array[0];
 152};
 153
 154typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
 155typedef struct {
 156        struct file     *file;
 157        struct page     *page;
 158        struct dir_context *ctx;
 159        unsigned long   page_index;
 160        u64             *dir_cookie;
 161        u64             last_cookie;
 162        loff_t          current_index;
 163        decode_dirent_t decode;
 164
 165        unsigned long   timestamp;
 166        unsigned long   gencount;
 167        unsigned int    cache_entry_index;
 168        unsigned int    plus:1;
 169        unsigned int    eof:1;
 170} nfs_readdir_descriptor_t;
 171
 172/*
 173 * The caller is responsible for calling nfs_readdir_release_array(page)
 174 */
 175static
 176struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
 177{
 178        void *ptr;
 179        if (page == NULL)
 180                return ERR_PTR(-EIO);
 181        ptr = kmap(page);
 182        if (ptr == NULL)
 183                return ERR_PTR(-ENOMEM);
 184        return ptr;
 185}
 186
 187static
 188void nfs_readdir_release_array(struct page *page)
 189{
 190        kunmap(page);
 191}
 192
 193/*
 194 * we are freeing strings created by nfs_add_to_readdir_array()
 195 */
 196static
 197void nfs_readdir_clear_array(struct page *page)
 198{
 199        struct nfs_cache_array *array;
 200        int i;
 201
 202        array = kmap_atomic(page);
 203        for (i = 0; i < array->size; i++)
 204                kfree(array->array[i].string.name);
 205        kunmap_atomic(array);
 206}
 207
 208/*
 209 * the caller is responsible for freeing qstr.name
 210 * when called by nfs_readdir_add_to_array, the strings will be freed in
 211 * nfs_clear_readdir_array()
 212 */
 213static
 214int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
 215{
 216        string->len = len;
 217        string->name = kmemdup(name, len, GFP_KERNEL);
 218        if (string->name == NULL)
 219                return -ENOMEM;
 220        /*
 221         * Avoid a kmemleak false positive. The pointer to the name is stored
 222         * in a page cache page which kmemleak does not scan.
 223         */
 224        kmemleak_not_leak(string->name);
 225        string->hash = full_name_hash(name, len);
 226        return 0;
 227}
 228
 229static
 230int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
 231{
 232        struct nfs_cache_array *array = nfs_readdir_get_array(page);
 233        struct nfs_cache_array_entry *cache_entry;
 234        int ret;
 235
 236        if (IS_ERR(array))
 237                return PTR_ERR(array);
 238
 239        cache_entry = &array->array[array->size];
 240
 241        /* Check that this entry lies within the page bounds */
 242        ret = -ENOSPC;
 243        if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
 244                goto out;
 245
 246        cache_entry->cookie = entry->prev_cookie;
 247        cache_entry->ino = entry->ino;
 248        cache_entry->d_type = entry->d_type;
 249        ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
 250        if (ret)
 251                goto out;
 252        array->last_cookie = entry->cookie;
 253        array->size++;
 254        if (entry->eof != 0)
 255                array->eof_index = array->size;
 256out:
 257        nfs_readdir_release_array(page);
 258        return ret;
 259}
 260
 261static
 262int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
 263{
 264        loff_t diff = desc->ctx->pos - desc->current_index;
 265        unsigned int index;
 266
 267        if (diff < 0)
 268                goto out_eof;
 269        if (diff >= array->size) {
 270                if (array->eof_index >= 0)
 271                        goto out_eof;
 272                return -EAGAIN;
 273        }
 274
 275        index = (unsigned int)diff;
 276        *desc->dir_cookie = array->array[index].cookie;
 277        desc->cache_entry_index = index;
 278        return 0;
 279out_eof:
 280        desc->eof = 1;
 281        return -EBADCOOKIE;
 282}
 283
 284static bool
 285nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
 286{
 287        if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
 288                return false;
 289        smp_rmb();
 290        return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
 291}
 292
 293static
 294int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
 295{
 296        int i;
 297        loff_t new_pos;
 298        int status = -EAGAIN;
 299
 300        for (i = 0; i < array->size; i++) {
 301                if (array->array[i].cookie == *desc->dir_cookie) {
 302                        struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
 303                        struct nfs_open_dir_context *ctx = desc->file->private_data;
 304
 305                        new_pos = desc->current_index + i;
 306                        if (ctx->attr_gencount != nfsi->attr_gencount ||
 307                            !nfs_readdir_inode_mapping_valid(nfsi)) {
 308                                ctx->duped = 0;
 309                                ctx->attr_gencount = nfsi->attr_gencount;
 310                        } else if (new_pos < desc->ctx->pos) {
 311                                if (ctx->duped > 0
 312                                    && ctx->dup_cookie == *desc->dir_cookie) {
 313                                        if (printk_ratelimit()) {
 314                                                pr_notice("NFS: directory %pD2 contains a readdir loop."
 315                                                                "Please contact your server vendor.  "
 316                                                                "The file: %.*s has duplicate cookie %llu\n",
 317                                                                desc->file, array->array[i].string.len,
 318                                                                array->array[i].string.name, *desc->dir_cookie);
 319                                        }
 320                                        status = -ELOOP;
 321                                        goto out;
 322                                }
 323                                ctx->dup_cookie = *desc->dir_cookie;
 324                                ctx->duped = -1;
 325                        }
 326                        desc->ctx->pos = new_pos;
 327                        desc->cache_entry_index = i;
 328                        return 0;
 329                }
 330        }
 331        if (array->eof_index >= 0) {
 332                status = -EBADCOOKIE;
 333                if (*desc->dir_cookie == array->last_cookie)
 334                        desc->eof = 1;
 335        }
 336out:
 337        return status;
 338}
 339
 340static
 341int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
 342{
 343        struct nfs_cache_array *array;
 344        int status;
 345
 346        array = nfs_readdir_get_array(desc->page);
 347        if (IS_ERR(array)) {
 348                status = PTR_ERR(array);
 349                goto out;
 350        }
 351
 352        if (*desc->dir_cookie == 0)
 353                status = nfs_readdir_search_for_pos(array, desc);
 354        else
 355                status = nfs_readdir_search_for_cookie(array, desc);
 356
 357        if (status == -EAGAIN) {
 358                desc->last_cookie = array->last_cookie;
 359                desc->current_index += array->size;
 360                desc->page_index++;
 361        }
 362        nfs_readdir_release_array(desc->page);
 363out:
 364        return status;
 365}
 366
 367/* Fill a page with xdr information before transferring to the cache page */
 368static
 369int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
 370                        struct nfs_entry *entry, struct file *file, struct inode *inode)
 371{
 372        struct nfs_open_dir_context *ctx = file->private_data;
 373        struct rpc_cred *cred = ctx->cred;
 374        unsigned long   timestamp, gencount;
 375        int             error;
 376
 377 again:
 378        timestamp = jiffies;
 379        gencount = nfs_inc_attr_generation_counter();
 380        error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
 381                                          NFS_SERVER(inode)->dtsize, desc->plus);
 382        if (error < 0) {
 383                /* We requested READDIRPLUS, but the server doesn't grok it */
 384                if (error == -ENOTSUPP && desc->plus) {
 385                        NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
 386                        clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 387                        desc->plus = 0;
 388                        goto again;
 389                }
 390                goto error;
 391        }
 392        desc->timestamp = timestamp;
 393        desc->gencount = gencount;
 394error:
 395        return error;
 396}
 397
 398static int xdr_decode(nfs_readdir_descriptor_t *desc,
 399                      struct nfs_entry *entry, struct xdr_stream *xdr)
 400{
 401        int error;
 402
 403        error = desc->decode(xdr, entry, desc->plus);
 404        if (error)
 405                return error;
 406        entry->fattr->time_start = desc->timestamp;
 407        entry->fattr->gencount = desc->gencount;
 408        return 0;
 409}
 410
 411/* Match file and dirent using either filehandle or fileid
 412 * Note: caller is responsible for checking the fsid
 413 */
 414static
 415int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
 416{
 417        struct nfs_inode *nfsi;
 418
 419        if (d_really_is_negative(dentry))
 420                return 0;
 421
 422        nfsi = NFS_I(d_inode(dentry));
 423        if (entry->fattr->fileid == nfsi->fileid)
 424                return 1;
 425        if (nfs_compare_fh(entry->fh, &nfsi->fh) == 0)
 426                return 1;
 427        return 0;
 428}
 429
 430static
 431bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
 432{
 433        if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
 434                return false;
 435        if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
 436                return true;
 437        if (ctx->pos == 0)
 438                return true;
 439        return false;
 440}
 441
 442/*
 443 * This function is called by the lookup code to request the use of
 444 * readdirplus to accelerate any future lookups in the same
 445 * directory.
 446 */
 447static
 448void nfs_advise_use_readdirplus(struct inode *dir)
 449{
 450        set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
 451}
 452
 453/*
 454 * This function is mainly for use by nfs_getattr().
 455 *
 456 * If this is an 'ls -l', we want to force use of readdirplus.
