linux/include/linux/skbuff.h
<<
>>
Prefs
   1/*
   2 *      Definitions for the 'struct sk_buff' memory handlers.
   3 *
   4 *      Authors:
   5 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
   6 *              Florian La Roche, <rzsfl@rz.uni-sb.de>
   7 *
   8 *      This program is free software; you can redistribute it and/or
   9 *      modify it under the terms of the GNU General Public License
  10 *      as published by the Free Software Foundation; either version
  11 *      2 of the License, or (at your option) any later version.
  12 */
  13
  14#ifndef _LINUX_SKBUFF_H
  15#define _LINUX_SKBUFF_H
  16
  17#include <linux/kernel.h>
  18#include <linux/kmemcheck.h>
  19#include <linux/compiler.h>
  20#include <linux/time.h>
  21#include <linux/bug.h>
  22#include <linux/cache.h>
  23#include <linux/rbtree.h>
  24#include <linux/socket.h>
  25
  26#include <linux/atomic.h>
  27#include <asm/types.h>
  28#include <linux/spinlock.h>
  29#include <linux/net.h>
  30#include <linux/textsearch.h>
  31#include <net/checksum.h>
  32#include <linux/rcupdate.h>
  33#include <linux/hrtimer.h>
  34#include <linux/dma-mapping.h>
  35#include <linux/netdev_features.h>
  36#include <linux/sched.h>
  37#include <net/flow_keys.h>
  38
  39/* A. Checksumming of received packets by device.
  40 *
  41 * CHECKSUM_NONE:
  42 *
  43 *   Device failed to checksum this packet e.g. due to lack of capabilities.
  44 *   The packet contains full (though not verified) checksum in packet but
  45 *   not in skb->csum. Thus, skb->csum is undefined in this case.
  46 *
  47 * CHECKSUM_UNNECESSARY:
  48 *
  49 *   The hardware you're dealing with doesn't calculate the full checksum
  50 *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
  51 *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
  52 *   if their checksums are okay. skb->csum is still undefined in this case
  53 *   though. It is a bad option, but, unfortunately, nowadays most vendors do
  54 *   this. Apparently with the secret goal to sell you new devices, when you
  55 *   will add new protocol to your host, f.e. IPv6 8)
  56 *
  57 *   CHECKSUM_UNNECESSARY is applicable to following protocols:
  58 *     TCP: IPv6 and IPv4.
  59 *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
  60 *       zero UDP checksum for either IPv4 or IPv6, the networking stack
  61 *       may perform further validation in this case.
  62 *     GRE: only if the checksum is present in the header.
  63 *     SCTP: indicates the CRC in SCTP header has been validated.
  64 *
  65 *   skb->csum_level indicates the number of consecutive checksums found in
  66 *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
  67 *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
  68 *   and a device is able to verify the checksums for UDP (possibly zero),
  69 *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
  70 *   two. If the device were only able to verify the UDP checksum and not
  71 *   GRE, either because it doesn't support GRE checksum of because GRE
  72 *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
  73 *   not considered in this case).
  74 *
  75 * CHECKSUM_COMPLETE:
  76 *
  77 *   This is the most generic way. The device supplied checksum of the _whole_
  78 *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
  79 *   hardware doesn't need to parse L3/L4 headers to implement this.
  80 *
  81 *   Note: Even if device supports only some protocols, but is able to produce
  82 *   skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
  83 *
  84 * CHECKSUM_PARTIAL:
  85 *
  86 *   A checksum is set up to be offloaded to a device as described in the
  87 *   output description for CHECKSUM_PARTIAL. This may occur on a packet
  88 *   received directly from another Linux OS, e.g., a virtualized Linux kernel
  89 *   on the same host, or it may be set in the input path in GRO or remote
  90 *   checksum offload. For the purposes of checksum verification, the checksum
  91 *   referred to by skb->csum_start + skb->csum_offset and any preceding
  92 *   checksums in the packet are considered verified. Any checksums in the
  93 *   packet that are after the checksum being offloaded are not considered to
  94 *   be verified.
  95 *
  96 * B. Checksumming on output.
  97 *
  98 * CHECKSUM_NONE:
  99 *
 100 *   The skb was already checksummed by the protocol, or a checksum is not
 101 *   required.
 102 *
 103 * CHECKSUM_PARTIAL:
 104 *
 105 *   The device is required to checksum the packet as seen by hard_start_xmit()
 106 *   from skb->csum_start up to the end, and to record/write the checksum at
 107 *   offset skb->csum_start + skb->csum_offset.
 108 *
 109 *   The device must show its capabilities in dev->features, set up at device
 110 *   setup time, e.g. netdev_features.h:
 111 *
 112 *      NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything.
 113 *      NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
 114 *                        IPv4. Sigh. Vendors like this way for an unknown reason.
 115 *                        Though, see comment above about CHECKSUM_UNNECESSARY. 8)
 116 *      NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
 117 *      NETIF_F_...     - Well, you get the picture.
 118 *
 119 * CHECKSUM_UNNECESSARY:
 120 *
 121 *   Normally, the device will do per protocol specific checksumming. Protocol
 122 *   implementations that do not want the NIC to perform the checksum
 123 *   calculation should use this flag in their outgoing skbs.
 124 *
 125 *      NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
 126 *                         offload. Correspondingly, the FCoE protocol driver
 127 *                         stack should use CHECKSUM_UNNECESSARY.
 128 *
 129 * Any questions? No questions, good.           --ANK
 130 */
 131
 132/* Don't change this without changing skb_csum_unnecessary! */
 133#define CHECKSUM_NONE           0
 134#define CHECKSUM_UNNECESSARY    1
 135#define CHECKSUM_COMPLETE       2
 136#define CHECKSUM_PARTIAL        3
 137
 138/* Maximum value in skb->csum_level */
 139#define SKB_MAX_CSUM_LEVEL      3
 140
 141#define SKB_DATA_ALIGN(X)       ALIGN(X, SMP_CACHE_BYTES)
 142#define SKB_WITH_OVERHEAD(X)    \
 143        ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
 144#define SKB_MAX_ORDER(X, ORDER) \
 145        SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
 146#define SKB_MAX_HEAD(X)         (SKB_MAX_ORDER((X), 0))
 147#define SKB_MAX_ALLOC           (SKB_MAX_ORDER(0, 2))
 148
 149/* return minimum truesize of one skb containing X bytes of data */
 150#define SKB_TRUESIZE(X) ((X) +                                          \
 151                         SKB_DATA_ALIGN(sizeof(struct sk_buff)) +       \
 152                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
 153
 154struct net_device;
 155struct scatterlist;
 156struct pipe_inode_info;
 157struct iov_iter;
 158struct napi_struct;
 159
 160#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
 161struct nf_conntrack {
 162        atomic_t use;
 163};
 164#endif
 165
 166#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
 167struct nf_bridge_info {
 168        atomic_t                use;
 169        enum {
 170                BRNF_PROTO_UNCHANGED,
 171                BRNF_PROTO_8021Q,
 172                BRNF_PROTO_PPPOE
 173        } orig_proto;
 174        bool                    pkt_otherhost;
 175        unsigned int            mask;
 176        struct net_device       *physindev;
 177        struct net_device       *physoutdev;
 178        char                    neigh_header[8];
 179        __be32                  ipv4_daddr;
 180};
 181#endif
 182
 183struct sk_buff_head {
 184        /* These two members must be first. */
 185        struct sk_buff  *next;
 186        struct sk_buff  *prev;
 187
 188        __u32           qlen;
 189        spinlock_t      lock;
 190};
 191
 192struct sk_buff;
 193
 194/* To allow 64K frame to be packed as single skb without frag_list we
 195 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
 196 * buffers which do not start on a page boundary.
