linux/fs/xfs/xfs_mount.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_bit.h"
  25#include "xfs_sb.h"
  26#include "xfs_mount.h"
  27#include "xfs_da_format.h"
  28#include "xfs_da_btree.h"
  29#include "xfs_inode.h"
  30#include "xfs_dir2.h"
  31#include "xfs_ialloc.h"
  32#include "xfs_alloc.h"
  33#include "xfs_rtalloc.h"
  34#include "xfs_bmap.h"
  35#include "xfs_trans.h"
  36#include "xfs_trans_priv.h"
  37#include "xfs_log.h"
  38#include "xfs_error.h"
  39#include "xfs_quota.h"
  40#include "xfs_fsops.h"
  41#include "xfs_trace.h"
  42#include "xfs_icache.h"
  43#include "xfs_sysfs.h"
  44
  45
  46static DEFINE_MUTEX(xfs_uuid_table_mutex);
  47static int xfs_uuid_table_size;
  48static uuid_t *xfs_uuid_table;
  49
  50/*
  51 * See if the UUID is unique among mounted XFS filesystems.
  52 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
  53 */
  54STATIC int
  55xfs_uuid_mount(
  56        struct xfs_mount        *mp)
  57{
  58        uuid_t                  *uuid = &mp->m_sb.sb_uuid;
  59        int                     hole, i;
  60
  61        if (mp->m_flags & XFS_MOUNT_NOUUID)
  62                return 0;
  63
  64        if (uuid_is_nil(uuid)) {
  65                xfs_warn(mp, "Filesystem has nil UUID - can't mount");
  66                return -EINVAL;
  67        }
  68
  69        mutex_lock(&xfs_uuid_table_mutex);
  70        for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
  71                if (uuid_is_nil(&xfs_uuid_table[i])) {
  72                        hole = i;
  73                        continue;
  74                }
  75                if (uuid_equal(uuid, &xfs_uuid_table[i]))
  76                        goto out_duplicate;
  77        }
  78
  79        if (hole < 0) {
  80                xfs_uuid_table = kmem_realloc(xfs_uuid_table,
  81                        (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
  82                        xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
  83                        KM_SLEEP);
  84                hole = xfs_uuid_table_size++;
  85        }
  86        xfs_uuid_table[hole] = *uuid;
  87        mutex_unlock(&xfs_uuid_table_mutex);
  88
  89        return 0;
  90
  91 out_duplicate:
  92        mutex_unlock(&xfs_uuid_table_mutex);
  93        xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
  94        return -EINVAL;
  95}
  96
  97STATIC void
  98xfs_uuid_unmount(
  99        struct xfs_mount        *mp)
 100{
 101        uuid_t                  *uuid = &mp->m_sb.sb_uuid;
 102        int                     i;
 103
 104        if (mp->m_flags & XFS_MOUNT_NOUUID)
 105                return;
 106
 107        mutex_lock(&xfs_uuid_table_mutex);
 108        for (i = 0; i < xfs_uuid_table_size; i++) {
 109                if (uuid_is_nil(&xfs_uuid_table[i]))
 110                        continue;
 111                if (!uuid_equal(uuid, &xfs_uuid_table[i]))
 112                        continue;
 113                memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
 114                break;
 115        }
 116        ASSERT(i < xfs_uuid_table_size);
 117        mutex_unlock(&xfs_uuid_table_mutex);
 118}
 119
 120
 121STATIC void
 122__xfs_free_perag(
 123        struct rcu_head *head)
 124{
 125        struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
 126
 127        ASSERT(atomic_read(&pag->pag_ref) == 0);
 128        kmem_free(pag);
 129}
 130
 131/*
 132 * Free up the per-ag resources associated with the mount structure.
 133 */
 134STATIC void
 135xfs_free_perag(
 136        xfs_mount_t     *mp)
 137{
 138        xfs_agnumber_t  agno;
 139        struct xfs_perag *pag;
 140
 141        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
 142                spin_lock(&mp->m_perag_lock);
 143                pag = radix_tree_delete(&mp->m_perag_tree, agno);
 144                spin_unlock(&mp->m_perag_lock);
 145                ASSERT(pag);
 146                ASSERT(atomic_read(&pag->pag_ref) == 0);
 147                call_rcu(&pag->rcu_head, __xfs_free_perag);
 148        }
 149}
 150
 151/*
 152 * Check size of device based on the (data/realtime) block count.
 153 * Note: this check is used by the growfs code as well as mount.
 154 */
 155int
 156xfs_sb_validate_fsb_count(
 157        xfs_sb_t        *sbp,
 158        __uint64_t      nblocks)
 159{
 160        ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
 161        ASSERT(sbp->sb_blocklog >= BBSHIFT);
 162
 163        /* Limited by ULONG_MAX of page cache index */
 164        if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
 165                return -EFBIG;
 166        return 0;
 167}
 168
 169int
 170xfs_initialize_perag(
 171        xfs_mount_t     *mp,
 172        xfs_agnumber_t  agcount,
 173        xfs_agnumber_t  *maxagi)
 174{
 175        xfs_agnumber_t  index;
 176        xfs_agnumber_t  first_initialised = 0;
 177        xfs_perag_t     *pag;
 178        xfs_agino_t     agino;
 179        xfs_ino_t       ino;
 180        xfs_sb_t        *sbp = &mp->m_sb;
 181        int             error = -ENOMEM;
 182
 183        /*
 184         * Walk the current per-ag tree so we don't try to initialise AGs
 185         * that already exist (growfs case). Allocate and insert all the
 186         * AGs we don't find ready for initialisation.