 457 * Do this by checking if there is an active file descriptor
 458 * and calling nfs_advise_use_readdirplus, then forcing a
 459 * cache flush.
 460 */
 461void nfs_force_use_readdirplus(struct inode *dir)
 462{
 463        if (!list_empty(&NFS_I(dir)->open_files)) {
 464                nfs_advise_use_readdirplus(dir);
 465                nfs_zap_mapping(dir, dir->i_mapping);
 466        }
 467}
 468
 469static
 470void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
 471{
 472        struct qstr filename = QSTR_INIT(entry->name, entry->len);
 473        struct dentry *dentry;
 474        struct dentry *alias;
 475        struct inode *dir = d_inode(parent);
 476        struct inode *inode;
 477        int status;
 478
 479        if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
 480                return;
 481        if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
 482                return;
 483        if (filename.name[0] == '.') {
 484                if (filename.len == 1)
 485                        return;
 486                if (filename.len == 2 && filename.name[1] == '.')
 487                        return;
 488        }
 489        filename.hash = full_name_hash(filename.name, filename.len);
 490
 491        dentry = d_lookup(parent, &filename);
 492        if (dentry != NULL) {
 493                /* Is there a mountpoint here? If so, just exit */
 494                if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
 495                                        &entry->fattr->fsid))
 496                        goto out;
 497                if (nfs_same_file(dentry, entry)) {
 498                        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
 499                        status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
 500                        if (!status)
 501                                nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
 502                        goto out;
 503                } else {
 504                        d_invalidate(dentry);
 505                        dput(dentry);
 506                }
 507        }
 508
 509        dentry = d_alloc(parent, &filename);
 510        if (dentry == NULL)
 511                return;
 512
 513        inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
 514        if (IS_ERR(inode))
 515                goto out;
 516
 517        alias = d_splice_alias(inode, dentry);
 518        if (IS_ERR(alias))
 519                goto out;
 520        else if (alias) {
 521                nfs_set_verifier(alias, nfs_save_change_attribute(dir));
 522                dput(alias);
 523        } else
 524                nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
 525
 526out:
 527        dput(dentry);
 528}
 529
 530/* Perform conversion from xdr to cache array */
 531static
 532int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
 533                                struct page **xdr_pages, struct page *page, unsigned int buflen)
 534{
 535        struct xdr_stream stream;
 536        struct xdr_buf buf;
 537        struct page *scratch;
 538        struct nfs_cache_array *array;
 539        unsigned int count = 0;
 540        int status;
 541
 542        scratch = alloc_page(GFP_KERNEL);
 543        if (scratch == NULL)
 544                return -ENOMEM;
 545
 546        if (buflen == 0)
 547                goto out_nopages;
 548
 549        xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
 550        xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
 551
 552        do {
 553                status = xdr_decode(desc, entry, &stream);
 554                if (status != 0) {
 555                        if (status == -EAGAIN)
 556                                status = 0;
 557                        break;
 558                }
 559
 560                count++;
 561
 562                if (desc->plus != 0)
 563                        nfs_prime_dcache(desc->file->f_path.dentry, entry);
 564
 565                status = nfs_readdir_add_to_array(entry, page);
 566                if (status != 0)
 567                        break;
 568        } while (!entry->eof);
 569
 570out_nopages:
 571        if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
 572                array = nfs_readdir_get_array(page);
 573                if (!IS_ERR(array)) {
 574                        array->eof_index = array->size;
 575                        status = 0;
 576                        nfs_readdir_release_array(page);
 577                } else
 578                        status = PTR_ERR(array);
 579        }
 580
 581        put_page(scratch);
 582        return status;
 583}
 584
 585static
 586void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
 587{
 588        unsigned int i;
 589        for (i = 0; i < npages; i++)
 590                put_page(pages[i]);
 591}
 592
 593static
 594void nfs_readdir_free_large_page(void *ptr, struct page **pages,
 595                unsigned int npages)
 596{
 597        nfs_readdir_free_pagearray(pages, npages);
 598}
 599
 600/*
 601 * nfs_readdir_large_page will allocate pages that must be freed with a call
 602 * to nfs_readdir_free_large_page
 603 */
 604static
 605int nfs_readdir_large_page(struct page **pages, unsigned int npages)
 606{
 607        unsigned int i;
 608
 609        for (i = 0; i < npages; i++) {
 610                struct page *page = alloc_page(GFP_KERNEL);
 611                if (page == NULL)
 612                        goto out_freepages;
 613                pages[i] = page;
 614        }
 615        return 0;
 616
 617out_freepages:
 618        nfs_readdir_free_pagearray(pages, i);
 619        return -ENOMEM;
 620}
 621
 622static
 623int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
 624{
 625        struct page *pages[NFS_MAX_READDIR_PAGES];
 626        void *pages_ptr = NULL;
 627        struct nfs_entry entry;
 628        struct file     *file = desc->file;
 629        struct nfs_cache_array *array;
 630        int status = -ENOMEM;
 631        unsigned int array_size = ARRAY_SIZE(pages);
 632
 633        entry.prev_cookie = 0;
 634        entry.cookie = desc->last_cookie;
 635        entry.eof = 0;
 636        entry.fh = nfs_alloc_fhandle();
 637        entry.fattr = nfs_alloc_fattr();
 638        entry.server = NFS_SERVER(inode);
 639        if (entry.fh == NULL || entry.fattr == NULL)
 640                goto out;
 641
 642        entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
 643        if (IS_ERR(entry.label)) {
 644                status = PTR_ERR(entry.label);
 645                goto out;
 646        }
 647
 648        array = nfs_readdir_get_array(page);
 649        if (IS_ERR(array)) {
 650                status = PTR_ERR(array);
 651                goto out_label_free;
 652        }
 653        memset(array, 0, sizeof(struct nfs_cache_array));
 654        array->eof_index = -1;
 655
 656        status = nfs_readdir_large_page(pages, array_size);
 657        if (status < 0)
 658                goto out_release_array;
 659        do {
 660                unsigned int pglen;
 661                status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
 662
 663                if (status < 0)
 664                        break;
 665                pglen = status;
 666                status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
 667                if (status < 0) {
 668                        if (status == -ENOSPC)
 669                                status = 0;
 670                        break;
 671                }
 672        } while (array->eof_index < 0);
 673
 674        nfs_readdir_free_large_page(pages_ptr, pages, array_size);
 675out_release_array:
 676        nfs_readdir_release_array(page);
 677out_label_free:
 678        nfs4_label_free(entry.label);
 679out:
 680        nfs_free_fattr(entry.fattr);
 681        nfs_free_fhandle(entry.fh);
 682        return status;
 683}
 684
 685/*
 686 * Now we cache directories properly, by converting xdr information
 687 * to an array that can be used for lookups later.  This results in
 688 * fewer cache pages, since we can store more information on each page.
 689 * We only need to convert from xdr once so future lookups are much simpler
 690 */
 691static
 692int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
 693{
 694        struct inode    *inode = file_inode(desc->file);
 695        int ret;
 696
 697        ret = nfs_readdir_xdr_to_array(desc, page, inode);
 698        if (ret < 0)
 699                goto error;
 700        SetPageUptodate(page);
 701
 702        if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
 703                /* Should never happen */
 704                nfs_zap_mapping(inode, inode->i_mapping);
 705        }
 706        unlock_page(page);
 707        return 0;
 708 error:
 709        unlock_page(page);
 710        return ret;
 711}
 712
 713static
 714void cache_page_release(nfs_readdir_descriptor_t *desc)
 715{
 716        if (!desc->page->mapping)
 717                nfs_readdir_clear_array(desc->page);
 718        page_cache_release(desc->page);
 719        desc->page = NULL;
 720}
 721
 722static
 723struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
 724{
 725        return read_cache_page(file_inode(desc->file)->i_mapping,
 726                        desc->page_index, (filler_t *)nfs_readdir_filler, desc);
 727}
 728
 729/*
 730 * Returns 0 if desc->dir_cookie was found on page desc->page_index
 731 */
 732static
 733int find_cache_page(nfs_readdir_descriptor_t *desc)
 734{
 735        int res;
 736
 737        desc->page = get_cache_page(desc);
 738        if (IS_ERR(desc->page))
 739                return PTR_ERR(desc->page);
 740
 741        res = nfs_readdir_search_array(desc);
 742        if (res != 0)
 743                cache_page_release(desc);
 744        return res;
 745}
 746
 747/* Search for desc->dir_cookie from the beginning of the page cache */
 748static inline
 749int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
 750{
 751        int res;
 752
 753        if (desc->page_index == 0) {
 754                desc->current_index = 0;
 755                desc->last_cookie = 0;
 756        }
 757        do {
 758                res = find_cache_page(desc);
 759        } while (res == -EAGAIN);
 760        return res;
 761}
 762
 763/*
 764 * Once we've found the start of the dirent within a page: fill 'er up...