 197 *
 198 * Since GRO uses frags we allocate at least 16 regardless of page
 199 * size.
 200 */
 201#if (65536/PAGE_SIZE + 1) < 16
 202#define MAX_SKB_FRAGS 16UL
 203#else
 204#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
 205#endif
 206
 207typedef struct skb_frag_struct skb_frag_t;
 208
 209struct skb_frag_struct {
 210        struct {
 211                struct page *p;
 212        } page;
 213#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
 214        __u32 page_offset;
 215        __u32 size;
 216#else
 217        __u16 page_offset;
 218        __u16 size;
 219#endif
 220};
 221
 222static inline unsigned int skb_frag_size(const skb_frag_t *frag)
 223{
 224        return frag->size;
 225}
 226
 227static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
 228{
 229        frag->size = size;
 230}
 231
 232static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
 233{
 234        frag->size += delta;
 235}
 236
 237static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
 238{
 239        frag->size -= delta;
 240}
 241
 242#define HAVE_HW_TIME_STAMP
 243
 244/**
 245 * struct skb_shared_hwtstamps - hardware time stamps
 246 * @hwtstamp:   hardware time stamp transformed into duration
 247 *              since arbitrary point in time
 248 *
 249 * Software time stamps generated by ktime_get_real() are stored in
 250 * skb->tstamp.
 251 *
 252 * hwtstamps can only be compared against other hwtstamps from
 253 * the same device.
 254 *
 255 * This structure is attached to packets as part of the
 256 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
 257 */
 258struct skb_shared_hwtstamps {
 259        ktime_t hwtstamp;
 260};
 261
 262/* Definitions for tx_flags in struct skb_shared_info */
 263enum {
 264        /* generate hardware time stamp */
 265        SKBTX_HW_TSTAMP = 1 << 0,
 266
 267        /* generate software time stamp when queueing packet to NIC */
 268        SKBTX_SW_TSTAMP = 1 << 1,
 269
 270        /* device driver is going to provide hardware time stamp */
 271        SKBTX_IN_PROGRESS = 1 << 2,
 272
 273        /* device driver supports TX zero-copy buffers */
 274        SKBTX_DEV_ZEROCOPY = 1 << 3,
 275
 276        /* generate wifi status information (where possible) */
 277        SKBTX_WIFI_STATUS = 1 << 4,
 278
 279        /* This indicates at least one fragment might be overwritten
 280         * (as in vmsplice(), sendfile() ...)
 281         * If we need to compute a TX checksum, we'll need to copy
 282         * all frags to avoid possible bad checksum
 283         */
 284        SKBTX_SHARED_FRAG = 1 << 5,
 285
 286        /* generate software time stamp when entering packet scheduling */
 287        SKBTX_SCHED_TSTAMP = 1 << 6,
 288
 289        /* generate software timestamp on peer data acknowledgment */
 290        SKBTX_ACK_TSTAMP = 1 << 7,
 291};
 292
 293#define SKBTX_ANY_SW_TSTAMP     (SKBTX_SW_TSTAMP    | \
 294                                 SKBTX_SCHED_TSTAMP | \
 295                                 SKBTX_ACK_TSTAMP)
 296#define SKBTX_ANY_TSTAMP        (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
 297
 298/*
 299 * The callback notifies userspace to release buffers when skb DMA is done in
 300 * lower device, the skb last reference should be 0 when calling this.
 301 * The zerocopy_success argument is true if zero copy transmit occurred,
 302 * false on data copy or out of memory error caused by data copy attempt.
 303 * The ctx field is used to track device context.
 304 * The desc field is used to track userspace buffer index.
 305 */
 306struct ubuf_info {
 307        void (*callback)(struct ubuf_info *, bool zerocopy_success);
 308        void *ctx;
 309        unsigned long desc;
 310};
 311
 312/* This data is invariant across clones and lives at
 313 * the end of the header data, ie. at skb->end.
 314 */
 315struct skb_shared_info {
 316        unsigned char   nr_frags;
 317        __u8            tx_flags;
 318        unsigned short  gso_size;
 319        /* Warning: this field is not always filled in (UFO)! */
 320        unsigned short  gso_segs;
 321        unsigned short  gso_type;
 322        struct sk_buff  *frag_list;
 323        struct skb_shared_hwtstamps hwtstamps;
 324        u32             tskey;
 325        __be32          ip6_frag_id;
 326
 327        /*
 328         * Warning : all fields before dataref are cleared in __alloc_skb()
 329         */
 330        atomic_t        dataref;
 331
 332        /* Intermediate layers must ensure that destructor_arg
 333         * remains valid until skb destructor */
 334        void *          destructor_arg;
 335
 336        /* must be last field, see pskb_expand_head() */
 337        skb_frag_t      frags[MAX_SKB_FRAGS];
 338};
 339
 340/* We divide dataref into two halves.  The higher 16 bits hold references
 341 * to the payload part of skb->data.  The lower 16 bits hold references to
 342 * the entire skb->data.  A clone of a headerless skb holds the length of
 343 * the header in skb->hdr_len.
 344 *
 345 * All users must obey the rule that the skb->data reference count must be
 346 * greater than or equal to the payload reference count.
 347 *
 348 * Holding a reference to the payload part means that the user does not
 349 * care about modifications to the header part of skb->data.
 350 */
 351#define SKB_DATAREF_SHIFT 16
 352#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
 353
 354
 355enum {
 356        SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
 357        SKB_FCLONE_ORIG,        /* orig skb (from fclone_cache) */
 358        SKB_FCLONE_CLONE,       /* companion fclone skb (from fclone_cache) */
 359};
 360
 361enum {
 362        SKB_GSO_TCPV4 = 1 << 0,
 363        SKB_GSO_UDP = 1 << 1,
 364
 365        /* This indicates the skb is from an untrusted source. */
 366        SKB_GSO_DODGY = 1 << 2,
 367
 368        /* This indicates the tcp segment has CWR set. */
 369        SKB_GSO_TCP_ECN = 1 << 3,
 370
 371        SKB_GSO_TCPV6 = 1 << 4,
 372
 373        SKB_GSO_FCOE = 1 << 5,
 374
 375        SKB_GSO_GRE = 1 << 6,
 376
 377        SKB_GSO_GRE_CSUM = 1 << 7,
 378
 379        SKB_GSO_IPIP = 1 << 8,
 380
 381        SKB_GSO_SIT = 1 << 9,
 382
 383        SKB_GSO_UDP_TUNNEL = 1 << 10,
 384
 385        SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
 386
 387        SKB_GSO_TUNNEL_REMCSUM = 1 << 12,
 388};
 389
 390#if BITS_PER_LONG > 32
 391#define NET_SKBUFF_DATA_USES_OFFSET 1
 392#endif
 393
 394#ifdef NET_SKBUFF_DATA_USES_OFFSET
 395typedef unsigned int sk_buff_data_t;
 396#else
 397typedef unsigned char *sk_buff_data_t;
 398#endif
 399
 400/**
 401 * struct skb_mstamp - multi resolution time stamps
 402 * @stamp_us: timestamp in us resolution
 403 * @stamp_jiffies: timestamp in jiffies
 404 */
 405struct skb_mstamp {
 406        union {
 407                u64             v64;
 408                struct {
 409                        u32     stamp_us;
 410                        u32     stamp_jiffies;
 411                };
 412        };
 413};
 414
 415/**
 416 * skb_mstamp_get - get current timestamp
 417 * @cl: place to store timestamps
 418 */
 419static inline void skb_mstamp_get(struct skb_mstamp *cl)
 420{
 421        u64 val = local_clock();
 422
 423        do_div(val, NSEC_PER_USEC);
 424        cl->stamp_us = (u32)val;
 425        cl->stamp_jiffies = (u32)jiffies;
 426}
 427
 428/**
 429 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
 430 * @t1: pointer to newest sample
 431 * @t0: pointer to oldest sample
 432 */
 433static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
 434                                      const struct skb_mstamp *t0)
 435{
 436        s32 delta_us = t1->stamp_us - t0->stamp_us;
 437        u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
 438
 439        /* If delta_us is negative, this might be because interval is too big,
 440         * or local_clock() drift is too big : fallback using jiffies.