 187         */
 188        for (index = 0; index < agcount; index++) {
 189                pag = xfs_perag_get(mp, index);
 190                if (pag) {
 191                        xfs_perag_put(pag);
 192                        continue;
 193                }
 194                if (!first_initialised)
 195                        first_initialised = index;
 196
 197                pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
 198                if (!pag)
 199                        goto out_unwind;
 200                pag->pag_agno = index;
 201                pag->pag_mount = mp;
 202                spin_lock_init(&pag->pag_ici_lock);
 203                mutex_init(&pag->pag_ici_reclaim_lock);
 204                INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
 205                spin_lock_init(&pag->pag_buf_lock);
 206                pag->pag_buf_tree = RB_ROOT;
 207
 208                if (radix_tree_preload(GFP_NOFS))
 209                        goto out_unwind;
 210
 211                spin_lock(&mp->m_perag_lock);
 212                if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
 213                        BUG();
 214                        spin_unlock(&mp->m_perag_lock);
 215                        radix_tree_preload_end();
 216                        error = -EEXIST;
 217                        goto out_unwind;
 218                }
 219                spin_unlock(&mp->m_perag_lock);
 220                radix_tree_preload_end();
 221        }
 222
 223        /*
 224         * If we mount with the inode64 option, or no inode overflows
 225         * the legacy 32-bit address space clear the inode32 option.
 226         */
 227        agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
 228        ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
 229
 230        if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
 231                mp->m_flags |= XFS_MOUNT_32BITINODES;
 232        else
 233                mp->m_flags &= ~XFS_MOUNT_32BITINODES;
 234
 235        if (mp->m_flags & XFS_MOUNT_32BITINODES)
 236                index = xfs_set_inode32(mp, agcount);
 237        else
 238                index = xfs_set_inode64(mp, agcount);
 239
 240        if (maxagi)
 241                *maxagi = index;
 242        return 0;
 243
 244out_unwind:
 245        kmem_free(pag);
 246        for (; index > first_initialised; index--) {
 247                pag = radix_tree_delete(&mp->m_perag_tree, index);
 248                kmem_free(pag);
 249        }
 250        return error;
 251}
 252
 253/*
 254 * xfs_readsb
 255 *
 256 * Does the initial read of the superblock.
 257 */
 258int
 259xfs_readsb(
 260        struct xfs_mount *mp,
 261        int             flags)
 262{
 263        unsigned int    sector_size;
 264        struct xfs_buf  *bp;
 265        struct xfs_sb   *sbp = &mp->m_sb;
 266        int             error;
 267        int             loud = !(flags & XFS_MFSI_QUIET);
 268        const struct xfs_buf_ops *buf_ops;
 269
 270        ASSERT(mp->m_sb_bp == NULL);
 271        ASSERT(mp->m_ddev_targp != NULL);
 272
 273        /*
 274         * For the initial read, we must guess at the sector
 275         * size based on the block device.  It's enough to
 276         * get the sb_sectsize out of the superblock and
 277         * then reread with the proper length.
 278         * We don't verify it yet, because it may not be complete.
 279         */
 280        sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
 281        buf_ops = NULL;
 282
 283        /*
 284         * Allocate a (locked) buffer to hold the superblock.
 285         * This will be kept around at all times to optimize
 286         * access to the superblock.
 287         */
 288reread:
 289        error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
 290                                   BTOBB(sector_size), 0, &bp, buf_ops);
 291        if (error) {
 292                if (loud)
 293                        xfs_warn(mp, "SB validate failed with error %d.", error);
 294                /* bad CRC means corrupted metadata */
 295                if (error == -EFSBADCRC)
 296                        error = -EFSCORRUPTED;
 297                return error;
 298        }
 299
 300        /*
 301         * Initialize the mount structure from the superblock.
 302         */
 303        xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
 304
 305        /*
 306         * If we haven't validated the superblock, do so now before we try
 307         * to check the sector size and reread the superblock appropriately.
 308         */
 309        if (sbp->sb_magicnum != XFS_SB_MAGIC) {
 310                if (loud)
 311                        xfs_warn(mp, "Invalid superblock magic number");
 312                error = -EINVAL;
 313                goto release_buf;
 314        }
 315
 316        /*
 317         * We must be able to do sector-sized and sector-aligned IO.
 318         */
 319        if (sector_size > sbp->sb_sectsize) {
 320                if (loud)
 321                        xfs_warn(mp, "device supports %u byte sectors (not %u)",
 322                                sector_size, sbp->sb_sectsize);
 323                error = -ENOSYS;
 324                goto release_buf;
 325        }
 326
 327        if (buf_ops == NULL) {
 328                /*
 329                 * Re-read the superblock so the buffer is correctly sized,
 330                 * and properly verified.
