linux/include/linux/netdevice.h
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Definitions for the Interfaces handler.
   7 *
   8 * Version:     @(#)dev.h       1.0.10  08/12/93
   9 *
  10 * Authors:     Ross Biro
  11 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *              Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
  14 *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
  15 *              Bjorn Ekwall. <bj0rn@blox.se>
  16 *              Pekka Riikonen <priikone@poseidon.pspt.fi>
  17 *
  18 *              This program is free software; you can redistribute it and/or
  19 *              modify it under the terms of the GNU General Public License
  20 *              as published by the Free Software Foundation; either version
  21 *              2 of the License, or (at your option) any later version.
  22 *
  23 *              Moved to /usr/include/linux for NET3
  24 */
  25#ifndef _LINUX_NETDEVICE_H
  26#define _LINUX_NETDEVICE_H
  27
  28#include <linux/timer.h>
  29#include <linux/bug.h>
  30#include <linux/delay.h>
  31#include <linux/atomic.h>
  32#include <linux/prefetch.h>
  33#include <asm/cache.h>
  34#include <asm/byteorder.h>
  35
  36#include <linux/percpu.h>
  37#include <linux/rculist.h>
  38#include <linux/dmaengine.h>
  39#include <linux/workqueue.h>
  40#include <linux/dynamic_queue_limits.h>
  41
  42#include <linux/ethtool.h>
  43#include <net/net_namespace.h>
  44#include <net/dsa.h>
  45#ifdef CONFIG_DCB
  46#include <net/dcbnl.h>
  47#endif
  48#include <net/netprio_cgroup.h>
  49
  50#include <linux/netdev_features.h>
  51#include <linux/neighbour.h>
  52#include <uapi/linux/netdevice.h>
  53#include <uapi/linux/if_bonding.h>
  54
  55struct netpoll_info;
  56struct device;
  57struct phy_device;
  58/* 802.11 specific */
  59struct wireless_dev;
  60/* 802.15.4 specific */
  61struct wpan_dev;
  62struct mpls_dev;
  63
  64void netdev_set_default_ethtool_ops(struct net_device *dev,
  65                                    const struct ethtool_ops *ops);
  66
  67/* Backlog congestion levels */
  68#define NET_RX_SUCCESS          0       /* keep 'em coming, baby */
  69#define NET_RX_DROP             1       /* packet dropped */
  70
  71/*
  72 * Transmit return codes: transmit return codes originate from three different
  73 * namespaces:
  74 *
  75 * - qdisc return codes
  76 * - driver transmit return codes
  77 * - errno values
  78 *
  79 * Drivers are allowed to return any one of those in their hard_start_xmit()
  80 * function. Real network devices commonly used with qdiscs should only return
  81 * the driver transmit return codes though - when qdiscs are used, the actual
  82 * transmission happens asynchronously, so the value is not propagated to
  83 * higher layers. Virtual network devices transmit synchronously, in this case
  84 * the driver transmit return codes are consumed by dev_queue_xmit(), all
  85 * others are propagated to higher layers.
  86 */
  87
  88/* qdisc ->enqueue() return codes. */
  89#define NET_XMIT_SUCCESS        0x00
  90#define NET_XMIT_DROP           0x01    /* skb dropped                  */
  91#define NET_XMIT_CN             0x02    /* congestion notification      */
  92#define NET_XMIT_POLICED        0x03    /* skb is shot by police        */
  93#define NET_XMIT_MASK           0x0f    /* qdisc flags in net/sch_generic.h */
  94
  95/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
  96 * indicates that the device will soon be dropping packets, or already drops
  97 * some packets of the same priority; prompting us to send less aggressively. */
  98#define net_xmit_eval(e)        ((e) == NET_XMIT_CN ? 0 : (e))
  99#define net_xmit_errno(e)       ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
 100
 101/* Driver transmit return codes */
 102#define NETDEV_TX_MASK          0xf0
 103
 104enum netdev_tx {
 105        __NETDEV_TX_MIN  = INT_MIN,     /* make sure enum is signed */
 106        NETDEV_TX_OK     = 0x00,        /* driver took care of packet */
 107        NETDEV_TX_BUSY   = 0x10,        /* driver tx path was busy*/
 108        NETDEV_TX_LOCKED = 0x20,        /* driver tx lock was already taken */
 109};
 110typedef enum netdev_tx netdev_tx_t;
 111
 112/*
 113 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
 114 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
 115 */
 116static inline bool dev_xmit_complete(int rc)
 117{
 118        /*
 119         * Positive cases with an skb consumed by a driver:
 120         * - successful transmission (rc == NETDEV_TX_OK)
 121         * - error while transmitting (rc < 0)
 122         * - error while queueing to a different device (rc & NET_XMIT_MASK)
 123         */
 124        if (likely(rc < NET_XMIT_MASK))
 125                return true;
 126
 127        return false;
 128}
 129
 130/*
 131 *      Compute the worst case header length according to the protocols
 132 *      used.
 133 */
 134
 135#if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
 136# if defined(CONFIG_MAC80211_MESH)
 137#  define LL_MAX_HEADER 128
 138# else
 139#  define LL_MAX_HEADER 96
 140# endif
 141#else
 142# define LL_MAX_HEADER 32
 143#endif
 144
 145#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
 146    !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
 147#define MAX_HEADER LL_MAX_HEADER
 148#else
 149#define MAX_HEADER (LL_MAX_HEADER + 48)
 150#endif
 151
 152/*
 153 *      Old network device statistics. Fields are native words
 154 *      (unsigned long) so they can be read and written atomically.
 155 */
 156
 157struct net_device_stats {
 158        unsigned long   rx_packets;
 159        unsigned long   tx_packets;
 160        unsigned long   rx_bytes;
 161        unsigned long   tx_bytes;
 162        unsigned long   rx_errors;
 163        unsigned long   tx_errors;
 164        unsigned long   rx_dropped;
 165        unsigned long   tx_dropped;
 166        unsigned long   multicast;
 167        unsigned long   collisions;
 168        unsigned long   rx_length_errors;
 169        unsigned long   rx_over_errors;
 170        unsigned long   rx_crc_errors;
 171        unsigned long   rx_frame_errors;
 172        unsigned long   rx_fifo_errors;
 173        unsigned long   rx_missed_errors;
 174        unsigned long   tx_aborted_errors;
 175        unsigned long   tx_carrier_errors;
 176        unsigned long   tx_fifo_errors;
 177        unsigned long   tx_heartbeat_errors;
 178        unsigned long   tx_window_errors;
 179        unsigned long   rx_compressed;
 180        unsigned long   tx_compressed;
 181};
 182
 183
 184#include <linux/cache.h>
 185#include <linux/skbuff.h>
 186
 187#ifdef CONFIG_RPS
 188#include <linux/static_key.h>
 189extern struct static_key rps_needed;
 190#endif
 191
 192struct neighbour;
 193struct neigh_parms;
 194struct sk_buff;
 195
 196struct netdev_hw_addr {
 197        struct list_head        list;
 198        unsigned char           addr[MAX_ADDR_LEN];
 199        unsigned char           type;
 200#define NETDEV_HW_ADDR_T_LAN            1
 201#define NETDEV_HW_ADDR_T_SAN            2
 202#define NETDEV_HW_ADDR_T_SLAVE          3
 203#define NETDEV_HW_ADDR_T_UNICAST        4
 204#define NETDEV_HW_ADDR_T_MULTICAST      5
 205        bool                    global_use;
 206        int                     sync_cnt;
 207        int                     refcount;
 208        int                     synced;
 209        struct rcu_head         rcu_head;
 210};
 211
 212struct netdev_hw_addr_list {
 213        struct list_head        list;
 214        int                     count;
 215};
 216
 217#define netdev_hw_addr_list_count(l) ((l)->count)
 218#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
 219#define netdev_hw_addr_list_for_each(ha, l) \
 220        list_for_each_entry(ha, &(l)->list, list)
 221
 222#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
 223#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
 224#define netdev_for_each_uc_addr(ha, dev) \
 225        netdev_hw_addr_list_for_each(ha, &(dev)->uc)
 226
 227#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
 228#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
 229#define netdev_for_each_mc_addr(ha, dev) \
 230        netdev_hw_addr_list_for_each(ha, &(dev)->mc)
 231
 232struct hh_cache {
 233        u16             hh_len;
 234        u16             __pad;
 235        seqlock_t       hh_lock;
 236
 237        /* cached hardware header; allow for machine alignment needs.        */
 238#define HH_DATA_MOD     16
 239#define HH_DATA_OFF(__len) \
 240        (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
 241#define HH_DATA_ALIGN(__len) \
 242        (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
 243        unsigned long   hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
 244};
 245
 246/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
 247 * Alternative is:
 248 *   dev->hard_header_len ? (dev->hard_header_len +
 249 *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
 250 *
 251 * We could use other alignment values, but we must maintain the
 252 * relationship HH alignment <= LL alignment.
 253 */
 254#define LL_RESERVED_SPACE(dev) \
 255        ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 256#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
 257        ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 258
 259struct header_ops {
 260        int     (*create) (struct sk_buff *skb, struct net_device *dev,
 261                           unsigned short type, const void *daddr,
 262                           const void *saddr, unsigned int len);
 263        int     (*parse)(const struct sk_buff *skb, unsigned char *haddr);
 264        int     (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
 265        void    (*cache_update)(struct hh_cache *hh,
 266                                const struct net_device *dev,
 267                                const unsigned char *haddr);
 268};
 269
 270/* These flag bits are private to the generic network queueing
 271 * layer, they may not be explicitly referenced by any other
 272 * code.
 273 */
 274
 275enum netdev_state_t {
 276        __LINK_STATE_START,
 277        __LINK_STATE_PRESENT,
 278        __LINK_STATE_NOCARRIER,
 279        __LINK_STATE_LINKWATCH_PENDING,
 280        __LINK_STATE_DORMANT,
 281};
 282
 283
 284/*
 285 * This structure holds at boot time configured netdevice settings. They
 286 * are then used in the device probing.
 287 */
 288struct netdev_boot_setup {
 289        char name[IFNAMSIZ];
 290        struct ifmap map;
 291};
 292#define NETDEV_BOOT_SETUP_MAX 8
 293
 294int __init netdev_boot_setup(char *str);
 295
 296/*
 297 * Structure for NAPI scheduling similar to tasklet but with weighting
 298 */
 299struct napi_struct {
 300        /* The poll_list must only be managed by the entity which
 301         * changes the state of the NAPI_STATE_SCHED bit.  This means
 302         * whoever atomically sets that bit can add this napi_struct
 303         * to the per-cpu poll_list, and whoever clears that bit
 304         * can remove from the list right before clearing the bit.
 305         */
 306        struct list_head        poll_list;
 307
 308        unsigned long           state;
 309        int                     weight;
 310        unsigned int            gro_count;
 311        int                     (*poll)(struct napi_struct *, int);
 312#ifdef CONFIG_NETPOLL
 313        spinlock_t              poll_lock;
 314        int                     poll_owner;
 315#endif
 316        struct net_device       *dev;
 317        struct sk_buff          *gro_list;
 318        struct sk_buff          *skb;
 319        struct hrtimer          timer;
 320        struct list_head        dev_list;
 321        struct hlist_node       napi_hash_node;
 322        unsigned int            napi_id;
 323};
 324
 325enum {
 326        NAPI_STATE_SCHED,       /* Poll is scheduled */
 327        NAPI_STATE_DISABLE,     /* Disable pending */
 328        NAPI_STATE_NPSVC,       /* Netpoll - don't dequeue from poll_list */
 329        NAPI_STATE_HASHED,      /* In NAPI hash */
 330};
 331
 332enum gro_result {
 333        GRO_MERGED,
 334        GRO_MERGED_FREE,
 335        GRO_HELD,
 336        GRO_NORMAL,
 337        GRO_DROP,
 338};
 339typedef enum gro_result gro_result_t;
 340
 341/*
 342 * enum rx_handler_result - Possible return values for rx_handlers.
 343 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
 344 * further.
 345 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
 346 * case skb->dev was changed by rx_handler.
 347 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
 348 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
 349 *
 350 * rx_handlers are functions called from inside __netif_receive_skb(), to do
 351 * special processing of the skb, prior to delivery to protocol handlers.
 352 *
 353 * Currently, a net_device can only have a single rx_handler registered. Trying
 354 * to register a second rx_handler will return -EBUSY.
 355 *
 356 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
 357 * To unregister a rx_handler on a net_device, use
 358 * netdev_rx_handler_unregister().
 359 *
 360 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
 361 * do with the skb.
 362 *
 363 * If the rx_handler consumed to skb in some way, it should return
 364 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
 365 * the skb to be delivered in some other ways.
 366 *
 367 * If the rx_handler changed skb->dev, to divert the skb to another
 368 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
 369 * new device will be called if it exists.
 370 *
 371 * If the rx_handler consider the skb should be ignored, it should return
 372 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
 373 * are registered on exact device (ptype->dev == skb->dev).
 374 *
 375 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
 376 * delivered, it should return RX_HANDLER_PASS.
 377 *
 378 * A device without a registered rx_handler will behave as if rx_handler
 379 * returned RX_HANDLER_PASS.
 380 */
 381
 382enum rx_handler_result {
 383        RX_HANDLER_CONSUMED,
 384        RX_HANDLER_ANOTHER,
 385        RX_HANDLER_EXACT,
 386        RX_HANDLER_PASS,
 387};
 388typedef enum rx_handler_result rx_handler_result_t;
 389typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
 390
 391void __napi_schedule(struct napi_struct *n);
 392void __napi_schedule_irqoff(struct napi_struct *n);
 393
 394static inline bool napi_disable_pending(struct napi_struct *n)
 395{
 396        return test_bit(NAPI_STATE_DISABLE, &n->state);
 397}
 398
 399/**
 400 *      napi_schedule_prep - check if napi can be scheduled
 401 *      @n: napi context
 402 *
 403 * Test if NAPI routine is already running, and if not mark
 404 * it as running.  This is used as a condition variable
 405 * insure only one NAPI poll instance runs.  We also make
 406 * sure there is no pending NAPI disable.
 407 */
 408static inline bool napi_schedule_prep(struct napi_struct *n)
 409{
 410        return !napi_disable_pending(n) &&
 411                !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
 412}
 413
 414/**
 415 *      napi_schedule - schedule NAPI poll
 416 *      @n: napi context
 417 *
 418 * Schedule NAPI poll routine to be called if it is not already
 419 * running.
 420 */
 421static inline void napi_schedule(struct napi_struct *n)
 422{
 423        if (napi_schedule_prep(n))
 424                __napi_schedule(n);
 425}
 426
 427/**
 428 *      napi_schedule_irqoff - schedule NAPI poll
 429 *      @n: napi context
 430 *
 431 * Variant of napi_schedule(), assuming hard irqs are masked.
 432 */
 433static inline void napi_schedule_irqoff(struct napi_struct *n)
 434{
 435        if (napi_schedule_prep(n))
 436                __napi_schedule_irqoff(n);
 437}
 438
 439/* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
 440static inline bool napi_reschedule(struct napi_struct *napi)
 441{
 442        if (napi_schedule_prep(napi)) {
 443                __napi_schedule(napi);
 444                return true;
 445        }
 446        return false;
 447}
 448
 449void __napi_complete(struct napi_struct *n);
 450void napi_complete_done(struct napi_struct *n, int work_done);
 451/**
 452 *      napi_complete - NAPI processing complete
 453 *      @n: napi context
 454 *
 455 * Mark NAPI processing as complete.
 456 * Consider using napi_complete_done() instead.
 457 */
 458static inline void napi_complete(struct napi_struct *n)
 459{
 460        return napi_complete_done(n, 0);
 461}
 462
 463/**
 464 *      napi_by_id - lookup a NAPI by napi_id
 465 *      @napi_id: hashed napi_id
 466 *
 467 * lookup @napi_id in napi_hash table
 468 * must be called under rcu_read_lock()
 469 */
 470struct napi_struct *napi_by_id(unsigned int napi_id);
 471
 472/**
 473 *      napi_hash_add - add a NAPI to global hashtable
 474 *      @napi: napi context
 475 *
 476 * generate a new napi_id and store a @napi under it in napi_hash
 477 */
 478void napi_hash_add(struct napi_struct *napi);
 479
 480/**
 481 *      napi_hash_del - remove a NAPI from global table
 482 *      @napi: napi context
 483 *
 484 * Warning: caller must observe rcu grace period
 485 * before freeing memory containing @napi
 486 */
 487void napi_hash_del(struct napi_struct *napi);
 488
 489/**
 490 *      napi_disable - prevent NAPI from scheduling
 491 *      @n: napi context
 492 *
 493 * Stop NAPI from being scheduled on this context.
 494 * Waits till any outstanding processing completes.
 495 */
 496void napi_disable(struct napi_struct *n);
 497
 498/**
 499 *      napi_enable - enable NAPI scheduling
 500 *      @n: napi context
 501 *
 502 * Resume NAPI from being scheduled on this context.
 503 * Must be paired with napi_disable.
