linux/include/linux/mm.h
<<
>>
Prefs
   1#ifndef _LINUX_MM_H
   2#define _LINUX_MM_H
   3
   4#include <linux/errno.h>
   5
   6#ifdef __KERNEL__
   7
   8#include <linux/mmdebug.h>
   9#include <linux/gfp.h>
  10#include <linux/bug.h>
  11#include <linux/list.h>
  12#include <linux/mmzone.h>
  13#include <linux/rbtree.h>
  14#include <linux/atomic.h>
  15#include <linux/debug_locks.h>
  16#include <linux/mm_types.h>
  17#include <linux/range.h>
  18#include <linux/pfn.h>
  19#include <linux/bit_spinlock.h>
  20#include <linux/shrinker.h>
  21#include <linux/resource.h>
  22#include <linux/page_ext.h>
  23
  24struct mempolicy;
  25struct anon_vma;
  26struct anon_vma_chain;
  27struct file_ra_state;
  28struct user_struct;
  29struct writeback_control;
  30
  31#ifndef CONFIG_NEED_MULTIPLE_NODES      /* Don't use mapnrs, do it properly */
  32extern unsigned long max_mapnr;
  33
  34static inline void set_max_mapnr(unsigned long limit)
  35{
  36        max_mapnr = limit;
  37}
  38#else
  39static inline void set_max_mapnr(unsigned long limit) { }
  40#endif
  41
  42extern unsigned long totalram_pages;
  43extern void * high_memory;
  44extern int page_cluster;
  45
  46#ifdef CONFIG_SYSCTL
  47extern int sysctl_legacy_va_layout;
  48#else
  49#define sysctl_legacy_va_layout 0
  50#endif
  51
  52#include <asm/page.h>
  53#include <asm/pgtable.h>
  54#include <asm/processor.h>
  55
  56#ifndef __pa_symbol
  57#define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
  58#endif
  59
  60/*
  61 * To prevent common memory management code establishing
  62 * a zero page mapping on a read fault.
  63 * This macro should be defined within <asm/pgtable.h>.
  64 * s390 does this to prevent multiplexing of hardware bits
  65 * related to the physical page in case of virtualization.
  66 */
  67#ifndef mm_forbids_zeropage
  68#define mm_forbids_zeropage(X)  (0)
  69#endif
  70
  71extern unsigned long sysctl_user_reserve_kbytes;
  72extern unsigned long sysctl_admin_reserve_kbytes;
  73
  74extern int sysctl_overcommit_memory;
  75extern int sysctl_overcommit_ratio;
  76extern unsigned long sysctl_overcommit_kbytes;
  77
  78extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
  79                                    size_t *, loff_t *);
  80extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
  81                                    size_t *, loff_t *);
  82
  83#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  84
  85/* to align the pointer to the (next) page boundary */
  86#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  87
  88/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
  89#define PAGE_ALIGNED(addr)      IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
  90
  91/*
  92 * Linux kernel virtual memory manager primitives.
  93 * The idea being to have a "virtual" mm in the same way
  94 * we have a virtual fs - giving a cleaner interface to the
  95 * mm details, and allowing different kinds of memory mappings
  96 * (from shared memory to executable loading to arbitrary
  97 * mmap() functions).
  98 */
  99
 100extern struct kmem_cache *vm_area_cachep;
 101
 102#ifndef CONFIG_MMU
 103extern struct rb_root nommu_region_tree;
 104extern struct rw_semaphore nommu_region_sem;
 105
 106extern unsigned int kobjsize(const void *objp);
 107#endif
 108
 109/*
 110 * vm_flags in vm_area_struct, see mm_types.h.
 111 */
 112#define VM_NONE         0x00000000
 113
 114#define VM_READ         0x00000001      /* currently active flags */
 115#define VM_WRITE        0x00000002
 116#define VM_EXEC         0x00000004
 117#define VM_SHARED       0x00000008
 118
 119/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
 120#define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
 121#define VM_MAYWRITE     0x00000020
 122#define VM_MAYEXEC      0x00000040
 123#define VM_MAYSHARE     0x00000080
 124
 125#define VM_GROWSDOWN    0x00000100      /* general info on the segment */
 126#define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
 127#define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
 128
 129#define VM_LOCKED       0x00002000
 130#define VM_IO           0x00004000      /* Memory mapped I/O or similar */
 131
 132                                        /* Used by sys_madvise() */
 133#define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
 134#define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
 135
 136#define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
 137#define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
 138#define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
 139#define VM_NORESERVE    0x00200000      /* should the VM suppress accounting */
 140#define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
 141#define VM_ARCH_1       0x01000000      /* Architecture-specific flag */
 142#define VM_ARCH_2       0x02000000
 143#define VM_DONTDUMP     0x04000000      /* Do not include in the core dump */
 144
 145#ifdef CONFIG_MEM_SOFT_DIRTY
 146# define VM_SOFTDIRTY   0x08000000      /* Not soft dirty clean area */
 147#else
 148# define VM_SOFTDIRTY   0
 149#endif
 150
 151#define VM_MIXEDMAP     0x10000000      /* Can contain "struct page" and pure PFN pages */
 152#define VM_HUGEPAGE     0x20000000      /* MADV_HUGEPAGE marked this vma */
 153#define VM_NOHUGEPAGE   0x40000000      /* MADV_NOHUGEPAGE marked this vma */
 154#define VM_MERGEABLE    0x80000000      /* KSM may merge identical pages */
 155
 156#if defined(CONFIG_X86)
 157# define VM_PAT         VM_ARCH_1       /* PAT reserves whole VMA at once (x86) */
 158#elif defined(CONFIG_PPC)
 159# define VM_SAO         VM_ARCH_1       /* Strong Access Ordering (powerpc) */
 160#elif defined(CONFIG_PARISC)
 161# define VM_GROWSUP     VM_ARCH_1
 162#elif defined(CONFIG_METAG)
 163# define VM_GROWSUP     VM_ARCH_1
 164#elif defined(CONFIG_IA64)
 165# define VM_GROWSUP     VM_ARCH_1
 166#elif !defined(CONFIG_MMU)
 167# define VM_MAPPED_COPY VM_ARCH_1       /* T if mapped copy of data (nommu mmap) */
 168#endif
 169
 170#if defined(CONFIG_X86)
 171/* MPX specific bounds table or bounds directory */
 172# define VM_MPX         VM_ARCH_2
 173#endif
 174
 175#ifndef VM_GROWSUP
 176# define VM_GROWSUP     VM_NONE
 177#endif
 178
 179/* Bits set in the VMA until the stack is in its final location */
 180#define VM_STACK_INCOMPLETE_SETUP       (VM_RAND_READ | VM_SEQ_READ)
 181
 182#ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
 183#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
 184#endif
 185
 186#ifdef CONFIG_STACK_GROWSUP
 187#define VM_STACK_FLAGS  (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
 188#else
 189#define VM_STACK_FLAGS  (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
 190#endif
 191
 192/*
 193 * Special vmas that are non-mergable, non-mlock()able.
 194 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
 195 */
 196#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
 197
 198/* This mask defines which mm->def_flags a process can inherit its parent */
 199#define VM_INIT_DEF_MASK        VM_NOHUGEPAGE
 200
 201/*
 202 * mapping from the currently active vm_flags protection bits (the
 203 * low four bits) to a page protection mask..
 204 */
 205extern pgprot_t protection_map[16];
 206
 207#define FAULT_FLAG_WRITE        0x01    /* Fault was a write access */
 208#define FAULT_FLAG_MKWRITE      0x02    /* Fault was mkwrite of existing pte */
 209#define FAULT_FLAG_ALLOW_RETRY  0x04    /* Retry fault if blocking */
 210#define FAULT_FLAG_RETRY_NOWAIT 0x08    /* Don't drop mmap_sem and wait when retrying */
 211#define FAULT_FLAG_KILLABLE     0x10    /* The fault task is in SIGKILL killable region */
 212#define FAULT_FLAG_TRIED        0x20    /* Second try */
 213#define FAULT_FLAG_USER         0x40    /* The fault originated in userspace */
 214
 215/*
 216 * vm_fault is filled by the the pagefault handler and passed to the vma's
 217 * ->fault function. The vma's ->fault is responsible for returning a bitmask
 218 * of VM_FAULT_xxx flags that give details about how the fault was handled.
 219 *
 220 * pgoff should be used in favour of virtual_address, if possible.
 221 */
 222struct vm_fault {
 223        unsigned int flags;             /* FAULT_FLAG_xxx flags */
 224        pgoff_t pgoff;                  /* Logical page offset based on vma */
 225        void __user *virtual_address;   /* Faulting virtual address */
 226
 227        struct page *cow_page;          /* Handler may choose to COW */
 228        struct page *page;              /* ->fault handlers should return a
 229                                         * page here, unless VM_FAULT_NOPAGE
 230                                         * is set (which is also implied by
 231                                         * VM_FAULT_ERROR).