 331                 */
 332                xfs_buf_relse(bp);
 333                sector_size = sbp->sb_sectsize;
 334                buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
 335                goto reread;
 336        }
 337
 338        xfs_reinit_percpu_counters(mp);
 339
 340        /* no need to be quiet anymore, so reset the buf ops */
 341        bp->b_ops = &xfs_sb_buf_ops;
 342
 343        mp->m_sb_bp = bp;
 344        xfs_buf_unlock(bp);
 345        return 0;
 346
 347release_buf:
 348        xfs_buf_relse(bp);
 349        return error;
 350}
 351
 352/*
 353 * Update alignment values based on mount options and sb values
 354 */
 355STATIC int
 356xfs_update_alignment(xfs_mount_t *mp)
 357{
 358        xfs_sb_t        *sbp = &(mp->m_sb);
 359
 360        if (mp->m_dalign) {
 361                /*
 362                 * If stripe unit and stripe width are not multiples
 363                 * of the fs blocksize turn off alignment.
 364                 */
 365                if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
 366                    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
 367                        xfs_warn(mp,
 368                "alignment check failed: sunit/swidth vs. blocksize(%d)",
 369                                sbp->sb_blocksize);
 370                        return -EINVAL;
 371                } else {
 372                        /*
 373                         * Convert the stripe unit and width to FSBs.
 374                         */
 375                        mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
 376                        if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
 377                                xfs_warn(mp,
 378                        "alignment check failed: sunit/swidth vs. agsize(%d)",
 379                                         sbp->sb_agblocks);
 380                                return -EINVAL;
 381                        } else if (mp->m_dalign) {
 382                                mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
 383                        } else {
 384                                xfs_warn(mp,
 385                        "alignment check failed: sunit(%d) less than bsize(%d)",
 386                                         mp->m_dalign, sbp->sb_blocksize);
 387                                return -EINVAL;
 388                        }
 389                }
 390
 391                /*
 392                 * Update superblock with new values
 393                 * and log changes
 394                 */
 395                if (xfs_sb_version_hasdalign(sbp)) {
 396                        if (sbp->sb_unit != mp->m_dalign) {
 397                                sbp->sb_unit = mp->m_dalign;
 398                                mp->m_update_sb = true;
 399                        }
 400                        if (sbp->sb_width != mp->m_swidth) {
 401                                sbp->sb_width = mp->m_swidth;
 402                                mp->m_update_sb = true;
 403                        }
 404                } else {
 405                        xfs_warn(mp,
 406        "cannot change alignment: superblock does not support data alignment");
 407                        return -EINVAL;
 408                }
 409        } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
 410                    xfs_sb_version_hasdalign(&mp->m_sb)) {
 411                        mp->m_dalign = sbp->sb_unit;
 412                        mp->m_swidth = sbp->sb_width;
 413        }
 414
 415        return 0;
 416}
 417
 418/*
 419 * Set the maximum inode count for this filesystem
 420 */
 421STATIC void
 422xfs_set_maxicount(xfs_mount_t *mp)
 423{
 424        xfs_sb_t        *sbp = &(mp->m_sb);
 425        __uint64_t      icount;
 426
 427        if (sbp->sb_imax_pct) {
 428                /*
 429                 * Make sure the maximum inode count is a multiple
 430                 * of the units we allocate inodes in.
 431                 */
 432                icount = sbp->sb_dblocks * sbp->sb_imax_pct;
 433                do_div(icount, 100);
 434                do_div(icount, mp->m_ialloc_blks);
 435                mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
 436                                   sbp->sb_inopblog;
 437        } else {
 438                mp->m_maxicount = 0;
 439        }
 440}
 441
 442/*
 443 * Set the default minimum read and write sizes unless
 444 * already specified in a mount option.
 445 * We use smaller I/O sizes when the file system
 446 * is being used for NFS service (wsync mount option).
 447 */
 448STATIC void
 449xfs_set_rw_sizes(xfs_mount_t *mp)
 450{
 451        xfs_sb_t        *sbp = &(mp->m_sb);
 452        int             readio_log, writeio_log;
 453
 454        if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
 455                if (mp->m_flags & XFS_MOUNT_WSYNC) {
 456                        readio_log = XFS_WSYNC_READIO_LOG;
 457                        writeio_log = XFS_WSYNC_WRITEIO_LOG;
 458                } else {
 459                        readio_log = XFS_READIO_LOG_LARGE;
 460                        writeio_log = XFS_WRITEIO_LOG_LARGE;
 461                }
 462        } else {
 463                readio_log = mp->m_readio_log;
 464                writeio_log = mp->m_writeio_log;
 465        }
 466
 467        if (sbp->sb_blocklog > readio_log) {
 468                mp->m_readio_log = sbp->sb_blocklog;
 469        } else {
 470                mp->m_readio_log = readio_log;
 471        }
 472        mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
 473        if (sbp->sb_blocklog > writeio_log) {
 474                mp->m_writeio_log = sbp->sb_blocklog;
 475        } else {
 476                mp->m_writeio_log = writeio_log;
 477        }
 478        mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
 479}
 480
 481/*
 482 * precalculate the low space thresholds for dynamic speculative preallocation.
 483 */
 484void
 485xfs_set_low_space_thresholds(
 486        struct xfs_mount        *mp)
 487{
 488        int i;
 489
 490        for (i = 0; i < XFS_LOWSP_MAX; i++) {
 491                __uint64_t space = mp->m_sb.sb_dblocks;
 492
 493                do_div(space, 100);
 494                mp->m_low_space[i] = space * (i + 1);
 495        }
 496}
 497
 498
 499/*
 500 * Set whether we're using inode alignment.