 504 */
 505static inline void napi_enable(struct napi_struct *n)
 506{
 507        BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
 508        smp_mb__before_atomic();
 509        clear_bit(NAPI_STATE_SCHED, &n->state);
 510}
 511
 512#ifdef CONFIG_SMP
 513/**
 514 *      napi_synchronize - wait until NAPI is not running
 515 *      @n: napi context
 516 *
 517 * Wait until NAPI is done being scheduled on this context.
 518 * Waits till any outstanding processing completes but
 519 * does not disable future activations.
 520 */
 521static inline void napi_synchronize(const struct napi_struct *n)
 522{
 523        while (test_bit(NAPI_STATE_SCHED, &n->state))
 524                msleep(1);
 525}
 526#else
 527# define napi_synchronize(n)    barrier()
 528#endif
 529
 530enum netdev_queue_state_t {
 531        __QUEUE_STATE_DRV_XOFF,
 532        __QUEUE_STATE_STACK_XOFF,
 533        __QUEUE_STATE_FROZEN,
 534};
 535
 536#define QUEUE_STATE_DRV_XOFF    (1 << __QUEUE_STATE_DRV_XOFF)
 537#define QUEUE_STATE_STACK_XOFF  (1 << __QUEUE_STATE_STACK_XOFF)
 538#define QUEUE_STATE_FROZEN      (1 << __QUEUE_STATE_FROZEN)
 539
 540#define QUEUE_STATE_ANY_XOFF    (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
 541#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
 542                                        QUEUE_STATE_FROZEN)
 543#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
 544                                        QUEUE_STATE_FROZEN)
 545
 546/*
 547 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
 548 * netif_tx_* functions below are used to manipulate this flag.  The
 549 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
 550 * queue independently.  The netif_xmit_*stopped functions below are called
 551 * to check if the queue has been stopped by the driver or stack (either
 552 * of the XOFF bits are set in the state).  Drivers should not need to call
 553 * netif_xmit*stopped functions, they should only be using netif_tx_*.
 554 */
 555
 556struct netdev_queue {
 557/*
 558 * read mostly part
 559 */
 560        struct net_device       *dev;
 561        struct Qdisc __rcu      *qdisc;
 562        struct Qdisc            *qdisc_sleeping;
 563#ifdef CONFIG_SYSFS
 564        struct kobject          kobj;
 565#endif
 566#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 567        int                     numa_node;
 568#endif
 569/*
 570 * write mostly part
 571 */
 572        spinlock_t              _xmit_lock ____cacheline_aligned_in_smp;
 573        int                     xmit_lock_owner;
 574        /*
 575         * please use this field instead of dev->trans_start
 576         */
 577        unsigned long           trans_start;
 578
 579        /*
 580         * Number of TX timeouts for this queue
 581         * (/sys/class/net/DEV/Q/trans_timeout)
 582         */
 583        unsigned long           trans_timeout;
 584
 585        unsigned long           state;
 586
 587#ifdef CONFIG_BQL
 588        struct dql              dql;
 589#endif
 590        unsigned long           tx_maxrate;
 591} ____cacheline_aligned_in_smp;
 592
 593static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
 594{
 595#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 596        return q->numa_node;
 597#else
 598        return NUMA_NO_NODE;
 599#endif
 600}
 601
 602static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
 603{
 604#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 605        q->numa_node = node;
 606#endif
 607}
 608
 609#ifdef CONFIG_RPS
 610/*
 611 * This structure holds an RPS map which can be of variable length.  The
 612 * map is an array of CPUs.
 613 */
 614struct rps_map {
 615        unsigned int len;
 616        struct rcu_head rcu;
 617        u16 cpus[0];
 618};
 619#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
 620
 621/*
 622 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
 623 * tail pointer for that CPU's input queue at the time of last enqueue, and
 624 * a hardware filter index.
 625 */
 626struct rps_dev_flow {
 627        u16 cpu;
 628        u16 filter;
 629        unsigned int last_qtail;
 630};
 631#define RPS_NO_FILTER 0xffff
 632
 633/*
 634 * The rps_dev_flow_table structure contains a table of flow mappings.
 635 */
 636struct rps_dev_flow_table {
 637        unsigned int mask;
 638        struct rcu_head rcu;
 639        struct rps_dev_flow flows[0];
 640};
 641#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
 642    ((_num) * sizeof(struct rps_dev_flow)))
 643
 644/*
 645 * The rps_sock_flow_table contains mappings of flows to the last CPU
 646 * on which they were processed by the application (set in recvmsg).
 647 * Each entry is a 32bit value. Upper part is the high order bits
 648 * of flow hash, lower part is cpu number.
 649 * rps_cpu_mask is used to partition the space, depending on number of
 650 * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
 651 * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
 652 * meaning we use 32-6=26 bits for the hash.
 653 */
 654struct rps_sock_flow_table {
 655        u32     mask;
 656
 657        u32     ents[0] ____cacheline_aligned_in_smp;
 658};
 659#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
 660
 661#define RPS_NO_CPU 0xffff
 662
 663extern u32 rps_cpu_mask;
 664extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
 665
 666static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
 667                                        u32 hash)
 668{
 669        if (table && hash) {
 670                unsigned int index = hash & table->mask;
 671                u32 val = hash & ~rps_cpu_mask;
 672
 673                /* We only give a hint, preemption can change cpu under us */
 674                val |= raw_smp_processor_id();
 675
 676                if (table->ents[index] != val)
 677                        table->ents[index] = val;
 678        }
 679}
 680
 681#ifdef CONFIG_RFS_ACCEL
 682bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
 683                         u16 filter_id);
 684#endif
 685#endif /* CONFIG_RPS */
 686
 687/* This structure contains an instance of an RX queue. */
 688struct netdev_rx_queue {
 689#ifdef CONFIG_RPS
 690        struct rps_map __rcu            *rps_map;
 691        struct rps_dev_flow_table __rcu *rps_flow_table;
 692#endif
 693        struct kobject                  kobj;
 694        struct net_device               *dev;
 695} ____cacheline_aligned_in_smp;
 696
 697/*
 698 * RX queue sysfs structures and functions.
 699 */
 700struct rx_queue_attribute {
 701        struct attribute attr;
 702        ssize_t (*show)(struct netdev_rx_queue *queue,
 703            struct rx_queue_attribute *attr, char *buf);
 704        ssize_t (*store)(struct netdev_rx_queue *queue,
 705            struct rx_queue_attribute *attr, const char *buf, size_t len);
 706};
 707
 708#ifdef CONFIG_XPS
 709/*
 710 * This structure holds an XPS map which can be of variable length.  The
 711 * map is an array of queues.
 712 */
 713struct xps_map {
 714        unsigned int len;
 715        unsigned int alloc_len;
 716        struct rcu_head rcu;
 717        u16 queues[0];
 718};
 719#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
 720#define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))    \
 721    / sizeof(u16))
 722
 723/*
 724 * This structure holds all XPS maps for device.  Maps are indexed by CPU.
 725 */
 726struct xps_dev_maps {
 727        struct rcu_head rcu;
 728        struct xps_map __rcu *cpu_map[0];
 729};
 730#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +                \
 731    (nr_cpu_ids * sizeof(struct xps_map *)))
 732#endif /* CONFIG_XPS */
 733
 734#define TC_MAX_QUEUE    16
 735#define TC_BITMASK      15
 736/* HW offloaded queuing disciplines txq count and offset maps */
 737struct netdev_tc_txq {
 738        u16 count;
 739        u16 offset;
 740};
 741
 742#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
 743/*
 744 * This structure is to hold information about the device
 745 * configured to run FCoE protocol stack.
 746 */
 747struct netdev_fcoe_hbainfo {
 748        char    manufacturer[64];
 749        char    serial_number[64];
 750        char    hardware_version[64];
 751        char    driver_version[64];
 752        char    optionrom_version[64];
 753        char    firmware_version[64];
 754        char    model[256];
 755        char    model_description[256];
 756};
 757#endif
 758
 759#define MAX_PHYS_ITEM_ID_LEN 32
 760
 761/* This structure holds a unique identifier to identify some
 762 * physical item (port for example) used by a netdevice.
 763 */
 764struct netdev_phys_item_id {
 765        unsigned char id[MAX_PHYS_ITEM_ID_LEN];
 766        unsigned char id_len;
 767};
 768
 769typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
 770                                       struct sk_buff *skb);
 771
 772/*
 773 * This structure defines the management hooks for network devices.
 774 * The following hooks can be defined; unless noted otherwise, they are
 775 * optional and can be filled with a null pointer.
 776 *
 777 * int (*ndo_init)(struct net_device *dev);
 778 *     This function is called once when network device is registered.
 779 *     The network device can use this to any late stage initializaton
 780 *     or semantic validattion. It can fail with an error code which will
 781 *     be propogated back to register_netdev
 782 *
 783 * void (*ndo_uninit)(struct net_device *dev);
 784 *     This function is called when device is unregistered or when registration
 785 *     fails. It is not called if init fails.
 786 *
 787 * int (*ndo_open)(struct net_device *dev);
 788 *     This function is called when network device transistions to the up
 789 *     state.
 790 *
 791 * int (*ndo_stop)(struct net_device *dev);
 792 *     This function is called when network device transistions to the down
 793 *     state.
 794 *
 795 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
 796 *                               struct net_device *dev);
 797 *      Called when a packet needs to be transmitted.
 798 *      Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
 799 *      the queue before that can happen; it's for obsolete devices and weird
 800 *      corner cases, but the stack really does a non-trivial amount
 801 *      of useless work if you return NETDEV_TX_BUSY.
 802 *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
 803 *      Required can not be NULL.
 804 *
 805 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
 806 *                         void *accel_priv, select_queue_fallback_t fallback);
 807 *      Called to decide which queue to when device supports multiple
 808 *      transmit queues.
 809 *
 810 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
 811 *      This function is called to allow device receiver to make
 812 *      changes to configuration when multicast or promiscious is enabled.
 813 *
 814 * void (*ndo_set_rx_mode)(struct net_device *dev);
 815 *      This function is called device changes address list filtering.
 816 *      If driver handles unicast address filtering, it should set
 817 *      IFF_UNICAST_FLT to its priv_flags.
 818 *
 819 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
 820 *      This function  is called when the Media Access Control address
 821 *      needs to be changed. If this interface is not defined, the
 822 *      mac address can not be changed.
 823 *
 824 * int (*ndo_validate_addr)(struct net_device *dev);
 825 *      Test if Media Access Control address is valid for the device.
 826 *
 827 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
 828 *      Called when a user request an ioctl which can't be handled by
 829 *      the generic interface code. If not defined ioctl's return
 830 *      not supported error code.
 831 *
 832 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
 833 *      Used to set network devices bus interface parameters. This interface
 834 *      is retained for legacy reason, new devices should use the bus
 835 *      interface (PCI) for low level management.
 836 *
 837 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
 838 *      Called when a user wants to change the Maximum Transfer Unit
 839 *      of a device. If not defined, any request to change MTU will
 840 *      will return an error.
 841 *
 842 * void (*ndo_tx_timeout)(struct net_device *dev);
 843 *      Callback uses when the transmitter has not made any progress
 844 *      for dev->watchdog ticks.
 845 *
 846 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
 847 *                      struct rtnl_link_stats64 *storage);
 848 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
 849 *      Called when a user wants to get the network device usage
 850 *      statistics. Drivers must do one of the following:
 851 *      1. Define @ndo_get_stats64 to fill in a zero-initialised
 852 *         rtnl_link_stats64 structure passed by the caller.
 853 *      2. Define @ndo_get_stats to update a net_device_stats structure
 854 *         (which should normally be dev->stats) and return a pointer to
 855 *         it. The structure may be changed asynchronously only if each
 856 *         field is written atomically.
 857 *      3. Update dev->stats asynchronously and atomically, and define
 858 *         neither operation.
 859 *
 860 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
 861 *      If device support VLAN filtering this function is called when a
 862 *      VLAN id is registered.
 863 *
 864 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
 865 *      If device support VLAN filtering this function is called when a
 866 *      VLAN id is unregistered.
 867 *
 868 * void (*ndo_poll_controller)(struct net_device *dev);
 869 *
 870 *      SR-IOV management functions.
 871 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
 872 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
 873 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
 874 *                        int max_tx_rate);
 875 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
 876 * int (*ndo_get_vf_config)(struct net_device *dev,
 877 *                          int vf, struct ifla_vf_info *ivf);
 878 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
 879 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
 880 *                        struct nlattr *port[]);
 881 *
 882 *      Enable or disable the VF ability to query its RSS Redirection Table and
 883 *      Hash Key. This is needed since on some devices VF share this information
 884 *      with PF and querying it may adduce a theoretical security risk.
 885 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
 886 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
 887 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
 888 *      Called to setup 'tc' number of traffic classes in the net device. This
 889 *      is always called from the stack with the rtnl lock held and netif tx
 890 *      queues stopped. This allows the netdevice to perform queue management
 891 *      safely.
 892 *
 893 *      Fiber Channel over Ethernet (FCoE) offload functions.
 894 * int (*ndo_fcoe_enable)(struct net_device *dev);
 895 *      Called when the FCoE protocol stack wants to start using LLD for FCoE
 896 *      so the underlying device can perform whatever needed configuration or
 897 *      initialization to support acceleration of FCoE traffic.
 898 *
 899 * int (*ndo_fcoe_disable)(struct net_device *dev);
 900 *      Called when the FCoE protocol stack wants to stop using LLD for FCoE
 901 *      so the underlying device can perform whatever needed clean-ups to
 902 *      stop supporting acceleration of FCoE traffic.
 903 *
 904 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
 905 *                           struct scatterlist *sgl, unsigned int sgc);
 906 *      Called when the FCoE Initiator wants to initialize an I/O that
 907 *      is a possible candidate for Direct Data Placement (DDP). The LLD can
 908 *      perform necessary setup and returns 1 to indicate the device is set up
 909 *      successfully to perform DDP on this I/O, otherwise this returns 0.
 910 *
 911 * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
 912 *      Called when the FCoE Initiator/Target is done with the DDPed I/O as
 913 *      indicated by the FC exchange id 'xid', so the underlying device can
 914 *      clean up and reuse resources for later DDP requests.
 915 *
 916 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
 917 *                            struct scatterlist *sgl, unsigned int sgc);
 918 *      Called when the FCoE Target wants to initialize an I/O that
 919 *      is a possible candidate for Direct Data Placement (DDP). The LLD can
 920 *      perform necessary setup and returns 1 to indicate the device is set up
 921 *      successfully to perform DDP on this I/O, otherwise this returns 0.
 922 *
 923 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
 924 *                             struct netdev_fcoe_hbainfo *hbainfo);
 925 *      Called when the FCoE Protocol stack wants information on the underlying
 926 *      device. This information is utilized by the FCoE protocol stack to
 927 *      register attributes with Fiber Channel management service as per the
 928 *      FC-GS Fabric Device Management Information(FDMI) specification.
 929 *
 930 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
 931 *      Called when the underlying device wants to override default World Wide
 932 *      Name (WWN) generation mechanism in FCoE protocol stack to pass its own
 933 *      World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
 934 *      protocol stack to use.
 935 *
 936 *      RFS acceleration.
 937 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
 938 *                          u16 rxq_index, u32 flow_id);
 939 *      Set hardware filter for RFS.  rxq_index is the target queue index;
 940 *      flow_id is a flow ID to be passed to rps_may_expire_flow() later.
 941 *      Return the filter ID on success, or a negative error code.
 942 *
 943 *      Slave management functions (for bridge, bonding, etc).
 944 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
 945 *      Called to make another netdev an underling.
 946 *
 947 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
 948 *      Called to release previously enslaved netdev.
 949 *
 950 *      Feature/offload setting functions.
 951 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
 952 *              netdev_features_t features);
 953 *      Adjusts the requested feature flags according to device-specific
 954 *      constraints, and returns the resulting flags. Must not modify
 955 *      the device state.
 956 *
 957 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
 958 *      Called to update device configuration to new features. Passed
 959 *      feature set might be less than what was returned by ndo_fix_features()).
 960 *      Must return >0 or -errno if it changed dev->features itself.
 961 *
 962 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
 963 *                    struct net_device *dev,
 964 *                    const unsigned char *addr, u16 vid, u16 flags)
 965 *      Adds an FDB entry to dev for addr.
 966 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
 967 *                    struct net_device *dev,
 968 *                    const unsigned char *addr, u16 vid)
 969 *      Deletes the FDB entry from dev coresponding to addr.
 970 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
 971 *                     struct net_device *dev, struct net_device *filter_dev,
 972 *                     int idx)
 973 *      Used to add FDB entries to dump requests. Implementers should add
 974 *      entries to skb and update idx with the number of entries.
 975 *
 976 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
 977 *                           u16 flags)
 978 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
 979 *                           struct net_device *dev, u32 filter_mask,
 980 *                           int nlflags)
 981 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
 982 *                           u16 flags);
 983 *
 984 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
 985 *      Called to change device carrier. Soft-devices (like dummy, team, etc)
 986 *      which do not represent real hardware may define this to allow their
 987 *      userspace components to manage their virtual carrier state. Devices
 988 *      that determine carrier state from physical hardware properties (eg
 989 *      network cables) or protocol-dependent mechanisms (eg
 990 *      USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
 991 *
 992 * int (*ndo_get_phys_port_id)(struct net_device *dev,
 993 *                             struct netdev_phys_item_id *ppid);
 994 *      Called to get ID of physical port of this device. If driver does
 995 *      not implement this, it is assumed that the hw is not able to have
 996 *      multiple net devices on single physical port.