 232                                         */
 233        /* for ->map_pages() only */
 234        pgoff_t max_pgoff;              /* map pages for offset from pgoff till
 235                                         * max_pgoff inclusive */
 236        pte_t *pte;                     /* pte entry associated with ->pgoff */
 237};
 238
 239/*
 240 * These are the virtual MM functions - opening of an area, closing and
 241 * unmapping it (needed to keep files on disk up-to-date etc), pointer
 242 * to the functions called when a no-page or a wp-page exception occurs. 
 243 */
 244struct vm_operations_struct {
 245        void (*open)(struct vm_area_struct * area);
 246        void (*close)(struct vm_area_struct * area);
 247        int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
 248        void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
 249
 250        /* notification that a previously read-only page is about to become
 251         * writable, if an error is returned it will cause a SIGBUS */
 252        int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
 253
 254        /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
 255        int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
 256
 257        /* called by access_process_vm when get_user_pages() fails, typically
 258         * for use by special VMAs that can switch between memory and hardware
 259         */
 260        int (*access)(struct vm_area_struct *vma, unsigned long addr,
 261                      void *buf, int len, int write);
 262
 263        /* Called by the /proc/PID/maps code to ask the vma whether it
 264         * has a special name.  Returning non-NULL will also cause this
 265         * vma to be dumped unconditionally. */
 266        const char *(*name)(struct vm_area_struct *vma);
 267
 268#ifdef CONFIG_NUMA
 269        /*
 270         * set_policy() op must add a reference to any non-NULL @new mempolicy
 271         * to hold the policy upon return.  Caller should pass NULL @new to
 272         * remove a policy and fall back to surrounding context--i.e. do not
 273         * install a MPOL_DEFAULT policy, nor the task or system default
 274         * mempolicy.
 275         */
 276        int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
 277
 278        /*
 279         * get_policy() op must add reference [mpol_get()] to any policy at
 280         * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
 281         * in mm/mempolicy.c will do this automatically.
 282         * get_policy() must NOT add a ref if the policy at (vma,addr) is not
 283         * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
 284         * If no [shared/vma] mempolicy exists at the addr, get_policy() op
 285         * must return NULL--i.e., do not "fallback" to task or system default
 286         * policy.
 287         */
 288        struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
 289                                        unsigned long addr);
 290#endif
 291        /*
 292         * Called by vm_normal_page() for special PTEs to find the
 293         * page for @addr.  This is useful if the default behavior
 294         * (using pte_page()) would not find the correct page.
 295         */
 296        struct page *(*find_special_page)(struct vm_area_struct *vma,
 297                                          unsigned long addr);
 298};
 299
 300struct mmu_gather;
 301struct inode;
 302
 303#define page_private(page)              ((page)->private)
 304#define set_page_private(page, v)       ((page)->private = (v))
 305
 306/* It's valid only if the page is free path or free_list */
 307static inline void set_freepage_migratetype(struct page *page, int migratetype)
 308{
 309        page->index = migratetype;
 310}
 311
 312/* It's valid only if the page is free path or free_list */
 313static inline int get_freepage_migratetype(struct page *page)
 314{
 315        return page->index;
 316}
 317
 318/*
 319 * FIXME: take this include out, include page-flags.h in
 320 * files which need it (119 of them)
 321 */
 322#include <linux/page-flags.h>
 323#include <linux/huge_mm.h>
 324
 325/*
 326 * Methods to modify the page usage count.
 327 *
 328 * What counts for a page usage:
 329 * - cache mapping   (page->mapping)
 330 * - private data    (page->private)
 331 * - page mapped in a task's page tables, each mapping
 332 *   is counted separately
 333 *
 334 * Also, many kernel routines increase the page count before a critical
 335 * routine so they can be sure the page doesn't go away from under them.
 336 */
 337
 338/*
 339 * Drop a ref, return true if the refcount fell to zero (the page has no users)
 340 */
 341static inline int put_page_testzero(struct page *page)
 342{
 343        VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
 344        return atomic_dec_and_test(&page->_count);
 345}
 346
 347/*
 348 * Try to grab a ref unless the page has a refcount of zero, return false if
 349 * that is the case.
 350 * This can be called when MMU is off so it must not access
 351 * any of the virtual mappings.
 352 */
 353static inline int get_page_unless_zero(struct page *page)
 354{
 355        return atomic_inc_not_zero(&page->_count);
 356}
 357
 358/*
 359 * Try to drop a ref unless the page has a refcount of one, return false if
 360 * that is the case.
 361 * This is to make sure that the refcount won't become zero after this drop.
 362 * This can be called when MMU is off so it must not access
 363 * any of the virtual mappings.
 364 */
 365static inline int put_page_unless_one(struct page *page)
 366{
 367        return atomic_add_unless(&page->_count, -1, 1);
 368}
 369
 370extern int page_is_ram(unsigned long pfn);
 371extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
 372
 373/* Support for virtually mapped pages */
 374struct page *vmalloc_to_page(const void *addr);
 375unsigned long vmalloc_to_pfn(const void *addr);
 376
 377/*
 378 * Determine if an address is within the vmalloc range
 379 *
 380 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
 381 * is no special casing required.
 382 */
 383static inline int is_vmalloc_addr(const void *x)
 384{
 385#ifdef CONFIG_MMU
 386        unsigned long addr = (unsigned long)x;
 387
 388        return addr >= VMALLOC_START && addr < VMALLOC_END;
 389#else
 390        return 0;
 391#endif
 392}
 393#ifdef CONFIG_MMU
 394extern int is_vmalloc_or_module_addr(const void *x);
 395#else
 396static inline int is_vmalloc_or_module_addr(const void *x)
 397{
 398        return 0;
 399}
 400#endif
 401
 402extern void kvfree(const void *addr);
 403
 404static inline void compound_lock(struct page *page)
 405{
 406#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 407        VM_BUG_ON_PAGE(PageSlab(page), page);
 408        bit_spin_lock(PG_compound_lock, &page->flags);
 409#endif
 410}
 411
 412static inline void compound_unlock(struct page *page)
 413{
 414#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 415        VM_BUG_ON_PAGE(PageSlab(page), page);
 416        bit_spin_unlock(PG_compound_lock, &page->flags);
 417#endif
 418}
 419
 420static inline unsigned long compound_lock_irqsave(struct page *page)
 421{
 422        unsigned long uninitialized_var(flags);
 423#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 424        local_irq_save(flags);
 425        compound_lock(page);
 426#endif
 427        return flags;
 428}
 429
 430static inline void compound_unlock_irqrestore(struct page *page,
 431                                              unsigned long flags)
 432{
 433#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 434        compound_unlock(page);
 435        local_irq_restore(flags);
 436#endif
 437}
 438
 439static inline struct page *compound_head_by_tail(struct page *tail)
 440{
 441        struct page *head = tail->first_page;
 442
 443        /*
 444         * page->first_page may be a dangling pointer to an old
 445         * compound page, so recheck that it is still a tail
 446         * page before returning.
 447         */
 448        smp_rmb();
 449        if (likely(PageTail(tail)))
 450                return head;
 451        return tail;
 452}
 453
 454/*
 455 * Since either compound page could be dismantled asynchronously in THP
 456 * or we access asynchronously arbitrary positioned struct page, there
 457 * would be tail flag race. To handle this race, we should call
 458 * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
 459 */
 460static inline struct page *compound_head(struct page *page)
 461{
 462        if (unlikely(PageTail(page)))
 463                return compound_head_by_tail(page);
 464        return page;
 465}
 466
 467/*
 468 * If we access compound page synchronously such as access to
 469 * allocated page, there is no need to handle tail flag race, so we can
 470 * check tail flag directly without any synchronization primitive.
 471 */
 472static inline struct page *compound_head_fast(struct page *page)
 473{
 474        if (unlikely(PageTail(page)))
 475                return page->first_page;
 476        return page;
 477}
 478
 479/*
 480 * The atomic page->_mapcount, starts from -1: so that transitions
 481 * both from it and to it can be tracked, using atomic_inc_and_test
 482 * and atomic_add_negative(-1).
 483 */
 484static inline void page_mapcount_reset(struct page *page)
 485{
 486        atomic_set(&(page)->_mapcount, -1);
 487}
 488
 489static inline int page_mapcount(struct page *page)
 490{
 491        VM_BUG_ON_PAGE(PageSlab(page), page);
 492        return atomic_read(&page->_mapcount) + 1;
 493}
 494
 495static inline int page_count(struct page *page)
 496{
 497        return atomic_read(&compound_head(page)->_count);
 498}
 499
 500static inline bool __compound_tail_refcounted(struct page *page)
 501{
 502        return !PageSlab(page) && !PageHeadHuge(page);
 503}
 504
 505/*
 506 * This takes a head page as parameter and tells if the
 507 * tail page reference counting can be skipped.