 765 */
 766static 
 767int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
 768{
 769        struct file     *file = desc->file;
 770        int i = 0;
 771        int res = 0;
 772        struct nfs_cache_array *array = NULL;
 773        struct nfs_open_dir_context *ctx = file->private_data;
 774
 775        array = nfs_readdir_get_array(desc->page);
 776        if (IS_ERR(array)) {
 777                res = PTR_ERR(array);
 778                goto out;
 779        }
 780
 781        for (i = desc->cache_entry_index; i < array->size; i++) {
 782                struct nfs_cache_array_entry *ent;
 783
 784                ent = &array->array[i];
 785                if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
 786                    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
 787                        desc->eof = 1;
 788                        break;
 789                }
 790                desc->ctx->pos++;
 791                if (i < (array->size-1))
 792                        *desc->dir_cookie = array->array[i+1].cookie;
 793                else
 794                        *desc->dir_cookie = array->last_cookie;
 795                if (ctx->duped != 0)
 796                        ctx->duped = 1;
 797        }
 798        if (array->eof_index >= 0)
 799                desc->eof = 1;
 800
 801        nfs_readdir_release_array(desc->page);
 802out:
 803        cache_page_release(desc);
 804        dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
 805                        (unsigned long long)*desc->dir_cookie, res);
 806        return res;
 807}
 808
 809/*
 810 * If we cannot find a cookie in our cache, we suspect that this is
 811 * because it points to a deleted file, so we ask the server to return
 812 * whatever it thinks is the next entry. We then feed this to filldir.
 813 * If all goes well, we should then be able to find our way round the
 814 * cache on the next call to readdir_search_pagecache();
 815 *
 816 * NOTE: we cannot add the anonymous page to the pagecache because
 817 *       the data it contains might not be page aligned. Besides,
 818 *       we should already have a complete representation of the
 819 *       directory in the page cache by the time we get here.
 820 */
 821static inline
 822int uncached_readdir(nfs_readdir_descriptor_t *desc)
 823{
 824        struct page     *page = NULL;
 825        int             status;
 826        struct inode *inode = file_inode(desc->file);
 827        struct nfs_open_dir_context *ctx = desc->file->private_data;
 828
 829        dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
 830                        (unsigned long long)*desc->dir_cookie);
 831
 832        page = alloc_page(GFP_HIGHUSER);
 833        if (!page) {
 834                status = -ENOMEM;
 835                goto out;
 836        }
 837
 838        desc->page_index = 0;
 839        desc->last_cookie = *desc->dir_cookie;
 840        desc->page = page;
 841        ctx->duped = 0;
 842
 843        status = nfs_readdir_xdr_to_array(desc, page, inode);
 844        if (status < 0)
 845                goto out_release;
 846
 847        status = nfs_do_filldir(desc);
 848
 849 out:
 850        dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
 851                        __func__, status);
 852        return status;
 853 out_release:
 854        cache_page_release(desc);
 855        goto out;
 856}
 857
 858static bool nfs_dir_mapping_need_revalidate(struct inode *dir)
 859{
 860        struct nfs_inode *nfsi = NFS_I(dir);
 861
 862        if (nfs_attribute_cache_expired(dir))
 863                return true;
 864        if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
 865                return true;
 866        return false;
 867}
 868
 869/* The file offset position represents the dirent entry number.  A
 870   last cookie cache takes care of the common case of reading the
 871   whole directory.
 872 */
 873static int nfs_readdir(struct file *file, struct dir_context *ctx)
 874{
 875        struct dentry   *dentry = file->f_path.dentry;
 876        struct inode    *inode = d_inode(dentry);
 877        nfs_readdir_descriptor_t my_desc,
 878                        *desc = &my_desc;
 879        struct nfs_open_dir_context *dir_ctx = file->private_data;
 880        int res = 0;
 881
 882        dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
 883                        file, (long long)ctx->pos);
 884        nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
 885
 886        /*
 887         * ctx->pos points to the dirent entry number.
 888         * *desc->dir_cookie has the cookie for the next entry. We have
 889         * to either find the entry with the appropriate number or
 890         * revalidate the cookie.
 891         */
 892        memset(desc, 0, sizeof(*desc));
 893
 894        desc->file = file;
 895        desc->ctx = ctx;
 896        desc->dir_cookie = &dir_ctx->dir_cookie;
 897        desc->decode = NFS_PROTO(inode)->decode_dirent;
 898        desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
 899
 900        nfs_block_sillyrename(dentry);
 901        if (ctx->pos == 0 || nfs_dir_mapping_need_revalidate(inode))
 902                res = nfs_revalidate_mapping(inode, file->f_mapping);
 903        if (res < 0)
 904                goto out;
 905
 906        do {
 907                res = readdir_search_pagecache(desc);
 908
 909                if (res == -EBADCOOKIE) {
 910                        res = 0;
 911                        /* This means either end of directory */
 912                        if (*desc->dir_cookie && desc->eof == 0) {
 913                                /* Or that the server has 'lost' a cookie */
 914                                res = uncached_readdir(desc);
 915                                if (res == 0)
 916                                        continue;
 917                        }
 918                        break;
 919                }
 920                if (res == -ETOOSMALL && desc->plus) {
 921                        clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 922                        nfs_zap_caches(inode);
 923                        desc->page_index = 0;
 924                        desc->plus = 0;
 925                        desc->eof = 0;
 926                        continue;
 927                }
 928                if (res < 0)
 929                        break;
 930
 931                res = nfs_do_filldir(desc);
 932                if (res < 0)
 933                        break;
 934        } while (!desc->eof);
 935out:
 936        nfs_unblock_sillyrename(dentry);
 937        if (res > 0)
 938                res = 0;
 939        dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
 940        return res;
 941}
 942
 943static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
 944{
 945        struct inode *inode = file_inode(filp);
 946        struct nfs_open_dir_context *dir_ctx = filp->private_data;
 947
 948        dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
 949                        filp, offset, whence);
 950
 951        mutex_lock(&inode->i_mutex);
 952        switch (whence) {
 953                case 1:
 954                        offset += filp->f_pos;
 955                case 0:
 956                        if (offset >= 0)
 957                                break;
 958                default:
 959                        offset = -EINVAL;
 960                        goto out;
 961        }
 962        if (offset != filp->f_pos) {
 963                filp->f_pos = offset;
 964                dir_ctx->dir_cookie = 0;
 965                dir_ctx->duped = 0;
 966        }
 967out:
 968        mutex_unlock(&inode->i_mutex);
 969        return offset;
 970}
 971
 972/*
 973 * All directory operations under NFS are synchronous, so fsync()
 974 * is a dummy operation.
 975 */
 976static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
 977                         int datasync)
 978{
 979        struct inode *inode = file_inode(filp);
 980
 981        dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
 982
 983        mutex_lock(&inode->i_mutex);
 984        nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
 985        mutex_unlock(&inode->i_mutex);
 986        return 0;
 987}
 988
 989/**
 990 * nfs_force_lookup_revalidate - Mark the directory as having changed
 991 * @dir - pointer to directory inode
 992 *
 993 * This forces the revalidation code in nfs_lookup_revalidate() to do a
 994 * full lookup on all child dentries of 'dir' whenever a change occurs
 995 * on the server that might have invalidated our dcache.
 996 *
 997 * The caller should be holding dir->i_lock
 998 */
 999void nfs_force_lookup_revalidate(struct inode *dir)
1000{
1001        NFS_I(dir)->cache_change_attribute++;
1002}
1003EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1004
1005/*
1006 * A check for whether or not the parent directory has changed.
1007 * In the case it has, we assume that the dentries are untrustworthy
1008 * and may need to be looked up again.
1009 * If rcu_walk prevents us from performing a full check, return 0.
1010 */
1011static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1012                              int rcu_walk)
1013{
1014        int ret;
1015
1016        if (IS_ROOT(dentry))
1017                return 1;
1018        if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1019                return 0;
1020        if (!nfs_verify_change_attribute(dir, dentry->d_time))
1021                return 0;
1022        /* Revalidate nfsi->cache_change_attribute before we declare a match */
1023        if (rcu_walk)
1024                ret = nfs_revalidate_inode_rcu(NFS_SERVER(dir), dir);
1025        else
1026                ret = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1027        if (ret < 0)
1028                return 0;
1029        if (!nfs_verify_change_attribute(dir, dentry->d_time))
1030                return 0;
1031        return 1;
1032}
1033
1034/*
1035 * Use intent information to check whether or not we're going to do
1036 * an O_EXCL create using this path component.
1037 */
1038static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1039{
1040        if (NFS_PROTO(dir)->version == 2)
1041                return 0;
1042        return flags & LOOKUP_EXCL;
1043}
1044
1045/*
1046 * Inode and filehandle revalidation for lookups.
1047 *
1048 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1049 * or if the intent information indicates that we're about to open this
1050 * particular file and the "nocto" mount flag is not set.