 997 *
 998 * void (*ndo_add_vxlan_port)(struct  net_device *dev,
 999 *                            sa_family_t sa_family, __be16 port);
1000 *      Called by vxlan to notiy a driver about the UDP port and socket
1001 *      address family that vxlan is listnening to. It is called only when
1002 *      a new port starts listening. The operation is protected by the
1003 *      vxlan_net->sock_lock.
1004 *
1005 * void (*ndo_del_vxlan_port)(struct  net_device *dev,
1006 *                            sa_family_t sa_family, __be16 port);
1007 *      Called by vxlan to notify the driver about a UDP port and socket
1008 *      address family that vxlan is not listening to anymore. The operation
1009 *      is protected by the vxlan_net->sock_lock.
1010 *
1011 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1012 *                               struct net_device *dev)
1013 *      Called by upper layer devices to accelerate switching or other
1014 *      station functionality into hardware. 'pdev is the lowerdev
1015 *      to use for the offload and 'dev' is the net device that will
1016 *      back the offload. Returns a pointer to the private structure
1017 *      the upper layer will maintain.
1018 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1019 *      Called by upper layer device to delete the station created
1020 *      by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1021 *      the station and priv is the structure returned by the add
1022 *      operation.
1023 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1024 *                                    struct net_device *dev,
1025 *                                    void *priv);
1026 *      Callback to use for xmit over the accelerated station. This
1027 *      is used in place of ndo_start_xmit on accelerated net
1028 *      devices.
1029 * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1030 *                                          struct net_device *dev
1031 *                                          netdev_features_t features);
1032 *      Called by core transmit path to determine if device is capable of
1033 *      performing offload operations on a given packet. This is to give
1034 *      the device an opportunity to implement any restrictions that cannot
1035 *      be otherwise expressed by feature flags. The check is called with
1036 *      the set of features that the stack has calculated and it returns
1037 *      those the driver believes to be appropriate.
1038 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1039 *                           int queue_index, u32 maxrate);
1040 *      Called when a user wants to set a max-rate limitation of specific
1041 *      TX queue.
1042 * int (*ndo_get_iflink)(const struct net_device *dev);
1043 *      Called to get the iflink value of this device.
1044 */
1045struct net_device_ops {
1046        int                     (*ndo_init)(struct net_device *dev);
1047        void                    (*ndo_uninit)(struct net_device *dev);
1048        int                     (*ndo_open)(struct net_device *dev);
1049        int                     (*ndo_stop)(struct net_device *dev);
1050        netdev_tx_t             (*ndo_start_xmit) (struct sk_buff *skb,
1051                                                   struct net_device *dev);
1052        u16                     (*ndo_select_queue)(struct net_device *dev,
1053                                                    struct sk_buff *skb,
1054                                                    void *accel_priv,
1055                                                    select_queue_fallback_t fallback);
1056        void                    (*ndo_change_rx_flags)(struct net_device *dev,
1057                                                       int flags);
1058        void                    (*ndo_set_rx_mode)(struct net_device *dev);
1059        int                     (*ndo_set_mac_address)(struct net_device *dev,
1060                                                       void *addr);
1061        int                     (*ndo_validate_addr)(struct net_device *dev);
1062        int                     (*ndo_do_ioctl)(struct net_device *dev,
1063                                                struct ifreq *ifr, int cmd);
1064        int                     (*ndo_set_config)(struct net_device *dev,
1065                                                  struct ifmap *map);
1066        int                     (*ndo_change_mtu)(struct net_device *dev,
1067                                                  int new_mtu);
1068        int                     (*ndo_neigh_setup)(struct net_device *dev,
1069                                                   struct neigh_parms *);
1070        void                    (*ndo_tx_timeout) (struct net_device *dev);
1071
1072        struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1073                                                     struct rtnl_link_stats64 *storage);
1074        struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1075
1076        int                     (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1077                                                       __be16 proto, u16 vid);
1078        int                     (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1079                                                        __be16 proto, u16 vid);
1080#ifdef CONFIG_NET_POLL_CONTROLLER
1081        void                    (*ndo_poll_controller)(struct net_device *dev);
1082        int                     (*ndo_netpoll_setup)(struct net_device *dev,
1083                                                     struct netpoll_info *info);
1084        void                    (*ndo_netpoll_cleanup)(struct net_device *dev);
1085#endif
1086#ifdef CONFIG_NET_RX_BUSY_POLL
1087        int                     (*ndo_busy_poll)(struct napi_struct *dev);
1088#endif
1089        int                     (*ndo_set_vf_mac)(struct net_device *dev,
1090                                                  int queue, u8 *mac);
1091        int                     (*ndo_set_vf_vlan)(struct net_device *dev,
1092                                                   int queue, u16 vlan, u8 qos);
1093        int                     (*ndo_set_vf_rate)(struct net_device *dev,
1094                                                   int vf, int min_tx_rate,
1095                                                   int max_tx_rate);
1096        int                     (*ndo_set_vf_spoofchk)(struct net_device *dev,
1097                                                       int vf, bool setting);
1098        int                     (*ndo_get_vf_config)(struct net_device *dev,
1099                                                     int vf,
1100                                                     struct ifla_vf_info *ivf);
1101        int                     (*ndo_set_vf_link_state)(struct net_device *dev,
1102                                                         int vf, int link_state);
1103        int                     (*ndo_set_vf_port)(struct net_device *dev,
1104                                                   int vf,
1105                                                   struct nlattr *port[]);
1106        int                     (*ndo_get_vf_port)(struct net_device *dev,
1107                                                   int vf, struct sk_buff *skb);
1108        int                     (*ndo_set_vf_rss_query_en)(
1109                                                   struct net_device *dev,
1110                                                   int vf, bool setting);
1111        int                     (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1112#if IS_ENABLED(CONFIG_FCOE)
1113        int                     (*ndo_fcoe_enable)(struct net_device *dev);
1114        int                     (*ndo_fcoe_disable)(struct net_device *dev);
1115        int                     (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1116                                                      u16 xid,
1117                                                      struct scatterlist *sgl,
1118                                                      unsigned int sgc);
1119        int                     (*ndo_fcoe_ddp_done)(struct net_device *dev,
1120                                                     u16 xid);
1121        int                     (*ndo_fcoe_ddp_target)(struct net_device *dev,
1122                                                       u16 xid,
1123                                                       struct scatterlist *sgl,
1124                                                       unsigned int sgc);
1125        int                     (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1126                                                        struct netdev_fcoe_hbainfo *hbainfo);
1127#endif
1128
1129#if IS_ENABLED(CONFIG_LIBFCOE)
1130#define NETDEV_FCOE_WWNN 0
1131#define NETDEV_FCOE_WWPN 1
1132        int                     (*ndo_fcoe_get_wwn)(struct net_device *dev,
1133                                                    u64 *wwn, int type);
1134#endif
1135
1136#ifdef CONFIG_RFS_ACCEL
1137        int                     (*ndo_rx_flow_steer)(struct net_device *dev,
1138                                                     const struct sk_buff *skb,
1139                                                     u16 rxq_index,
1140                                                     u32 flow_id);
1141#endif
1142        int                     (*ndo_add_slave)(struct net_device *dev,
1143                                                 struct net_device *slave_dev);
1144        int                     (*ndo_del_slave)(struct net_device *dev,
1145                                                 struct net_device *slave_dev);
1146        netdev_features_t       (*ndo_fix_features)(struct net_device *dev,
1147                                                    netdev_features_t features);
1148        int                     (*ndo_set_features)(struct net_device *dev,
1149                                                    netdev_features_t features);
1150        int                     (*ndo_neigh_construct)(struct neighbour *n);
1151        void                    (*ndo_neigh_destroy)(struct neighbour *n);
1152
1153        int                     (*ndo_fdb_add)(struct ndmsg *ndm,
1154                                               struct nlattr *tb[],
1155                                               struct net_device *dev,
1156                                               const unsigned char *addr,
1157                                               u16 vid,
1158                                               u16 flags);
1159        int                     (*ndo_fdb_del)(struct ndmsg *ndm,
1160                                               struct nlattr *tb[],
1161                                               struct net_device *dev,
1162                                               const unsigned char *addr,
1163                                               u16 vid);
1164        int                     (*ndo_fdb_dump)(struct sk_buff *skb,
1165                                                struct netlink_callback *cb,
1166                                                struct net_device *dev,
1167                                                struct net_device *filter_dev,
1168                                                int idx);
1169
1170        int                     (*ndo_bridge_setlink)(struct net_device *dev,
1171                                                      struct nlmsghdr *nlh,
1172                                                      u16 flags);
1173        int                     (*ndo_bridge_getlink)(struct sk_buff *skb,
1174                                                      u32 pid, u32 seq,
1175                                                      struct net_device *dev,
1176                                                      u32 filter_mask,
1177                                                      int nlflags);
1178        int                     (*ndo_bridge_dellink)(struct net_device *dev,
1179                                                      struct nlmsghdr *nlh,
1180                                                      u16 flags);
1181        int                     (*ndo_change_carrier)(struct net_device *dev,
1182                                                      bool new_carrier);
1183        int                     (*ndo_get_phys_port_id)(struct net_device *dev,
1184                                                        struct netdev_phys_item_id *ppid);
1185        int                     (*ndo_get_phys_port_name)(struct net_device *dev,
1186                                                          char *name, size_t len);
1187        void                    (*ndo_add_vxlan_port)(struct  net_device *dev,
1188                                                      sa_family_t sa_family,
1189                                                      __be16 port);
1190        void                    (*ndo_del_vxlan_port)(struct  net_device *dev,
1191                                                      sa_family_t sa_family,
1192                                                      __be16 port);
1193
1194        void*                   (*ndo_dfwd_add_station)(struct net_device *pdev,
1195                                                        struct net_device *dev);
1196        void                    (*ndo_dfwd_del_station)(struct net_device *pdev,
1197                                                        void *priv);
1198
1199        netdev_tx_t             (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1200                                                        struct net_device *dev,
1201                                                        void *priv);
1202        int                     (*ndo_get_lock_subclass)(struct net_device *dev);
1203        netdev_features_t       (*ndo_features_check) (struct sk_buff *skb,
1204                                                       struct net_device *dev,
1205                                                       netdev_features_t features);
1206        int                     (*ndo_set_tx_maxrate)(struct net_device *dev,
1207                                                      int queue_index,
1208                                                      u32 maxrate);
1209        int                     (*ndo_get_iflink)(const struct net_device *dev);
1210};
1211
1212/**
1213 * enum net_device_priv_flags - &struct net_device priv_flags
1214 *
1215 * These are the &struct net_device, they are only set internally
1216 * by drivers and used in the kernel. These flags are invisible to
1217 * userspace, this means that the order of these flags can change
1218 * during any kernel release.
1219 *
1220 * You should have a pretty good reason to be extending these flags.
1221 *
1222 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1223 * @IFF_EBRIDGE: Ethernet bridging device
1224 * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1225 * @IFF_MASTER_8023AD: bonding master, 802.3ad
1226 * @IFF_MASTER_ALB: bonding master, balance-alb
1227 * @IFF_BONDING: bonding master or slave
1228 * @IFF_SLAVE_NEEDARP: need ARPs for validation
1229 * @IFF_ISATAP: ISATAP interface (RFC4214)
1230 * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1231 * @IFF_WAN_HDLC: WAN HDLC device
1232 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1233 *      release skb->dst
1234 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1235 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1236 * @IFF_MACVLAN_PORT: device used as macvlan port
1237 * @IFF_BRIDGE_PORT: device used as bridge port
1238 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1239 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1240 * @IFF_UNICAST_FLT: Supports unicast filtering
1241 * @IFF_TEAM_PORT: device used as team port
1242 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1243 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1244 *      change when it's running
1245 * @IFF_MACVLAN: Macvlan device
1246 */
1247enum netdev_priv_flags {
1248        IFF_802_1Q_VLAN                 = 1<<0,
1249        IFF_EBRIDGE                     = 1<<1,
1250        IFF_SLAVE_INACTIVE              = 1<<2,
1251        IFF_MASTER_8023AD               = 1<<3,
1252        IFF_MASTER_ALB                  = 1<<4,
1253        IFF_BONDING                     = 1<<5,
1254        IFF_SLAVE_NEEDARP               = 1<<6,
1255        IFF_ISATAP                      = 1<<7,
1256        IFF_MASTER_ARPMON               = 1<<8,
1257        IFF_WAN_HDLC                    = 1<<9,
1258        IFF_XMIT_DST_RELEASE            = 1<<10,
1259        IFF_DONT_BRIDGE                 = 1<<11,
1260        IFF_DISABLE_NETPOLL             = 1<<12,
1261        IFF_MACVLAN_PORT                = 1<<13,
1262        IFF_BRIDGE_PORT                 = 1<<14,
1263        IFF_OVS_DATAPATH                = 1<<15,
1264        IFF_TX_SKB_SHARING              = 1<<16,
1265        IFF_UNICAST_FLT                 = 1<<17,
1266        IFF_TEAM_PORT                   = 1<<18,
1267        IFF_SUPP_NOFCS                  = 1<<19,
1268        IFF_LIVE_ADDR_CHANGE            = 1<<20,
1269        IFF_MACVLAN                     = 1<<21,
1270        IFF_XMIT_DST_RELEASE_PERM       = 1<<22,
1271        IFF_IPVLAN_MASTER               = 1<<23,
1272        IFF_IPVLAN_SLAVE                = 1<<24,
1273};
1274
1275#define IFF_802_1Q_VLAN                 IFF_802_1Q_VLAN
1276#define IFF_EBRIDGE                     IFF_EBRIDGE
1277#define IFF_SLAVE_INACTIVE              IFF_SLAVE_INACTIVE
1278#define IFF_MASTER_8023AD               IFF_MASTER_8023AD
1279#define IFF_MASTER_ALB                  IFF_MASTER_ALB
1280#define IFF_BONDING                     IFF_BONDING
1281#define IFF_SLAVE_NEEDARP               IFF_SLAVE_NEEDARP
1282#define IFF_ISATAP                      IFF_ISATAP
1283#define IFF_MASTER_ARPMON               IFF_MASTER_ARPMON
1284#define IFF_WAN_HDLC                    IFF_WAN_HDLC
1285#define IFF_XMIT_DST_RELEASE            IFF_XMIT_DST_RELEASE
1286#define IFF_DONT_BRIDGE                 IFF_DONT_BRIDGE
1287#define IFF_DISABLE_NETPOLL             IFF_DISABLE_NETPOLL
1288#define IFF_MACVLAN_PORT                IFF_MACVLAN_PORT
1289#define IFF_BRIDGE_PORT                 IFF_BRIDGE_PORT
1290#define IFF_OVS_DATAPATH                IFF_OVS_DATAPATH
1291#define IFF_TX_SKB_SHARING              IFF_TX_SKB_SHARING
1292#define IFF_UNICAST_FLT                 IFF_UNICAST_FLT
1293#define IFF_TEAM_PORT                   IFF_TEAM_PORT
1294#define IFF_SUPP_NOFCS                  IFF_SUPP_NOFCS
1295#define IFF_LIVE_ADDR_CHANGE            IFF_LIVE_ADDR_CHANGE
1296#define IFF_MACVLAN                     IFF_MACVLAN
1297#define IFF_XMIT_DST_RELEASE_PERM       IFF_XMIT_DST_RELEASE_PERM
1298#define IFF_IPVLAN_MASTER               IFF_IPVLAN_MASTER
1299#define IFF_IPVLAN_SLAVE                IFF_IPVLAN_SLAVE
1300
1301/**
1302 *      struct net_device - The DEVICE structure.
1303 *              Actually, this whole structure is a big mistake.  It mixes I/O
1304 *              data with strictly "high-level" data, and it has to know about
1305 *              almost every data structure used in the INET module.
1306 *
1307 *      @name:  This is the first field of the "visible" part of this structure
1308 *              (i.e. as seen by users in the "Space.c" file).  It is the name
1309 *              of the interface.
1310 *
1311 *      @name_hlist:    Device name hash chain, please keep it close to name[]
1312 *      @ifalias:       SNMP alias
1313 *      @mem_end:       Shared memory end
1314 *      @mem_start:     Shared memory start
1315 *      @base_addr:     Device I/O address
1316 *      @irq:           Device IRQ number
1317 *
1318 *      @carrier_changes:       Stats to monitor carrier on<->off transitions
1319 *
1320 *      @state:         Generic network queuing layer state, see netdev_state_t
1321 *      @dev_list:      The global list of network devices
1322 *      @napi_list:     List entry, that is used for polling napi devices
1323 *      @unreg_list:    List entry, that is used, when we are unregistering the
1324 *                      device, see the function unregister_netdev
1325 *      @close_list:    List entry, that is used, when we are closing the device
1326 *
1327 *      @adj_list:      Directly linked devices, like slaves for bonding
1328 *      @all_adj_list:  All linked devices, *including* neighbours
1329 *      @features:      Currently active device features
1330 *      @hw_features:   User-changeable features
1331 *
1332 *      @wanted_features:       User-requested features
1333 *      @vlan_features:         Mask of features inheritable by VLAN devices
1334 *
1335 *      @hw_enc_features:       Mask of features inherited by encapsulating devices
1336 *                              This field indicates what encapsulation
1337 *                              offloads the hardware is capable of doing,
1338 *                              and drivers will need to set them appropriately.