 441         */
 442        if (delta_us <= 0 ||
 443            delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
 444
 445                delta_us = jiffies_to_usecs(delta_jiffies);
 446
 447        return delta_us;
 448}
 449
 450
 451/** 
 452 *      struct sk_buff - socket buffer
 453 *      @next: Next buffer in list
 454 *      @prev: Previous buffer in list
 455 *      @tstamp: Time we arrived/left
 456 *      @rbnode: RB tree node, alternative to next/prev for netem/tcp
 457 *      @sk: Socket we are owned by
 458 *      @dev: Device we arrived on/are leaving by
 459 *      @cb: Control buffer. Free for use by every layer. Put private vars here
 460 *      @_skb_refdst: destination entry (with norefcount bit)
 461 *      @sp: the security path, used for xfrm
 462 *      @len: Length of actual data
 463 *      @data_len: Data length
 464 *      @mac_len: Length of link layer header
 465 *      @hdr_len: writable header length of cloned skb
 466 *      @csum: Checksum (must include start/offset pair)
 467 *      @csum_start: Offset from skb->head where checksumming should start
 468 *      @csum_offset: Offset from csum_start where checksum should be stored
 469 *      @priority: Packet queueing priority
 470 *      @ignore_df: allow local fragmentation
 471 *      @cloned: Head may be cloned (check refcnt to be sure)
 472 *      @ip_summed: Driver fed us an IP checksum
 473 *      @nohdr: Payload reference only, must not modify header
 474 *      @nfctinfo: Relationship of this skb to the connection
 475 *      @pkt_type: Packet class
 476 *      @fclone: skbuff clone status
 477 *      @ipvs_property: skbuff is owned by ipvs
 478 *      @peeked: this packet has been seen already, so stats have been
 479 *              done for it, don't do them again
 480 *      @nf_trace: netfilter packet trace flag
 481 *      @protocol: Packet protocol from driver
 482 *      @destructor: Destruct function
 483 *      @nfct: Associated connection, if any
 484 *      @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
 485 *      @skb_iif: ifindex of device we arrived on
 486 *      @tc_index: Traffic control index
 487 *      @tc_verd: traffic control verdict
 488 *      @hash: the packet hash
 489 *      @queue_mapping: Queue mapping for multiqueue devices
 490 *      @xmit_more: More SKBs are pending for this queue
 491 *      @ndisc_nodetype: router type (from link layer)
 492 *      @ooo_okay: allow the mapping of a socket to a queue to be changed
 493 *      @l4_hash: indicate hash is a canonical 4-tuple hash over transport
 494 *              ports.
 495 *      @sw_hash: indicates hash was computed in software stack
 496 *      @wifi_acked_valid: wifi_acked was set
 497 *      @wifi_acked: whether frame was acked on wifi or not
 498 *      @no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
 499  *     @napi_id: id of the NAPI struct this skb came from
 500 *      @secmark: security marking
 501 *      @mark: Generic packet mark
 502 *      @vlan_proto: vlan encapsulation protocol
 503 *      @vlan_tci: vlan tag control information
 504 *      @inner_protocol: Protocol (encapsulation)
 505 *      @inner_transport_header: Inner transport layer header (encapsulation)
 506 *      @inner_network_header: Network layer header (encapsulation)
 507 *      @inner_mac_header: Link layer header (encapsulation)
 508 *      @transport_header: Transport layer header
 509 *      @network_header: Network layer header
 510 *      @mac_header: Link layer header
 511 *      @tail: Tail pointer
 512 *      @end: End pointer
 513 *      @head: Head of buffer
 514 *      @data: Data head pointer
 515 *      @truesize: Buffer size
 516 *      @users: User count - see {datagram,tcp}.c
 517 */
 518
 519struct sk_buff {
 520        union {
 521                struct {
 522                        /* These two members must be first. */
 523                        struct sk_buff          *next;
 524                        struct sk_buff          *prev;
 525
 526                        union {
 527                                ktime_t         tstamp;
 528                                struct skb_mstamp skb_mstamp;
 529                        };
 530                };
 531                struct rb_node  rbnode; /* used in netem & tcp stack */
 532        };
 533        struct sock             *sk;
 534        struct net_device       *dev;
 535
 536        /*
 537         * This is the control buffer. It is free to use for every
 538         * layer. Please put your private variables there. If you
 539         * want to keep them across layers you have to do a skb_clone()
 540         * first. This is owned by whoever has the skb queued ATM.
 541         */
 542        char                    cb[48] __aligned(8);
 543
 544        unsigned long           _skb_refdst;
 545        void                    (*destructor)(struct sk_buff *skb);
 546#ifdef CONFIG_XFRM
 547        struct  sec_path        *sp;
 548#endif
 549#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
 550        struct nf_conntrack     *nfct;
 551#endif
 552#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
 553        struct nf_bridge_info   *nf_bridge;
 554#endif
 555        unsigned int            len,
 556                                data_len;
 557        __u16                   mac_len,
 558                                hdr_len;
 559
 560        /* Following fields are _not_ copied in __copy_skb_header()
 561         * Note that queue_mapping is here mostly to fill a hole.