1051 *
1052 */
1053static
1054int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1055{
1056        struct nfs_server *server = NFS_SERVER(inode);
1057        int ret;
1058
1059        if (IS_AUTOMOUNT(inode))
1060                return 0;
1061        /* VFS wants an on-the-wire revalidation */
1062        if (flags & LOOKUP_REVAL)
1063                goto out_force;
1064        /* This is an open(2) */
1065        if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1066            (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1067                goto out_force;
1068out:
1069        return (inode->i_nlink == 0) ? -ENOENT : 0;
1070out_force:
1071        if (flags & LOOKUP_RCU)
1072                return -ECHILD;
1073        ret = __nfs_revalidate_inode(server, inode);
1074        if (ret != 0)
1075                return ret;
1076        goto out;
1077}
1078
1079/*
1080 * We judge how long we want to trust negative
1081 * dentries by looking at the parent inode mtime.
1082 *
1083 * If parent mtime has changed, we revalidate, else we wait for a
1084 * period corresponding to the parent's attribute cache timeout value.
1085 *
1086 * If LOOKUP_RCU prevents us from performing a full check, return 1
1087 * suggesting a reval is needed.
1088 */
1089static inline
1090int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1091                       unsigned int flags)
1092{
1093        /* Don't revalidate a negative dentry if we're creating a new file */
1094        if (flags & LOOKUP_CREATE)
1095                return 0;
1096        if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1097                return 1;
1098        return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1099}
1100
1101/*
1102 * This is called every time the dcache has a lookup hit,
1103 * and we should check whether we can really trust that
1104 * lookup.
1105 *
1106 * NOTE! The hit can be a negative hit too, don't assume
1107 * we have an inode!
1108 *
1109 * If the parent directory is seen to have changed, we throw out the
1110 * cached dentry and do a new lookup.
1111 */
1112static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1113{
1114        struct inode *dir;
1115        struct inode *inode;
1116        struct dentry *parent;
1117        struct nfs_fh *fhandle = NULL;
1118        struct nfs_fattr *fattr = NULL;
1119        struct nfs4_label *label = NULL;
1120        int error;
1121
1122        if (flags & LOOKUP_RCU) {
1123                parent = ACCESS_ONCE(dentry->d_parent);
1124                dir = d_inode_rcu(parent);
1125                if (!dir)
1126                        return -ECHILD;
1127        } else {
1128                parent = dget_parent(dentry);
1129                dir = d_inode(parent);
1130        }
1131        nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1132        inode = d_inode(dentry);
1133
1134        if (!inode) {
1135                if (nfs_neg_need_reval(dir, dentry, flags)) {
1136                        if (flags & LOOKUP_RCU)
1137                                return -ECHILD;
1138                        goto out_bad;
1139                }
1140                goto out_valid_noent;
1141        }
1142
1143        if (is_bad_inode(inode)) {
1144                if (flags & LOOKUP_RCU)
1145                        return -ECHILD;
1146                dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1147                                __func__, dentry);
1148                goto out_bad;
1149        }
1150
1151        if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1152                goto out_set_verifier;
1153
1154        /* Force a full look up iff the parent directory has changed */
1155        if (!nfs_is_exclusive_create(dir, flags) &&
1156            nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1157
1158                if (nfs_lookup_verify_inode(inode, flags)) {
1159                        if (flags & LOOKUP_RCU)
1160                                return -ECHILD;
1161                        goto out_zap_parent;
1162                }
1163                goto out_valid;
1164        }
1165
1166        if (flags & LOOKUP_RCU)
1167                return -ECHILD;
1168
1169        if (NFS_STALE(inode))
1170                goto out_bad;
1171
1172        error = -ENOMEM;
1173        fhandle = nfs_alloc_fhandle();
1174        fattr = nfs_alloc_fattr();
1175        if (fhandle == NULL || fattr == NULL)
1176                goto out_error;
1177
1178        label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1179        if (IS_ERR(label))
1180                goto out_error;
1181
1182        trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1183        error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1184        trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1185        if (error)
1186                goto out_bad;
1187        if (nfs_compare_fh(NFS_FH(inode), fhandle))
1188                goto out_bad;
1189        if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1190                goto out_bad;
1191
1192        nfs_setsecurity(inode, fattr, label);
1193
1194        nfs_free_fattr(fattr);
1195        nfs_free_fhandle(fhandle);
1196        nfs4_label_free(label);
1197
1198out_set_verifier:
1199        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1200 out_valid:
1201        /* Success: notify readdir to use READDIRPLUS */
1202        nfs_advise_use_readdirplus(dir);
1203 out_valid_noent:
1204        if (flags & LOOKUP_RCU) {
1205                if (parent != ACCESS_ONCE(dentry->d_parent))
1206                        return -ECHILD;
1207        } else
1208                dput(parent);
1209        dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1210                        __func__, dentry);
1211        return 1;
1212out_zap_parent:
1213        nfs_zap_caches(dir);
1214 out_bad:
1215        WARN_ON(flags & LOOKUP_RCU);
1216        nfs_free_fattr(fattr);
1217        nfs_free_fhandle(fhandle);
1218        nfs4_label_free(label);
1219        nfs_mark_for_revalidate(dir);
1220        if (inode && S_ISDIR(inode->i_mode)) {
1221                /* Purge readdir caches. */
1222                nfs_zap_caches(inode);
1223                /*
1224                 * We can't d_drop the root of a disconnected tree:
1225                 * its d_hash is on the s_anon list and d_drop() would hide
1226                 * it from shrink_dcache_for_unmount(), leading to busy
1227                 * inodes on unmount and further oopses.
1228                 */
1229                if (IS_ROOT(dentry))
1230                        goto out_valid;
1231        }
1232        dput(parent);
1233        dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1234                        __func__, dentry);
1235        return 0;
1236out_error:
1237        WARN_ON(flags & LOOKUP_RCU);
1238        nfs_free_fattr(fattr);
1239        nfs_free_fhandle(fhandle);
1240        nfs4_label_free(label);
1241        dput(parent);
1242        dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1243                        __func__, dentry, error);
1244        return error;
1245}
1246
1247/*
1248 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1249 * when we don't really care about the dentry name. This is called when a
1250 * pathwalk ends on a dentry that was not found via a normal lookup in the
1251 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1252 *
1253 * In this situation, we just want to verify that the inode itself is OK
1254 * since the dentry might have changed on the server.
1255 */
1256static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1257{
1258        int error;
1259        struct inode *inode = d_inode(dentry);
1260
1261        /*
1262         * I believe we can only get a negative dentry here in the case of a
1263         * procfs-style symlink. Just assume it's correct for now, but we may
1264         * eventually need to do something more here.
1265         */
1266        if (!inode) {
1267                dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1268                                __func__, dentry);
1269                return 1;
1270        }
1271
1272        if (is_bad_inode(inode)) {
1273                dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1274                                __func__, dentry);
1275                return 0;
1276        }
1277
1278        error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1279        dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1280                        __func__, inode->i_ino, error ? "invalid" : "valid");
1281        return !error;
1282}
1283
1284/*
1285 * This is called from dput() when d_count is going to 0.
1286 */
1287static int nfs_dentry_delete(const struct dentry *dentry)
1288{
1289        dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1290                dentry, dentry->d_flags);
1291
1292        /* Unhash any dentry with a stale inode */
1293        if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1294                return 1;
1295
1296        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1297                /* Unhash it, so that ->d_iput() would be called */
1298                return 1;
1299        }
1300        if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1301                /* Unhash it, so that ancestors of killed async unlink
1302                 * files will be cleaned up during umount */
1303                return 1;
1304        }
1305        return 0;
1306
1307}
1308
1309/* Ensure that we revalidate inode->i_nlink */
1310static void nfs_drop_nlink(struct inode *inode)
1311{
1312        spin_lock(&inode->i_lock);
1313        /* drop the inode if we're reasonably sure this is the last link */
1314        if (inode->i_nlink == 1)
1315                clear_nlink(inode);
1316        NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1317        spin_unlock(&inode->i_lock);
1318}
1319
1320/*
1321 * Called when the dentry loses inode.
1322 * We use it to clean up silly-renamed files.
1323 */
1324static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1325{
1326        if (S_ISDIR(inode->i_mode))
1327                /* drop any readdir cache as it could easily be old */
1328                NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1329
1330        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1331                nfs_complete_unlink(dentry, inode);
1332                nfs_drop_nlink(inode);
1333        }
1334        iput(inode);
1335}
1336
1337static void nfs_d_release(struct dentry *dentry)
1338{
1339        /* free cached devname value, if it survived that far */
1340        if (unlikely(dentry->d_fsdata)) {
1341                if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1342                        WARN_ON(1);
1343                else
1344                        kfree(dentry->d_fsdata);
1345        }
1346}
1347
1348const struct dentry_operations nfs_dentry_operations = {
1349        .d_revalidate   = nfs_lookup_revalidate,
1350        .d_weak_revalidate      = nfs_weak_revalidate,
1351        .d_delete       = nfs_dentry_delete,
1352        .d_iput         = nfs_dentry_iput,
1353        .d_automount    = nfs_d_automount,
1354        .d_release      = nfs_d_release,
1355};
1356EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1357
1358struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1359{
1360        struct dentry *res;
1361        struct dentry *parent;
1362        struct inode *inode = NULL;
1363        struct nfs_fh *fhandle = NULL;
1364        struct nfs_fattr *fattr = NULL;
1365        struct nfs4_label *label = NULL;
1366        int error;
1367
1368        dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1369        nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1370
1371        res = ERR_PTR(-ENAMETOOLONG);
1372        if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1373                goto out;
1374
1375        /*
1376         * If we're doing an exclusive create, optimize away the lookup
1377         * but don't hash the dentry.