1339 *
1340 *      @mpls_features: Mask of features inheritable by MPLS
1341 *
1342 *      @ifindex:       interface index
1343 *      @group:         The group, that the device belongs to
1344 *
1345 *      @stats:         Statistics struct, which was left as a legacy, use
1346 *                      rtnl_link_stats64 instead
1347 *
1348 *      @rx_dropped:    Dropped packets by core network,
1349 *                      do not use this in drivers
1350 *      @tx_dropped:    Dropped packets by core network,
1351 *                      do not use this in drivers
1352 *
1353 *      @wireless_handlers:     List of functions to handle Wireless Extensions,
1354 *                              instead of ioctl,
1355 *                              see <net/iw_handler.h> for details.
1356 *      @wireless_data: Instance data managed by the core of wireless extensions
1357 *
1358 *      @netdev_ops:    Includes several pointers to callbacks,
1359 *                      if one wants to override the ndo_*() functions
1360 *      @ethtool_ops:   Management operations
1361 *      @header_ops:    Includes callbacks for creating,parsing,caching,etc
1362 *                      of Layer 2 headers.
1363 *
1364 *      @flags:         Interface flags (a la BSD)
1365 *      @priv_flags:    Like 'flags' but invisible to userspace,
1366 *                      see if.h for the definitions
1367 *      @gflags:        Global flags ( kept as legacy )
1368 *      @padded:        How much padding added by alloc_netdev()
1369 *      @operstate:     RFC2863 operstate
1370 *      @link_mode:     Mapping policy to operstate
1371 *      @if_port:       Selectable AUI, TP, ...
1372 *      @dma:           DMA channel
1373 *      @mtu:           Interface MTU value
1374 *      @type:          Interface hardware type
1375 *      @hard_header_len: Hardware header length
1376 *
1377 *      @needed_headroom: Extra headroom the hardware may need, but not in all
1378 *                        cases can this be guaranteed
1379 *      @needed_tailroom: Extra tailroom the hardware may need, but not in all
1380 *                        cases can this be guaranteed. Some cases also use
1381 *                        LL_MAX_HEADER instead to allocate the skb
1382 *
1383 *      interface address info:
1384 *
1385 *      @perm_addr:             Permanent hw address
1386 *      @addr_assign_type:      Hw address assignment type
1387 *      @addr_len:              Hardware address length
1388 *      @neigh_priv_len;        Used in neigh_alloc(),
1389 *                              initialized only in atm/clip.c
1390 *      @dev_id:                Used to differentiate devices that share
1391 *                              the same link layer address
1392 *      @dev_port:              Used to differentiate devices that share
1393 *                              the same function
1394 *      @addr_list_lock:        XXX: need comments on this one
1395 *      @uc_promisc:            Counter, that indicates, that promiscuous mode
1396 *                              has been enabled due to the need to listen to
1397 *                              additional unicast addresses in a device that
1398 *                              does not implement ndo_set_rx_mode()
1399 *      @uc:                    unicast mac addresses
1400 *      @mc:                    multicast mac addresses
1401 *      @dev_addrs:             list of device hw addresses
1402 *      @queues_kset:           Group of all Kobjects in the Tx and RX queues
1403 *      @promiscuity:           Number of times, the NIC is told to work in
1404 *                              Promiscuous mode, if it becomes 0 the NIC will
1405 *                              exit from working in Promiscuous mode
1406 *      @allmulti:              Counter, enables or disables allmulticast mode
1407 *
1408 *      @vlan_info:     VLAN info
1409 *      @dsa_ptr:       dsa specific data
1410 *      @tipc_ptr:      TIPC specific data
1411 *      @atalk_ptr:     AppleTalk link
1412 *      @ip_ptr:        IPv4 specific data
1413 *      @dn_ptr:        DECnet specific data
1414 *      @ip6_ptr:       IPv6 specific data
1415 *      @ax25_ptr:      AX.25 specific data
1416 *      @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1417 *
1418 *      @last_rx:       Time of last Rx
1419 *      @dev_addr:      Hw address (before bcast,
1420 *                      because most packets are unicast)
1421 *
1422 *      @_rx:                   Array of RX queues
1423 *      @num_rx_queues:         Number of RX queues
1424 *                              allocated at register_netdev() time
1425 *      @real_num_rx_queues:    Number of RX queues currently active in device
1426 *
1427 *      @rx_handler:            handler for received packets
1428 *      @rx_handler_data:       XXX: need comments on this one
1429 *      @ingress_queue:         XXX: need comments on this one
1430 *      @broadcast:             hw bcast address
1431 *
1432 *      @rx_cpu_rmap:   CPU reverse-mapping for RX completion interrupts,
1433 *                      indexed by RX queue number. Assigned by driver.
1434 *                      This must only be set if the ndo_rx_flow_steer
1435 *                      operation is defined
1436 *      @index_hlist:           Device index hash chain
1437 *
1438 *      @_tx:                   Array of TX queues
1439 *      @num_tx_queues:         Number of TX queues allocated at alloc_netdev_mq() time
1440 *      @real_num_tx_queues:    Number of TX queues currently active in device
1441 *      @qdisc:                 Root qdisc from userspace point of view
1442 *      @tx_queue_len:          Max frames per queue allowed
1443 *      @tx_global_lock:        XXX: need comments on this one
1444 *
1445 *      @xps_maps:      XXX: need comments on this one
1446 *
1447 *      @trans_start:           Time (in jiffies) of last Tx
1448 *      @watchdog_timeo:        Represents the timeout that is used by
1449 *                              the watchdog ( see dev_watchdog() )
1450 *      @watchdog_timer:        List of timers
1451 *
1452 *      @pcpu_refcnt:           Number of references to this device
1453 *      @todo_list:             Delayed register/unregister
1454 *      @link_watch_list:       XXX: need comments on this one
1455 *
1456 *      @reg_state:             Register/unregister state machine
1457 *      @dismantle:             Device is going to be freed
1458 *      @rtnl_link_state:       This enum represents the phases of creating
1459 *                              a new link
1460 *
1461 *      @destructor:            Called from unregister,
1462 *                              can be used to call free_netdev
1463 *      @npinfo:                XXX: need comments on this one
1464 *      @nd_net:                Network namespace this network device is inside
1465 *
1466 *      @ml_priv:       Mid-layer private
1467 *      @lstats:        Loopback statistics
1468 *      @tstats:        Tunnel statistics
1469 *      @dstats:        Dummy statistics
1470 *      @vstats:        Virtual ethernet statistics
1471 *
1472 *      @garp_port:     GARP
1473 *      @mrp_port:      MRP
1474 *
1475 *      @dev:           Class/net/name entry
1476 *      @sysfs_groups:  Space for optional device, statistics and wireless
1477 *                      sysfs groups
1478 *
1479 *      @sysfs_rx_queue_group:  Space for optional per-rx queue attributes
1480 *      @rtnl_link_ops: Rtnl_link_ops
1481 *
1482 *      @gso_max_size:  Maximum size of generic segmentation offload
1483 *      @gso_max_segs:  Maximum number of segments that can be passed to the
1484 *                      NIC for GSO
1485 *      @gso_min_segs:  Minimum number of segments that can be passed to the
1486 *                      NIC for GSO
1487 *
1488 *      @dcbnl_ops:     Data Center Bridging netlink ops
1489 *      @num_tc:        Number of traffic classes in the net device
1490 *      @tc_to_txq:     XXX: need comments on this one
1491 *      @prio_tc_map    XXX: need comments on this one
1492 *
1493 *      @fcoe_ddp_xid:  Max exchange id for FCoE LRO by ddp
1494 *
1495 *      @priomap:       XXX: need comments on this one
1496 *      @phydev:        Physical device may attach itself
1497 *                      for hardware timestamping
1498 *
1499 *      @qdisc_tx_busylock:     XXX: need comments on this one
1500 *
1501 *      FIXME: cleanup struct net_device such that network protocol info
1502 *      moves out.
1503 */
1504
1505struct net_device {
1506        char                    name[IFNAMSIZ];
1507        struct hlist_node       name_hlist;
1508        char                    *ifalias;
1509        /*
1510         *      I/O specific fields
1511         *      FIXME: Merge these and struct ifmap into one
1512         */
1513        unsigned long           mem_end;
1514        unsigned long           mem_start;
1515        unsigned long           base_addr;
1516        int                     irq;
1517
1518        atomic_t                carrier_changes;
1519
1520        /*
1521         *      Some hardware also needs these fields (state,dev_list,
1522         *      napi_list,unreg_list,close_list) but they are not
1523         *      part of the usual set specified in Space.c.
1524         */
1525
1526        unsigned long           state;
1527
1528        struct list_head        dev_list;
1529        struct list_head        napi_list;
1530        struct list_head        unreg_list;
1531        struct list_head        close_list;
1532        struct list_head        ptype_all;
1533        struct list_head        ptype_specific;
1534
1535        struct {
1536                struct list_head upper;
1537                struct list_head lower;
1538        } adj_list;
1539
1540        struct {
1541                struct list_head upper;
1542                struct list_head lower;
1543        } all_adj_list;
1544
1545        netdev_features_t       features;
1546        netdev_features_t       hw_features;
1547        netdev_features_t       wanted_features;
1548        netdev_features_t       vlan_features;
1549        netdev_features_t       hw_enc_features;
1550        netdev_features_t       mpls_features;
1551
1552        int                     ifindex;
1553        int                     group;
1554
1555        struct net_device_stats stats;
1556
1557        atomic_long_t           rx_dropped;
1558        atomic_long_t           tx_dropped;
1559
1560#ifdef CONFIG_WIRELESS_EXT
1561        const struct iw_handler_def *   wireless_handlers;
1562        struct iw_public_data * wireless_data;
1563#endif
1564        const struct net_device_ops *netdev_ops;
1565        const struct ethtool_ops *ethtool_ops;
1566#ifdef CONFIG_NET_SWITCHDEV
1567        const struct swdev_ops *swdev_ops;
1568#endif
1569
1570        const struct header_ops *header_ops;
1571
1572        unsigned int            flags;
1573        unsigned int            priv_flags;
1574
1575        unsigned short          gflags;
1576        unsigned short          padded;
1577
1578        unsigned char           operstate;
1579        unsigned char           link_mode;
1580
1581        unsigned char           if_port;
1582        unsigned char           dma;
1583
1584        unsigned int            mtu;
1585        unsigned short          type;
1586        unsigned short          hard_header_len;
1587
1588        unsigned short          needed_headroom;
1589        unsigned short          needed_tailroom;
1590
1591        /* Interface address info. */
1592        unsigned char           perm_addr[MAX_ADDR_LEN];
1593        unsigned char           addr_assign_type;
1594        unsigned char           addr_len;
1595        unsigned short          neigh_priv_len;
1596        unsigned short          dev_id;
1597        unsigned short          dev_port;
1598        spinlock_t              addr_list_lock;
1599        unsigned char           name_assign_type;
1600        bool                    uc_promisc;
1601        struct netdev_hw_addr_list      uc;
1602        struct netdev_hw_addr_list      mc;
1603        struct netdev_hw_addr_list      dev_addrs;
1604
1605#ifdef CONFIG_SYSFS
1606        struct kset             *queues_kset;
1607#endif
1608        unsigned int            promiscuity;
1609        unsigned int            allmulti;
1610
1611
1612        /* Protocol specific pointers */
1613
1614#if IS_ENABLED(CONFIG_VLAN_8021Q)
1615        struct vlan_info __rcu  *vlan_info;
1616#endif
1617#if IS_ENABLED(CONFIG_NET_DSA)
1618        struct dsa_switch_tree  *dsa_ptr;
1619#endif
1620#if IS_ENABLED(CONFIG_TIPC)
1621        struct tipc_bearer __rcu *tipc_ptr;
1622#endif
1623        void                    *atalk_ptr;
1624        struct in_device __rcu  *ip_ptr;
1625        struct dn_dev __rcu     *dn_ptr;
1626        struct inet6_dev __rcu  *ip6_ptr;
1627        void                    *ax25_ptr;
1628        struct wireless_dev     *ieee80211_ptr;
1629        struct wpan_dev         *ieee802154_ptr;
1630#if IS_ENABLED(CONFIG_MPLS_ROUTING)
1631        struct mpls_dev __rcu   *mpls_ptr;
1632#endif
1633
1634/*
1635 * Cache lines mostly used on receive path (including eth_type_trans())
1636 */
1637        unsigned long           last_rx;
1638
1639        /* Interface address info used in eth_type_trans() */
1640        unsigned char           *dev_addr;
1641
1642
1643#ifdef CONFIG_SYSFS
1644        struct netdev_rx_queue  *_rx;
1645
1646        unsigned int            num_rx_queues;
1647        unsigned int            real_num_rx_queues;
1648
1649#endif
1650
1651        unsigned long           gro_flush_timeout;
1652        rx_handler_func_t __rcu *rx_handler;
1653        void __rcu              *rx_handler_data;
1654
1655        struct netdev_queue __rcu *ingress_queue;
1656        unsigned char           broadcast[MAX_ADDR_LEN];
1657#ifdef CONFIG_RFS_ACCEL
1658        struct cpu_rmap         *rx_cpu_rmap;
1659#endif
1660        struct hlist_node       index_hlist;
1661
1662/*
1663 * Cache lines mostly used on transmit path
1664 */
1665        struct netdev_queue     *_tx ____cacheline_aligned_in_smp;
1666        unsigned int            num_tx_queues;
1667        unsigned int            real_num_tx_queues;
1668        struct Qdisc            *qdisc;
1669        unsigned long           tx_queue_len;
1670        spinlock_t              tx_global_lock;
1671        int                     watchdog_timeo;
1672
1673#ifdef CONFIG_XPS
1674        struct xps_dev_maps __rcu *xps_maps;
1675#endif
1676
1677        /* These may be needed for future network-power-down code. */
1678
1679        /*
1680         * trans_start here is expensive for high speed devices on SMP,
1681         * please use netdev_queue->trans_start instead.
1682         */
1683        unsigned long           trans_start;
1684
1685        struct timer_list       watchdog_timer;
1686
1687        int __percpu            *pcpu_refcnt;
1688        struct list_head        todo_list;
1689
1690        struct list_head        link_watch_list;
1691
1692        enum { NETREG_UNINITIALIZED=0,
1693               NETREG_REGISTERED,       /* completed register_netdevice */
1694               NETREG_UNREGISTERING,    /* called unregister_netdevice */
1695               NETREG_UNREGISTERED,     /* completed unregister todo */
1696               NETREG_RELEASED,         /* called free_netdev */
1697               NETREG_DUMMY,            /* dummy device for NAPI poll */
1698        } reg_state:8;
1699
1700        bool dismantle;
1701
1702        enum {
1703                RTNL_LINK_INITIALIZED,
1704                RTNL_LINK_INITIALIZING,
1705        } rtnl_link_state:16;
1706
1707        void (*destructor)(struct net_device *dev);
1708
1709#ifdef CONFIG_NETPOLL
1710        struct netpoll_info __rcu       *npinfo;
1711#endif
1712
1713        possible_net_t                  nd_net;
1714
1715        /* mid-layer private */
1716        union {
1717                void                                    *ml_priv;
1718                struct pcpu_lstats __percpu             *lstats;
1719                struct pcpu_sw_netstats __percpu        *tstats;
1720                struct pcpu_dstats __percpu             *dstats;
1721                struct pcpu_vstats __percpu             *vstats;
1722        };
1723
1724        struct garp_port __rcu  *garp_port;
1725        struct mrp_port __rcu   *mrp_port;
1726
1727        struct device   dev;
1728        const struct attribute_group *sysfs_groups[4];
1729        const struct attribute_group *sysfs_rx_queue_group;
1730
1731        const struct rtnl_link_ops *rtnl_link_ops;
1732
1733        /* for setting kernel sock attribute on TCP connection setup */
1734#define GSO_MAX_SIZE            65536
1735        unsigned int            gso_max_size;
1736#define GSO_MAX_SEGS            65535
1737        u16                     gso_max_segs;
1738        u16                     gso_min_segs;
1739#ifdef CONFIG_DCB
1740        const struct dcbnl_rtnl_ops *dcbnl_ops;
1741#endif
1742        u8 num_tc;
1743        struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1744        u8 prio_tc_map[TC_BITMASK + 1];
1745
1746#if IS_ENABLED(CONFIG_FCOE)
1747        unsigned int            fcoe_ddp_xid;
1748#endif
1749#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1750        struct netprio_map __rcu *priomap;
1751#endif
1752        struct phy_device *phydev;
1753        struct lock_class_key *qdisc_tx_busylock;
1754};
1755#define to_net_dev(d) container_of(d, struct net_device, dev)
1756
1757#define NETDEV_ALIGN            32
1758
1759static inline
1760int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1761{
1762        return dev->prio_tc_map[prio & TC_BITMASK];
1763}
1764
1765static inline
1766int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1767{
1768        if (tc >= dev->num_tc)
1769                return -EINVAL;
1770
1771        dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1772        return 0;
1773}
1774
1775static inline
1776void netdev_reset_tc(struct net_device *dev)
1777{
1778        dev->num_tc = 0;
1779        memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1780        memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1781}
1782
1783static inline
1784int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1785{
1786        if (tc >= dev->num_tc)
1787                return -EINVAL;
1788
1789        dev->tc_to_txq[tc].count = count;
1790        dev->tc_to_txq[tc].offset = offset;
1791        return 0;
1792}
1793
1794static inline
1795int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1796{
1797        if (num_tc > TC_MAX_QUEUE)
1798                return -EINVAL;
1799
1800        dev->num_tc = num_tc;
1801        return 0;
1802}
1803
1804static inline
1805int netdev_get_num_tc(struct net_device *dev)
1806{
1807        return dev->num_tc;
1808}
1809
1810static inline
1811struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1812                                         unsigned int index)
1813{
1814        return &dev->_tx[index];
1815}
1816
1817static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1818                                                    const struct sk_buff *skb)
1819{
1820        return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1821}
1822
1823static inline void netdev_for_each_tx_queue(struct net_device *dev,
1824                                            void (*f)(struct net_device *,
1825                                                      struct netdev_queue *,
1826                                                      void *),
1827                                            void *arg)
1828{
1829        unsigned int i;
1830
1831        for (i = 0; i < dev->num_tx_queues; i++)
1832                f(dev, &dev->_tx[i], arg);
1833}
1834
1835struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1836                                    struct sk_buff *skb,
1837                                    void *accel_priv);
1838
1839/*
1840 * Net namespace inlines
1841 */
1842static inline
1843struct net *dev_net(const struct net_device *dev)
1844{
1845        return read_pnet(&dev->nd_net);
1846}
1847
1848static inline
1849void dev_net_set(struct net_device *dev, struct net *net)
1850{
1851        write_pnet(&dev->nd_net, net);
1852}
1853
1854static inline bool netdev_uses_dsa(struct net_device *dev)
1855{
1856#if IS_ENABLED(CONFIG_NET_DSA)
1857        if (dev->dsa_ptr != NULL)
1858                return dsa_uses_tagged_protocol(dev->dsa_ptr);
1859#endif
1860        return false;
1861}
1862
1863/**
1864 *      netdev_priv - access network device private data
1865 *      @dev: network device
1866 *
1867 * Get network device private data
1868 */
1869static inline void *netdev_priv(const struct net_device *dev)
1870{
1871        return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1872}
1873
1874/* Set the sysfs physical device reference for the network logical device
1875 * if set prior to registration will cause a symlink during initialization.