 508 *
 509 * For this to be safe, PageSlab and PageHeadHuge must remain true on
 510 * any given page where they return true here, until all tail pins
 511 * have been released.
 512 */
 513static inline bool compound_tail_refcounted(struct page *page)
 514{
 515        VM_BUG_ON_PAGE(!PageHead(page), page);
 516        return __compound_tail_refcounted(page);
 517}
 518
 519static inline void get_huge_page_tail(struct page *page)
 520{
 521        /*
 522         * __split_huge_page_refcount() cannot run from under us.
 523         */
 524        VM_BUG_ON_PAGE(!PageTail(page), page);
 525        VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
 526        VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
 527        if (compound_tail_refcounted(page->first_page))
 528                atomic_inc(&page->_mapcount);
 529}
 530
 531extern bool __get_page_tail(struct page *page);
 532
 533static inline void get_page(struct page *page)
 534{
 535        if (unlikely(PageTail(page)))
 536                if (likely(__get_page_tail(page)))
 537                        return;
 538        /*
 539         * Getting a normal page or the head of a compound page
 540         * requires to already have an elevated page->_count.
 541         */
 542        VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
 543        atomic_inc(&page->_count);
 544}
 545
 546static inline struct page *virt_to_head_page(const void *x)
 547{
 548        struct page *page = virt_to_page(x);
 549
 550        /*
 551         * We don't need to worry about synchronization of tail flag
 552         * when we call virt_to_head_page() since it is only called for
 553         * already allocated page and this page won't be freed until
 554         * this virt_to_head_page() is finished. So use _fast variant.
 555         */
 556        return compound_head_fast(page);
 557}
 558
 559/*
 560 * Setup the page count before being freed into the page allocator for
 561 * the first time (boot or memory hotplug)
 562 */
 563static inline void init_page_count(struct page *page)
 564{
 565        atomic_set(&page->_count, 1);
 566}
 567
 568void put_page(struct page *page);
 569void put_pages_list(struct list_head *pages);
 570
 571void split_page(struct page *page, unsigned int order);
 572int split_free_page(struct page *page);
 573
 574/*
 575 * Compound pages have a destructor function.  Provide a
 576 * prototype for that function and accessor functions.
 577 * These are _only_ valid on the head of a PG_compound page.
 578 */
 579
 580static inline void set_compound_page_dtor(struct page *page,
 581                                                compound_page_dtor *dtor)
 582{
 583        page[1].compound_dtor = dtor;
 584}
 585
 586static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
 587{
 588        return page[1].compound_dtor;
 589}
 590
 591static inline int compound_order(struct page *page)
 592{
 593        if (!PageHead(page))
 594                return 0;
 595        return page[1].compound_order;
 596}
 597
 598static inline void set_compound_order(struct page *page, unsigned long order)
 599{
 600        page[1].compound_order = order;
 601}
 602
 603#ifdef CONFIG_MMU
 604/*
 605 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
 606 * servicing faults for write access.  In the normal case, do always want
 607 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
 608 * that do not have writing enabled, when used by access_process_vm.
 609 */
 610static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
 611{
 612        if (likely(vma->vm_flags & VM_WRITE))
 613                pte = pte_mkwrite(pte);
 614        return pte;
 615}
 616
 617void do_set_pte(struct vm_area_struct *vma, unsigned long address,
 618                struct page *page, pte_t *pte, bool write, bool anon);
 619#endif
 620
 621/*
 622 * Multiple processes may "see" the same page. E.g. for untouched
 623 * mappings of /dev/null, all processes see the same page full of
 624 * zeroes, and text pages of executables and shared libraries have
 625 * only one copy in memory, at most, normally.
 626 *
 627 * For the non-reserved pages, page_count(page) denotes a reference count.
 628 *   page_count() == 0 means the page is free. page->lru is then used for
 629 *   freelist management in the buddy allocator.
 630 *   page_count() > 0  means the page has been allocated.
 631 *
 632 * Pages are allocated by the slab allocator in order to provide memory
 633 * to kmalloc and kmem_cache_alloc. In this case, the management of the
 634 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
 635 * unless a particular usage is carefully commented. (the responsibility of
 636 * freeing the kmalloc memory is the caller's, of course).
 637 *
 638 * A page may be used by anyone else who does a __get_free_page().
 639 * In this case, page_count still tracks the references, and should only
 640 * be used through the normal accessor functions. The top bits of page->flags
 641 * and page->virtual store page management information, but all other fields
 642 * are unused and could be used privately, carefully. The management of this
 643 * page is the responsibility of the one who allocated it, and those who have
 644 * subsequently been given references to it.
 645 *
 646 * The other pages (we may call them "pagecache pages") are completely
 647 * managed by the Linux memory manager: I/O, buffers, swapping etc.
 648 * The following discussion applies only to them.
 649 *
 650 * A pagecache page contains an opaque `private' member, which belongs to the
 651 * page's address_space. Usually, this is the address of a circular list of
 652 * the page's disk buffers. PG_private must be set to tell the VM to call
 653 * into the filesystem to release these pages.
 654 *
 655 * A page may belong to an inode's memory mapping. In this case, page->mapping
 656 * is the pointer to the inode, and page->index is the file offset of the page,
 657 * in units of PAGE_CACHE_SIZE.
 658 *
 659 * If pagecache pages are not associated with an inode, they are said to be
 660 * anonymous pages. These may become associated with the swapcache, and in that
 661 * case PG_swapcache is set, and page->private is an offset into the swapcache.
 662 *
 663 * In either case (swapcache or inode backed), the pagecache itself holds one
 664 * reference to the page. Setting PG_private should also increment the
 665 * refcount. The each user mapping also has a reference to the page.
 666 *
 667 * The pagecache pages are stored in a per-mapping radix tree, which is
 668 * rooted at mapping->page_tree, and indexed by offset.
 669 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
 670 * lists, we instead now tag pages as dirty/writeback in the radix tree.
 671 *
 672 * All pagecache pages may be subject to I/O:
 673 * - inode pages may need to be read from disk,
 674 * - inode pages which have been modified and are MAP_SHARED may need
 675 *   to be written back to the inode on disk,
 676 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
 677 *   modified may need to be swapped out to swap space and (later) to be read
 678 *   back into memory.
 679 */
 680
 681/*
 682 * The zone field is never updated after free_area_init_core()
 683 * sets it, so none of the operations on it need to be atomic.
 684 */
 685
 686/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
 687#define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
 688#define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
 689#define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
 690#define LAST_CPUPID_PGOFF       (ZONES_PGOFF - LAST_CPUPID_WIDTH)
 691
 692/*
 693 * Define the bit shifts to access each section.  For non-existent
 694 * sections we define the shift as 0; that plus a 0 mask ensures
 695 * the compiler will optimise away reference to them.
 696 */
 697#define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
 698#define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
 699#define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
 700#define LAST_CPUPID_PGSHIFT     (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
 701
 702/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
 703#ifdef NODE_NOT_IN_PAGE_FLAGS
 704#define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
 705#define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
 706                                                SECTIONS_PGOFF : ZONES_PGOFF)
 707#else
 708#define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
 709#define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
 710                                                NODES_PGOFF : ZONES_PGOFF)
 711#endif
 712
 713#define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
 714
 715#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
 716#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
 717#endif
 718
 719#define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
 720#define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
 721#define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
 722#define LAST_CPUPID_MASK        ((1UL << LAST_CPUPID_SHIFT) - 1)
 723#define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
 724
 725static inline enum zone_type page_zonenum(const struct page *page)
 726{
 727        return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
 728}
 729
 730#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
 731#define SECTION_IN_PAGE_FLAGS
 732#endif
 733
 734/*
 735 * The identification function is mainly used by the buddy allocator for
 736 * determining if two pages could be buddies. We are not really identifying
 737 * the zone since we could be using the section number id if we do not have
 738 * node id available in page flags.
 739 * We only guarantee that it will return the same value for two combinable
 740 * pages in a zone.