 562         */
 563        kmemcheck_bitfield_begin(flags1);
 564        __u16                   queue_mapping;
 565        __u8                    cloned:1,
 566                                nohdr:1,
 567                                fclone:2,
 568                                peeked:1,
 569                                head_frag:1,
 570                                xmit_more:1;
 571        /* one bit hole */
 572        kmemcheck_bitfield_end(flags1);
 573
 574        /* fields enclosed in headers_start/headers_end are copied
 575         * using a single memcpy() in __copy_skb_header()
 576         */
 577        /* private: */
 578        __u32                   headers_start[0];
 579        /* public: */
 580
 581/* if you move pkt_type around you also must adapt those constants */
 582#ifdef __BIG_ENDIAN_BITFIELD
 583#define PKT_TYPE_MAX    (7 << 5)
 584#else
 585#define PKT_TYPE_MAX    7
 586#endif
 587#define PKT_TYPE_OFFSET()       offsetof(struct sk_buff, __pkt_type_offset)
 588
 589        __u8                    __pkt_type_offset[0];
 590        __u8                    pkt_type:3;
 591        __u8                    pfmemalloc:1;
 592        __u8                    ignore_df:1;
 593        __u8                    nfctinfo:3;
 594
 595        __u8                    nf_trace:1;
 596        __u8                    ip_summed:2;
 597        __u8                    ooo_okay:1;
 598        __u8                    l4_hash:1;
 599        __u8                    sw_hash:1;
 600        __u8                    wifi_acked_valid:1;
 601        __u8                    wifi_acked:1;
 602
 603        __u8                    no_fcs:1;
 604        /* Indicates the inner headers are valid in the skbuff. */
 605        __u8                    encapsulation:1;
 606        __u8                    encap_hdr_csum:1;
 607        __u8                    csum_valid:1;
 608        __u8                    csum_complete_sw:1;
 609        __u8                    csum_level:2;
 610        __u8                    csum_bad:1;
 611
 612#ifdef CONFIG_IPV6_NDISC_NODETYPE
 613        __u8                    ndisc_nodetype:2;
 614#endif
 615        __u8                    ipvs_property:1;
 616        __u8                    inner_protocol_type:1;
 617        __u8                    remcsum_offload:1;
 618        /* 3 or 5 bit hole */
 619
 620#ifdef CONFIG_NET_SCHED
 621        __u16                   tc_index;       /* traffic control index */
 622#ifdef CONFIG_NET_CLS_ACT
 623        __u16                   tc_verd;        /* traffic control verdict */
 624#endif
 625#endif
 626
 627        union {
 628                __wsum          csum;
 629                struct {
 630                        __u16   csum_start;
 631                        __u16   csum_offset;
 632                };
 633        };
 634        __u32                   priority;
 635        int                     skb_iif;
 636        __u32                   hash;
 637        __be16                  vlan_proto;
 638        __u16                   vlan_tci;
 639#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
 640        union {
 641                unsigned int    napi_id;
 642                unsigned int    sender_cpu;
 643        };
 644#endif
 645#ifdef CONFIG_NETWORK_SECMARK
 646        __u32                   secmark;
 647#endif
 648        union {
 649                __u32           mark;
 650                __u32           reserved_tailroom;
 651        };
 652
 653        union {
 654                __be16          inner_protocol;
 655                __u8            inner_ipproto;
 656        };
 657
 658        __u16                   inner_transport_header;
 659        __u16                   inner_network_header;
 660        __u16                   inner_mac_header;
 661
 662        __be16                  protocol;
 663        __u16                   transport_header;
 664        __u16                   network_header;
 665        __u16                   mac_header;
 666
 667        /* private: */
 668        __u32                   headers_end[0];
 669        /* public: */
 670
 671        /* These elements must be at the end, see alloc_skb() for details.  */
 672        sk_buff_data_t          tail;
 673        sk_buff_data_t          end;
 674        unsigned char           *head,
 675                                *data;
 676        unsigned int            truesize;
 677        atomic_t                users;
 678};
 679
 680#ifdef __KERNEL__
 681/*
 682 *      Handling routines are only of interest to the kernel
 683 */
 684#include <linux/slab.h>
 685
 686
 687#define SKB_ALLOC_FCLONE        0x01
 688#define SKB_ALLOC_RX            0x02
 689#define SKB_ALLOC_NAPI          0x04
 690
 691/* Returns true if the skb was allocated from PFMEMALLOC reserves */
 692static inline bool skb_pfmemalloc(const struct sk_buff *skb)
 693{
 694        return unlikely(skb->pfmemalloc);
 695}
 696
 697/*
 698 * skb might have a dst pointer attached, refcounted or not.
 699 * _skb_refdst low order bit is set if refcount was _not_ taken
 700 */
 701#define SKB_DST_NOREF   1UL
 702#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
 703
 704/**
 705 * skb_dst - returns skb dst_entry
 706 * @skb: buffer
 707 *
 708 * Returns skb dst_entry, regardless of reference taken or not.
 709 */
 710static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
 711{
 712        /* If refdst was not refcounted, check we still are in a 
 713         * rcu_read_lock section
 714         */
 715        WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
 716                !rcu_read_lock_held() &&
 717                !rcu_read_lock_bh_held());
 718        return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
 719}
 720
 721/**
 722 * skb_dst_set - sets skb dst
 723 * @skb: buffer
 724 * @dst: dst entry
 725 *
 726 * Sets skb dst, assuming a reference was taken on dst and should
 727 * be released by skb_dst_drop()
 728 */
 729static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
 730{
 731        skb->_skb_refdst = (unsigned long)dst;
 732}
 733
 734/**
 735 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
 736 * @skb: buffer
 737 * @dst: dst entry
 738 *
 739 * Sets skb dst, assuming a reference was not taken on dst.
 740 * If dst entry is cached, we do not take reference and dst_release
 741 * will be avoided by refdst_drop. If dst entry is not cached, we take
 742 * reference, so that last dst_release can destroy the dst immediately.
 743 */
 744static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
 745{
 746        WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
 747        skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
 748}
 749
 750/**
 751 * skb_dst_is_noref - Test if skb dst isn't refcounted
 752 * @skb: buffer
 753 */
 754static inline bool skb_dst_is_noref(const struct sk_buff *skb)
 755{
 756        return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
 757}
 758
 759static inline struct rtable *skb_rtable(const struct sk_buff *skb)
 760{
 761        return (struct rtable *)skb_dst(skb);
 762}
 763
 764void kfree_skb(struct sk_buff *skb);
 765void kfree_skb_list(struct sk_buff *segs);
 766void skb_tx_error(struct sk_buff *skb);
 767void consume_skb(struct sk_buff *skb);
 768void  __kfree_skb(struct sk_buff *skb);
 769extern struct kmem_cache *skbuff_head_cache;
 770
 771void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
 772bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
 773                      bool *fragstolen, int *delta_truesize);
 774
 775struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
 776                            int node);
 777struct sk_buff *__build_skb(void *data, unsigned int frag_size);
 778struct sk_buff *build_skb(void *data, unsigned int frag_size);
 779static inline struct sk_buff *alloc_skb(unsigned int size,
 780                                        gfp_t priority)
 781{
 782        return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
 783}
 784
 785struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
 786                                     unsigned long data_len,
 787                                     int max_page_order,
 788                                     int *errcode,
 789                                     gfp_t gfp_mask);
 790
 791/* Layout of fast clones : [skb1][skb2][fclone_ref] */
 792struct sk_buff_fclones {
 793        struct sk_buff  skb1;
 794
 795        struct sk_buff  skb2;
 796
 797        atomic_t        fclone_ref;
 798};
 799
 800/**
 801 *      skb_fclone_busy - check if fclone is busy
 802 *      @skb: buffer
 803 *
 804 * Returns true is skb is a fast clone, and its clone is not freed.
 805 * Some drivers call skb_orphan() in their ndo_start_xmit(),
 806 * so we also check that this didnt happen.
 807 */
 808static inline bool skb_fclone_busy(const struct sock *sk,
 809                                   const struct sk_buff *skb)
 810{
 811        const struct sk_buff_fclones *fclones;
 812
 813        fclones = container_of(skb, struct sk_buff_fclones, skb1);
 814
 815        return skb->fclone == SKB_FCLONE_ORIG &&
 816               atomic_read(&fclones->fclone_ref) > 1 &&
 817               fclones->skb2.sk == sk;
 818}
 819
 820static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
 821                                               gfp_t priority)
 822{
 823        return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
 824}
 825
 826struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
 827static inline struct sk_buff *alloc_skb_head(gfp_t priority)
 828{
 829        return __alloc_skb_head(priority, -1);
 830}
 831
 832struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
 833int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
 834struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
 835struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
 836struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
 837                                   gfp_t gfp_mask, bool fclone);
 838static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
 839                                          gfp_t gfp_mask)
 840{
 841        return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
 842}
 843
 844int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
 845struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
 846                                     unsigned int headroom);
 847struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
 848                                int newtailroom, gfp_t priority);
 849int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
 850                        int offset, int len);
 851int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
 852                 int len);
 853int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
 854int skb_pad(struct sk_buff *skb, int pad);
 855#define dev_kfree_skb(a)        consume_skb(a)
 856
 857int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
 858                            int getfrag(void *from, char *to, int offset,
 859                                        int len, int odd, struct sk_buff *skb),
 860                            void *from, int length);
 861
 862struct skb_seq_state {
 863        __u32           lower_offset;
 864        __u32           upper_offset;
 865        __u32           frag_idx;
 866        __u32           stepped_offset;
 867        struct sk_buff  *root_skb;
 868        struct sk_buff  *cur_skb;
 869        __u8            *frag_data;
 870};
 871
 872void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
 873                          unsigned int to, struct skb_seq_state *st);
 874unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
 875                          struct skb_seq_state *st);
 876void skb_abort_seq_read(struct skb_seq_state *st);
 877
 878unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
 879                           unsigned int to, struct ts_config *config);
 880
 881/*
 882 * Packet hash types specify the type of hash in skb_set_hash.