1876 */
1877#define SET_NETDEV_DEV(net, pdev)       ((net)->dev.parent = (pdev))
1878
1879/* Set the sysfs device type for the network logical device to allow
1880 * fine-grained identification of different network device types. For
1881 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1882 */
1883#define SET_NETDEV_DEVTYPE(net, devtype)        ((net)->dev.type = (devtype))
1884
1885/* Default NAPI poll() weight
1886 * Device drivers are strongly advised to not use bigger value
1887 */
1888#define NAPI_POLL_WEIGHT 64
1889
1890/**
1891 *      netif_napi_add - initialize a napi context
1892 *      @dev:  network device
1893 *      @napi: napi context
1894 *      @poll: polling function
1895 *      @weight: default weight
1896 *
1897 * netif_napi_add() must be used to initialize a napi context prior to calling
1898 * *any* of the other napi related functions.
1899 */
1900void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1901                    int (*poll)(struct napi_struct *, int), int weight);
1902
1903/**
1904 *  netif_napi_del - remove a napi context
1905 *  @napi: napi context
1906 *
1907 *  netif_napi_del() removes a napi context from the network device napi list
1908 */
1909void netif_napi_del(struct napi_struct *napi);
1910
1911struct napi_gro_cb {
1912        /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1913        void *frag0;
1914
1915        /* Length of frag0. */
1916        unsigned int frag0_len;
1917
1918        /* This indicates where we are processing relative to skb->data. */
1919        int data_offset;
1920
1921        /* This is non-zero if the packet cannot be merged with the new skb. */
1922        u16     flush;
1923
1924        /* Save the IP ID here and check when we get to the transport layer */
1925        u16     flush_id;
1926
1927        /* Number of segments aggregated. */
1928        u16     count;
1929
1930        /* Start offset for remote checksum offload */
1931        u16     gro_remcsum_start;
1932
1933        /* jiffies when first packet was created/queued */
1934        unsigned long age;
1935
1936        /* Used in ipv6_gro_receive() and foo-over-udp */
1937        u16     proto;
1938
1939        /* This is non-zero if the packet may be of the same flow. */
1940        u8      same_flow:1;
1941
1942        /* Used in udp_gro_receive */
1943        u8      udp_mark:1;
1944
1945        /* GRO checksum is valid */
1946        u8      csum_valid:1;
1947
1948        /* Number of checksums via CHECKSUM_UNNECESSARY */
1949        u8      csum_cnt:3;
1950
1951        /* Free the skb? */
1952        u8      free:2;
1953#define NAPI_GRO_FREE             1
1954#define NAPI_GRO_FREE_STOLEN_HEAD 2
1955
1956        /* Used in foo-over-udp, set in udp[46]_gro_receive */
1957        u8      is_ipv6:1;
1958
1959        /* 7 bit hole */
1960
1961        /* used to support CHECKSUM_COMPLETE for tunneling protocols */
1962        __wsum  csum;
1963
1964        /* used in skb_gro_receive() slow path */
1965        struct sk_buff *last;
1966};
1967
1968#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1969
1970struct packet_type {
1971        __be16                  type;   /* This is really htons(ether_type). */
1972        struct net_device       *dev;   /* NULL is wildcarded here           */
1973        int                     (*func) (struct sk_buff *,
1974                                         struct net_device *,
1975                                         struct packet_type *,
1976                                         struct net_device *);
1977        bool                    (*id_match)(struct packet_type *ptype,
1978                                            struct sock *sk);
1979        void                    *af_packet_priv;
1980        struct list_head        list;
1981};
1982
1983struct offload_callbacks {
1984        struct sk_buff          *(*gso_segment)(struct sk_buff *skb,
1985                                                netdev_features_t features);
1986        struct sk_buff          **(*gro_receive)(struct sk_buff **head,
1987                                                 struct sk_buff *skb);
1988        int                     (*gro_complete)(struct sk_buff *skb, int nhoff);
1989};
1990
1991struct packet_offload {
1992        __be16                   type;  /* This is really htons(ether_type). */
1993        struct offload_callbacks callbacks;
1994        struct list_head         list;
1995};
1996
1997struct udp_offload;
1998
1999struct udp_offload_callbacks {
2000        struct sk_buff          **(*gro_receive)(struct sk_buff **head,
2001                                                 struct sk_buff *skb,
2002                                                 struct udp_offload *uoff);
2003        int                     (*gro_complete)(struct sk_buff *skb,
2004                                                int nhoff,
2005                                                struct udp_offload *uoff);
2006};
2007
2008struct udp_offload {
2009        __be16                   port;
2010        u8                       ipproto;
2011        struct udp_offload_callbacks callbacks;
2012};
2013
2014/* often modified stats are per cpu, other are shared (netdev->stats) */
2015struct pcpu_sw_netstats {
2016        u64     rx_packets;
2017        u64     rx_bytes;
2018        u64     tx_packets;
2019        u64     tx_bytes;
2020        struct u64_stats_sync   syncp;
2021};
2022
2023#define netdev_alloc_pcpu_stats(type)                           \
2024({                                                              \
2025        typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
2026        if (pcpu_stats) {                                       \
2027                int __cpu;                                      \
2028                for_each_possible_cpu(__cpu) {                  \
2029                        typeof(type) *stat;                     \
2030                        stat = per_cpu_ptr(pcpu_stats, __cpu);  \
2031                        u64_stats_init(&stat->syncp);           \
2032                }                                               \
2033        }                                                       \
2034        pcpu_stats;                                             \
2035})
2036
2037#include <linux/notifier.h>
2038
2039/* netdevice notifier chain. Please remember to update the rtnetlink
2040 * notification exclusion list in rtnetlink_event() when adding new
2041 * types.
2042 */
2043#define NETDEV_UP       0x0001  /* For now you can't veto a device up/down */
2044#define NETDEV_DOWN     0x0002
2045#define NETDEV_REBOOT   0x0003  /* Tell a protocol stack a network interface
2046                                   detected a hardware crash and restarted
2047                                   - we can use this eg to kick tcp sessions
2048                                   once done */
2049#define NETDEV_CHANGE   0x0004  /* Notify device state change */
2050#define NETDEV_REGISTER 0x0005
2051#define NETDEV_UNREGISTER       0x0006
2052#define NETDEV_CHANGEMTU        0x0007 /* notify after mtu change happened */
2053#define NETDEV_CHANGEADDR       0x0008
2054#define NETDEV_GOING_DOWN       0x0009
2055#define NETDEV_CHANGENAME       0x000A
2056#define NETDEV_FEAT_CHANGE      0x000B
2057#define NETDEV_BONDING_FAILOVER 0x000C
2058#define NETDEV_PRE_UP           0x000D
2059#define NETDEV_PRE_TYPE_CHANGE  0x000E
2060#define NETDEV_POST_TYPE_CHANGE 0x000F
2061#define NETDEV_POST_INIT        0x0010
2062#define NETDEV_UNREGISTER_FINAL 0x0011
2063#define NETDEV_RELEASE          0x0012
2064#define NETDEV_NOTIFY_PEERS     0x0013
2065#define NETDEV_JOIN             0x0014
2066#define NETDEV_CHANGEUPPER      0x0015
2067#define NETDEV_RESEND_IGMP      0x0016
2068#define NETDEV_PRECHANGEMTU     0x0017 /* notify before mtu change happened */
2069#define NETDEV_CHANGEINFODATA   0x0018
2070#define NETDEV_BONDING_INFO     0x0019
2071
2072int register_netdevice_notifier(struct notifier_block *nb);
2073int unregister_netdevice_notifier(struct notifier_block *nb);
2074
2075struct netdev_notifier_info {
2076        struct net_device *dev;
2077};
2078
2079struct netdev_notifier_change_info {
2080        struct netdev_notifier_info info; /* must be first */
2081        unsigned int flags_changed;
2082};
2083
2084static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2085                                             struct net_device *dev)
2086{
2087        info->dev = dev;
2088}
2089
2090static inline struct net_device *
2091netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2092{
2093        return info->dev;
2094}
2095
2096int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2097
2098
2099extern rwlock_t                         dev_base_lock;          /* Device list lock */
2100
2101#define for_each_netdev(net, d)         \
2102                list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2103#define for_each_netdev_reverse(net, d) \
2104                list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2105#define for_each_netdev_rcu(net, d)             \
2106                list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2107#define for_each_netdev_safe(net, d, n) \
2108                list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2109#define for_each_netdev_continue(net, d)                \
2110                list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2111#define for_each_netdev_continue_rcu(net, d)            \
2112        list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2113#define for_each_netdev_in_bond_rcu(bond, slave)        \
2114                for_each_netdev_rcu(&init_net, slave)   \
2115                        if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2116#define net_device_entry(lh)    list_entry(lh, struct net_device, dev_list)
2117
2118static inline struct net_device *next_net_device(struct net_device *dev)
2119{
2120        struct list_head *lh;
2121        struct net *net;
2122
2123        net = dev_net(dev);
2124        lh = dev->dev_list.next;
2125        return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2126}
2127
2128static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2129{
2130        struct list_head *lh;
2131        struct net *net;
2132
2133        net = dev_net(dev);
2134        lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2135        return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2136}
2137
2138static inline struct net_device *first_net_device(struct net *net)
2139{
2140        return list_empty(&net->dev_base_head) ? NULL :
2141                net_device_entry(net->dev_base_head.next);
2142}
2143
2144static inline struct net_device *first_net_device_rcu(struct net *net)
2145{
2146        struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2147
2148        return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2149}
2150
2151int netdev_boot_setup_check(struct net_device *dev);
2152unsigned long netdev_boot_base(const char *prefix, int unit);
2153struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2154                                       const char *hwaddr);
2155struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2156struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2157void dev_add_pack(struct packet_type *pt);
2158void dev_remove_pack(struct packet_type *pt);
2159void __dev_remove_pack(struct packet_type *pt);
2160void dev_add_offload(struct packet_offload *po);
2161void dev_remove_offload(struct packet_offload *po);
2162
2163int dev_get_iflink(const struct net_device *dev);
2164struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2165                                      unsigned short mask);
2166struct net_device *dev_get_by_name(struct net *net, const char *name);
2167struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2168struct net_device *__dev_get_by_name(struct net *net, const char *name);
2169int dev_alloc_name(struct net_device *dev, const char *name);
2170int dev_open(struct net_device *dev);
2171int dev_close(struct net_device *dev);
2172int dev_close_many(struct list_head *head, bool unlink);
2173void dev_disable_lro(struct net_device *dev);
2174int dev_loopback_xmit(struct sock *sk, struct sk_buff *newskb);
2175int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb);
2176static inline int dev_queue_xmit(struct sk_buff *skb)
2177{
2178        return dev_queue_xmit_sk(skb->sk, skb);
2179}
2180int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2181int register_netdevice(struct net_device *dev);
2182void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2183void unregister_netdevice_many(struct list_head *head);
2184static inline void unregister_netdevice(struct net_device *dev)
2185{
2186        unregister_netdevice_queue(dev, NULL);
2187}
2188
2189int netdev_refcnt_read(const struct net_device *dev);
2190void free_netdev(struct net_device *dev);
2191void netdev_freemem(struct net_device *dev);
2192void synchronize_net(void);
2193int init_dummy_netdev(struct net_device *dev);
2194
2195DECLARE_PER_CPU(int, xmit_recursion);
2196static inline int dev_recursion_level(void)
2197{
2198        return this_cpu_read(xmit_recursion);
2199}
2200
2201struct net_device *dev_get_by_index(struct net *net, int ifindex);
2202struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2203struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2204int netdev_get_name(struct net *net, char *name, int ifindex);
2205int dev_restart(struct net_device *dev);
2206int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2207
2208static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2209{
2210        return NAPI_GRO_CB(skb)->data_offset;
2211}
2212
2213static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2214{
2215        return skb->len - NAPI_GRO_CB(skb)->data_offset;
2216}
2217
2218static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2219{
2220        NAPI_GRO_CB(skb)->data_offset += len;
2221}
2222
2223static inline void *skb_gro_header_fast(struct sk_buff *skb,
2224                                        unsigned int offset)
2225{
2226        return NAPI_GRO_CB(skb)->frag0 + offset;
2227}
2228
2229static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2230{
2231        return NAPI_GRO_CB(skb)->frag0_len < hlen;
2232}
2233
2234static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2235                                        unsigned int offset)
2236{
2237        if (!pskb_may_pull(skb, hlen))
2238                return NULL;
2239
2240        NAPI_GRO_CB(skb)->frag0 = NULL;
2241        NAPI_GRO_CB(skb)->frag0_len = 0;
2242        return skb->data + offset;
2243}
2244
2245static inline void *skb_gro_network_header(struct sk_buff *skb)
2246{
2247        return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2248               skb_network_offset(skb);
2249}
2250
2251static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2252                                        const void *start, unsigned int len)
2253{
2254        if (NAPI_GRO_CB(skb)->csum_valid)
2255                NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2256                                                  csum_partial(start, len, 0));
2257}
2258
2259/* GRO checksum functions. These are logical equivalents of the normal
2260 * checksum functions (in skbuff.h) except that they operate on the GRO
2261 * offsets and fields in sk_buff.
2262 */
2263
2264__sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2265
2266static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2267{
2268        return (NAPI_GRO_CB(skb)->gro_remcsum_start - skb_headroom(skb) ==
2269                skb_gro_offset(skb));
2270}
2271
2272static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2273                                                      bool zero_okay,
2274                                                      __sum16 check)
2275{
2276        return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2277                skb_checksum_start_offset(skb) <
2278                 skb_gro_offset(skb)) &&
2279                !skb_at_gro_remcsum_start(skb) &&
2280                NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2281                (!zero_okay || check));
2282}
2283
2284static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2285                                                           __wsum psum)
2286{
2287        if (NAPI_GRO_CB(skb)->csum_valid &&
2288            !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2289                return 0;
2290
2291        NAPI_GRO_CB(skb)->csum = psum;
2292
2293        return __skb_gro_checksum_complete(skb);
2294}
2295
2296static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2297{
2298        if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2299                /* Consume a checksum from CHECKSUM_UNNECESSARY */
2300                NAPI_GRO_CB(skb)->csum_cnt--;
2301        } else {
2302                /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2303                 * verified a new top level checksum or an encapsulated one
2304                 * during GRO. This saves work if we fallback to normal path.