1378         */
1379        if (nfs_is_exclusive_create(dir, flags)) {
1380                d_instantiate(dentry, NULL);
1381                res = NULL;
1382                goto out;
1383        }
1384
1385        res = ERR_PTR(-ENOMEM);
1386        fhandle = nfs_alloc_fhandle();
1387        fattr = nfs_alloc_fattr();
1388        if (fhandle == NULL || fattr == NULL)
1389                goto out;
1390
1391        label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1392        if (IS_ERR(label))
1393                goto out;
1394
1395        parent = dentry->d_parent;
1396        /* Protect against concurrent sillydeletes */
1397        trace_nfs_lookup_enter(dir, dentry, flags);
1398        nfs_block_sillyrename(parent);
1399        error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1400        if (error == -ENOENT)
1401                goto no_entry;
1402        if (error < 0) {
1403                res = ERR_PTR(error);
1404                goto out_unblock_sillyrename;
1405        }
1406        inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1407        res = ERR_CAST(inode);
1408        if (IS_ERR(res))
1409                goto out_unblock_sillyrename;
1410
1411        /* Success: notify readdir to use READDIRPLUS */
1412        nfs_advise_use_readdirplus(dir);
1413
1414no_entry:
1415        res = d_splice_alias(inode, dentry);
1416        if (res != NULL) {
1417                if (IS_ERR(res))
1418                        goto out_unblock_sillyrename;
1419                dentry = res;
1420        }
1421        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1422out_unblock_sillyrename:
1423        nfs_unblock_sillyrename(parent);
1424        trace_nfs_lookup_exit(dir, dentry, flags, error);
1425        nfs4_label_free(label);
1426out:
1427        nfs_free_fattr(fattr);
1428        nfs_free_fhandle(fhandle);
1429        return res;
1430}
1431EXPORT_SYMBOL_GPL(nfs_lookup);
1432
1433#if IS_ENABLED(CONFIG_NFS_V4)
1434static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1435
1436const struct dentry_operations nfs4_dentry_operations = {
1437        .d_revalidate   = nfs4_lookup_revalidate,
1438        .d_delete       = nfs_dentry_delete,
1439        .d_iput         = nfs_dentry_iput,
1440        .d_automount    = nfs_d_automount,
1441        .d_release      = nfs_d_release,
1442};
1443EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1444
1445static fmode_t flags_to_mode(int flags)
1446{
1447        fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1448        if ((flags & O_ACCMODE) != O_WRONLY)
1449                res |= FMODE_READ;
1450        if ((flags & O_ACCMODE) != O_RDONLY)
1451                res |= FMODE_WRITE;
1452        return res;
1453}
1454
1455static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1456{
1457        return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1458}
1459
1460static int do_open(struct inode *inode, struct file *filp)
1461{
1462        nfs_fscache_open_file(inode, filp);
1463        return 0;
1464}
1465
1466static int nfs_finish_open(struct nfs_open_context *ctx,
1467                           struct dentry *dentry,
1468                           struct file *file, unsigned open_flags,
1469                           int *opened)
1470{
1471        int err;
1472
1473        if ((open_flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
1474                *opened |= FILE_CREATED;
1475
1476        err = finish_open(file, dentry, do_open, opened);
1477        if (err)
1478                goto out;
1479        nfs_file_set_open_context(file, ctx);
1480
1481out:
1482        return err;
1483}
1484
1485int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1486                    struct file *file, unsigned open_flags,
1487                    umode_t mode, int *opened)
1488{
1489        struct nfs_open_context *ctx;
1490        struct dentry *res;
1491        struct iattr attr = { .ia_valid = ATTR_OPEN };
1492        struct inode *inode;
1493        unsigned int lookup_flags = 0;
1494        int err;
1495
1496        /* Expect a negative dentry */
1497        BUG_ON(d_inode(dentry));
1498
1499        dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1500                        dir->i_sb->s_id, dir->i_ino, dentry);
1501
1502        err = nfs_check_flags(open_flags);
1503        if (err)
1504                return err;
1505
1506        /* NFS only supports OPEN on regular files */
1507        if ((open_flags & O_DIRECTORY)) {
1508                if (!d_unhashed(dentry)) {
1509                        /*
1510                         * Hashed negative dentry with O_DIRECTORY: dentry was
1511                         * revalidated and is fine, no need to perform lookup
1512                         * again
1513                         */
1514                        return -ENOENT;
1515                }
1516                lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1517                goto no_open;
1518        }
1519
1520        if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1521                return -ENAMETOOLONG;
1522
1523        if (open_flags & O_CREAT) {
1524                attr.ia_valid |= ATTR_MODE;
1525                attr.ia_mode = mode & ~current_umask();
1526        }
1527        if (open_flags & O_TRUNC) {
1528                attr.ia_valid |= ATTR_SIZE;
1529                attr.ia_size = 0;
1530        }
1531
1532        ctx = create_nfs_open_context(dentry, open_flags);
1533        err = PTR_ERR(ctx);
1534        if (IS_ERR(ctx))
1535                goto out;
1536
1537        trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1538        nfs_block_sillyrename(dentry->d_parent);
1539        inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1540        nfs_unblock_sillyrename(dentry->d_parent);
1541        if (IS_ERR(inode)) {
1542                err = PTR_ERR(inode);
1543                trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1544                put_nfs_open_context(ctx);
1545                switch (err) {
1546                case -ENOENT:
1547                        d_drop(dentry);
1548                        d_add(dentry, NULL);
1549                        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1550                        break;
1551                case -EISDIR:
1552                case -ENOTDIR:
1553                        goto no_open;
1554                case -ELOOP:
1555                        if (!(open_flags & O_NOFOLLOW))
1556                                goto no_open;
1557                        break;
1558                        /* case -EINVAL: */
1559                default:
1560                        break;
1561                }
1562                goto out;
1563        }
1564
1565        err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1566        trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1567        put_nfs_open_context(ctx);
1568out:
1569        return err;
1570
1571no_open:
1572        res = nfs_lookup(dir, dentry, lookup_flags);
1573        err = PTR_ERR(res);
1574        if (IS_ERR(res))
1575                goto out;
1576
1577        return finish_no_open(file, res);
1578}
1579EXPORT_SYMBOL_GPL(nfs_atomic_open);
1580
1581static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1582{
1583        struct inode *inode;
1584        int ret = 0;
1585
1586        if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1587                goto no_open;
1588        if (d_mountpoint(dentry))
1589                goto no_open;
1590        if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1591                goto no_open;
1592
1593        inode = d_inode(dentry);
1594
1595        /* We can't create new files in nfs_open_revalidate(), so we
1596         * optimize away revalidation of negative dentries.
1597         */
1598        if (inode == NULL) {
1599                struct dentry *parent;
1600                struct inode *dir;
1601
1602                if (flags & LOOKUP_RCU) {
1603                        parent = ACCESS_ONCE(dentry->d_parent);
1604                        dir = d_inode_rcu(parent);
1605                        if (!dir)
1606                                return -ECHILD;
1607                } else {
1608                        parent = dget_parent(dentry);
1609                        dir = d_inode(parent);
1610                }
1611                if (!nfs_neg_need_reval(dir, dentry, flags))
1612                        ret = 1;
1613                else if (flags & LOOKUP_RCU)
1614                        ret = -ECHILD;
1615                if (!(flags & LOOKUP_RCU))
1616                        dput(parent);
1617                else if (parent != ACCESS_ONCE(dentry->d_parent))
1618                        return -ECHILD;
1619                goto out;
1620        }
1621
1622        /* NFS only supports OPEN on regular files */
1623        if (!S_ISREG(inode->i_mode))
1624                goto no_open;
1625        /* We cannot do exclusive creation on a positive dentry */
1626        if (flags & LOOKUP_EXCL)
1627                goto no_open;
1628
1629        /* Let f_op->open() actually open (and revalidate) the file */
1630        ret = 1;
1631
1632out:
1633        return ret;
1634
1635no_open:
1636        return nfs_lookup_revalidate(dentry, flags);
1637}
1638
1639#endif /* CONFIG_NFSV4 */
1640
1641/*
1642 * Code common to create, mkdir, and mknod.