 883 *
 884 * Hash types refer to the protocol layer addresses which are used to
 885 * construct a packet's hash. The hashes are used to differentiate or identify
 886 * flows of the protocol layer for the hash type. Hash types are either
 887 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
 888 *
 889 * Properties of hashes:
 890 *
 891 * 1) Two packets in different flows have different hash values
 892 * 2) Two packets in the same flow should have the same hash value
 893 *
 894 * A hash at a higher layer is considered to be more specific. A driver should
 895 * set the most specific hash possible.
 896 *
 897 * A driver cannot indicate a more specific hash than the layer at which a hash
 898 * was computed. For instance an L3 hash cannot be set as an L4 hash.
 899 *
 900 * A driver may indicate a hash level which is less specific than the
 901 * actual layer the hash was computed on. For instance, a hash computed
 902 * at L4 may be considered an L3 hash. This should only be done if the
 903 * driver can't unambiguously determine that the HW computed the hash at
 904 * the higher layer. Note that the "should" in the second property above
 905 * permits this.
 906 */
 907enum pkt_hash_types {
 908        PKT_HASH_TYPE_NONE,     /* Undefined type */
 909        PKT_HASH_TYPE_L2,       /* Input: src_MAC, dest_MAC */
 910        PKT_HASH_TYPE_L3,       /* Input: src_IP, dst_IP */
 911        PKT_HASH_TYPE_L4,       /* Input: src_IP, dst_IP, src_port, dst_port */
 912};
 913
 914static inline void
 915skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
 916{
 917        skb->l4_hash = (type == PKT_HASH_TYPE_L4);
 918        skb->sw_hash = 0;
 919        skb->hash = hash;
 920}
 921
 922void __skb_get_hash(struct sk_buff *skb);
 923static inline __u32 skb_get_hash(struct sk_buff *skb)
 924{
 925        if (!skb->l4_hash && !skb->sw_hash)
 926                __skb_get_hash(skb);
 927
 928        return skb->hash;
 929}
 930
 931static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
 932{
 933        return skb->hash;
 934}
 935
 936static inline void skb_clear_hash(struct sk_buff *skb)
 937{
 938        skb->hash = 0;
 939        skb->sw_hash = 0;
 940        skb->l4_hash = 0;
 941}
 942
 943static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
 944{
 945        if (!skb->l4_hash)
 946                skb_clear_hash(skb);
 947}
 948
 949static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
 950{
 951        to->hash = from->hash;
 952        to->sw_hash = from->sw_hash;
 953        to->l4_hash = from->l4_hash;
 954};
 955
 956static inline void skb_sender_cpu_clear(struct sk_buff *skb)
 957{
 958#ifdef CONFIG_XPS
 959        skb->sender_cpu = 0;
 960#endif
 961}
 962
 963#ifdef NET_SKBUFF_DATA_USES_OFFSET
 964static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
 965{
 966        return skb->head + skb->end;
 967}
 968
 969static inline unsigned int skb_end_offset(const struct sk_buff *skb)
 970{
 971        return skb->end;
 972}
 973#else
 974static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
 975{
 976        return skb->end;
 977}
 978
 979static inline unsigned int skb_end_offset(const struct sk_buff *skb)
 980{
 981        return skb->end - skb->head;
 982}
 983#endif
 984
 985/* Internal */
 986#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
 987
 988static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
 989{
 990        return &skb_shinfo(skb)->hwtstamps;
 991}
 992
 993/**
 994 *      skb_queue_empty - check if a queue is empty
 995 *      @list: queue head
 996 *
 997 *      Returns true if the queue is empty, false otherwise.
 998 */
 999static inline int skb_queue_empty(const struct sk_buff_head *list)
1000{
1001        return list->next == (const struct sk_buff *) list;
1002}
1003
1004/**
1005 *      skb_queue_is_last - check if skb is the last entry in the queue
1006 *      @list: queue head
1007 *      @skb: buffer
1008 *
1009 *      Returns true if @skb is the last buffer on the list.
1010 */
1011static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1012                                     const struct sk_buff *skb)
1013{
1014        return skb->next == (const struct sk_buff *) list;
1015}
1016
1017/**
1018 *      skb_queue_is_first - check if skb is the first entry in the queue
1019 *      @list: queue head
1020 *      @skb: buffer
1021 *
1022 *      Returns true if @skb is the first buffer on the list.
1023 */
1024static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1025                                      const struct sk_buff *skb)
1026{
1027        return skb->prev == (const struct sk_buff *) list;
1028}
1029
1030/**
1031 *      skb_queue_next - return the next packet in the queue
1032 *      @list: queue head
1033 *      @skb: current buffer
1034 *
1035 *      Return the next packet in @list after @skb.  It is only valid to
1036 *      call this if skb_queue_is_last() evaluates to false.
1037 */
1038static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1039                                             const struct sk_buff *skb)
1040{
1041        /* This BUG_ON may seem severe, but if we just return then we
1042         * are going to dereference garbage.
1043         */
1044        BUG_ON(skb_queue_is_last(list, skb));
1045        return skb->next;
1046}
1047
1048/**
1049 *      skb_queue_prev - return the prev packet in the queue
1050 *      @list: queue head
1051 *      @skb: current buffer
1052 *
1053 *      Return the prev packet in @list before @skb.  It is only valid to
1054 *      call this if skb_queue_is_first() evaluates to false.
1055 */
1056static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1057                                             const struct sk_buff *skb)
1058{
1059        /* This BUG_ON may seem severe, but if we just return then we
1060         * are going to dereference garbage.
1061         */
1062        BUG_ON(skb_queue_is_first(list, skb));
1063        return skb->prev;
1064}
1065
1066/**
1067 *      skb_get - reference buffer
1068 *      @skb: buffer to reference
1069 *
1070 *      Makes another reference to a socket buffer and returns a pointer
1071 *      to the buffer.
1072 */
1073static inline struct sk_buff *skb_get(struct sk_buff *skb)
1074{
1075        atomic_inc(&skb->users);
1076        return skb;
1077}
1078
1079/*
1080 * If users == 1, we are the only owner and are can avoid redundant
1081 * atomic change.
1082 */
1083
1084/**
1085 *      skb_cloned - is the buffer a clone
1086 *      @skb: buffer to check
1087 *
1088 *      Returns true if the buffer was generated with skb_clone() and is
1089 *      one of multiple shared copies of the buffer. Cloned buffers are
1090 *      shared data so must not be written to under normal circumstances.