2305                 */
2306                __skb_incr_checksum_unnecessary(skb);
2307        }
2308}
2309
2310#define __skb_gro_checksum_validate(skb, proto, zero_okay, check,       \
2311                                    compute_pseudo)                     \
2312({                                                                      \
2313        __sum16 __ret = 0;                                              \
2314        if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))  \
2315                __ret = __skb_gro_checksum_validate_complete(skb,       \
2316                                compute_pseudo(skb, proto));            \
2317        if (__ret)                                                      \
2318                __skb_mark_checksum_bad(skb);                           \
2319        else                                                            \
2320                skb_gro_incr_csum_unnecessary(skb);                     \
2321        __ret;                                                          \
2322})
2323
2324#define skb_gro_checksum_validate(skb, proto, compute_pseudo)           \
2325        __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2326
2327#define skb_gro_checksum_validate_zero_check(skb, proto, check,         \
2328                                             compute_pseudo)            \
2329        __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2330
2331#define skb_gro_checksum_simple_validate(skb)                           \
2332        __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2333
2334static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2335{
2336        return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2337                !NAPI_GRO_CB(skb)->csum_valid);
2338}
2339
2340static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2341                                              __sum16 check, __wsum pseudo)
2342{
2343        NAPI_GRO_CB(skb)->csum = ~pseudo;
2344        NAPI_GRO_CB(skb)->csum_valid = 1;
2345}
2346
2347#define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2348do {                                                                    \
2349        if (__skb_gro_checksum_convert_check(skb))                      \
2350                __skb_gro_checksum_convert(skb, check,                  \
2351                                           compute_pseudo(skb, proto)); \
2352} while (0)
2353
2354struct gro_remcsum {
2355        int offset;
2356        __wsum delta;
2357};
2358
2359static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2360{
2361        grc->offset = 0;
2362        grc->delta = 0;
2363}
2364
2365static inline void skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2366                                           int start, int offset,
2367                                           struct gro_remcsum *grc,
2368                                           bool nopartial)
2369{
2370        __wsum delta;
2371
2372        BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2373
2374        if (!nopartial) {
2375                NAPI_GRO_CB(skb)->gro_remcsum_start =
2376                    ((unsigned char *)ptr + start) - skb->head;
2377                return;
2378        }
2379
2380        delta = remcsum_adjust(ptr, NAPI_GRO_CB(skb)->csum, start, offset);
2381
2382        /* Adjust skb->csum since we changed the packet */
2383        NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2384
2385        grc->offset = (ptr + offset) - (void *)skb->head;
2386        grc->delta = delta;
2387}
2388
2389static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2390                                           struct gro_remcsum *grc)
2391{
2392        if (!grc->delta)
2393                return;
2394
2395        remcsum_unadjust((__sum16 *)(skb->head + grc->offset), grc->delta);
2396}
2397
2398static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2399                                  unsigned short type,
2400                                  const void *daddr, const void *saddr,
2401                                  unsigned int len)
2402{
2403        if (!dev->header_ops || !dev->header_ops->create)
2404                return 0;
2405
2406        return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2407}
2408
2409static inline int dev_parse_header(const struct sk_buff *skb,
2410                                   unsigned char *haddr)
2411{
2412        const struct net_device *dev = skb->dev;
2413
2414        if (!dev->header_ops || !dev->header_ops->parse)
2415                return 0;
2416        return dev->header_ops->parse(skb, haddr);
2417}
2418
2419typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2420int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2421static inline int unregister_gifconf(unsigned int family)
2422{
2423        return register_gifconf(family, NULL);
2424}
2425
2426#ifdef CONFIG_NET_FLOW_LIMIT
2427#define FLOW_LIMIT_HISTORY      (1 << 7)  /* must be ^2 and !overflow buckets */
2428struct sd_flow_limit {
2429        u64                     count;
2430        unsigned int            num_buckets;
2431        unsigned int            history_head;
2432        u16                     history[FLOW_LIMIT_HISTORY];
2433        u8                      buckets[];
2434};
2435
2436extern int netdev_flow_limit_table_len;
2437#endif /* CONFIG_NET_FLOW_LIMIT */
2438
2439/*
2440 * Incoming packets are placed on per-cpu queues
2441 */
2442struct softnet_data {
2443        struct list_head        poll_list;
2444        struct sk_buff_head     process_queue;
2445
2446        /* stats */
2447        unsigned int            processed;
2448        unsigned int            time_squeeze;
2449        unsigned int            cpu_collision;
2450        unsigned int            received_rps;
2451#ifdef CONFIG_RPS
2452        struct softnet_data     *rps_ipi_list;
2453#endif
2454#ifdef CONFIG_NET_FLOW_LIMIT
2455        struct sd_flow_limit __rcu *flow_limit;
2456#endif
2457        struct Qdisc            *output_queue;
2458        struct Qdisc            **output_queue_tailp;
2459        struct sk_buff          *completion_queue;
2460
2461#ifdef CONFIG_RPS
2462        /* Elements below can be accessed between CPUs for RPS */
2463        struct call_single_data csd ____cacheline_aligned_in_smp;
2464        struct softnet_data     *rps_ipi_next;
2465        unsigned int            cpu;
2466        unsigned int            input_queue_head;
2467        unsigned int            input_queue_tail;
2468#endif
2469        unsigned int            dropped;
2470        struct sk_buff_head     input_pkt_queue;
2471        struct napi_struct      backlog;
2472
2473};
2474
2475static inline void input_queue_head_incr(struct softnet_data *sd)
2476{
2477#ifdef CONFIG_RPS
2478        sd->input_queue_head++;
2479#endif
2480}
2481
2482static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2483                                              unsigned int *qtail)
2484{
2485#ifdef CONFIG_RPS
2486        *qtail = ++sd->input_queue_tail;
2487#endif
2488}
2489
2490DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2491
2492void __netif_schedule(struct Qdisc *q);
2493void netif_schedule_queue(struct netdev_queue *txq);
2494
2495static inline void netif_tx_schedule_all(struct net_device *dev)
2496{
2497        unsigned int i;
2498
2499        for (i = 0; i < dev->num_tx_queues; i++)
2500                netif_schedule_queue(netdev_get_tx_queue(dev, i));
2501}
2502
2503static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2504{
2505        clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2506}
2507
2508/**
2509 *      netif_start_queue - allow transmit
2510 *      @dev: network device
2511 *
2512 *      Allow upper layers to call the device hard_start_xmit routine.
2513 */
2514static inline void netif_start_queue(struct net_device *dev)
2515{
2516        netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2517}
2518
2519static inline void netif_tx_start_all_queues(struct net_device *dev)
2520{
2521        unsigned int i;
2522
2523        for (i = 0; i < dev->num_tx_queues; i++) {
2524                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2525                netif_tx_start_queue(txq);
2526        }
2527}
2528
2529void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2530
2531/**
2532 *      netif_wake_queue - restart transmit
2533 *      @dev: network device
2534 *
2535 *      Allow upper layers to call the device hard_start_xmit routine.
2536 *      Used for flow control when transmit resources are available.
2537 */
2538static inline void netif_wake_queue(struct net_device *dev)
2539{
2540        netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2541}
2542
2543static inline void netif_tx_wake_all_queues(struct net_device *dev)
2544{
2545        unsigned int i;
2546
2547        for (i = 0; i < dev->num_tx_queues; i++) {
2548                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2549                netif_tx_wake_queue(txq);
2550        }
2551}
2552
2553static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2554{
2555        if (WARN_ON(!dev_queue)) {
2556                pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2557                return;
2558        }
2559        set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2560}
2561
2562/**
2563 *      netif_stop_queue - stop transmitted packets
2564 *      @dev: network device
2565 *
2566 *      Stop upper layers calling the device hard_start_xmit routine.
2567 *      Used for flow control when transmit resources are unavailable.
2568 */
2569static inline void netif_stop_queue(struct net_device *dev)
2570{
2571        netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2572}
2573
2574static inline void netif_tx_stop_all_queues(struct net_device *dev)
2575{
2576        unsigned int i;
2577
2578        for (i = 0; i < dev->num_tx_queues; i++) {
2579                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2580                netif_tx_stop_queue(txq);
2581        }
2582}
2583
2584static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2585{
2586        return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2587}
2588
2589/**
2590 *      netif_queue_stopped - test if transmit queue is flowblocked
2591 *      @dev: network device
2592 *
2593 *      Test if transmit queue on device is currently unable to send.
2594 */
2595static inline bool netif_queue_stopped(const struct net_device *dev)
2596{
2597        return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2598}
2599
2600static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2601{
2602        return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2603}
2604
2605static inline bool
2606netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2607{
2608        return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2609}
2610
2611static inline bool
2612netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2613{
2614        return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2615}
2616
2617/**
2618 *      netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2619 *      @dev_queue: pointer to transmit queue
2620 *
2621 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2622 * to give appropriate hint to the cpu.
2623 */
2624static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2625{
2626#ifdef CONFIG_BQL
2627        prefetchw(&dev_queue->dql.num_queued);
2628#endif
2629}
2630
2631/**
2632 *      netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2633 *      @dev_queue: pointer to transmit queue
2634 *
2635 * BQL enabled drivers might use this helper in their TX completion path,
2636 * to give appropriate hint to the cpu.
2637 */
2638static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2639{
2640#ifdef CONFIG_BQL
2641        prefetchw(&dev_queue->dql.limit);
2642#endif
2643}
2644
2645static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2646                                        unsigned int bytes)
2647{
2648#ifdef CONFIG_BQL
2649        dql_queued(&dev_queue->dql, bytes);
2650
2651        if (likely(dql_avail(&dev_queue->dql) >= 0))
2652                return;
2653
2654        set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2655
2656        /*
2657         * The XOFF flag must be set before checking the dql_avail below,
2658         * because in netdev_tx_completed_queue we update the dql_completed
2659         * before checking the XOFF flag.
2660         */
2661        smp_mb();
2662
2663        /* check again in case another CPU has just made room avail */
2664        if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2665                clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2666#endif
2667}
2668
2669/**
2670 *      netdev_sent_queue - report the number of bytes queued to hardware
2671 *      @dev: network device
2672 *      @bytes: number of bytes queued to the hardware device queue
2673 *
2674 *      Report the number of bytes queued for sending/completion to the network
2675 *      device hardware queue. @bytes should be a good approximation and should
2676 *      exactly match netdev_completed_queue() @bytes
2677 */
2678static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2679{
2680        netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2681}
2682
2683static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2684                                             unsigned int pkts, unsigned int bytes)
2685{
2686#ifdef CONFIG_BQL
2687        if (unlikely(!bytes))
2688                return;
2689
2690        dql_completed(&dev_queue->dql, bytes);
2691
2692        /*
2693         * Without the memory barrier there is a small possiblity that
2694         * netdev_tx_sent_queue will miss the update and cause the queue to
2695         * be stopped forever
2696         */
2697        smp_mb();
2698
2699        if (dql_avail(&dev_queue->dql) < 0)
2700                return;
2701
2702        if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2703                netif_schedule_queue(dev_queue);
2704#endif
2705}
2706
2707/**
2708 *      netdev_completed_queue - report bytes and packets completed by device
2709 *      @dev: network device
2710 *      @pkts: actual number of packets sent over the medium
2711 *      @bytes: actual number of bytes sent over the medium
2712 *
2713 *      Report the number of bytes and packets transmitted by the network device
2714 *      hardware queue over the physical medium, @bytes must exactly match the
2715 *      @bytes amount passed to netdev_sent_queue()
2716 */
2717static inline void netdev_completed_queue(struct net_device *dev,
2718                                          unsigned int pkts, unsigned int bytes)
2719{
2720        netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2721}
2722
2723static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2724{
2725#ifdef CONFIG_BQL
2726        clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2727        dql_reset(&q->dql);
2728#endif
2729}
2730
2731/**
2732 *      netdev_reset_queue - reset the packets and bytes count of a network device
2733 *      @dev_queue: network device
2734 *
2735 *      Reset the bytes and packet count of a network device and clear the
2736 *      software flow control OFF bit for this network device
2737 */
2738static inline void netdev_reset_queue(struct net_device *dev_queue)
2739{
2740        netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2741}
2742
2743/**
2744 *      netdev_cap_txqueue - check if selected tx queue exceeds device queues
2745 *      @dev: network device
2746 *      @queue_index: given tx queue index
2747 *
2748 *      Returns 0 if given tx queue index >= number of device tx queues,
2749 *      otherwise returns the originally passed tx queue index.
2750 */
2751static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2752{
2753        if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2754                net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2755                                     dev->name, queue_index,
2756                                     dev->real_num_tx_queues);
2757                return 0;
2758        }
2759
2760        return queue_index;
2761}
2762
2763/**
2764 *      netif_running - test if up
2765 *      @dev: network device
2766 *
2767 *      Test if the device has been brought up.
2768 */
2769static inline bool netif_running(const struct net_device *dev)
2770{
2771        return test_bit(__LINK_STATE_START, &dev->state);
2772}
2773
2774/*
2775 * Routines to manage the subqueues on a device.  We only need start
2776 * stop, and a check if it's stopped.  All other device management is
2777 * done at the overall netdevice level.
2778 * Also test the device if we're multiqueue.
2779 */
2780
2781/**
2782 *      netif_start_subqueue - allow sending packets on subqueue
2783 *      @dev: network device
2784 *      @queue_index: sub queue index
2785 *
2786 * Start individual transmit queue of a device with multiple transmit queues.
2787 */
2788static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2789{
2790        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2791
2792        netif_tx_start_queue(txq);
2793}
2794
2795/**
2796 *      netif_stop_subqueue - stop sending packets on subqueue
2797 *      @dev: network device
2798 *      @queue_index: sub queue index
2799 *
2800 * Stop individual transmit queue of a device with multiple transmit queues.
2801 */
2802static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2803{
2804        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2805        netif_tx_stop_queue(txq);
2806}
2807
2808/**
2809 *      netif_subqueue_stopped - test status of subqueue
2810 *      @dev: network device
2811 *      @queue_index: sub queue index
2812 *
2813 * Check individual transmit queue of a device with multiple transmit queues.
2814 */
2815static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2816                                            u16 queue_index)
2817{
2818        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2819
2820        return netif_tx_queue_stopped(txq);
2821}
2822
2823static inline bool netif_subqueue_stopped(const struct net_device *dev,
2824                                          struct sk_buff *skb)
2825{
2826        return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2827}
2828
2829void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2830
2831#ifdef CONFIG_XPS
2832int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2833                        u16 index);
2834#else
2835static inline int netif_set_xps_queue(struct net_device *dev,
2836                                      const struct cpumask *mask,
2837                                      u16 index)
2838{
2839        return 0;
2840}
2841#endif
2842
2843/*
2844 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2845 * as a distribution range limit for the returned value.
2846 */
2847static inline u16 skb_tx_hash(const struct net_device *dev,
2848                              struct sk_buff *skb)
2849{
2850        return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2851}
2852
2853/**
2854 *      netif_is_multiqueue - test if device has multiple transmit queues
2855 *      @dev: network device
2856 *
2857 * Check if device has multiple transmit queues
2858 */
2859static inline bool netif_is_multiqueue(const struct net_device *dev)
2860{
2861        return dev->num_tx_queues > 1;
2862}
2863
2864int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2865
2866#ifdef CONFIG_SYSFS
2867int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2868#else
2869static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2870                                                unsigned int rxq)
2871{
2872        return 0;
2873}
2874#endif
2875
2876#ifdef CONFIG_SYSFS
2877static inline unsigned int get_netdev_rx_queue_index(
2878                struct netdev_rx_queue *queue)
2879{
2880        struct net_device *dev = queue->dev;
2881        int index = queue - dev->_rx;
2882
2883        BUG_ON(index >= dev->num_rx_queues);
2884        return index;
2885}
2886#endif
2887
2888#define DEFAULT_MAX_NUM_RSS_QUEUES      (8)
2889int netif_get_num_default_rss_queues(void);
2890
2891enum skb_free_reason {
2892        SKB_REASON_CONSUMED,
2893        SKB_REASON_DROPPED,
2894};
2895
2896void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2897void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2898
2899/*
2900 * It is not allowed to call kfree_skb() or consume_skb() from hardware
2901 * interrupt context or with hardware interrupts being disabled.