 741 */
 742static inline int page_zone_id(struct page *page)
 743{
 744        return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
 745}
 746
 747static inline int zone_to_nid(struct zone *zone)
 748{
 749#ifdef CONFIG_NUMA
 750        return zone->node;
 751#else
 752        return 0;
 753#endif
 754}
 755
 756#ifdef NODE_NOT_IN_PAGE_FLAGS
 757extern int page_to_nid(const struct page *page);
 758#else
 759static inline int page_to_nid(const struct page *page)
 760{
 761        return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
 762}
 763#endif
 764
 765#ifdef CONFIG_NUMA_BALANCING
 766static inline int cpu_pid_to_cpupid(int cpu, int pid)
 767{
 768        return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
 769}
 770
 771static inline int cpupid_to_pid(int cpupid)
 772{
 773        return cpupid & LAST__PID_MASK;
 774}
 775
 776static inline int cpupid_to_cpu(int cpupid)
 777{
 778        return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
 779}
 780
 781static inline int cpupid_to_nid(int cpupid)
 782{
 783        return cpu_to_node(cpupid_to_cpu(cpupid));
 784}
 785
 786static inline bool cpupid_pid_unset(int cpupid)
 787{
 788        return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
 789}
 790
 791static inline bool cpupid_cpu_unset(int cpupid)
 792{
 793        return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
 794}
 795
 796static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
 797{
 798        return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
 799}
 800
 801#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
 802#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
 803static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
 804{
 805        return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
 806}
 807
 808static inline int page_cpupid_last(struct page *page)
 809{
 810        return page->_last_cpupid;
 811}
 812static inline void page_cpupid_reset_last(struct page *page)
 813{
 814        page->_last_cpupid = -1 & LAST_CPUPID_MASK;
 815}
 816#else
 817static inline int page_cpupid_last(struct page *page)
 818{
 819        return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
 820}
 821
 822extern int page_cpupid_xchg_last(struct page *page, int cpupid);
 823
 824static inline void page_cpupid_reset_last(struct page *page)
 825{
 826        int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
 827
 828        page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
 829        page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
 830}
 831#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
 832#else /* !CONFIG_NUMA_BALANCING */
 833static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
 834{
 835        return page_to_nid(page); /* XXX */
 836}
 837
 838static inline int page_cpupid_last(struct page *page)
 839{
 840        return page_to_nid(page); /* XXX */
 841}
 842
 843static inline int cpupid_to_nid(int cpupid)
 844{
 845        return -1;
 846}
 847
 848static inline int cpupid_to_pid(int cpupid)
 849{
 850        return -1;
 851}
 852
 853static inline int cpupid_to_cpu(int cpupid)
 854{
 855        return -1;
 856}
 857
 858static inline int cpu_pid_to_cpupid(int nid, int pid)
 859{
 860        return -1;
 861}
 862
 863static inline bool cpupid_pid_unset(int cpupid)
 864{
 865        return 1;
 866}
 867
 868static inline void page_cpupid_reset_last(struct page *page)
 869{
 870}
 871
 872static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
 873{
 874        return false;
 875}
 876#endif /* CONFIG_NUMA_BALANCING */
 877
 878static inline struct zone *page_zone(const struct page *page)
 879{
 880        return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
 881}
 882
 883#ifdef SECTION_IN_PAGE_FLAGS
 884static inline void set_page_section(struct page *page, unsigned long section)
 885{
 886        page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
 887        page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
 888}
 889
 890static inline unsigned long page_to_section(const struct page *page)
 891{
 892        return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
 893}
 894#endif
 895
 896static inline void set_page_zone(struct page *page, enum zone_type zone)
 897{
 898        page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
 899        page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
 900}
 901
 902static inline void set_page_node(struct page *page, unsigned long node)
 903{
 904        page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
 905        page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
 906}
 907
 908static inline void set_page_links(struct page *page, enum zone_type zone,
 909        unsigned long node, unsigned long pfn)
 910{
 911        set_page_zone(page, zone);
 912        set_page_node(page, node);
 913#ifdef SECTION_IN_PAGE_FLAGS
 914        set_page_section(page, pfn_to_section_nr(pfn));
 915#endif
 916}
 917
 918/*
 919 * Some inline functions in vmstat.h depend on page_zone()
 920 */
 921#include <linux/vmstat.h>
 922
 923static __always_inline void *lowmem_page_address(const struct page *page)
 924{
 925        return __va(PFN_PHYS(page_to_pfn(page)));
 926}
 927
 928#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
 929#define HASHED_PAGE_VIRTUAL
 930#endif
 931
 932#if defined(WANT_PAGE_VIRTUAL)
 933static inline void *page_address(const struct page *page)
 934{
 935        return page->virtual;
 936}
 937static inline void set_page_address(struct page *page, void *address)
 938{
 939        page->virtual = address;
 940}
 941#define page_address_init()  do { } while(0)
 942#endif
 943
 944#if defined(HASHED_PAGE_VIRTUAL)
 945void *page_address(const struct page *page);
 946void set_page_address(struct page *page, void *virtual);
 947void page_address_init(void);
 948#endif
 949
 950#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
 951#define page_address(page) lowmem_page_address(page)
 952#define set_page_address(page, address)  do { } while(0)
 953#define page_address_init()  do { } while(0)
 954#endif
 955
 956extern void *page_rmapping(struct page *page);
 957extern struct anon_vma *page_anon_vma(struct page *page);
 958extern struct address_space *page_mapping(struct page *page);
 959
 960extern struct address_space *__page_file_mapping(struct page *);
 961
 962static inline
 963struct address_space *page_file_mapping(struct page *page)
 964{
 965        if (unlikely(PageSwapCache(page)))
 966                return __page_file_mapping(page);
 967
 968        return page->mapping;
 969}
 970
 971/*
 972 * Return the pagecache index of the passed page.  Regular pagecache pages
 973 * use ->index whereas swapcache pages use ->private
 974 */
 975static inline pgoff_t page_index(struct page *page)
 976{
 977        if (unlikely(PageSwapCache(page)))
 978                return page_private(page);
 979        return page->index;
 980}
 981
 982extern pgoff_t __page_file_index(struct page *page);
 983
 984/*
 985 * Return the file index of the page. Regular pagecache pages use ->index
 986 * whereas swapcache pages use swp_offset(->private)
 987 */
 988static inline pgoff_t page_file_index(struct page *page)
 989{
 990        if (unlikely(PageSwapCache(page)))
 991                return __page_file_index(page);
 992
 993        return page->index;
 994}
 995
 996/*
 997 * Return true if this page is mapped into pagetables.
 998 */
 999static inline int page_mapped(struct page *page)
1000{
1001        return atomic_read(&(page)->_mapcount) >= 0;
1002}
1003
1004/*
1005 * Different kinds of faults, as returned by handle_mm_fault().
1006 * Used to decide whether a process gets delivered SIGBUS or
1007 * just gets major/minor fault counters bumped up.
1008 */
1009
1010#define VM_FAULT_MINOR  0 /* For backwards compat. Remove me quickly. */
1011
1012#define VM_FAULT_OOM    0x0001
1013#define VM_FAULT_SIGBUS 0x0002
1014#define VM_FAULT_MAJOR  0x0004
1015#define VM_FAULT_WRITE  0x0008  /* Special case for get_user_pages */
1016#define VM_FAULT_HWPOISON 0x0010        /* Hit poisoned small page */
1017#define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1018#define VM_FAULT_SIGSEGV 0x0040
1019
1020#define VM_FAULT_NOPAGE 0x0100  /* ->fault installed the pte, not return page */
1021#define VM_FAULT_LOCKED 0x0200  /* ->fault locked the returned page */
1022#define VM_FAULT_RETRY  0x0400  /* ->fault blocked, must retry */
1023#define VM_FAULT_FALLBACK 0x0800        /* huge page fault failed, fall back to small */
1024
1025#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1026
1027#define VM_FAULT_ERROR  (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1028                         VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1029                         VM_FAULT_FALLBACK)
1030
1031/* Encode hstate index for a hwpoisoned large page */
1032#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1033#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1034
1035/*
1036 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1037 */
1038extern void pagefault_out_of_memory(void);
1039
1040#define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
1041
1042/*
1043 * Flags passed to show_mem() and show_free_areas() to suppress output in
1044 * various contexts.
1045 */
1046#define SHOW_MEM_FILTER_NODES           (0x0001u)       /* disallowed nodes */
1047
1048extern void show_free_areas(unsigned int flags);
1049extern bool skip_free_areas_node(unsigned int flags, int nid);
1050
1051int shmem_zero_setup(struct vm_area_struct *);
1052#ifdef CONFIG_SHMEM
1053bool shmem_mapping(struct address_space *mapping);
1054#else
1055static inline bool shmem_mapping(struct address_space *mapping)
1056{
1057        return false;
1058}
1059#endif
1060
1061extern int can_do_mlock(void);
1062extern int user_shm_lock(size_t, struct user_struct *);
1063extern void user_shm_unlock(size_t, struct user_struct *);
1064
1065/*
1066 * Parameter block passed down to zap_pte_range in exceptional cases.
1067 */
1068struct zap_details {
1069        struct address_space *check_mapping;    /* Check page->mapping if set */
1070        pgoff_t first_index;                    /* Lowest page->index to unmap */
1071        pgoff_t last_index;                     /* Highest page->index to unmap */
1072};
1073
1074struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1075                pte_t pte);
1076
1077int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1078                unsigned long size);
1079void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1080                unsigned long size, struct zap_details *);
1081void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1082                unsigned long start, unsigned long end);
1083
1084/**
1085 * mm_walk - callbacks for walk_page_range
1086 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1087 *             this handler is required to be able to handle
1088 *             pmd_trans_huge() pmds.  They may simply choose to
1089 *             split_huge_page() instead of handling it explicitly.