 501 */
 502STATIC void
 503xfs_set_inoalignment(xfs_mount_t *mp)
 504{
 505        if (xfs_sb_version_hasalign(&mp->m_sb) &&
 506            mp->m_sb.sb_inoalignmt >=
 507            XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
 508                mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
 509        else
 510                mp->m_inoalign_mask = 0;
 511        /*
 512         * If we are using stripe alignment, check whether
 513         * the stripe unit is a multiple of the inode alignment
 514         */
 515        if (mp->m_dalign && mp->m_inoalign_mask &&
 516            !(mp->m_dalign & mp->m_inoalign_mask))
 517                mp->m_sinoalign = mp->m_dalign;
 518        else
 519                mp->m_sinoalign = 0;
 520}
 521
 522/*
 523 * Check that the data (and log if separate) is an ok size.
 524 */
 525STATIC int
 526xfs_check_sizes(
 527        struct xfs_mount *mp)
 528{
 529        struct xfs_buf  *bp;
 530        xfs_daddr_t     d;
 531        int             error;
 532
 533        d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
 534        if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
 535                xfs_warn(mp, "filesystem size mismatch detected");
 536                return -EFBIG;
 537        }
 538        error = xfs_buf_read_uncached(mp->m_ddev_targp,
 539                                        d - XFS_FSS_TO_BB(mp, 1),
 540                                        XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
 541        if (error) {
 542                xfs_warn(mp, "last sector read failed");
 543                return error;
 544        }
 545        xfs_buf_relse(bp);
 546
 547        if (mp->m_logdev_targp == mp->m_ddev_targp)
 548                return 0;
 549
 550        d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
 551        if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
 552                xfs_warn(mp, "log size mismatch detected");
 553                return -EFBIG;
 554        }
 555        error = xfs_buf_read_uncached(mp->m_logdev_targp,
 556                                        d - XFS_FSB_TO_BB(mp, 1),
 557                                        XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
 558        if (error) {
 559                xfs_warn(mp, "log device read failed");
 560                return error;
 561        }
 562        xfs_buf_relse(bp);
 563        return 0;
 564}
 565
 566/*
 567 * Clear the quotaflags in memory and in the superblock.
 568 */
 569int
 570xfs_mount_reset_sbqflags(
 571        struct xfs_mount        *mp)
 572{
 573        mp->m_qflags = 0;
 574
 575        /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
 576        if (mp->m_sb.sb_qflags == 0)
 577                return 0;
 578        spin_lock(&mp->m_sb_lock);
 579        mp->m_sb.sb_qflags = 0;
 580        spin_unlock(&mp->m_sb_lock);
 581
 582        if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
 583                return 0;
 584
 585        return xfs_sync_sb(mp, false);
 586}
 587
 588__uint64_t
 589xfs_default_resblks(xfs_mount_t *mp)
 590{
 591        __uint64_t resblks;
 592
 593        /*
 594         * We default to 5% or 8192 fsbs of space reserved, whichever is
 595         * smaller.  This is intended to cover concurrent allocation
 596         * transactions when we initially hit enospc. These each require a 4
 597         * block reservation. Hence by default we cover roughly 2000 concurrent
 598         * allocation reservations.
 599         */
 600        resblks = mp->m_sb.sb_dblocks;
 601        do_div(resblks, 20);
 602        resblks = min_t(__uint64_t, resblks, 8192);
 603        return resblks;
 604}
 605
 606/*
 607 * This function does the following on an initial mount of a file system:
 608 *      - reads the superblock from disk and init the mount struct
 609 *      - if we're a 32-bit kernel, do a size check on the superblock
 610 *              so we don't mount terabyte filesystems
 611 *      - init mount struct realtime fields
 612 *      - allocate inode hash table for fs
 613 *      - init directory manager
 614 *      - perform recovery and init the log manager
 615 */
 616int
 617xfs_mountfs(
 618        xfs_mount_t     *mp)
 619{
 620        xfs_sb_t        *sbp = &(mp->m_sb);
 621        xfs_inode_t     *rip;
 622        __uint64_t      resblks;
 623        uint            quotamount = 0;
 624        uint            quotaflags = 0;
 625        int             error = 0;
 626
 627        xfs_sb_mount_common(mp, sbp);
 628
 629        /*
 630         * Check for a mismatched features2 values.  Older kernels read & wrote
 631         * into the wrong sb offset for sb_features2 on some platforms due to
 632         * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
 633         * which made older superblock reading/writing routines swap it as a
 634         * 64-bit value.
 635         *
 636         * For backwards compatibility, we make both slots equal.
 637         *
 638         * If we detect a mismatched field, we OR the set bits into the existing
 639         * features2 field in case it has already been modified; we don't want
 640         * to lose any features.  We then update the bad location with the ORed
 641         * value so that older kernels will see any features2 flags. The
 642         * superblock writeback code ensures the new sb_features2 is copied to
 643         * sb_bad_features2 before it is logged or written to disk.
 644         */
 645        if (xfs_sb_has_mismatched_features2(sbp)) {
 646                xfs_warn(mp, "correcting sb_features alignment problem");
 647                sbp->sb_features2 |= sbp->sb_bad_features2;
 648                mp->m_update_sb = true;
 649
 650                /*
 651                 * Re-check for ATTR2 in case it was found in bad_features2
 652                 * slot.