2902 * (in_irq() || irqs_disabled())
2903 *
2904 * We provide four helpers that can be used in following contexts :
2905 *
2906 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2907 *  replacing kfree_skb(skb)
2908 *
2909 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2910 *  Typically used in place of consume_skb(skb) in TX completion path
2911 *
2912 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2913 *  replacing kfree_skb(skb)
2914 *
2915 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2916 *  and consumed a packet. Used in place of consume_skb(skb)
2917 */
2918static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2919{
2920        __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2921}
2922
2923static inline void dev_consume_skb_irq(struct sk_buff *skb)
2924{
2925        __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2926}
2927
2928static inline void dev_kfree_skb_any(struct sk_buff *skb)
2929{
2930        __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2931}
2932
2933static inline void dev_consume_skb_any(struct sk_buff *skb)
2934{
2935        __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2936}
2937
2938int netif_rx(struct sk_buff *skb);
2939int netif_rx_ni(struct sk_buff *skb);
2940int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb);
2941static inline int netif_receive_skb(struct sk_buff *skb)
2942{
2943        return netif_receive_skb_sk(skb->sk, skb);
2944}
2945gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2946void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2947struct sk_buff *napi_get_frags(struct napi_struct *napi);
2948gro_result_t napi_gro_frags(struct napi_struct *napi);
2949struct packet_offload *gro_find_receive_by_type(__be16 type);
2950struct packet_offload *gro_find_complete_by_type(__be16 type);
2951
2952static inline void napi_free_frags(struct napi_struct *napi)
2953{
2954        kfree_skb(napi->skb);
2955        napi->skb = NULL;
2956}
2957
2958int netdev_rx_handler_register(struct net_device *dev,
2959                               rx_handler_func_t *rx_handler,
2960                               void *rx_handler_data);
2961void netdev_rx_handler_unregister(struct net_device *dev);
2962
2963bool dev_valid_name(const char *name);
2964int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2965int dev_ethtool(struct net *net, struct ifreq *);
2966unsigned int dev_get_flags(const struct net_device *);
2967int __dev_change_flags(struct net_device *, unsigned int flags);
2968int dev_change_flags(struct net_device *, unsigned int);
2969void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2970                        unsigned int gchanges);
2971int dev_change_name(struct net_device *, const char *);
2972int dev_set_alias(struct net_device *, const char *, size_t);
2973int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2974int dev_set_mtu(struct net_device *, int);
2975void dev_set_group(struct net_device *, int);
2976int dev_set_mac_address(struct net_device *, struct sockaddr *);
2977int dev_change_carrier(struct net_device *, bool new_carrier);
2978int dev_get_phys_port_id(struct net_device *dev,
2979                         struct netdev_phys_item_id *ppid);
2980int dev_get_phys_port_name(struct net_device *dev,
2981                           char *name, size_t len);
2982struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
2983struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2984                                    struct netdev_queue *txq, int *ret);
2985int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2986int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2987bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
2988
2989extern int              netdev_budget;
2990
2991/* Called by rtnetlink.c:rtnl_unlock() */
2992void netdev_run_todo(void);
2993
2994/**
2995 *      dev_put - release reference to device
2996 *      @dev: network device
2997 *
2998 * Release reference to device to allow it to be freed.
2999 */
3000static inline void dev_put(struct net_device *dev)
3001{
3002        this_cpu_dec(*dev->pcpu_refcnt);
3003}
3004
3005/**
3006 *      dev_hold - get reference to device
3007 *      @dev: network device
3008 *
3009 * Hold reference to device to keep it from being freed.
3010 */
3011static inline void dev_hold(struct net_device *dev)
3012{
3013        this_cpu_inc(*dev->pcpu_refcnt);
3014}
3015
3016/* Carrier loss detection, dial on demand. The functions netif_carrier_on
3017 * and _off may be called from IRQ context, but it is caller
3018 * who is responsible for serialization of these calls.
3019 *
3020 * The name carrier is inappropriate, these functions should really be
3021 * called netif_lowerlayer_*() because they represent the state of any
3022 * kind of lower layer not just hardware media.
3023 */
3024
3025void linkwatch_init_dev(struct net_device *dev);
3026void linkwatch_fire_event(struct net_device *dev);
3027void linkwatch_forget_dev(struct net_device *dev);
3028
3029/**
3030 *      netif_carrier_ok - test if carrier present
3031 *      @dev: network device
3032 *
3033 * Check if carrier is present on device
3034 */
3035static inline bool netif_carrier_ok(const struct net_device *dev)
3036{
3037        return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3038}
3039
3040unsigned long dev_trans_start(struct net_device *dev);
3041
3042void __netdev_watchdog_up(struct net_device *dev);
3043
3044void netif_carrier_on(struct net_device *dev);
3045
3046void netif_carrier_off(struct net_device *dev);
3047
3048/**
3049 *      netif_dormant_on - mark device as dormant.
3050 *      @dev: network device
3051 *
3052 * Mark device as dormant (as per RFC2863).
3053 *
3054 * The dormant state indicates that the relevant interface is not
3055 * actually in a condition to pass packets (i.e., it is not 'up') but is
3056 * in a "pending" state, waiting for some external event.  For "on-
3057 * demand" interfaces, this new state identifies the situation where the
3058 * interface is waiting for events to place it in the up state.
3059 *
3060 */
3061static inline void netif_dormant_on(struct net_device *dev)
3062{
3063        if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3064                linkwatch_fire_event(dev);
3065}
3066
3067/**
3068 *      netif_dormant_off - set device as not dormant.
3069 *      @dev: network device
3070 *
3071 * Device is not in dormant state.
3072 */
3073static inline void netif_dormant_off(struct net_device *dev)
3074{
3075        if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3076                linkwatch_fire_event(dev);
3077}
3078
3079/**
3080 *      netif_dormant - test if carrier present
3081 *      @dev: network device
3082 *
3083 * Check if carrier is present on device
3084 */
3085static inline bool netif_dormant(const struct net_device *dev)
3086{
3087        return test_bit(__LINK_STATE_DORMANT, &dev->state);
3088}
3089
3090
3091/**
3092 *      netif_oper_up - test if device is operational
3093 *      @dev: network device
3094 *
3095 * Check if carrier is operational
3096 */
3097static inline bool netif_oper_up(const struct net_device *dev)
3098{
3099        return (dev->operstate == IF_OPER_UP ||
3100                dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3101}
3102
3103/**
3104 *      netif_device_present - is device available or removed
3105 *      @dev: network device
3106 *
3107 * Check if device has not been removed from system.
3108 */
3109static inline bool netif_device_present(struct net_device *dev)
3110{
3111        return test_bit(__LINK_STATE_PRESENT, &dev->state);
3112}
3113
3114void netif_device_detach(struct net_device *dev);
3115
3116void netif_device_attach(struct net_device *dev);
3117
3118/*
3119 * Network interface message level settings
3120 */
3121
3122enum {
3123        NETIF_MSG_DRV           = 0x0001,
3124        NETIF_MSG_PROBE         = 0x0002,
3125        NETIF_MSG_LINK          = 0x0004,
3126        NETIF_MSG_TIMER         = 0x0008,
3127        NETIF_MSG_IFDOWN        = 0x0010,
3128        NETIF_MSG_IFUP          = 0x0020,
3129        NETIF_MSG_RX_ERR        = 0x0040,
3130        NETIF_MSG_TX_ERR        = 0x0080,
3131        NETIF_MSG_TX_QUEUED     = 0x0100,
3132        NETIF_MSG_INTR          = 0x0200,
3133        NETIF_MSG_TX_DONE       = 0x0400,
3134        NETIF_MSG_RX_STATUS     = 0x0800,
3135        NETIF_MSG_PKTDATA       = 0x1000,
3136        NETIF_MSG_HW            = 0x2000,
3137        NETIF_MSG_WOL           = 0x4000,
3138};
3139
3140#define netif_msg_drv(p)        ((p)->msg_enable & NETIF_MSG_DRV)
3141#define netif_msg_probe(p)      ((p)->msg_enable & NETIF_MSG_PROBE)
3142#define netif_msg_link(p)       ((p)->msg_enable & NETIF_MSG_LINK)
3143#define netif_msg_timer(p)      ((p)->msg_enable & NETIF_MSG_TIMER)
3144#define netif_msg_ifdown(p)     ((p)->msg_enable & NETIF_MSG_IFDOWN)
3145#define netif_msg_ifup(p)       ((p)->msg_enable & NETIF_MSG_IFUP)
3146#define netif_msg_rx_err(p)     ((p)->msg_enable & NETIF_MSG_RX_ERR)
3147#define netif_msg_tx_err(p)     ((p)->msg_enable & NETIF_MSG_TX_ERR)
3148#define netif_msg_tx_queued(p)  ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3149#define netif_msg_intr(p)       ((p)->msg_enable & NETIF_MSG_INTR)
3150#define netif_msg_tx_done(p)    ((p)->msg_enable & NETIF_MSG_TX_DONE)
3151#define netif_msg_rx_status(p)  ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3152#define netif_msg_pktdata(p)    ((p)->msg_enable & NETIF_MSG_PKTDATA)
3153#define netif_msg_hw(p)         ((p)->msg_enable & NETIF_MSG_HW)
3154#define netif_msg_wol(p)        ((p)->msg_enable & NETIF_MSG_WOL)
3155
3156static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3157{
3158        /* use default */
3159        if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3160                return default_msg_enable_bits;
3161        if (debug_value == 0)   /* no output */
3162                return 0;
3163        /* set low N bits */
3164        return (1 << debug_value) - 1;
3165}
3166
3167static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3168{
3169        spin_lock(&txq->_xmit_lock);
3170        txq->xmit_lock_owner = cpu;
3171}
3172
3173static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3174{
3175        spin_lock_bh(&txq->_xmit_lock);
3176        txq->xmit_lock_owner = smp_processor_id();
3177}
3178
3179static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3180{
3181        bool ok = spin_trylock(&txq->_xmit_lock);
3182        if (likely(ok))
3183                txq->xmit_lock_owner = smp_processor_id();
3184        return ok;
3185}
3186
3187static inline void __netif_tx_unlock(struct netdev_queue *txq)
3188{
3189        txq->xmit_lock_owner = -1;
3190        spin_unlock(&txq->_xmit_lock);
3191}
3192
3193static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3194{
3195        txq->xmit_lock_owner = -1;
3196        spin_unlock_bh(&txq->_xmit_lock);
3197}
3198
3199static inline void txq_trans_update(struct netdev_queue *txq)
3200{
3201        if (txq->xmit_lock_owner != -1)
3202                txq->trans_start = jiffies;
3203}
3204
3205/**
3206 *      netif_tx_lock - grab network device transmit lock
3207 *      @dev: network device
3208 *
3209 * Get network device transmit lock
3210 */
3211static inline void netif_tx_lock(struct net_device *dev)
3212{
3213        unsigned int i;
3214        int cpu;
3215
3216        spin_lock(&dev->tx_global_lock);
3217        cpu = smp_processor_id();
3218        for (i = 0; i < dev->num_tx_queues; i++) {
3219                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3220
3221                /* We are the only thread of execution doing a
3222                 * freeze, but we have to grab the _xmit_lock in
3223                 * order to synchronize with threads which are in
3224                 * the ->hard_start_xmit() handler and already
3225                 * checked the frozen bit.
3226                 */
3227                __netif_tx_lock(txq, cpu);
3228                set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3229                __netif_tx_unlock(txq);
3230        }
3231}
3232
3233static inline void netif_tx_lock_bh(struct net_device *dev)
3234{
3235        local_bh_disable();
3236        netif_tx_lock(dev);
3237}
3238
3239static inline void netif_tx_unlock(struct net_device *dev)
3240{
3241        unsigned int i;
3242
3243        for (i = 0; i < dev->num_tx_queues; i++) {
3244                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3245
3246                /* No need to grab the _xmit_lock here.  If the
3247                 * queue is not stopped for another reason, we
3248                 * force a schedule.
3249                 */
3250                clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3251                netif_schedule_queue(txq);
3252        }
3253        spin_unlock(&dev->tx_global_lock);
3254}
3255
3256static inline void netif_tx_unlock_bh(struct net_device *dev)
3257{
3258        netif_tx_unlock(dev);
3259        local_bh_enable();
3260}
3261
3262#define HARD_TX_LOCK(dev, txq, cpu) {                   \
3263        if ((dev->features & NETIF_F_LLTX) == 0) {      \
3264                __netif_tx_lock(txq, cpu);              \
3265        }                                               \
3266}
3267
3268#define HARD_TX_TRYLOCK(dev, txq)                       \
3269        (((dev->features & NETIF_F_LLTX) == 0) ?        \
3270                __netif_tx_trylock(txq) :               \
3271                true )
3272
3273#define HARD_TX_UNLOCK(dev, txq) {                      \
3274        if ((dev->features & NETIF_F_LLTX) == 0) {      \
3275                __netif_tx_unlock(txq);                 \
3276        }                                               \
3277}
3278
3279static inline void netif_tx_disable(struct net_device *dev)
3280{
3281        unsigned int i;
3282        int cpu;
3283
3284        local_bh_disable();
3285        cpu = smp_processor_id();
3286        for (i = 0; i < dev->num_tx_queues; i++) {
3287                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3288
3289                __netif_tx_lock(txq, cpu);
3290                netif_tx_stop_queue(txq);
3291                __netif_tx_unlock(txq);
3292        }
3293        local_bh_enable();
3294}
3295
3296static inline void netif_addr_lock(struct net_device *dev)
3297{
3298        spin_lock(&dev->addr_list_lock);
3299}
3300
3301static inline void netif_addr_lock_nested(struct net_device *dev)
3302{
3303        int subclass = SINGLE_DEPTH_NESTING;
3304
3305        if (dev->netdev_ops->ndo_get_lock_subclass)
3306                subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3307
3308        spin_lock_nested(&dev->addr_list_lock, subclass);
3309}
3310
3311static inline void netif_addr_lock_bh(struct net_device *dev)
3312{
3313        spin_lock_bh(&dev->addr_list_lock);
3314}
3315
3316static inline void netif_addr_unlock(struct net_device *dev)
3317{
3318        spin_unlock(&dev->addr_list_lock);
3319}
3320
3321static inline void netif_addr_unlock_bh(struct net_device *dev)
3322{
3323        spin_unlock_bh(&dev->addr_list_lock);
3324}
3325
3326/*
3327 * dev_addrs walker. Should be used only for read access. Call with
3328 * rcu_read_lock held.
3329 */
3330#define for_each_dev_addr(dev, ha) \
3331                list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3332
3333/* These functions live elsewhere (drivers/net/net_init.c, but related) */
3334
3335void ether_setup(struct net_device *dev);
3336
3337/* Support for loadable net-drivers */
3338struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3339                                    unsigned char name_assign_type,
3340                                    void (*setup)(struct net_device *),
3341                                    unsigned int txqs, unsigned int rxqs);
3342#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3343        alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3344
3345#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3346        alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3347                         count)
3348
3349int register_netdev(struct net_device *dev);
3350void unregister_netdev(struct net_device *dev);
3351
3352/* General hardware address lists handling functions */
3353int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3354                   struct netdev_hw_addr_list *from_list, int addr_len);
3355void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3356                      struct netdev_hw_addr_list *from_list, int addr_len);
3357int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3358                       struct net_device *dev,
3359                       int (*sync)(struct net_device *, const unsigned char *),
3360                       int (*unsync)(struct net_device *,
3361                                     const unsigned char *));
3362void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3363                          struct net_device *dev,
3364                          int (*unsync)(struct net_device *,
3365                                        const unsigned char *));
3366void __hw_addr_init(struct netdev_hw_addr_list *list);
3367
3368/* Functions used for device addresses handling */
3369int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3370                 unsigned char addr_type);
3371int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3372                 unsigned char addr_type);
3373void dev_addr_flush(struct net_device *dev);
3374int dev_addr_init(struct net_device *dev);
3375
3376/* Functions used for unicast addresses handling */
3377int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3378int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3379int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3380int dev_uc_sync(struct net_device *to, struct net_device *from);
3381int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3382void dev_uc_unsync(struct net_device *to, struct net_device *from);
3383void dev_uc_flush(struct net_device *dev);
3384void dev_uc_init(struct net_device *dev);
3385
3386/**
3387 *  __dev_uc_sync - Synchonize device's unicast list
3388 *  @dev:  device to sync
3389 *  @sync: function to call if address should be added
3390 *  @unsync: function to call if address should be removed
3391 *
3392 *  Add newly added addresses to the interface, and release
3393 *  addresses that have been deleted.
3394 **/
3395static inline int __dev_uc_sync(struct net_device *dev,
3396                                int (*sync)(struct net_device *,
3397                                            const unsigned char *),
3398                                int (*unsync)(struct net_device *,
3399                                              const unsigned char *))
3400{
3401        return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3402}
3403
3404/**
3405 *  __dev_uc_unsync - Remove synchronized addresses from device
3406 *  @dev:  device to sync
3407 *  @unsync: function to call if address should be removed
3408 *
3409 *  Remove all addresses that were added to the device by dev_uc_sync().
3410 **/
3411static inline void __dev_uc_unsync(struct net_device *dev,
3412                                   int (*unsync)(struct net_device *,
3413                                                 const unsigned char *))
3414{
3415        __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3416}
3417
3418/* Functions used for multicast addresses handling */
3419int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3420int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3421int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3422int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3423int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3424int dev_mc_sync(struct net_device *to, struct net_device *from);
3425int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3426void dev_mc_unsync(struct net_device *to, struct net_device *from);
3427void dev_mc_flush(struct net_device *dev);
3428void dev_mc_init(struct net_device *dev);
3429
3430/**
3431 *  __dev_mc_sync - Synchonize device's multicast list
3432 *  @dev:  device to sync
3433 *  @sync: function to call if address should be added
3434 *  @unsync: function to call if address should be removed
3435 *
3436 *  Add newly added addresses to the interface, and release
3437 *  addresses that have been deleted.
3438 **/
3439static inline int __dev_mc_sync(struct net_device *dev,
3440                                int (*sync)(struct net_device *,
3441                                            const unsigned char *),
3442                                int (*unsync)(struct net_device *,
3443                                              const unsigned char *))
3444{
3445        return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3446}
3447
3448/**
3449 *  __dev_mc_unsync - Remove synchronized addresses from device
3450 *  @dev:  device to sync
3451 *  @unsync: function to call if address should be removed
3452 *
3453 *  Remove all addresses that were added to the device by dev_mc_sync().