1091 */
1092static inline int skb_cloned(const struct sk_buff *skb)
1093{
1094        return skb->cloned &&
1095               (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1096}
1097
1098static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1099{
1100        might_sleep_if(pri & __GFP_WAIT);
1101
1102        if (skb_cloned(skb))
1103                return pskb_expand_head(skb, 0, 0, pri);
1104
1105        return 0;
1106}
1107
1108/**
1109 *      skb_header_cloned - is the header a clone
1110 *      @skb: buffer to check
1111 *
1112 *      Returns true if modifying the header part of the buffer requires
1113 *      the data to be copied.
1114 */
1115static inline int skb_header_cloned(const struct sk_buff *skb)
1116{
1117        int dataref;
1118
1119        if (!skb->cloned)
1120                return 0;
1121
1122        dataref = atomic_read(&skb_shinfo(skb)->dataref);
1123        dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1124        return dataref != 1;
1125}
1126
1127/**
1128 *      skb_header_release - release reference to header
1129 *      @skb: buffer to operate on
1130 *
1131 *      Drop a reference to the header part of the buffer.  This is done
1132 *      by acquiring a payload reference.  You must not read from the header
1133 *      part of skb->data after this.
1134 *      Note : Check if you can use __skb_header_release() instead.
1135 */
1136static inline void skb_header_release(struct sk_buff *skb)
1137{
1138        BUG_ON(skb->nohdr);
1139        skb->nohdr = 1;
1140        atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1141}
1142
1143/**
1144 *      __skb_header_release - release reference to header
1145 *      @skb: buffer to operate on
1146 *
1147 *      Variant of skb_header_release() assuming skb is private to caller.
1148 *      We can avoid one atomic operation.
1149 */
1150static inline void __skb_header_release(struct sk_buff *skb)
1151{
1152        skb->nohdr = 1;
1153        atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1154}
1155
1156
1157/**
1158 *      skb_shared - is the buffer shared
1159 *      @skb: buffer to check
1160 *
1161 *      Returns true if more than one person has a reference to this
1162 *      buffer.
1163 */
1164static inline int skb_shared(const struct sk_buff *skb)
1165{
1166        return atomic_read(&skb->users) != 1;
1167}
1168
1169/**
1170 *      skb_share_check - check if buffer is shared and if so clone it
1171 *      @skb: buffer to check
1172 *      @pri: priority for memory allocation
1173 *
1174 *      If the buffer is shared the buffer is cloned and the old copy
1175 *      drops a reference. A new clone with a single reference is returned.
1176 *      If the buffer is not shared the original buffer is returned. When
1177 *      being called from interrupt status or with spinlocks held pri must
1178 *      be GFP_ATOMIC.
1179 *
1180 *      NULL is returned on a memory allocation failure.
1181 */
1182static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1183{
1184        might_sleep_if(pri & __GFP_WAIT);
1185        if (skb_shared(skb)) {
1186                struct sk_buff *nskb = skb_clone(skb, pri);
1187
1188                if (likely(nskb))
1189                        consume_skb(skb);
1190                else
1191                        kfree_skb(skb);
1192                skb = nskb;
1193        }
1194        return skb;
1195}
1196
1197/*
1198 *      Copy shared buffers into a new sk_buff. We effectively do COW on
1199 *      packets to handle cases where we have a local reader and forward
1200 *      and a couple of other messy ones. The normal one is tcpdumping
1201 *      a packet thats being forwarded.
1202 */
1203
1204/**
1205 *      skb_unshare - make a copy of a shared buffer
1206 *      @skb: buffer to check
1207 *      @pri: priority for memory allocation
1208 *
1209 *      If the socket buffer is a clone then this function creates a new
1210 *      copy of the data, drops a reference count on the old copy and returns
1211 *      the new copy with the reference count at 1. If the buffer is not a clone
1212 *      the original buffer is returned. When called with a spinlock held or
1213 *      from interrupt state @pri must be %GFP_ATOMIC
1214 *
1215 *      %NULL is returned on a memory allocation failure.
1216 */
1217static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1218                                          gfp_t pri)
1219{
1220        might_sleep_if(pri & __GFP_WAIT);
1221        if (skb_cloned(skb)) {
1222                struct sk_buff *nskb = skb_copy(skb, pri);
1223
1224                /* Free our shared copy */
1225                if (likely(nskb))
1226                        consume_skb(skb);
1227                else
1228                        kfree_skb(skb);
1229                skb = nskb;
1230        }
1231        return skb;
1232}
1233
1234/**
1235 *      skb_peek - peek at the head of an &sk_buff_head
1236 *      @list_: list to peek at
1237 *
1238 *      Peek an &sk_buff. Unlike most other operations you _MUST_
1239 *      be careful with this one. A peek leaves the buffer on the
1240 *      list and someone else may run off with it. You must hold
1241 *      the appropriate locks or have a private queue to do this.
1242 *
1243 *      Returns %NULL for an empty list or a pointer to the head element.
1244 *      The reference count is not incremented and the reference is therefore
1245 *      volatile. Use with caution.
1246 */
1247static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1248{
1249        struct sk_buff *skb = list_->next;
1250
1251        if (skb == (struct sk_buff *)list_)
1252                skb = NULL;
1253        return skb;
1254}
1255
1256/**
1257 *      skb_peek_next - peek skb following the given one from a queue
1258 *      @skb: skb to start from
1259 *      @list_: list to peek at
1260 *
1261 *      Returns %NULL when the end of the list is met or a pointer to the
1262 *      next element. The reference count is not incremented and the
1263 *      reference is therefore volatile. Use with caution.
1264 */
1265static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1266                const struct sk_buff_head *list_)
1267{
1268        struct sk_buff *next = skb->next;
1269
1270        if (next == (struct sk_buff *)list_)
1271                next = NULL;
1272        return next;
1273}
1274
1275/**
1276 *      skb_peek_tail - peek at the tail of an &sk_buff_head
1277 *      @list_: list to peek at
1278 *
1279 *      Peek an &sk_buff. Unlike most other operations you _MUST_
1280 *      be careful with this one. A peek leaves the buffer on the
1281 *      list and someone else may run off with it. You must hold
1282 *      the appropriate locks or have a private queue to do this.
1283 *
1284 *      Returns %NULL for an empty list or a pointer to the tail element.
1285 *      The reference count is not incremented and the reference is therefore
1286 *      volatile. Use with caution.
1287 */
1288static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1289{
1290        struct sk_buff *skb = list_->prev;
1291
1292        if (skb == (struct sk_buff *)list_)
1293                skb = NULL;
1294        return skb;
1295
1296}
1297
1298/**
1299 *      skb_queue_len   - get queue length
1300 *      @list_: list to measure
1301 *
1302 *      Return the length of an &sk_buff queue.
1303 */
1304static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1305{
1306        return list_->qlen;
1307}
1308
1309/**
1310 *      __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1311 *      @list: queue to initialize
1312 *
1313 *      This initializes only the list and queue length aspects of
1314 *      an sk_buff_head object.  This allows to initialize the list
1315 *      aspects of an sk_buff_head without reinitializing things like
1316 *      the spinlock.  It can also be used for on-stack sk_buff_head
1317 *      objects where the spinlock is known to not be used.
1318 */
1319static inline void __skb_queue_head_init(struct sk_buff_head *list)
1320{
1321        list->prev = list->next = (struct sk_buff *)list;
1322        list->qlen = 0;
1323}
1324
1325/*
1326 * This function creates a split out lock class for each invocation;
1327 * this is needed for now since a whole lot of users of the skb-queue
1328 * infrastructure in drivers have different locking usage (in hardirq)
1329 * than the networking core (in softirq only). In the long run either the
1330 * network layer or drivers should need annotation to consolidate the
1331 * main types of usage into 3 classes.