 653                 */
 654                if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 655                   !(mp->m_flags & XFS_MOUNT_NOATTR2))
 656                        mp->m_flags |= XFS_MOUNT_ATTR2;
 657        }
 658
 659        if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 660           (mp->m_flags & XFS_MOUNT_NOATTR2)) {
 661                xfs_sb_version_removeattr2(&mp->m_sb);
 662                mp->m_update_sb = true;
 663
 664                /* update sb_versionnum for the clearing of the morebits */
 665                if (!sbp->sb_features2)
 666                        mp->m_update_sb = true;
 667        }
 668
 669        /* always use v2 inodes by default now */
 670        if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
 671                mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
 672                mp->m_update_sb = true;
 673        }
 674
 675        /*
 676         * Check if sb_agblocks is aligned at stripe boundary
 677         * If sb_agblocks is NOT aligned turn off m_dalign since
 678         * allocator alignment is within an ag, therefore ag has
 679         * to be aligned at stripe boundary.
 680         */
 681        error = xfs_update_alignment(mp);
 682        if (error)
 683                goto out;
 684
 685        xfs_alloc_compute_maxlevels(mp);
 686        xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
 687        xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
 688        xfs_ialloc_compute_maxlevels(mp);
 689
 690        xfs_set_maxicount(mp);
 691
 692        error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
 693        if (error)
 694                goto out;
 695
 696        error = xfs_uuid_mount(mp);
 697        if (error)
 698                goto out_remove_sysfs;
 699
 700        /*
 701         * Set the minimum read and write sizes
 702         */
 703        xfs_set_rw_sizes(mp);
 704
 705        /* set the low space thresholds for dynamic preallocation */
 706        xfs_set_low_space_thresholds(mp);
 707
 708        /*
 709         * Set the inode cluster size.
 710         * This may still be overridden by the file system
 711         * block size if it is larger than the chosen cluster size.
 712         *
 713         * For v5 filesystems, scale the cluster size with the inode size to
 714         * keep a constant ratio of inode per cluster buffer, but only if mkfs
 715         * has set the inode alignment value appropriately for larger cluster
 716         * sizes.
 717         */
 718        mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
 719        if (xfs_sb_version_hascrc(&mp->m_sb)) {
 720                int     new_size = mp->m_inode_cluster_size;
 721
 722                new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
 723                if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
 724                        mp->m_inode_cluster_size = new_size;
 725        }
 726
 727        /*
 728         * Set inode alignment fields
 729         */
 730        xfs_set_inoalignment(mp);
 731
 732        /*
 733         * Check that the data (and log if separate) is an ok size.
 734         */
 735        error = xfs_check_sizes(mp);
 736        if (error)
 737                goto out_remove_uuid;
 738
 739        /*
 740         * Initialize realtime fields in the mount structure
 741         */
 742        error = xfs_rtmount_init(mp);
 743        if (error) {
 744                xfs_warn(mp, "RT mount failed");
 745                goto out_remove_uuid;
 746        }
 747
 748        /*
 749         *  Copies the low order bits of the timestamp and the randomly
 750         *  set "sequence" number out of a UUID.
 751         */
 752        uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
 753
 754        mp->m_dmevmask = 0;     /* not persistent; set after each mount */
 755
 756        error = xfs_da_mount(mp);
 757        if (error) {
 758                xfs_warn(mp, "Failed dir/attr init: %d", error);
 759                goto out_remove_uuid;
 760        }
 761
 762        /*
 763         * Initialize the precomputed transaction reservations values.
 764         */
 765        xfs_trans_init(mp);
 766
 767        /*
 768         * Allocate and initialize the per-ag data.
 769         */
 770        spin_lock_init(&mp->m_perag_lock);
 771        INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
 772        error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
 773        if (error) {
 774                xfs_warn(mp, "Failed per-ag init: %d", error);
 775                goto out_free_dir;
 776        }
 777
 778        if (!sbp->sb_logblocks) {
 779                xfs_warn(mp, "no log defined");
 780                XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
 781                error = -EFSCORRUPTED;
 782                goto out_free_perag;
 783        }
 784
 785        /*
 786         * log's mount-time initialization. Perform 1st part recovery if needed
 787         */
 788        error = xfs_log_mount(mp, mp->m_logdev_targp,
 789                              XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
 790                              XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
 791        if (error) {
 792                xfs_warn(mp, "log mount failed");
 793                goto out_fail_wait;
 794        }
 795
 796        /*
 797         * Now the log is mounted, we know if it was an unclean shutdown or
 798         * not. If it was, with the first phase of recovery has completed, we
 799         * have consistent AG blocks on disk. We have not recovered EFIs yet,
 800         * but they are recovered transactionally in the second recovery phase
 801         * later.
 802         *
 803         * Hence we can safely re-initialise incore superblock counters from
 804         * the per-ag data. These may not be correct if the filesystem was not
 805         * cleanly unmounted, so we need to wait for recovery to finish before
 806         * doing this.
 807         *
 808         * If the filesystem was cleanly unmounted, then we can trust the
 809         * values in the superblock to be correct and we don't need to do
 810         * anything here.