3454 **/
3455static inline void __dev_mc_unsync(struct net_device *dev,
3456                                   int (*unsync)(struct net_device *,
3457                                                 const unsigned char *))
3458{
3459        __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3460}
3461
3462/* Functions used for secondary unicast and multicast support */
3463void dev_set_rx_mode(struct net_device *dev);
3464void __dev_set_rx_mode(struct net_device *dev);
3465int dev_set_promiscuity(struct net_device *dev, int inc);
3466int dev_set_allmulti(struct net_device *dev, int inc);
3467void netdev_state_change(struct net_device *dev);
3468void netdev_notify_peers(struct net_device *dev);
3469void netdev_features_change(struct net_device *dev);
3470/* Load a device via the kmod */
3471void dev_load(struct net *net, const char *name);
3472struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3473                                        struct rtnl_link_stats64 *storage);
3474void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3475                             const struct net_device_stats *netdev_stats);
3476
3477extern int              netdev_max_backlog;
3478extern int              netdev_tstamp_prequeue;
3479extern int              weight_p;
3480extern int              bpf_jit_enable;
3481
3482bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3483struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3484                                                     struct list_head **iter);
3485struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3486                                                     struct list_head **iter);
3487
3488/* iterate through upper list, must be called under RCU read lock */
3489#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3490        for (iter = &(dev)->adj_list.upper, \
3491             updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3492             updev; \
3493             updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3494
3495/* iterate through upper list, must be called under RCU read lock */
3496#define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3497        for (iter = &(dev)->all_adj_list.upper, \
3498             updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3499             updev; \
3500             updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3501
3502void *netdev_lower_get_next_private(struct net_device *dev,
3503                                    struct list_head **iter);
3504void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3505                                        struct list_head **iter);
3506
3507#define netdev_for_each_lower_private(dev, priv, iter) \
3508        for (iter = (dev)->adj_list.lower.next, \
3509             priv = netdev_lower_get_next_private(dev, &(iter)); \
3510             priv; \
3511             priv = netdev_lower_get_next_private(dev, &(iter)))
3512
3513#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3514        for (iter = &(dev)->adj_list.lower, \
3515             priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3516             priv; \
3517             priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3518
3519void *netdev_lower_get_next(struct net_device *dev,
3520                                struct list_head **iter);
3521#define netdev_for_each_lower_dev(dev, ldev, iter) \
3522        for (iter = &(dev)->adj_list.lower, \
3523             ldev = netdev_lower_get_next(dev, &(iter)); \
3524             ldev; \
3525             ldev = netdev_lower_get_next(dev, &(iter)))
3526
3527void *netdev_adjacent_get_private(struct list_head *adj_list);
3528void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3529struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3530struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3531int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3532int netdev_master_upper_dev_link(struct net_device *dev,
3533                                 struct net_device *upper_dev);
3534int netdev_master_upper_dev_link_private(struct net_device *dev,
3535                                         struct net_device *upper_dev,
3536                                         void *private);
3537void netdev_upper_dev_unlink(struct net_device *dev,
3538                             struct net_device *upper_dev);
3539void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3540void *netdev_lower_dev_get_private(struct net_device *dev,
3541                                   struct net_device *lower_dev);
3542
3543/* RSS keys are 40 or 52 bytes long */
3544#define NETDEV_RSS_KEY_LEN 52
3545extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3546void netdev_rss_key_fill(void *buffer, size_t len);
3547
3548int dev_get_nest_level(struct net_device *dev,
3549                       bool (*type_check)(struct net_device *dev));
3550int skb_checksum_help(struct sk_buff *skb);
3551struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3552                                  netdev_features_t features, bool tx_path);
3553struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3554                                    netdev_features_t features);
3555
3556struct netdev_bonding_info {
3557        ifslave slave;
3558        ifbond  master;
3559};
3560
3561struct netdev_notifier_bonding_info {
3562        struct netdev_notifier_info info; /* must be first */
3563        struct netdev_bonding_info  bonding_info;
3564};
3565
3566void netdev_bonding_info_change(struct net_device *dev,
3567                                struct netdev_bonding_info *bonding_info);
3568
3569static inline
3570struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3571{
3572        return __skb_gso_segment(skb, features, true);
3573}
3574__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3575
3576static inline bool can_checksum_protocol(netdev_features_t features,
3577                                         __be16 protocol)
3578{
3579        return ((features & NETIF_F_GEN_CSUM) ||
3580                ((features & NETIF_F_V4_CSUM) &&
3581                 protocol == htons(ETH_P_IP)) ||
3582                ((features & NETIF_F_V6_CSUM) &&
3583                 protocol == htons(ETH_P_IPV6)) ||
3584                ((features & NETIF_F_FCOE_CRC) &&
3585                 protocol == htons(ETH_P_FCOE)));
3586}
3587
3588#ifdef CONFIG_BUG
3589void netdev_rx_csum_fault(struct net_device *dev);
3590#else
3591static inline void netdev_rx_csum_fault(struct net_device *dev)
3592{
3593}
3594#endif
3595/* rx skb timestamps */
3596void net_enable_timestamp(void);
3597void net_disable_timestamp(void);
3598
3599#ifdef CONFIG_PROC_FS
3600int __init dev_proc_init(void);
3601#else
3602#define dev_proc_init() 0
3603#endif
3604
3605static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3606                                              struct sk_buff *skb, struct net_device *dev,
3607                                              bool more)
3608{
3609        skb->xmit_more = more ? 1 : 0;
3610        return ops->ndo_start_xmit(skb, dev);
3611}
3612
3613static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3614                                            struct netdev_queue *txq, bool more)
3615{
3616        const struct net_device_ops *ops = dev->netdev_ops;
3617        int rc;
3618
3619        rc = __netdev_start_xmit(ops, skb, dev, more);
3620        if (rc == NETDEV_TX_OK)
3621                txq_trans_update(txq);
3622
3623        return rc;
3624}
3625
3626int netdev_class_create_file_ns(struct class_attribute *class_attr,
3627                                const void *ns);
3628void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3629                                 const void *ns);
3630
3631static inline int netdev_class_create_file(struct class_attribute *class_attr)
3632{
3633        return netdev_class_create_file_ns(class_attr, NULL);
3634}
3635
3636static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3637{
3638        netdev_class_remove_file_ns(class_attr, NULL);
3639}
3640
3641extern struct kobj_ns_type_operations net_ns_type_operations;
3642
3643const char *netdev_drivername(const struct net_device *dev);
3644
3645void linkwatch_run_queue(void);
3646
3647static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3648                                                          netdev_features_t f2)
3649{
3650        if (f1 & NETIF_F_GEN_CSUM)
3651                f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3652        if (f2 & NETIF_F_GEN_CSUM)
3653                f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3654        f1 &= f2;
3655        if (f1 & NETIF_F_GEN_CSUM)
3656                f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3657
3658        return f1;
3659}
3660
3661static inline netdev_features_t netdev_get_wanted_features(
3662        struct net_device *dev)
3663{
3664        return (dev->features & ~dev->hw_features) | dev->wanted_features;
3665}
3666netdev_features_t netdev_increment_features(netdev_features_t all,
3667        netdev_features_t one, netdev_features_t mask);
3668
3669/* Allow TSO being used on stacked device :
3670 * Performing the GSO segmentation before last device
3671 * is a performance improvement.
3672 */
3673static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3674                                                        netdev_features_t mask)
3675{
3676        return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3677}
3678
3679int __netdev_update_features(struct net_device *dev);
3680void netdev_update_features(struct net_device *dev);
3681void netdev_change_features(struct net_device *dev);
3682
3683void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3684                                        struct net_device *dev);
3685
3686netdev_features_t passthru_features_check(struct sk_buff *skb,
3687                                          struct net_device *dev,
3688                                          netdev_features_t features);
3689netdev_features_t netif_skb_features(struct sk_buff *skb);
3690
3691static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3692{
3693        netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3694
3695        /* check flags correspondence */
3696        BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3697        BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3698        BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3699        BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3700        BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3701        BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3702        BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3703        BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3704        BUILD_BUG_ON(SKB_GSO_IPIP    != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3705        BUILD_BUG_ON(SKB_GSO_SIT     != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3706        BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3707        BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3708        BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3709
3710        return (features & feature) == feature;
3711}
3712
3713static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3714{
3715        return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3716               (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3717}
3718
3719static inline bool netif_needs_gso(struct sk_buff *skb,
3720                                   netdev_features_t features)
3721{
3722        return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3723                unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3724                         (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3725}
3726
3727static inline void netif_set_gso_max_size(struct net_device *dev,
3728                                          unsigned int size)
3729{
3730        dev->gso_max_size = size;
3731}
3732
3733static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3734                                        int pulled_hlen, u16 mac_offset,
3735                                        int mac_len)
3736{
3737        skb->protocol = protocol;
3738        skb->encapsulation = 1;
3739        skb_push(skb, pulled_hlen);
3740        skb_reset_transport_header(skb);
3741        skb->mac_header = mac_offset;
3742        skb->network_header = skb->mac_header + mac_len;
3743        skb->mac_len = mac_len;
3744}
3745
3746static inline bool netif_is_macvlan(struct net_device *dev)
3747{
3748        return dev->priv_flags & IFF_MACVLAN;
3749}
3750
3751static inline bool netif_is_macvlan_port(struct net_device *dev)
3752{
3753        return dev->priv_flags & IFF_MACVLAN_PORT;
3754}
3755
3756static inline bool netif_is_ipvlan(struct net_device *dev)
3757{
3758        return dev->priv_flags & IFF_IPVLAN_SLAVE;
3759}
3760
3761static inline bool netif_is_ipvlan_port(struct net_device *dev)
3762{
3763        return dev->priv_flags & IFF_IPVLAN_MASTER;
3764}
3765
3766static inline bool netif_is_bond_master(struct net_device *dev)
3767{
3768        return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3769}
3770
3771static inline bool netif_is_bond_slave(struct net_device *dev)
3772{
3773        return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3774}
3775
3776static inline bool netif_supports_nofcs(struct net_device *dev)
3777{
3778        return dev->priv_flags & IFF_SUPP_NOFCS;
3779}
3780
3781/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3782static inline void netif_keep_dst(struct net_device *dev)
3783{
3784        dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3785}
3786
3787extern struct pernet_operations __net_initdata loopback_net_ops;
3788
3789/* Logging, debugging and troubleshooting/diagnostic helpers. */
3790
3791/* netdev_printk helpers, similar to dev_printk */
3792
3793static inline const char *netdev_name(const struct net_device *dev)
3794{
3795        if (!dev->name[0] || strchr(dev->name, '%'))
3796                return "(unnamed net_device)";
3797        return dev->name;
3798}
3799
3800static inline const char *netdev_reg_state(const struct net_device *dev)
3801{
3802        switch (dev->reg_state) {
3803        case NETREG_UNINITIALIZED: return " (uninitialized)";
3804        case NETREG_REGISTERED: return "";
3805        case NETREG_UNREGISTERING: return " (unregistering)";
3806        case NETREG_UNREGISTERED: return " (unregistered)";
3807        case NETREG_RELEASED: return " (released)";
3808        case NETREG_DUMMY: return " (dummy)";
3809        }
3810
3811        WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3812        return " (unknown)";
3813}
3814
3815__printf(3, 4)
3816void netdev_printk(const char *level, const struct net_device *dev,
3817                   const char *format, ...);
3818__printf(2, 3)
3819void netdev_emerg(const struct net_device *dev, const char *format, ...);
3820__printf(2, 3)
3821void netdev_alert(const struct net_device *dev, const char *format, ...);
3822__printf(2, 3)
3823void netdev_crit(const struct net_device *dev, const char *format, ...);
3824__printf(2, 3)
3825void netdev_err(const struct net_device *dev, const char *format, ...);
3826__printf(2, 3)
3827void netdev_warn(const struct net_device *dev, const char *format, ...);
3828__printf(2, 3)
3829void netdev_notice(const struct net_device *dev, const char *format, ...);
3830__printf(2, 3)
3831void netdev_info(const struct net_device *dev, const char *format, ...);
3832
3833#define MODULE_ALIAS_NETDEV(device) \
3834        MODULE_ALIAS("netdev-" device)
3835
3836#if defined(CONFIG_DYNAMIC_DEBUG)
3837#define netdev_dbg(__dev, format, args...)                      \
3838do {                                                            \
3839        dynamic_netdev_dbg(__dev, format, ##args);              \
3840} while (0)
3841#elif defined(DEBUG)
3842#define netdev_dbg(__dev, format, args...)                      \
3843        netdev_printk(KERN_DEBUG, __dev, format, ##args)
3844#else
3845#define netdev_dbg(__dev, format, args...)                      \
3846({                                                              \
3847        if (0)                                                  \
3848                netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3849})
3850#endif
3851
3852#if defined(VERBOSE_DEBUG)
3853#define netdev_vdbg     netdev_dbg
3854#else
3855
3856#define netdev_vdbg(dev, format, args...)                       \
3857({                                                              \
3858        if (0)                                                  \
3859                netdev_printk(KERN_DEBUG, dev, format, ##args); \
3860        0;                                                      \
3861})
3862#endif
3863
3864/*
3865 * netdev_WARN() acts like dev_printk(), but with the key difference
3866 * of using a WARN/WARN_ON to get the message out, including the
3867 * file/line information and a backtrace.
3868 */
3869#define netdev_WARN(dev, format, args...)                       \
3870        WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),   \
3871             netdev_reg_state(dev), ##args)
3872
3873/* netif printk helpers, similar to netdev_printk */
3874
3875#define netif_printk(priv, type, level, dev, fmt, args...)      \
3876do {                                                            \
3877        if (netif_msg_##type(priv))                             \
3878                netdev_printk(level, (dev), fmt, ##args);       \
3879} while (0)
3880
3881#define netif_level(level, priv, type, dev, fmt, args...)       \
3882do {                                                            \
3883        if (netif_msg_##type(priv))                             \
3884                netdev_##level(dev, fmt, ##args);               \
3885} while (0)
3886
3887#define netif_emerg(priv, type, dev, fmt, args...)              \
3888        netif_level(emerg, priv, type, dev, fmt, ##args)
3889#define netif_alert(priv, type, dev, fmt, args...)              \
3890        netif_level(alert, priv, type, dev, fmt, ##args)
3891#define netif_crit(priv, type, dev, fmt, args...)               \
3892        netif_level(crit, priv, type, dev, fmt, ##args)
3893#define netif_err(priv, type, dev, fmt, args...)                \
3894        netif_level(err, priv, type, dev, fmt, ##args)
3895#define netif_warn(priv, type, dev, fmt, args...)               \
3896        netif_level(warn, priv, type, dev, fmt, ##args)
3897#define netif_notice(priv, type, dev, fmt, args...)             \
3898        netif_level(notice, priv, type, dev, fmt, ##args)
3899#define netif_info(priv, type, dev, fmt, args...)               \
3900        netif_level(info, priv, type, dev, fmt, ##args)
3901
3902#if defined(CONFIG_DYNAMIC_DEBUG)
3903#define netif_dbg(priv, type, netdev, format, args...)          \
3904do {                                                            \
3905        if (netif_msg_##type(priv))                             \
3906                dynamic_netdev_dbg(netdev, format, ##args);     \
3907} while (0)
3908#elif defined(DEBUG)
3909#define netif_dbg(priv, type, dev, format, args...)             \
3910        netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3911#else
3912#define netif_dbg(priv, type, dev, format, args...)                     \
3913({                                                                      \
3914        if (0)                                                          \
3915                netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3916        0;                                                              \
3917})
3918#endif
3919
3920#if defined(VERBOSE_DEBUG)
3921#define netif_vdbg      netif_dbg
3922#else
3923#define netif_vdbg(priv, type, dev, format, args...)            \
3924({                                                              \
3925        if (0)                                                  \
3926                netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3927        0;                                                      \
3928})
3929#endif
3930
3931/*
3932 *      The list of packet types we will receive (as opposed to discard)
3933 *      and the routines to invoke.
3934 *
3935 *      Why 16. Because with 16 the only overlap we get on a hash of the
3936 *      low nibble of the protocol value is RARP/SNAP/X.25.
3937 *
3938 *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
3939 *             sure which should go first, but I bet it won't make much
3940 *             difference if we are running VLANs.  The good news is that
3941 *             this protocol won't be in the list unless compiled in, so
3942 *             the average user (w/out VLANs) will not be adversely affected.
3943 *             --BLG
3944 *
3945 *              0800    IP
3946 *              8100    802.1Q VLAN
3947 *              0001    802.3
3948 *              0002    AX.25
3949 *              0004    802.2
3950 *              8035    RARP
3951 *              0005    SNAP
3952 *              0805    X.25
3953 *              0806    ARP
3954 *              8137    IPX
3955 *              0009    Localtalk
3956 *              86DD    IPv6
3957 */
3958#define PTYPE_HASH_SIZE (16)
3959#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
3960
3961#endif  /* _LINUX_NETDEVICE_H */
3962