1090 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1091 * @pte_hole: if set, called for each hole at all levels
1092 * @hugetlb_entry: if set, called for each hugetlb entry
1093 * @test_walk: caller specific callback function to determine whether
1094 *             we walk over the current vma or not. A positive returned
1095 *             value means "do page table walk over the current vma,"
1096 *             and a negative one means "abort current page table walk
1097 *             right now." 0 means "skip the current vma."
1098 * @mm:        mm_struct representing the target process of page table walk
1099 * @vma:       vma currently walked (NULL if walking outside vmas)
1100 * @private:   private data for callbacks' usage
1101 *
1102 * (see the comment on walk_page_range() for more details)
1103 */
1104struct mm_walk {
1105        int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1106                         unsigned long next, struct mm_walk *walk);
1107        int (*pte_entry)(pte_t *pte, unsigned long addr,
1108                         unsigned long next, struct mm_walk *walk);
1109        int (*pte_hole)(unsigned long addr, unsigned long next,
1110                        struct mm_walk *walk);
1111        int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1112                             unsigned long addr, unsigned long next,
1113                             struct mm_walk *walk);
1114        int (*test_walk)(unsigned long addr, unsigned long next,
1115                        struct mm_walk *walk);
1116        struct mm_struct *mm;
1117        struct vm_area_struct *vma;
1118        void *private;
1119};
1120
1121int walk_page_range(unsigned long addr, unsigned long end,
1122                struct mm_walk *walk);
1123int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1124void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1125                unsigned long end, unsigned long floor, unsigned long ceiling);
1126int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1127                        struct vm_area_struct *vma);
1128void unmap_mapping_range(struct address_space *mapping,
1129                loff_t const holebegin, loff_t const holelen, int even_cows);
1130int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1131        unsigned long *pfn);
1132int follow_phys(struct vm_area_struct *vma, unsigned long address,
1133                unsigned int flags, unsigned long *prot, resource_size_t *phys);
1134int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1135                        void *buf, int len, int write);
1136
1137static inline void unmap_shared_mapping_range(struct address_space *mapping,
1138                loff_t const holebegin, loff_t const holelen)
1139{
1140        unmap_mapping_range(mapping, holebegin, holelen, 0);
1141}
1142
1143extern void truncate_pagecache(struct inode *inode, loff_t new);
1144extern void truncate_setsize(struct inode *inode, loff_t newsize);
1145void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1146void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1147int truncate_inode_page(struct address_space *mapping, struct page *page);
1148int generic_error_remove_page(struct address_space *mapping, struct page *page);
1149int invalidate_inode_page(struct page *page);
1150
1151#ifdef CONFIG_MMU
1152extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1153                        unsigned long address, unsigned int flags);
1154extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1155                            unsigned long address, unsigned int fault_flags);
1156#else
1157static inline int handle_mm_fault(struct mm_struct *mm,
1158                        struct vm_area_struct *vma, unsigned long address,
1159                        unsigned int flags)
1160{
1161        /* should never happen if there's no MMU */
1162        BUG();
1163        return VM_FAULT_SIGBUS;
1164}
1165static inline int fixup_user_fault(struct task_struct *tsk,
1166                struct mm_struct *mm, unsigned long address,
1167                unsigned int fault_flags)
1168{
1169        /* should never happen if there's no MMU */
1170        BUG();
1171        return -EFAULT;
1172}
1173#endif
1174
1175extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1176extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1177                void *buf, int len, int write);
1178
1179long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1180                      unsigned long start, unsigned long nr_pages,
1181                      unsigned int foll_flags, struct page **pages,
1182                      struct vm_area_struct **vmas, int *nonblocking);
1183long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1184                    unsigned long start, unsigned long nr_pages,
1185                    int write, int force, struct page **pages,
1186                    struct vm_area_struct **vmas);
1187long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1188                    unsigned long start, unsigned long nr_pages,
1189                    int write, int force, struct page **pages,
1190                    int *locked);
1191long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1192                               unsigned long start, unsigned long nr_pages,
1193                               int write, int force, struct page **pages,
1194                               unsigned int gup_flags);
1195long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1196                    unsigned long start, unsigned long nr_pages,
1197                    int write, int force, struct page **pages);
1198int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1199                        struct page **pages);
1200struct kvec;
1201int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1202                        struct page **pages);
1203int get_kernel_page(unsigned long start, int write, struct page **pages);
1204struct page *get_dump_page(unsigned long addr);
1205
1206extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1207extern void do_invalidatepage(struct page *page, unsigned int offset,
1208                              unsigned int length);
1209
1210int __set_page_dirty_nobuffers(struct page *page);
1211int __set_page_dirty_no_writeback(struct page *page);
1212int redirty_page_for_writepage(struct writeback_control *wbc,
1213                                struct page *page);
1214void account_page_dirtied(struct page *page, struct address_space *mapping);
1215void account_page_cleaned(struct page *page, struct address_space *mapping);
1216int set_page_dirty(struct page *page);
1217int set_page_dirty_lock(struct page *page);
1218int clear_page_dirty_for_io(struct page *page);
1219
1220int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1221
1222/* Is the vma a continuation of the stack vma above it? */
1223static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1224{
1225        return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1226}
1227
1228static inline int stack_guard_page_start(struct vm_area_struct *vma,
1229                                             unsigned long addr)
1230{
1231        return (vma->vm_flags & VM_GROWSDOWN) &&
1232                (vma->vm_start == addr) &&
1233                !vma_growsdown(vma->vm_prev, addr);
1234}
1235
1236/* Is the vma a continuation of the stack vma below it? */
1237static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1238{
1239        return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1240}
1241
1242static inline int stack_guard_page_end(struct vm_area_struct *vma,
1243                                           unsigned long addr)
1244{
1245        return (vma->vm_flags & VM_GROWSUP) &&
1246                (vma->vm_end == addr) &&
1247                !vma_growsup(vma->vm_next, addr);
1248}
1249
1250extern struct task_struct *task_of_stack(struct task_struct *task,
1251                                struct vm_area_struct *vma, bool in_group);
1252
1253extern unsigned long move_page_tables(struct vm_area_struct *vma,
1254                unsigned long old_addr, struct vm_area_struct *new_vma,
1255                unsigned long new_addr, unsigned long len,
1256                bool need_rmap_locks);
1257extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1258                              unsigned long end, pgprot_t newprot,
1259                              int dirty_accountable, int prot_numa);
1260extern int mprotect_fixup(struct vm_area_struct *vma,
1261                          struct vm_area_struct **pprev, unsigned long start,
1262                          unsigned long end, unsigned long newflags);
1263
1264/*
1265 * doesn't attempt to fault and will return short.
1266 */
1267int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1268                          struct page **pages);
1269/*
1270 * per-process(per-mm_struct) statistics.
1271 */
1272static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1273{
1274        long val = atomic_long_read(&mm->rss_stat.count[member]);
1275
1276#ifdef SPLIT_RSS_COUNTING
1277        /*
1278         * counter is updated in asynchronous manner and may go to minus.
1279         * But it's never be expected number for users.
1280         */
1281        if (val < 0)
1282                val = 0;
1283#endif
1284        return (unsigned long)val;
1285}
1286
1287static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1288{
1289        atomic_long_add(value, &mm->rss_stat.count[member]);
1290}
1291
1292static inline void inc_mm_counter(struct mm_struct *mm, int member)
1293{
1294        atomic_long_inc(&mm->rss_stat.count[member]);
1295}
1296
1297static inline void dec_mm_counter(struct mm_struct *mm, int member)
1298{
1299        atomic_long_dec(&mm->rss_stat.count[member]);
1300}
1301
1302static inline unsigned long get_mm_rss(struct mm_struct *mm)
1303{
1304        return get_mm_counter(mm, MM_FILEPAGES) +
1305                get_mm_counter(mm, MM_ANONPAGES);
1306}
1307
1308static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1309{
1310        return max(mm->hiwater_rss, get_mm_rss(mm));
1311}
1312
1313static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1314{
1315        return max(mm->hiwater_vm, mm->total_vm);
1316}
1317
1318static inline void update_hiwater_rss(struct mm_struct *mm)
1319{
1320        unsigned long _rss = get_mm_rss(mm);
1321
1322        if ((mm)->hiwater_rss < _rss)
1323                (mm)->hiwater_rss = _rss;
1324}
1325
1326static inline void update_hiwater_vm(struct mm_struct *mm)
1327{
1328        if (mm->hiwater_vm < mm->total_vm)
1329                mm->hiwater_vm = mm->total_vm;
1330}
1331
1332static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1333{
1334        mm->hiwater_rss = get_mm_rss(mm);
1335}
1336
1337static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1338                                         struct mm_struct *mm)
1339{
1340        unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1341
1342        if (*maxrss < hiwater_rss)
1343                *maxrss = hiwater_rss;
1344}
1345
1346#if defined(SPLIT_RSS_COUNTING)
1347void sync_mm_rss(struct mm_struct *mm);
1348#else
1349static inline void sync_mm_rss(struct mm_struct *mm)
1350{
1351}
1352#endif
1353
1354int vma_wants_writenotify(struct vm_area_struct *vma);
1355
1356extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1357                               spinlock_t **ptl);
1358static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1359                                    spinlock_t **ptl)
1360{
1361        pte_t *ptep;
1362        __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1363        return ptep;
1364}
1365
1366#ifdef __PAGETABLE_PUD_FOLDED
1367static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1368                                                unsigned long address)
1369{
1370        return 0;
1371}
1372#else
1373int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1374#endif
1375
1376#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1377static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1378                                                unsigned long address)
1379{
1380        return 0;
1381}
1382
1383static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1384
1385static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1386{
1387        return 0;
1388}
1389
1390static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1391static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1392
1393#else
1394int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1395
1396static inline void mm_nr_pmds_init(struct mm_struct *mm)
1397{
1398        atomic_long_set(&mm->nr_pmds, 0);
1399}
1400
1401static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1402{
1403        return atomic_long_read(&mm->nr_pmds);
1404}
1405
1406static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1407{
1408        atomic_long_inc(&mm->nr_pmds);
1409}
1410
1411static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1412{
1413        atomic_long_dec(&mm->nr_pmds);
1414}
1415#endif
1416
1417int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1418                pmd_t *pmd, unsigned long address);
1419int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1420
1421/*
1422 * The following ifdef needed to get the 4level-fixup.h header to work.