1332 */
1333static inline void skb_queue_head_init(struct sk_buff_head *list)
1334{
1335        spin_lock_init(&list->lock);
1336        __skb_queue_head_init(list);
1337}
1338
1339static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1340                struct lock_class_key *class)
1341{
1342        skb_queue_head_init(list);
1343        lockdep_set_class(&list->lock, class);
1344}
1345
1346/*
1347 *      Insert an sk_buff on a list.
1348 *
1349 *      The "__skb_xxxx()" functions are the non-atomic ones that
1350 *      can only be called with interrupts disabled.
1351 */
1352void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1353                struct sk_buff_head *list);
1354static inline void __skb_insert(struct sk_buff *newsk,
1355                                struct sk_buff *prev, struct sk_buff *next,
1356                                struct sk_buff_head *list)
1357{
1358        newsk->next = next;
1359        newsk->prev = prev;
1360        next->prev  = prev->next = newsk;
1361        list->qlen++;
1362}
1363
1364static inline void __skb_queue_splice(const struct sk_buff_head *list,
1365                                      struct sk_buff *prev,
1366                                      struct sk_buff *next)
1367{
1368        struct sk_buff *first = list->next;
1369        struct sk_buff *last = list->prev;
1370
1371        first->prev = prev;
1372        prev->next = first;
1373
1374        last->next = next;
1375        next->prev = last;
1376}
1377
1378/**
1379 *      skb_queue_splice - join two skb lists, this is designed for stacks
1380 *      @list: the new list to add
1381 *      @head: the place to add it in the first list
1382 */
1383static inline void skb_queue_splice(const struct sk_buff_head *list,
1384                                    struct sk_buff_head *head)
1385{
1386        if (!skb_queue_empty(list)) {
1387                __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1388                head->qlen += list->qlen;
1389        }
1390}
1391
1392/**
1393 *      skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1394 *      @list: the new list to add
1395 *      @head: the place to add it in the first list
1396 *
1397 *      The list at @list is reinitialised
1398 */
1399static inline void skb_queue_splice_init(struct sk_buff_head *list,
1400                                         struct sk_buff_head *head)
1401{
1402        if (!skb_queue_empty(list)) {
1403                __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1404                head->qlen += list->qlen;
1405                __skb_queue_head_init(list);
1406        }
1407}
1408
1409/**
1410 *      skb_queue_splice_tail - join two skb lists, each list being a queue
1411 *      @list: the new list to add
1412 *      @head: the place to add it in the first list
1413 */
1414static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1415                                         struct sk_buff_head *head)
1416{
1417        if (!skb_queue_empty(list)) {
1418                __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1419                head->qlen += list->qlen;
1420        }
1421}
1422
1423/**
1424 *      skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1425 *      @list: the new list to add
1426 *      @head: the place to add it in the first list
1427 *
1428 *      Each of the lists is a queue.
1429 *      The list at @list is reinitialised
1430 */
1431static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1432                                              struct sk_buff_head *head)
1433{
1434        if (!skb_queue_empty(list)) {
1435                __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1436                head->qlen += list->qlen;
1437                __skb_queue_head_init(list);
1438        }
1439}
1440
1441/**
1442 *      __skb_queue_after - queue a buffer at the list head
1443 *      @list: list to use
1444 *      @prev: place after this buffer
1445 *      @newsk: buffer to queue
1446 *
1447 *      Queue a buffer int the middle of a list. This function takes no locks
1448 *      and you must therefore hold required locks before calling it.
1449 *
1450 *      A buffer cannot be placed on two lists at the same time.
1451 */
1452static inline void __skb_queue_after(struct sk_buff_head *list,
1453                                     struct sk_buff *prev,
1454                                     struct sk_buff *newsk)
1455{
1456        __skb_insert(newsk, prev, prev->next, list);
1457}
1458
1459void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1460                struct sk_buff_head *list);
1461
1462static inline void __skb_queue_before(struct sk_buff_head *list,
1463                                      struct sk_buff *next,
1464                                      struct sk_buff *newsk)
1465{
1466        __skb_insert(newsk, next->prev, next, list);
1467}
1468
1469/**
1470 *      __skb_queue_head - queue a buffer at the list head
1471 *      @list: list to use
1472 *      @newsk: buffer to queue
1473 *
1474 *      Queue a buffer at the start of a list. This function takes no locks
1475 *      and you must therefore hold required locks before calling it.
1476 *
1477 *      A buffer cannot be placed on two lists at the same time.
1478 */
1479void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1480static inline void __skb_queue_head(struct sk_buff_head *list,
1481                                    struct sk_buff *newsk)
1482{
1483        __skb_queue_after(list, (struct sk_buff *)list, newsk);
1484}
1485
1486/**
1487 *      __skb_queue_tail - queue a buffer at the list tail
1488 *      @list: list to use
1489 *      @newsk: buffer to queue
1490 *
1491 *      Queue a buffer at the end of a list. This function takes no locks
1492 *      and you must therefore hold required locks before calling it.
1493 *
1494 *      A buffer cannot be placed on two lists at the same time.
1495 */
1496void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1497static inline void __skb_queue_tail(struct sk_buff_head *list,
1498                                   struct sk_buff *newsk)
1499{
1500        __skb_queue_before(list, (struct sk_buff *)list, newsk);
1501}
1502
1503/*
1504 * remove sk_buff from list. _Must_ be called atomically, and with
1505 * the list known..
1506 */
1507void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1508static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1509{
1510        struct sk_buff *next, *prev;
1511
1512        list->qlen--;
1513        next       = skb->next;
1514        prev       = skb->prev;
1515        skb->next  = skb->prev = NULL;
1516        next->prev = prev;
1517        prev->next = next;
1518}
1519
1520/**
1521 *      __skb_dequeue - remove from the head of the queue
1522 *      @list: list to dequeue from
1523 *
1524 *      Remove the head of the list. This function does not take any locks
1525 *      so must be used with appropriate locks held only. The head item is
1526 *      returned or %NULL if the list is empty.
1527 */
1528struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1529static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1530{
1531        struct sk_buff *skb = skb_peek(list);
1532        if (skb)
1533                __skb_unlink(skb, list);
1534        return skb;
1535}
1536
1537/**
1538 *      __skb_dequeue_tail - remove from the tail of the queue
1539 *      @list: list to dequeue from
1540 *
1541 *      Remove the tail of the list. This function does not take any locks
1542 *      so must be used with appropriate locks held only. The tail item is
1543 *      returned or %NULL if the list is empty.
1544 */
1545struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1546static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1547{
1548        struct sk_buff *skb = skb_peek_tail(list);
1549        if (skb)
1550                __skb_unlink(skb, list);
1551        return skb;
1552}
1553
1554
1555static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1556{
1557        return skb->data_len;
1558}
1559
1560static inline unsigned int skb_headlen(const struct sk_buff *skb)
1561{
1562        return skb->len - skb->data_len;
1563}
1564
1565static inline int skb_pagelen(const struct sk_buff *skb)
1566{
1567        int i, len = 0;
1568
1569        for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1570                len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1571        return len + skb_headlen(skb);
1572}
1573
1574/**
1575 * __skb_fill_page_desc - initialise a paged fragment in an skb
1576 * @skb: buffer containing fragment to be initialised
1577 * @i: paged fragment index to initialise
1578 * @page: the page to use for this fragment
1579 * @off: the offset to the data with @page
1580 * @size: the length of the data
1581 *
1582 * Initialises the @i'th fragment of @skb to point to &size bytes at
1583 * offset @off within @page.