 811         *
 812         * If we are currently making the filesystem, the initialisation will
 813         * fail as the perag data is in an undefined state.
 814         */
 815        if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
 816            !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
 817             !mp->m_sb.sb_inprogress) {
 818                error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
 819                if (error)
 820                        goto out_log_dealloc;
 821        }
 822
 823        /*
 824         * Get and sanity-check the root inode.
 825         * Save the pointer to it in the mount structure.
 826         */
 827        error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
 828        if (error) {
 829                xfs_warn(mp, "failed to read root inode");
 830                goto out_log_dealloc;
 831        }
 832
 833        ASSERT(rip != NULL);
 834
 835        if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
 836                xfs_warn(mp, "corrupted root inode %llu: not a directory",
 837                        (unsigned long long)rip->i_ino);
 838                xfs_iunlock(rip, XFS_ILOCK_EXCL);
 839                XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
 840                                 mp);
 841                error = -EFSCORRUPTED;
 842                goto out_rele_rip;
 843        }
 844        mp->m_rootip = rip;     /* save it */
 845
 846        xfs_iunlock(rip, XFS_ILOCK_EXCL);
 847
 848        /*
 849         * Initialize realtime inode pointers in the mount structure
 850         */
 851        error = xfs_rtmount_inodes(mp);
 852        if (error) {
 853                /*
 854                 * Free up the root inode.
 855                 */
 856                xfs_warn(mp, "failed to read RT inodes");
 857                goto out_rele_rip;
 858        }
 859
 860        /*
 861         * If this is a read-only mount defer the superblock updates until
 862         * the next remount into writeable mode.  Otherwise we would never
 863         * perform the update e.g. for the root filesystem.
 864         */
 865        if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
 866                error = xfs_sync_sb(mp, false);
 867                if (error) {
 868                        xfs_warn(mp, "failed to write sb changes");
 869                        goto out_rtunmount;
 870                }
 871        }
 872
 873        /*
 874         * Initialise the XFS quota management subsystem for this mount
 875         */
 876        if (XFS_IS_QUOTA_RUNNING(mp)) {
 877                error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
 878                if (error)
 879                        goto out_rtunmount;
 880        } else {
 881                ASSERT(!XFS_IS_QUOTA_ON(mp));
 882
 883                /*
 884                 * If a file system had quotas running earlier, but decided to
 885                 * mount without -o uquota/pquota/gquota options, revoke the
 886                 * quotachecked license.
 887                 */
 888                if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
 889                        xfs_notice(mp, "resetting quota flags");
 890                        error = xfs_mount_reset_sbqflags(mp);
 891                        if (error)
 892                                goto out_rtunmount;
 893                }
 894        }
 895
 896        /*
 897         * Finish recovering the file system.  This part needed to be
 898         * delayed until after the root and real-time bitmap inodes
 899         * were consistently read in.
 900         */
 901        error = xfs_log_mount_finish(mp);
 902        if (error) {
 903                xfs_warn(mp, "log mount finish failed");
 904                goto out_rtunmount;
 905        }
 906
 907        /*
 908         * Complete the quota initialisation, post-log-replay component.
 909         */
 910        if (quotamount) {
 911                ASSERT(mp->m_qflags == 0);
 912                mp->m_qflags = quotaflags;
 913
 914                xfs_qm_mount_quotas(mp);
 915        }
 916
 917        /*
 918         * Now we are mounted, reserve a small amount of unused space for
 919         * privileged transactions. This is needed so that transaction
 920         * space required for critical operations can dip into this pool
 921         * when at ENOSPC. This is needed for operations like create with
 922         * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
 923         * are not allowed to use this reserved space.
 924         *
 925         * This may drive us straight to ENOSPC on mount, but that implies
 926         * we were already there on the last unmount. Warn if this occurs.
 927         */
 928        if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
 929                resblks = xfs_default_resblks(mp);
 930                error = xfs_reserve_blocks(mp, &resblks, NULL);
 931                if (error)
 932                        xfs_warn(mp,
 933        "Unable to allocate reserve blocks. Continuing without reserve pool.");
 934        }
 935
 936        return 0;
 937
 938 out_rtunmount:
 939        xfs_rtunmount_inodes(mp);
 940 out_rele_rip:
 941        IRELE(rip);
 942 out_log_dealloc:
 943        xfs_log_unmount(mp);
 944 out_fail_wait:
 945        if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
 946                xfs_wait_buftarg(mp->m_logdev_targp);
 947        xfs_wait_buftarg(mp->m_ddev_targp);
 948 out_free_perag:
 949        xfs_free_perag(mp);
 950 out_free_dir:
 951        xfs_da_unmount(mp);
 952 out_remove_uuid:
 953        xfs_uuid_unmount(mp);
 954 out_remove_sysfs:
 955        xfs_sysfs_del(&mp->m_kobj);
 956 out:
 957        return error;
 958}
 959
 960/*
 961 * This flushes out the inodes,dquots and the superblock, unmounts the
 962 * log and makes sure that incore structures are freed.