1423 * Remove it when 4level-fixup.h has been removed.
1424 */
1425#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1426static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1427{
1428        return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1429                NULL: pud_offset(pgd, address);
1430}
1431
1432static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1433{
1434        return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1435                NULL: pmd_offset(pud, address);
1436}
1437#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1438
1439#if USE_SPLIT_PTE_PTLOCKS
1440#if ALLOC_SPLIT_PTLOCKS
1441void __init ptlock_cache_init(void);
1442extern bool ptlock_alloc(struct page *page);
1443extern void ptlock_free(struct page *page);
1444
1445static inline spinlock_t *ptlock_ptr(struct page *page)
1446{
1447        return page->ptl;
1448}
1449#else /* ALLOC_SPLIT_PTLOCKS */
1450static inline void ptlock_cache_init(void)
1451{
1452}
1453
1454static inline bool ptlock_alloc(struct page *page)
1455{
1456        return true;
1457}
1458
1459static inline void ptlock_free(struct page *page)
1460{
1461}
1462
1463static inline spinlock_t *ptlock_ptr(struct page *page)
1464{
1465        return &page->ptl;
1466}
1467#endif /* ALLOC_SPLIT_PTLOCKS */
1468
1469static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1470{
1471        return ptlock_ptr(pmd_page(*pmd));
1472}
1473
1474static inline bool ptlock_init(struct page *page)
1475{
1476        /*
1477         * prep_new_page() initialize page->private (and therefore page->ptl)
1478         * with 0. Make sure nobody took it in use in between.
1479         *
1480         * It can happen if arch try to use slab for page table allocation:
1481         * slab code uses page->slab_cache and page->first_page (for tail
1482         * pages), which share storage with page->ptl.
1483         */
1484        VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1485        if (!ptlock_alloc(page))
1486                return false;
1487        spin_lock_init(ptlock_ptr(page));
1488        return true;
1489}
1490
1491/* Reset page->mapping so free_pages_check won't complain. */
1492static inline void pte_lock_deinit(struct page *page)
1493{
1494        page->mapping = NULL;
1495        ptlock_free(page);
1496}
1497
1498#else   /* !USE_SPLIT_PTE_PTLOCKS */
1499/*
1500 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1501 */
1502static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1503{
1504        return &mm->page_table_lock;
1505}
1506static inline void ptlock_cache_init(void) {}
1507static inline bool ptlock_init(struct page *page) { return true; }
1508static inline void pte_lock_deinit(struct page *page) {}
1509#endif /* USE_SPLIT_PTE_PTLOCKS */
1510
1511static inline void pgtable_init(void)
1512{
1513        ptlock_cache_init();
1514        pgtable_cache_init();
1515}
1516
1517static inline bool pgtable_page_ctor(struct page *page)
1518{
1519        inc_zone_page_state(page, NR_PAGETABLE);
1520        return ptlock_init(page);
1521}
1522
1523static inline void pgtable_page_dtor(struct page *page)
1524{
1525        pte_lock_deinit(page);
1526        dec_zone_page_state(page, NR_PAGETABLE);
1527}
1528
1529#define pte_offset_map_lock(mm, pmd, address, ptlp)     \
1530({                                                      \
1531        spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
1532        pte_t *__pte = pte_offset_map(pmd, address);    \
1533        *(ptlp) = __ptl;                                \
1534        spin_lock(__ptl);                               \
1535        __pte;                                          \
1536})
1537
1538#define pte_unmap_unlock(pte, ptl)      do {            \
1539        spin_unlock(ptl);                               \
1540        pte_unmap(pte);                                 \
1541} while (0)
1542
1543#define pte_alloc_map(mm, vma, pmd, address)                            \
1544        ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,    \
1545                                                        pmd, address))? \
1546         NULL: pte_offset_map(pmd, address))
1547
1548#define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
1549        ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,   \
1550                                                        pmd, address))? \
1551                NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1552
1553#define pte_alloc_kernel(pmd, address)                  \
1554        ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1555                NULL: pte_offset_kernel(pmd, address))
1556
1557#if USE_SPLIT_PMD_PTLOCKS
1558
1559static struct page *pmd_to_page(pmd_t *pmd)
1560{
1561        unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1562        return virt_to_page((void *)((unsigned long) pmd & mask));
1563}
1564
1565static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1566{
1567        return ptlock_ptr(pmd_to_page(pmd));
1568}
1569
1570static inline bool pgtable_pmd_page_ctor(struct page *page)
1571{
1572#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1573        page->pmd_huge_pte = NULL;
1574#endif
1575        return ptlock_init(page);
1576}
1577
1578static inline void pgtable_pmd_page_dtor(struct page *page)
1579{
1580#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1581        VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1582#endif
1583        ptlock_free(page);
1584}
1585
1586#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1587
1588#else
1589
1590static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1591{
1592        return &mm->page_table_lock;
1593}
1594
1595static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1596static inline void pgtable_pmd_page_dtor(struct page *page) {}
1597
1598#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1599
1600#endif
1601
1602static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1603{
1604        spinlock_t *ptl = pmd_lockptr(mm, pmd);
1605        spin_lock(ptl);
1606        return ptl;
1607}
1608
1609extern void free_area_init(unsigned long * zones_size);
1610extern void free_area_init_node(int nid, unsigned long * zones_size,
1611                unsigned long zone_start_pfn, unsigned long *zholes_size);
1612extern void free_initmem(void);
1613
1614/*
1615 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1616 * into the buddy system. The freed pages will be poisoned with pattern
1617 * "poison" if it's within range [0, UCHAR_MAX].
1618 * Return pages freed into the buddy system.
1619 */
1620extern unsigned long free_reserved_area(void *start, void *end,
1621                                        int poison, char *s);
1622
1623#ifdef  CONFIG_HIGHMEM
1624/*
1625 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1626 * and totalram_pages.
1627 */
1628extern void free_highmem_page(struct page *page);
1629#endif
1630
1631extern void adjust_managed_page_count(struct page *page, long count);
1632extern void mem_init_print_info(const char *str);
1633
1634/* Free the reserved page into the buddy system, so it gets managed. */
1635static inline void __free_reserved_page(struct page *page)
1636{
1637        ClearPageReserved(page);
1638        init_page_count(page);
1639        __free_page(page);
1640}
1641
1642static inline void free_reserved_page(struct page *page)
1643{
1644        __free_reserved_page(page);
1645        adjust_managed_page_count(page, 1);
1646}
1647
1648static inline void mark_page_reserved(struct page *page)
1649{
1650        SetPageReserved(page);
1651        adjust_managed_page_count(page, -1);
1652}
1653
1654/*
1655 * Default method to free all the __init memory into the buddy system.
1656 * The freed pages will be poisoned with pattern "poison" if it's within
1657 * range [0, UCHAR_MAX].
1658 * Return pages freed into the buddy system.