1643 */
1644int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1645                                struct nfs_fattr *fattr,
1646                                struct nfs4_label *label)
1647{
1648        struct dentry *parent = dget_parent(dentry);
1649        struct inode *dir = d_inode(parent);
1650        struct inode *inode;
1651        int error = -EACCES;
1652
1653        d_drop(dentry);
1654
1655        /* We may have been initialized further down */
1656        if (d_really_is_positive(dentry))
1657                goto out;
1658        if (fhandle->size == 0) {
1659                error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1660                if (error)
1661                        goto out_error;
1662        }
1663        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1664        if (!(fattr->valid & NFS_ATTR_FATTR)) {
1665                struct nfs_server *server = NFS_SB(dentry->d_sb);
1666                error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1667                if (error < 0)
1668                        goto out_error;
1669        }
1670        inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1671        error = PTR_ERR(inode);
1672        if (IS_ERR(inode))
1673                goto out_error;
1674        d_add(dentry, inode);
1675out:
1676        dput(parent);
1677        return 0;
1678out_error:
1679        nfs_mark_for_revalidate(dir);
1680        dput(parent);
1681        return error;
1682}
1683EXPORT_SYMBOL_GPL(nfs_instantiate);
1684
1685/*
1686 * Following a failed create operation, we drop the dentry rather
1687 * than retain a negative dentry. This avoids a problem in the event
1688 * that the operation succeeded on the server, but an error in the
1689 * reply path made it appear to have failed.
1690 */
1691int nfs_create(struct inode *dir, struct dentry *dentry,
1692                umode_t mode, bool excl)
1693{
1694        struct iattr attr;
1695        int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1696        int error;
1697
1698        dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1699                        dir->i_sb->s_id, dir->i_ino, dentry);
1700
1701        attr.ia_mode = mode;
1702        attr.ia_valid = ATTR_MODE;
1703
1704        trace_nfs_create_enter(dir, dentry, open_flags);
1705        error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1706        trace_nfs_create_exit(dir, dentry, open_flags, error);
1707        if (error != 0)
1708                goto out_err;
1709        return 0;
1710out_err:
1711        d_drop(dentry);
1712        return error;
1713}
1714EXPORT_SYMBOL_GPL(nfs_create);
1715
1716/*
1717 * See comments for nfs_proc_create regarding failed operations.
1718 */
1719int
1720nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1721{
1722        struct iattr attr;
1723        int status;
1724
1725        dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1726                        dir->i_sb->s_id, dir->i_ino, dentry);
1727
1728        if (!new_valid_dev(rdev))
1729                return -EINVAL;
1730
1731        attr.ia_mode = mode;
1732        attr.ia_valid = ATTR_MODE;
1733
1734        trace_nfs_mknod_enter(dir, dentry);
1735        status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1736        trace_nfs_mknod_exit(dir, dentry, status);
1737        if (status != 0)
1738                goto out_err;
1739        return 0;
1740out_err:
1741        d_drop(dentry);
1742        return status;
1743}
1744EXPORT_SYMBOL_GPL(nfs_mknod);
1745
1746/*
1747 * See comments for nfs_proc_create regarding failed operations.
1748 */
1749int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1750{
1751        struct iattr attr;
1752        int error;
1753
1754        dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1755                        dir->i_sb->s_id, dir->i_ino, dentry);
1756
1757        attr.ia_valid = ATTR_MODE;
1758        attr.ia_mode = mode | S_IFDIR;
1759
1760        trace_nfs_mkdir_enter(dir, dentry);
1761        error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1762        trace_nfs_mkdir_exit(dir, dentry, error);
1763        if (error != 0)
1764                goto out_err;
1765        return 0;
1766out_err:
1767        d_drop(dentry);
1768        return error;
1769}
1770EXPORT_SYMBOL_GPL(nfs_mkdir);
1771
1772static void nfs_dentry_handle_enoent(struct dentry *dentry)
1773{
1774        if (d_really_is_positive(dentry) && !d_unhashed(dentry))
1775                d_delete(dentry);
1776}
1777
1778int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1779{
1780        int error;
1781
1782        dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1783                        dir->i_sb->s_id, dir->i_ino, dentry);
1784
1785        trace_nfs_rmdir_enter(dir, dentry);
1786        if (d_really_is_positive(dentry)) {
1787                nfs_wait_on_sillyrename(dentry);
1788                error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1789                /* Ensure the VFS deletes this inode */
1790                switch (error) {
1791                case 0:
1792                        clear_nlink(d_inode(dentry));
1793                        break;
1794                case -ENOENT:
1795                        nfs_dentry_handle_enoent(dentry);
1796                }
1797        } else
1798                error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1799        trace_nfs_rmdir_exit(dir, dentry, error);
1800
1801        return error;
1802}
1803EXPORT_SYMBOL_GPL(nfs_rmdir);
1804
1805/*
1806 * Remove a file after making sure there are no pending writes,
1807 * and after checking that the file has only one user. 
1808 *
1809 * We invalidate the attribute cache and free the inode prior to the operation
1810 * to avoid possible races if the server reuses the inode.
1811 */
1812static int nfs_safe_remove(struct dentry *dentry)
1813{
1814        struct inode *dir = d_inode(dentry->d_parent);
1815        struct inode *inode = d_inode(dentry);
1816        int error = -EBUSY;
1817                
1818        dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1819
1820        /* If the dentry was sillyrenamed, we simply call d_delete() */
1821        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1822                error = 0;
1823                goto out;
1824        }
1825
1826        trace_nfs_remove_enter(dir, dentry);
1827        if (inode != NULL) {
1828                NFS_PROTO(inode)->return_delegation(inode);
1829                error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1830                if (error == 0)
1831                        nfs_drop_nlink(inode);
1832        } else
1833                error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1834        if (error == -ENOENT)
1835                nfs_dentry_handle_enoent(dentry);
1836        trace_nfs_remove_exit(dir, dentry, error);
1837out:
1838        return error;
1839}
1840
1841/*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1842 *  belongs to an active ".nfs..." file and we return -EBUSY.
1843 *
1844 *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1845 */
1846int nfs_unlink(struct inode *dir, struct dentry *dentry)
1847{
1848        int error;
1849        int need_rehash = 0;
1850
1851        dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1852                dir->i_ino, dentry);
1853
1854        trace_nfs_unlink_enter(dir, dentry);
1855        spin_lock(&dentry->d_lock);
1856        if (d_count(dentry) > 1) {
1857                spin_unlock(&dentry->d_lock);
1858                /* Start asynchronous writeout of the inode */
1859                write_inode_now(d_inode(dentry), 0);
1860                error = nfs_sillyrename(dir, dentry);
1861                goto out;
1862        }
1863        if (!d_unhashed(dentry)) {
1864                __d_drop(dentry);
1865                need_rehash = 1;
1866        }
1867        spin_unlock(&dentry->d_lock);
1868        error = nfs_safe_remove(dentry);
1869        if (!error || error == -ENOENT) {
1870                nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1871        } else if (need_rehash)
1872                d_rehash(dentry);
1873out:
1874        trace_nfs_unlink_exit(dir, dentry, error);
1875        return error;
1876}
1877EXPORT_SYMBOL_GPL(nfs_unlink);
1878
1879/*
1880 * To create a symbolic link, most file systems instantiate a new inode,
1881 * add a page to it containing the path, then write it out to the disk
1882 * using prepare_write/commit_write.
1883 *
1884 * Unfortunately the NFS client can't create the in-core inode first
1885 * because it needs a file handle to create an in-core inode (see
1886 * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1887 * symlink request has completed on the server.
1888 *
1889 * So instead we allocate a raw page, copy the symname into it, then do
1890 * the SYMLINK request with the page as the buffer.  If it succeeds, we
1891 * now have a new file handle and can instantiate an in-core NFS inode
1892 * and move the raw page into its mapping.
1893 */
1894int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1895{
1896        struct page *page;
1897        char *kaddr;
1898        struct iattr attr;
1899        unsigned int pathlen = strlen(symname);
1900        int error;
1901
1902        dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1903                dir->i_ino, dentry, symname);
1904
1905        if (pathlen > PAGE_SIZE)
1906                return -ENAMETOOLONG;
1907
1908        attr.ia_mode = S_IFLNK | S_IRWXUGO;
1909        attr.ia_valid = ATTR_MODE;
1910
1911        page = alloc_page(GFP_HIGHUSER);
1912        if (!page)
1913                return -ENOMEM;
1914
1915        kaddr = kmap_atomic(page);
1916        memcpy(kaddr, symname, pathlen);
1917        if (pathlen < PAGE_SIZE)
1918                memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1919        kunmap_atomic(kaddr);
1920
1921        trace_nfs_symlink_enter(dir, dentry);
1922        error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1923        trace_nfs_symlink_exit(dir, dentry, error);
1924        if (error != 0) {
1925                dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1926                        dir->i_sb->s_id, dir->i_ino,
1927                        dentry, symname, error);
1928                d_drop(dentry);
1929                __free_page(page);
1930                return error;
1931        }
1932
1933        /*
1934         * No big deal if we can't add this page to the page cache here.
1935         * READLINK will get the missing page from the server if needed.
1936         */
1937        if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1938                                                        GFP_KERNEL)) {
1939                SetPageUptodate(page);
1940                unlock_page(page);
1941                /*
1942                 * add_to_page_cache_lru() grabs an extra page refcount.