 963 */
 964void
 965xfs_unmountfs(
 966        struct xfs_mount        *mp)
 967{
 968        __uint64_t              resblks;
 969        int                     error;
 970
 971        cancel_delayed_work_sync(&mp->m_eofblocks_work);
 972
 973        xfs_qm_unmount_quotas(mp);
 974        xfs_rtunmount_inodes(mp);
 975        IRELE(mp->m_rootip);
 976
 977        /*
 978         * We can potentially deadlock here if we have an inode cluster
 979         * that has been freed has its buffer still pinned in memory because
 980         * the transaction is still sitting in a iclog. The stale inodes
 981         * on that buffer will have their flush locks held until the
 982         * transaction hits the disk and the callbacks run. the inode
 983         * flush takes the flush lock unconditionally and with nothing to
 984         * push out the iclog we will never get that unlocked. hence we
 985         * need to force the log first.
 986         */
 987        xfs_log_force(mp, XFS_LOG_SYNC);
 988
 989        /*
 990         * Flush all pending changes from the AIL.
 991         */
 992        xfs_ail_push_all_sync(mp->m_ail);
 993
 994        /*
 995         * And reclaim all inodes.  At this point there should be no dirty
 996         * inodes and none should be pinned or locked, but use synchronous
 997         * reclaim just to be sure. We can stop background inode reclaim
 998         * here as well if it is still running.
 999         */
1000        cancel_delayed_work_sync(&mp->m_reclaim_work);
1001        xfs_reclaim_inodes(mp, SYNC_WAIT);
1002
1003        xfs_qm_unmount(mp);
1004
1005        /*
1006         * Unreserve any blocks we have so that when we unmount we don't account
1007         * the reserved free space as used. This is really only necessary for
1008         * lazy superblock counting because it trusts the incore superblock
1009         * counters to be absolutely correct on clean unmount.
1010         *
1011         * We don't bother correcting this elsewhere for lazy superblock
1012         * counting because on mount of an unclean filesystem we reconstruct the
1013         * correct counter value and this is irrelevant.
1014         *
1015         * For non-lazy counter filesystems, this doesn't matter at all because
1016         * we only every apply deltas to the superblock and hence the incore
1017         * value does not matter....
1018         */
1019        resblks = 0;
1020        error = xfs_reserve_blocks(mp, &resblks, NULL);
1021        if (error)
1022                xfs_warn(mp, "Unable to free reserved block pool. "
1023                                "Freespace may not be correct on next mount.");
1024
1025        error = xfs_log_sbcount(mp);
1026        if (error)
1027                xfs_warn(mp, "Unable to update superblock counters. "
1028                                "Freespace may not be correct on next mount.");
1029
1030        xfs_log_unmount(mp);
1031        xfs_da_unmount(mp);
1032        xfs_uuid_unmount(mp);
1033
1034#if defined(DEBUG)
1035        xfs_errortag_clearall(mp, 0);
1036#endif
1037        xfs_free_perag(mp);
1038
1039        xfs_sysfs_del(&mp->m_kobj);
1040}
1041
1042/*
1043 * Determine whether modifications can proceed. The caller specifies the minimum
1044 * freeze level for which modifications should not be allowed. This allows
1045 * certain operations to proceed while the freeze sequence is in progress, if
1046 * necessary.
1047 */
1048bool
1049xfs_fs_writable(
1050        struct xfs_mount        *mp,
1051        int                     level)
1052{
1053        ASSERT(level > SB_UNFROZEN);
1054        if ((mp->m_super->s_writers.frozen >= level) ||
1055            XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1056                return false;
1057
1058        return true;
1059}
1060
1061/*
1062 * xfs_log_sbcount
1063 *
1064 * Sync the superblock counters to disk.
1065 *
1066 * Note this code can be called during the process of freezing, so we use the
1067 * transaction allocator that does not block when the transaction subsystem is
1068 * in its frozen state.
1069 */
1070int
1071xfs_log_sbcount(xfs_mount_t *mp)
1072{
1073        /* allow this to proceed during the freeze sequence... */
1074        if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1075                return 0;
1076
1077        /*
1078         * we don't need to do this if we are updating the superblock
1079         * counters on every modification.
1080         */
1081        if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1082                return 0;
1083
1084        return xfs_sync_sb(mp, true);
1085}
1086
1087/*
1088 * Deltas for the inode count are +/-64, hence we use a large batch size
1089 * of 128 so we don't need to take the counter lock on every update.
1090 */
1091#define XFS_ICOUNT_BATCH        128
1092int
1093xfs_mod_icount(
1094        struct xfs_mount        *mp,
1095        int64_t                 delta)
1096{
1097        __percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1098        if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1099                ASSERT(0);
1100                percpu_counter_add(&mp->m_icount, -delta);
1101                return -EINVAL;
1102        }
1103        return 0;
1104}
1105
1106int
1107xfs_mod_ifree(
1108        struct xfs_mount        *mp,
1109        int64_t                 delta)
1110{
1111        percpu_counter_add(&mp->m_ifree, delta);
1112        if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1113                ASSERT(0);
1114                percpu_counter_add(&mp->m_ifree, -delta);
1115                return -EINVAL;
1116        }
1117        return 0;
1118}
1119
1120/*
1121 * Deltas for the block count can vary from 1 to very large, but lock contention
1122 * only occurs on frequent small block count updates such as in the delayed
1123 * allocation path for buffered writes (page a time updates). Hence we set
1124 * a large batch count (1024) to minimise global counter updates except when
1125 * we get near to ENOSPC and we have to be very accurate with our updates.