1659 */
1660static inline unsigned long free_initmem_default(int poison)
1661{
1662        extern char __init_begin[], __init_end[];
1663
1664        return free_reserved_area(&__init_begin, &__init_end,
1665                                  poison, "unused kernel");
1666}
1667
1668static inline unsigned long get_num_physpages(void)
1669{
1670        int nid;
1671        unsigned long phys_pages = 0;
1672
1673        for_each_online_node(nid)
1674                phys_pages += node_present_pages(nid);
1675
1676        return phys_pages;
1677}
1678
1679#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1680/*
1681 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1682 * zones, allocate the backing mem_map and account for memory holes in a more
1683 * architecture independent manner. This is a substitute for creating the
1684 * zone_sizes[] and zholes_size[] arrays and passing them to
1685 * free_area_init_node()
1686 *
1687 * An architecture is expected to register range of page frames backed by
1688 * physical memory with memblock_add[_node]() before calling
1689 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1690 * usage, an architecture is expected to do something like
1691 *
1692 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1693 *                                                       max_highmem_pfn};
1694 * for_each_valid_physical_page_range()
1695 *      memblock_add_node(base, size, nid)
1696 * free_area_init_nodes(max_zone_pfns);
1697 *
1698 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1699 * registered physical page range.  Similarly
1700 * sparse_memory_present_with_active_regions() calls memory_present() for
1701 * each range when SPARSEMEM is enabled.
1702 *
1703 * See mm/page_alloc.c for more information on each function exposed by
1704 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1705 */
1706extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1707unsigned long node_map_pfn_alignment(void);
1708unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1709                                                unsigned long end_pfn);
1710extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1711                                                unsigned long end_pfn);
1712extern void get_pfn_range_for_nid(unsigned int nid,
1713                        unsigned long *start_pfn, unsigned long *end_pfn);
1714extern unsigned long find_min_pfn_with_active_regions(void);
1715extern void free_bootmem_with_active_regions(int nid,
1716                                                unsigned long max_low_pfn);
1717extern void sparse_memory_present_with_active_regions(int nid);
1718
1719#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1720
1721#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1722    !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1723static inline int __early_pfn_to_nid(unsigned long pfn)
1724{
1725        return 0;
1726}
1727#else
1728/* please see mm/page_alloc.c */
1729extern int __meminit early_pfn_to_nid(unsigned long pfn);
1730/* there is a per-arch backend function. */
1731extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1732#endif
1733
1734extern void set_dma_reserve(unsigned long new_dma_reserve);
1735extern void memmap_init_zone(unsigned long, int, unsigned long,
1736                                unsigned long, enum memmap_context);
1737extern void setup_per_zone_wmarks(void);
1738extern int __meminit init_per_zone_wmark_min(void);
1739extern void mem_init(void);
1740extern void __init mmap_init(void);
1741extern void show_mem(unsigned int flags);
1742extern void si_meminfo(struct sysinfo * val);
1743extern void si_meminfo_node(struct sysinfo *val, int nid);
1744
1745extern __printf(3, 4)
1746void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1747
1748extern void setup_per_cpu_pageset(void);
1749
1750extern void zone_pcp_update(struct zone *zone);
1751extern void zone_pcp_reset(struct zone *zone);
1752
1753/* page_alloc.c */
1754extern int min_free_kbytes;
1755
1756/* nommu.c */
1757extern atomic_long_t mmap_pages_allocated;
1758extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1759
1760/* interval_tree.c */
1761void vma_interval_tree_insert(struct vm_area_struct *node,
1762                              struct rb_root *root);
1763void vma_interval_tree_insert_after(struct vm_area_struct *node,
1764                                    struct vm_area_struct *prev,
1765                                    struct rb_root *root);
1766void vma_interval_tree_remove(struct vm_area_struct *node,
1767                              struct rb_root *root);
1768struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1769                                unsigned long start, unsigned long last);
1770struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1771                                unsigned long start, unsigned long last);
1772
1773#define vma_interval_tree_foreach(vma, root, start, last)               \
1774        for (vma = vma_interval_tree_iter_first(root, start, last);     \
1775             vma; vma = vma_interval_tree_iter_next(vma, start, last))
1776
1777void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1778                                   struct rb_root *root);
1779void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1780                                   struct rb_root *root);
1781struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1782        struct rb_root *root, unsigned long start, unsigned long last);
1783struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1784        struct anon_vma_chain *node, unsigned long start, unsigned long last);
1785#ifdef CONFIG_DEBUG_VM_RB
1786void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1787#endif
1788
1789#define anon_vma_interval_tree_foreach(avc, root, start, last)           \
1790        for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1791             avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1792
1793/* mmap.c */
1794extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1795extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1796        unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1797extern struct vm_area_struct *vma_merge(struct mm_struct *,
1798        struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1799        unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1800        struct mempolicy *);
1801extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1802extern int split_vma(struct mm_struct *,
1803        struct vm_area_struct *, unsigned long addr, int new_below);
1804extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1805extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1806        struct rb_node **, struct rb_node *);
1807extern void unlink_file_vma(struct vm_area_struct *);
1808extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1809        unsigned long addr, unsigned long len, pgoff_t pgoff,
1810        bool *need_rmap_locks);
1811extern void exit_mmap(struct mm_struct *);
1812
1813static inline int check_data_rlimit(unsigned long rlim,
1814                                    unsigned long new,
1815                                    unsigned long start,
1816                                    unsigned long end_data,
1817                                    unsigned long start_data)
1818{
1819        if (rlim < RLIM_INFINITY) {
1820                if (((new - start) + (end_data - start_data)) > rlim)
1821                        return -ENOSPC;
1822        }
1823
1824        return 0;
1825}
1826
1827extern int mm_take_all_locks(struct mm_struct *mm);
1828extern void mm_drop_all_locks(struct mm_struct *mm);
1829
1830extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1831extern struct file *get_mm_exe_file(struct mm_struct *mm);
1832
1833extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1834extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1835                                   unsigned long addr, unsigned long len,
1836                                   unsigned long flags,
1837                                   const struct vm_special_mapping *spec);
1838/* This is an obsolete alternative to _install_special_mapping. */
1839extern int install_special_mapping(struct mm_struct *mm,
1840                                   unsigned long addr, unsigned long len,
1841                                   unsigned long flags, struct page **pages);
1842
1843extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1844
1845extern unsigned long mmap_region(struct file *file, unsigned long addr,
1846        unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1847extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1848        unsigned long len, unsigned long prot, unsigned long flags,
1849        unsigned long pgoff, unsigned long *populate);
1850extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1851
1852#ifdef CONFIG_MMU
1853extern int __mm_populate(unsigned long addr, unsigned long len,
1854                         int ignore_errors);
1855static inline void mm_populate(unsigned long addr, unsigned long len)
1856{
1857        /* Ignore errors */
1858        (void) __mm_populate(addr, len, 1);
1859}
1860#else
1861static inline void mm_populate(unsigned long addr, unsigned long len) {}
1862#endif
1863
1864/* These take the mm semaphore themselves */
1865extern unsigned long vm_brk(unsigned long, unsigned long);
1866extern int vm_munmap(unsigned long, size_t);
1867extern unsigned long vm_mmap(struct file *, unsigned long,
1868        unsigned long, unsigned long,
1869        unsigned long, unsigned long);
1870
1871struct vm_unmapped_area_info {
1872#define VM_UNMAPPED_AREA_TOPDOWN 1
1873        unsigned long flags;
1874        unsigned long length;
1875        unsigned long low_limit;
1876        unsigned long high_limit;
1877        unsigned long align_mask;
1878        unsigned long align_offset;
1879};
1880
1881extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1882extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1883
1884/*
1885 * Search for an unmapped address range.
1886 *
1887 * We are looking for a range that:
1888 * - does not intersect with any VMA;
1889 * - is contained within the [low_limit, high_limit) interval;
1890 * - is at least the desired size.