1943                 * Drop it here to avoid leaking this page later.
1944                 */
1945                page_cache_release(page);
1946        } else
1947                __free_page(page);
1948
1949        return 0;
1950}
1951EXPORT_SYMBOL_GPL(nfs_symlink);
1952
1953int
1954nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1955{
1956        struct inode *inode = d_inode(old_dentry);
1957        int error;
1958
1959        dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1960                old_dentry, dentry);
1961
1962        trace_nfs_link_enter(inode, dir, dentry);
1963        NFS_PROTO(inode)->return_delegation(inode);
1964
1965        d_drop(dentry);
1966        error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1967        if (error == 0) {
1968                ihold(inode);
1969                d_add(dentry, inode);
1970        }
1971        trace_nfs_link_exit(inode, dir, dentry, error);
1972        return error;
1973}
1974EXPORT_SYMBOL_GPL(nfs_link);
1975
1976/*
1977 * RENAME
1978 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1979 * different file handle for the same inode after a rename (e.g. when
1980 * moving to a different directory). A fail-safe method to do so would
1981 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1982 * rename the old file using the sillyrename stuff. This way, the original
1983 * file in old_dir will go away when the last process iput()s the inode.
1984 *
1985 * FIXED.
1986 * 
1987 * It actually works quite well. One needs to have the possibility for
1988 * at least one ".nfs..." file in each directory the file ever gets
1989 * moved or linked to which happens automagically with the new
1990 * implementation that only depends on the dcache stuff instead of
1991 * using the inode layer
1992 *
1993 * Unfortunately, things are a little more complicated than indicated
1994 * above. For a cross-directory move, we want to make sure we can get
1995 * rid of the old inode after the operation.  This means there must be
1996 * no pending writes (if it's a file), and the use count must be 1.
1997 * If these conditions are met, we can drop the dentries before doing
1998 * the rename.
1999 */
2000int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2001                      struct inode *new_dir, struct dentry *new_dentry)
2002{
2003        struct inode *old_inode = d_inode(old_dentry);
2004        struct inode *new_inode = d_inode(new_dentry);
2005        struct dentry *dentry = NULL, *rehash = NULL;
2006        struct rpc_task *task;
2007        int error = -EBUSY;
2008
2009        dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2010                 old_dentry, new_dentry,
2011                 d_count(new_dentry));
2012
2013        trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2014        /*
2015         * For non-directories, check whether the target is busy and if so,
2016         * make a copy of the dentry and then do a silly-rename. If the
2017         * silly-rename succeeds, the copied dentry is hashed and becomes
2018         * the new target.
2019         */
2020        if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2021                /*
2022                 * To prevent any new references to the target during the
2023                 * rename, we unhash the dentry in advance.
2024                 */
2025                if (!d_unhashed(new_dentry)) {
2026                        d_drop(new_dentry);
2027                        rehash = new_dentry;
2028                }
2029
2030                if (d_count(new_dentry) > 2) {
2031                        int err;
2032
2033                        /* copy the target dentry's name */
2034                        dentry = d_alloc(new_dentry->d_parent,
2035                                         &new_dentry->d_name);
2036                        if (!dentry)
2037                                goto out;
2038
2039                        /* silly-rename the existing target ... */
2040                        err = nfs_sillyrename(new_dir, new_dentry);
2041                        if (err)
2042                                goto out;
2043
2044                        new_dentry = dentry;
2045                        rehash = NULL;
2046                        new_inode = NULL;
2047                }
2048        }
2049
2050        NFS_PROTO(old_inode)->return_delegation(old_inode);
2051        if (new_inode != NULL)
2052                NFS_PROTO(new_inode)->return_delegation(new_inode);
2053
2054        task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2055        if (IS_ERR(task)) {
2056                error = PTR_ERR(task);
2057                goto out;
2058        }
2059
2060        error = rpc_wait_for_completion_task(task);
2061        if (error == 0)
2062                error = task->tk_status;
2063        rpc_put_task(task);
2064        nfs_mark_for_revalidate(old_inode);
2065out:
2066        if (rehash)
2067                d_rehash(rehash);
2068        trace_nfs_rename_exit(old_dir, old_dentry,
2069                        new_dir, new_dentry, error);
2070        if (!error) {
2071                if (new_inode != NULL)
2072                        nfs_drop_nlink(new_inode);
2073                d_move(old_dentry, new_dentry);
2074                nfs_set_verifier(new_dentry,
2075                                        nfs_save_change_attribute(new_dir));
2076        } else if (error == -ENOENT)
2077                nfs_dentry_handle_enoent(old_dentry);
2078
2079        /* new dentry created? */
2080        if (dentry)
2081                dput(dentry);
2082        return error;
2083}
2084EXPORT_SYMBOL_GPL(nfs_rename);
2085
2086static DEFINE_SPINLOCK(nfs_access_lru_lock);
2087static LIST_HEAD(nfs_access_lru_list);
2088static atomic_long_t nfs_access_nr_entries;
2089
2090static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2091module_param(nfs_access_max_cachesize, ulong, 0644);
2092MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2093
2094static void nfs_access_free_entry(struct nfs_access_entry *entry)
2095{
2096        put_rpccred(entry->cred);
2097        kfree_rcu(entry, rcu_head);
2098        smp_mb__before_atomic();
2099        atomic_long_dec(&nfs_access_nr_entries);
2100        smp_mb__after_atomic();
2101}
2102
2103static void nfs_access_free_list(struct list_head *head)
2104{
2105        struct nfs_access_entry *cache;
2106
2107        while (!list_empty(head)) {
2108                cache = list_entry(head->next, struct nfs_access_entry, lru);
2109                list_del(&cache->lru);
2110                nfs_access_free_entry(cache);
2111        }
2112}
2113
2114static unsigned long
2115nfs_do_access_cache_scan(unsigned int nr_to_scan)
2116{
2117        LIST_HEAD(head);
2118        struct nfs_inode *nfsi, *next;
2119        struct nfs_access_entry *cache;
2120        long freed = 0;
2121
2122        spin_lock(&nfs_access_lru_lock);
2123        list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2124                struct inode *inode;
2125
2126                if (nr_to_scan-- == 0)
2127                        break;
2128                inode = &nfsi->vfs_inode;
2129                spin_lock(&inode->i_lock);
2130                if (list_empty(&nfsi->access_cache_entry_lru))
2131                        goto remove_lru_entry;
2132                cache = list_entry(nfsi->access_cache_entry_lru.next,
2133                                struct nfs_access_entry, lru);
2134                list_move(&cache->lru, &head);
2135                rb_erase(&cache->rb_node, &nfsi->access_cache);
2136                freed++;
2137                if (!list_empty(&nfsi->access_cache_entry_lru))
2138                        list_move_tail(&nfsi->access_cache_inode_lru,
2139                                        &nfs_access_lru_list);
2140                else {
2141remove_lru_entry:
2142                        list_del_init(&nfsi->access_cache_inode_lru);
2143                        smp_mb__before_atomic();
2144                        clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2145                        smp_mb__after_atomic();
2146                }
2147                spin_unlock(&inode->i_lock);
2148        }
2149        spin_unlock(&nfs_access_lru_lock);
2150        nfs_access_free_list(&head);
2151        return freed;
2152}
2153
2154unsigned long
2155nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2156{
2157        int nr_to_scan = sc->nr_to_scan;
2158        gfp_t gfp_mask = sc->gfp_mask;
2159
2160        if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2161                return SHRINK_STOP;
2162        return nfs_do_access_cache_scan(nr_to_scan);
2163}
2164
2165
2166unsigned long
2167nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2168{
2169        return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2170}
2171
2172static void
2173nfs_access_cache_enforce_limit(void)
2174{
2175        long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2176        unsigned long diff;
2177        unsigned int nr_to_scan;
2178
2179        if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2180                return;
2181        nr_to_scan = 100;
2182        diff = nr_entries - nfs_access_max_cachesize;
2183        if (diff < nr_to_scan)
2184                nr_to_scan = diff;
2185        nfs_do_access_cache_scan(nr_to_scan);
2186}
2187
2188static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2189{
2190        struct rb_root *root_node = &nfsi->access_cache;
2191        struct rb_node *n;
2192        struct nfs_access_entry *entry;
2193
2194        /* Unhook entries from the cache */
2195        while ((n = rb_first(root_node)) != NULL) {
2196                entry = rb_entry(n, struct nfs_access_entry, rb_node);
2197                rb_erase(n, root_node);
2198                list_move(&entry->lru, head);
2199        }
2200        nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2201}
2202
2203void nfs_access_zap_cache(struct inode *inode)
2204{
2205        LIST_HEAD(head);
2206
2207        if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2208                return;
2209        /* Remove from global LRU init */
2210        spin_lock(&nfs_access_lru_lock);
2211        if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2212                list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2213
2214        spin_lock(&inode->i_lock);
2215        __nfs_access_zap_cache(NFS_I(inode), &head);
2216        spin_unlock(&inode->i_lock);
2217        spin_unlock(&nfs_access_lru_lock);
2218        nfs_access_free_list(&head);
2219}
2220EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2221
2222static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2223{
2224        struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2225        struct nfs_access_entry *entry;
2226
2227        while (n != NULL) {
2228                entry = rb_entry(n, struct nfs_access_entry, rb_node);
2229
2230                if (cred < entry->cred)
2231                        n = n->rb_left;
2232                else if (cred > entry->cred)
2233                        n = n->rb_right;
2234                else
2235                        return entry;
2236        }
2237        return NULL;
2238}
2239
2240static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2241{
2242        struct nfs_inode *nfsi = NFS_I(inode);
2243        struct nfs_access_entry *cache;
2244        int err = -ENOENT;
2245
2246        spin_lock(&inode->i_lock);
2247        if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2248                goto out_zap;
2249        cache = nfs_access_search_rbtree(inode, cred);
2250        if (cache == NULL)
2251                goto out;
2252        if (!nfs_have_delegated_attributes(inode) &&
2253            !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2254                goto out_stale;
2255        res->jiffies = cache->jiffies;
2256        res->cred = cache->cred;
2257        res->mask = cache->mask;
2258        list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2259        err = 0;
2260out:
2261        spin_unlock(&inode->i_lock);
2262        return err;
2263out_stale:
2264        rb_erase(&cache->rb_node, &nfsi->access_cache);
2265        list_del(&cache->lru);
2266        spin_unlock(&inode->i_lock);
2267        nfs_access_free_entry(cache);
2268        return -ENOENT;
2269out_zap:
2270        spin_unlock(&inode->i_lock);
2271        nfs_access_zap_cache(inode);
2272        return -ENOENT;
2273}
2274
2275static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2276{
2277        /* Only check the most recently returned cache entry,
2278         * but do it without locking.