1126 */
1127#define XFS_FDBLOCKS_BATCH      1024
1128int
1129xfs_mod_fdblocks(
1130        struct xfs_mount        *mp,
1131        int64_t                 delta,
1132        bool                    rsvd)
1133{
1134        int64_t                 lcounter;
1135        long long               res_used;
1136        s32                     batch;
1137
1138        if (delta > 0) {
1139                /*
1140                 * If the reserve pool is depleted, put blocks back into it
1141                 * first. Most of the time the pool is full.
1142                 */
1143                if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1144                        percpu_counter_add(&mp->m_fdblocks, delta);
1145                        return 0;
1146                }
1147
1148                spin_lock(&mp->m_sb_lock);
1149                res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1150
1151                if (res_used > delta) {
1152                        mp->m_resblks_avail += delta;
1153                } else {
1154                        delta -= res_used;
1155                        mp->m_resblks_avail = mp->m_resblks;
1156                        percpu_counter_add(&mp->m_fdblocks, delta);
1157                }
1158                spin_unlock(&mp->m_sb_lock);
1159                return 0;
1160        }
1161
1162        /*
1163         * Taking blocks away, need to be more accurate the closer we
1164         * are to zero.
1165         *
1166         * If the counter has a value of less than 2 * max batch size,
1167         * then make everything serialise as we are real close to
1168         * ENOSPC.
1169         */
1170        if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1171                                     XFS_FDBLOCKS_BATCH) < 0)
1172                batch = 1;
1173        else
1174                batch = XFS_FDBLOCKS_BATCH;
1175
1176        __percpu_counter_add(&mp->m_fdblocks, delta, batch);
1177        if (__percpu_counter_compare(&mp->m_fdblocks, XFS_ALLOC_SET_ASIDE(mp),
1178                                     XFS_FDBLOCKS_BATCH) >= 0) {
1179                /* we had space! */
1180                return 0;
1181        }
1182
1183        /*
1184         * lock up the sb for dipping into reserves before releasing the space
1185         * that took us to ENOSPC.
1186         */
1187        spin_lock(&mp->m_sb_lock);
1188        percpu_counter_add(&mp->m_fdblocks, -delta);
1189        if (!rsvd)
1190                goto fdblocks_enospc;
1191
1192        lcounter = (long long)mp->m_resblks_avail + delta;
1193        if (lcounter >= 0) {
1194                mp->m_resblks_avail = lcounter;
1195                spin_unlock(&mp->m_sb_lock);
1196                return 0;
1197        }
1198        printk_once(KERN_WARNING
1199                "Filesystem \"%s\": reserve blocks depleted! "
1200                "Consider increasing reserve pool size.",
1201                mp->m_fsname);
1202fdblocks_enospc:
1203        spin_unlock(&mp->m_sb_lock);
1204        return -ENOSPC;
1205}
1206
1207int
1208xfs_mod_frextents(
1209        struct xfs_mount        *mp,
1210        int64_t                 delta)
1211{
1212        int64_t                 lcounter;
1213        int                     ret = 0;
1214
1215        spin_lock(&mp->m_sb_lock);
1216        lcounter = mp->m_sb.sb_frextents + delta;
1217        if (lcounter < 0)
1218                ret = -ENOSPC;
1219        else
1220                mp->m_sb.sb_frextents = lcounter;
1221        spin_unlock(&mp->m_sb_lock);
1222        return ret;
1223}
1224
1225/*
1226 * xfs_getsb() is called to obtain the buffer for the superblock.
1227 * The buffer is returned locked and read in from disk.
1228 * The buffer should be released with a call to xfs_brelse().
1229 *
1230 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1231 * the superblock buffer if it can be locked without sleeping.
1232 * If it can't then we'll return NULL.
1233 */
1234struct xfs_buf *
1235xfs_getsb(
1236        struct xfs_mount        *mp,
1237        int                     flags)
1238{
1239        struct xfs_buf          *bp = mp->m_sb_bp;
1240
1241        if (!xfs_buf_trylock(bp)) {
1242                if (flags & XBF_TRYLOCK)
1243                        return NULL;
1244                xfs_buf_lock(bp);
1245        }
1246
1247        xfs_buf_hold(bp);
1248        ASSERT(XFS_BUF_ISDONE(bp));
1249        return bp;
1250}
1251
1252/*
1253 * Used to free the superblock along various error paths.
1254 */
1255void
1256xfs_freesb(
1257        struct xfs_mount        *mp)
1258{
1259        struct xfs_buf          *bp = mp->m_sb_bp;
1260
1261        xfs_buf_lock(bp);
1262        mp->m_sb_bp = NULL;
1263        xfs_buf_relse(bp);
1264}
1265
1266/*
1267 * If the underlying (data/log/rt) device is readonly, there are some
1268 * operations that cannot proceed.
1269 */
1270int
1271xfs_dev_is_read_only(
1272        struct xfs_mount        *mp,
1273        char                    *message)
1274{
1275        if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1276            xfs_readonly_buftarg(mp->m_logdev_targp) ||
1277            (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1278                xfs_notice(mp, "%s required on read-only device.", message);
1279                xfs_notice(mp, "write access unavailable, cannot proceed.");
1280                return -EROFS;
1281        }
1282        return 0;
1283}
1284