1891 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1892 */
1893static inline unsigned long
1894vm_unmapped_area(struct vm_unmapped_area_info *info)
1895{
1896        if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1897                return unmapped_area_topdown(info);
1898        else
1899                return unmapped_area(info);
1900}
1901
1902/* truncate.c */
1903extern void truncate_inode_pages(struct address_space *, loff_t);
1904extern void truncate_inode_pages_range(struct address_space *,
1905                                       loff_t lstart, loff_t lend);
1906extern void truncate_inode_pages_final(struct address_space *);
1907
1908/* generic vm_area_ops exported for stackable file systems */
1909extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1910extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
1911extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1912
1913/* mm/page-writeback.c */
1914int write_one_page(struct page *page, int wait);
1915void task_dirty_inc(struct task_struct *tsk);
1916
1917/* readahead.c */
1918#define VM_MAX_READAHEAD        128     /* kbytes */
1919#define VM_MIN_READAHEAD        16      /* kbytes (includes current page) */
1920
1921int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1922                        pgoff_t offset, unsigned long nr_to_read);
1923
1924void page_cache_sync_readahead(struct address_space *mapping,
1925                               struct file_ra_state *ra,
1926                               struct file *filp,
1927                               pgoff_t offset,
1928                               unsigned long size);
1929
1930void page_cache_async_readahead(struct address_space *mapping,
1931                                struct file_ra_state *ra,
1932                                struct file *filp,
1933                                struct page *pg,
1934                                pgoff_t offset,
1935                                unsigned long size);
1936
1937unsigned long max_sane_readahead(unsigned long nr);
1938
1939/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1940extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1941
1942/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1943extern int expand_downwards(struct vm_area_struct *vma,
1944                unsigned long address);
1945#if VM_GROWSUP
1946extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1947#else
1948  #define expand_upwards(vma, address) (0)
1949#endif
1950
1951/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1952extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1953extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1954                                             struct vm_area_struct **pprev);
1955
1956/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1957   NULL if none.  Assume start_addr < end_addr. */
1958static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1959{
1960        struct vm_area_struct * vma = find_vma(mm,start_addr);
1961
1962        if (vma && end_addr <= vma->vm_start)
1963                vma = NULL;
1964        return vma;
1965}
1966
1967static inline unsigned long vma_pages(struct vm_area_struct *vma)
1968{
1969        return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1970}
1971
1972/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1973static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1974                                unsigned long vm_start, unsigned long vm_end)
1975{
1976        struct vm_area_struct *vma = find_vma(mm, vm_start);
1977
1978        if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1979                vma = NULL;
1980
1981        return vma;
1982}
1983
1984#ifdef CONFIG_MMU
1985pgprot_t vm_get_page_prot(unsigned long vm_flags);
1986void vma_set_page_prot(struct vm_area_struct *vma);
1987#else
1988static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1989{
1990        return __pgprot(0);
1991}
1992static inline void vma_set_page_prot(struct vm_area_struct *vma)
1993{
1994        vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
1995}
1996#endif
1997
1998#ifdef CONFIG_NUMA_BALANCING
1999unsigned long change_prot_numa(struct vm_area_struct *vma,
2000                        unsigned long start, unsigned long end);
2001#endif
2002
2003struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2004int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2005                        unsigned long pfn, unsigned long size, pgprot_t);
2006int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2007int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2008                        unsigned long pfn);
2009int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2010                        unsigned long pfn);
2011int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2012
2013
2014struct page *follow_page_mask(struct vm_area_struct *vma,
2015                              unsigned long address, unsigned int foll_flags,
2016                              unsigned int *page_mask);
2017
2018static inline struct page *follow_page(struct vm_area_struct *vma,
2019                unsigned long address, unsigned int foll_flags)
2020{
2021        unsigned int unused_page_mask;
2022        return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2023}
2024
2025#define FOLL_WRITE      0x01    /* check pte is writable */
2026#define FOLL_TOUCH      0x02    /* mark page accessed */
2027#define FOLL_GET        0x04    /* do get_page on page */
2028#define FOLL_DUMP       0x08    /* give error on hole if it would be zero */
2029#define FOLL_FORCE      0x10    /* get_user_pages read/write w/o permission */
2030#define FOLL_NOWAIT     0x20    /* if a disk transfer is needed, start the IO
2031                                 * and return without waiting upon it */
2032#define FOLL_POPULATE   0x40    /* fault in page */
2033#define FOLL_SPLIT      0x80    /* don't return transhuge pages, split them */
2034#define FOLL_HWPOISON   0x100   /* check page is hwpoisoned */
2035#define FOLL_NUMA       0x200   /* force NUMA hinting page fault */
2036#define FOLL_MIGRATION  0x400   /* wait for page to replace migration entry */
2037#define FOLL_TRIED      0x800   /* a retry, previous pass started an IO */
2038
2039typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2040                        void *data);
2041extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2042                               unsigned long size, pte_fn_t fn, void *data);
2043
2044#ifdef CONFIG_PROC_FS
2045void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
2046#else
2047static inline void vm_stat_account(struct mm_struct *mm,
2048                        unsigned long flags, struct file *file, long pages)
2049{
2050        mm->total_vm += pages;
2051}
2052#endif /* CONFIG_PROC_FS */
2053
2054#ifdef CONFIG_DEBUG_PAGEALLOC
2055extern bool _debug_pagealloc_enabled;
2056extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2057
2058static inline bool debug_pagealloc_enabled(void)
2059{
2060        return _debug_pagealloc_enabled;
2061}
2062
2063static inline void
2064kernel_map_pages(struct page *page, int numpages, int enable)
2065{
2066        if (!debug_pagealloc_enabled())
2067                return;
2068
2069        __kernel_map_pages(page, numpages, enable);
2070}
2071#ifdef CONFIG_HIBERNATION
2072extern bool kernel_page_present(struct page *page);
2073#endif /* CONFIG_HIBERNATION */
2074#else
2075static inline void
2076kernel_map_pages(struct page *page, int numpages, int enable) {}
2077#ifdef CONFIG_HIBERNATION
2078static inline bool kernel_page_present(struct page *page) { return true; }
2079#endif /* CONFIG_HIBERNATION */
2080#endif
2081
2082#ifdef __HAVE_ARCH_GATE_AREA
2083extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2084extern int in_gate_area_no_mm(unsigned long addr);
2085extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2086#else
2087static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2088{
2089        return NULL;
2090}
2091static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2092static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2093{
2094        return 0;
2095}
2096#endif  /* __HAVE_ARCH_GATE_AREA */
2097
2098#ifdef CONFIG_SYSCTL
2099extern int sysctl_drop_caches;
2100int drop_caches_sysctl_handler(struct ctl_table *, int,
2101                                        void __user *, size_t *, loff_t *);
2102#endif
2103
2104void drop_slab(void);
2105void drop_slab_node(int nid);
2106
2107#ifndef CONFIG_MMU
2108#define randomize_va_space 0
2109#else
2110extern int randomize_va_space;
2111#endif
2112
2113const char * arch_vma_name(struct vm_area_struct *vma);
2114void print_vma_addr(char *prefix, unsigned long rip);
2115
2116void sparse_mem_maps_populate_node(struct page **map_map,
2117                                   unsigned long pnum_begin,
2118                                   unsigned long pnum_end,
2119                                   unsigned long map_count,
2120                                   int nodeid);
2121
2122struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2123pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2124pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2125pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2126pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2127void *vmemmap_alloc_block(unsigned long size, int node);
2128void *vmemmap_alloc_block_buf(unsigned long size, int node);
2129void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2130int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2131                               int node);
2132int vmemmap_populate(unsigned long start, unsigned long end, int node);
2133void vmemmap_populate_print_last(void);
2134#ifdef CONFIG_MEMORY_HOTPLUG
2135void vmemmap_free(unsigned long start, unsigned long end);
2136#endif
2137void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2138                                  unsigned long size);
2139
2140enum mf_flags {
2141        MF_COUNT_INCREASED = 1 << 0,
2142        MF_ACTION_REQUIRED = 1 << 1,
2143        MF_MUST_KILL = 1 << 2,
2144        MF_SOFT_OFFLINE = 1 << 3,
2145};
2146extern int memory_failure(unsigned long pfn, int trapno, int flags);
2147extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2148extern int unpoison_memory(unsigned long pfn);
2149extern int sysctl_memory_failure_early_kill;
2150extern int sysctl_memory_failure_recovery;
2151extern void shake_page(struct page *p, int access);
2152extern atomic_long_t num_poisoned_pages;
2153extern int soft_offline_page(struct page *page, int flags);
2154
2155#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2156extern void clear_huge_page(struct page *page,
2157                            unsigned long addr,
2158                            unsigned int pages_per_huge_page);
2159extern void copy_user_huge_page(struct page *dst, struct page *src,
2160                                unsigned long addr, struct vm_area_struct *vma,
2161                                unsigned int pages_per_huge_page);
2162#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2163
2164extern struct page_ext_operations debug_guardpage_ops;
2165extern struct page_ext_operations page_poisoning_ops;
2166
2167#ifdef CONFIG_DEBUG_PAGEALLOC
2168extern unsigned int _debug_guardpage_minorder;
2169extern bool _debug_guardpage_enabled;
2170
2171static inline unsigned int debug_guardpage_minorder(void)
2172{
2173        return _debug_guardpage_minorder;
2174}
2175
2176static inline bool debug_guardpage_enabled(void)
2177{
2178        return _debug_guardpage_enabled;
2179}
2180
2181static inline bool page_is_guard(struct page *page)
2182{
2183        struct page_ext *page_ext;
2184
2185        if (!debug_guardpage_enabled())
2186                return false;
2187
2188        page_ext = lookup_page_ext(page);
2189        return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2190}
2191#else
2192static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2193static inline bool debug_guardpage_enabled(void) { return false; }
2194static inline bool page_is_guard(struct page *page) { return false; }
2195#endif /* CONFIG_DEBUG_PAGEALLOC */
2196
2197#if MAX_NUMNODES > 1
2198void __init setup_nr_node_ids(void);
2199#else
2200static inline void setup_nr_node_ids(void) {}
2201#endif
2202
2203#endif /* __KERNEL__ */
2204#endif /* _LINUX_MM_H */
2205