2279         */
2280        struct nfs_inode *nfsi = NFS_I(inode);
2281        struct nfs_access_entry *cache;
2282        int err = -ECHILD;
2283        struct list_head *lh;
2284
2285        rcu_read_lock();
2286        if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2287                goto out;
2288        lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2289        cache = list_entry(lh, struct nfs_access_entry, lru);
2290        if (lh == &nfsi->access_cache_entry_lru ||
2291            cred != cache->cred)
2292                cache = NULL;
2293        if (cache == NULL)
2294                goto out;
2295        if (!nfs_have_delegated_attributes(inode) &&
2296            !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2297                goto out;
2298        res->jiffies = cache->jiffies;
2299        res->cred = cache->cred;
2300        res->mask = cache->mask;
2301        err = 0;
2302out:
2303        rcu_read_unlock();
2304        return err;
2305}
2306
2307static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2308{
2309        struct nfs_inode *nfsi = NFS_I(inode);
2310        struct rb_root *root_node = &nfsi->access_cache;
2311        struct rb_node **p = &root_node->rb_node;
2312        struct rb_node *parent = NULL;
2313        struct nfs_access_entry *entry;
2314
2315        spin_lock(&inode->i_lock);
2316        while (*p != NULL) {
2317                parent = *p;
2318                entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2319
2320                if (set->cred < entry->cred)
2321                        p = &parent->rb_left;
2322                else if (set->cred > entry->cred)
2323                        p = &parent->rb_right;
2324                else
2325                        goto found;
2326        }
2327        rb_link_node(&set->rb_node, parent, p);
2328        rb_insert_color(&set->rb_node, root_node);
2329        list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2330        spin_unlock(&inode->i_lock);
2331        return;
2332found:
2333        rb_replace_node(parent, &set->rb_node, root_node);
2334        list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2335        list_del(&entry->lru);
2336        spin_unlock(&inode->i_lock);
2337        nfs_access_free_entry(entry);
2338}
2339
2340void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2341{
2342        struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2343        if (cache == NULL)
2344                return;
2345        RB_CLEAR_NODE(&cache->rb_node);
2346        cache->jiffies = set->jiffies;
2347        cache->cred = get_rpccred(set->cred);
2348        cache->mask = set->mask;
2349
2350        /* The above field assignments must be visible
2351         * before this item appears on the lru.  We cannot easily
2352         * use rcu_assign_pointer, so just force the memory barrier.
2353         */
2354        smp_wmb();
2355        nfs_access_add_rbtree(inode, cache);
2356
2357        /* Update accounting */
2358        smp_mb__before_atomic();
2359        atomic_long_inc(&nfs_access_nr_entries);
2360        smp_mb__after_atomic();
2361
2362        /* Add inode to global LRU list */
2363        if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2364                spin_lock(&nfs_access_lru_lock);
2365                if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2366                        list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2367                                        &nfs_access_lru_list);
2368                spin_unlock(&nfs_access_lru_lock);
2369        }
2370        nfs_access_cache_enforce_limit();
2371}
2372EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2373
2374void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2375{
2376        entry->mask = 0;
2377        if (access_result & NFS4_ACCESS_READ)
2378                entry->mask |= MAY_READ;
2379        if (access_result &
2380            (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2381                entry->mask |= MAY_WRITE;
2382        if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2383                entry->mask |= MAY_EXEC;
2384}
2385EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2386
2387static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2388{
2389        struct nfs_access_entry cache;
2390        int status;
2391
2392        trace_nfs_access_enter(inode);
2393
2394        status = nfs_access_get_cached_rcu(inode, cred, &cache);
2395        if (status != 0)
2396                status = nfs_access_get_cached(inode, cred, &cache);
2397        if (status == 0)
2398                goto out_cached;
2399
2400        status = -ECHILD;
2401        if (mask & MAY_NOT_BLOCK)
2402                goto out;
2403
2404        /* Be clever: ask server to check for all possible rights */
2405        cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2406        cache.cred = cred;
2407        cache.jiffies = jiffies;
2408        status = NFS_PROTO(inode)->access(inode, &cache);
2409        if (status != 0) {
2410                if (status == -ESTALE) {
2411                        nfs_zap_caches(inode);
2412                        if (!S_ISDIR(inode->i_mode))
2413                                set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2414                }
2415                goto out;
2416        }
2417        nfs_access_add_cache(inode, &cache);
2418out_cached:
2419        if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2420                status = -EACCES;
2421out:
2422        trace_nfs_access_exit(inode, status);
2423        return status;
2424}
2425
2426static int nfs_open_permission_mask(int openflags)
2427{
2428        int mask = 0;
2429
2430        if (openflags & __FMODE_EXEC) {
2431                /* ONLY check exec rights */
2432                mask = MAY_EXEC;
2433        } else {
2434                if ((openflags & O_ACCMODE) != O_WRONLY)
2435                        mask |= MAY_READ;
2436                if ((openflags & O_ACCMODE) != O_RDONLY)
2437                        mask |= MAY_WRITE;
2438        }
2439
2440        return mask;
2441}
2442
2443int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2444{
2445        return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2446}
2447EXPORT_SYMBOL_GPL(nfs_may_open);
2448
2449int nfs_permission(struct inode *inode, int mask)
2450{
2451        struct rpc_cred *cred;
2452        int res = 0;
2453
2454        nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2455
2456        if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2457                goto out;
2458        /* Is this sys_access() ? */
2459        if (mask & (MAY_ACCESS | MAY_CHDIR))
2460                goto force_lookup;
2461
2462        switch (inode->i_mode & S_IFMT) {
2463                case S_IFLNK:
2464                        goto out;
2465                case S_IFREG:
2466                        break;
2467                case S_IFDIR:
2468                        /*
2469                         * Optimize away all write operations, since the server
2470                         * will check permissions when we perform the op.
2471                         */
2472                        if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2473                                goto out;
2474        }
2475
2476force_lookup:
2477        if (!NFS_PROTO(inode)->access)
2478                goto out_notsup;
2479
2480        /* Always try fast lookups first */
2481        rcu_read_lock();
2482        cred = rpc_lookup_cred_nonblock();
2483        if (!IS_ERR(cred))
2484                res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2485        else
2486                res = PTR_ERR(cred);
2487        rcu_read_unlock();
2488        if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2489                /* Fast lookup failed, try the slow way */
2490                cred = rpc_lookup_cred();
2491                if (!IS_ERR(cred)) {
2492                        res = nfs_do_access(inode, cred, mask);
2493                        put_rpccred(cred);
2494                } else
2495                        res = PTR_ERR(cred);
2496        }
2497out:
2498        if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2499                res = -EACCES;
2500
2501        dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2502                inode->i_sb->s_id, inode->i_ino, mask, res);
2503        return res;
2504out_notsup:
2505        if (mask & MAY_NOT_BLOCK)
2506                return -ECHILD;
2507
2508        res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2509        if (res == 0)
2510                res = generic_permission(inode, mask);
2511        goto out;
2512}
2513EXPORT_SYMBOL_GPL(nfs_permission);
2514
2515/*
2516 * Local variables:
2517 *  version-control: t
2518 *  kept-new-versions: 5
2519 * End:
2520 */
2521