1584 *
1585 * Does not take any additional reference on the fragment.
1586 */
1587static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1588                                        struct page *page, int off, int size)
1589{
1590        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1591
1592        /*
1593         * Propagate page->pfmemalloc to the skb if we can. The problem is
1594         * that not all callers have unique ownership of the page. If
1595         * pfmemalloc is set, we check the mapping as a mapping implies
1596         * page->index is set (index and pfmemalloc share space).
1597         * If it's a valid mapping, we cannot use page->pfmemalloc but we
1598         * do not lose pfmemalloc information as the pages would not be
1599         * allocated using __GFP_MEMALLOC.
1600         */
1601        frag->page.p              = page;
1602        frag->page_offset         = off;
1603        skb_frag_size_set(frag, size);
1604
1605        page = compound_head(page);
1606        if (page->pfmemalloc && !page->mapping)
1607                skb->pfmemalloc = true;
1608}
1609
1610/**
1611 * skb_fill_page_desc - initialise a paged fragment in an skb
1612 * @skb: buffer containing fragment to be initialised
1613 * @i: paged fragment index to initialise
1614 * @page: the page to use for this fragment
1615 * @off: the offset to the data with @page
1616 * @size: the length of the data
1617 *
1618 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1619 * @skb to point to @size bytes at offset @off within @page. In
1620 * addition updates @skb such that @i is the last fragment.
1621 *
1622 * Does not take any additional reference on the fragment.
1623 */
1624static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1625                                      struct page *page, int off, int size)
1626{
1627        __skb_fill_page_desc(skb, i, page, off, size);
1628        skb_shinfo(skb)->nr_frags = i + 1;
1629}
1630
1631void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1632                     int size, unsigned int truesize);
1633
1634void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1635                          unsigned int truesize);
1636
1637#define SKB_PAGE_ASSERT(skb)    BUG_ON(skb_shinfo(skb)->nr_frags)
1638#define SKB_FRAG_ASSERT(skb)    BUG_ON(skb_has_frag_list(skb))
1639#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1640
1641#ifdef NET_SKBUFF_DATA_USES_OFFSET
1642static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1643{
1644        return skb->head + skb->tail;
1645}
1646
1647static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1648{
1649        skb->tail = skb->data - skb->head;
1650}
1651
1652static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1653{
1654        skb_reset_tail_pointer(skb);
1655        skb->tail += offset;
1656}
1657
1658#else /* NET_SKBUFF_DATA_USES_OFFSET */
1659static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1660{
1661        return skb->tail;
1662}
1663
1664static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1665{
1666        skb->tail = skb->data;
1667}
1668
1669static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1670{
1671        skb->tail = skb->data + offset;
1672}
1673
1674#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1675
1676/*
1677 *      Add data to an sk_buff
1678 */
1679unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1680unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1681static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1682{
1683        unsigned char *tmp = skb_tail_pointer(skb);
1684        SKB_LINEAR_ASSERT(skb);
1685        skb->tail += len;
1686        skb->len  += len;
1687        return tmp;
1688}
1689
1690unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1691static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1692{
1693        skb->data -= len;
1694        skb->len  += len;
1695        return skb->data;
1696}
1697
1698unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1699static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1700{
1701        skb->len -= len;
1702        BUG_ON(skb->len < skb->data_len);
1703        return skb->data += len;
1704}
1705
1706static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1707{
1708        return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1709}
1710
1711unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1712
1713static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1714{
1715        if (len > skb_headlen(skb) &&
1716            !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1717                return NULL;
1718        skb->len -= len;
1719        return skb->data += len;
1720}
1721
1722static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1723{
1724        return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1725}
1726
1727static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1728{
1729        if (likely(len <= skb_headlen(skb)))
1730                return 1;
1731        if (unlikely(len > skb->len))
1732                return 0;
1733        return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1734}
1735
1736/**
1737 *      skb_headroom - bytes at buffer head
1738 *      @skb: buffer to check
1739 *
1740 *      Return the number of bytes of free space at the head of an &sk_buff.
1741 */
1742static inline unsigned int skb_headroom(const struct sk_buff *skb)
1743{
1744        return skb->data - skb->head;
1745}
1746
1747/**
1748 *      skb_tailroom - bytes at buffer end
1749 *      @skb: buffer to check
1750 *
1751 *      Return the number of bytes of free space at the tail of an sk_buff
1752 */
1753static inline int skb_tailroom(const struct sk_buff *skb)
1754{
1755        return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1756}
1757
1758/**
1759 *      skb_availroom - bytes at buffer end
1760 *      @skb: buffer to check
1761 *
1762 *      Return the number of bytes of free space at the tail of an sk_buff
1763 *      allocated by sk_stream_alloc()
1764 */
1765static inline int skb_availroom(const struct sk_buff *skb)
1766{
1767        if (skb_is_nonlinear(skb))
1768                return 0;
1769
1770        return skb->end - skb->tail - skb->reserved_tailroom;
1771}
1772
1773/**
1774 *      skb_reserve - adjust headroom
1775 *      @skb: buffer to alter
1776 *      @len: bytes to move
1777 *
1778 *      Increase the headroom of an empty &sk_buff by reducing the tail
1779 *      room. This is only allowed for an empty buffer.
1780 */
1781static inline void skb_reserve(struct sk_buff *skb, int len)
1782{
1783        skb->data += len;
1784        skb->tail += len;
1785}
1786
1787#define ENCAP_TYPE_ETHER        0
1788#define ENCAP_TYPE_IPPROTO      1
1789
1790static inline void skb_set_inner_protocol(struct sk_buff *skb,
1791                                          __be16 protocol)
1792{
1793        skb->inner_protocol = protocol;
1794        skb->inner_protocol_type = ENCAP_TYPE_ETHER;
1795}
1796
1797static inline void skb_set_inner_ipproto(struct sk_buff *skb,
1798                                         __u8 ipproto)
1799{
1800        skb->inner_ipproto = ipproto;
1801        skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
1802}
1803
1804static inline void skb_reset_inner_headers(struct sk_buff *skb)
1805{
1806        skb->inner_mac_header = skb->mac_header;
1807        skb->inner_network_header = skb->network_header;
1808        skb->inner_transport_header = skb->transport_header;
1809}
1810
1811static inline void skb_reset_mac_len(struct sk_buff *skb)
1812{
1813        skb->mac_len = skb->network_header - skb->mac_header;
1814}
1815
1816static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1817                                                        *skb)
1818{
1819        return skb->head + skb->inner_transport_header;
1820}
1821
1822static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1823{
1824        skb->inner_transport_header = skb->data - skb->head;
1825}
1826
1827static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1828                                                   const int offset)
1829{
1830        skb_reset_inner_transport_header(skb);
1831        skb->inner_transport_header += offset;
1832}
1833
1834static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1835{
1836        return skb->head + skb->inner_network_header;
1837}
1838
1839static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1840{
1841        skb->inner_network_header = skb->data - skb->head;
1842}
1843
1844static inline void skb_set_inner_network_header(struct sk_buff *skb,
1845                                                const int offset)
1846{
1847        skb_reset_inner_network_header(skb);
1848        skb->inner_network_header += offset;
1849}
1850
1851static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1852{
1853        return skb->head + skb->inner_mac_header;
1854}
1855
1856static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1857{
1858        skb->inner_mac_header = skb->data - skb->head;
1859}
1860
1861static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1862                                            const int offset)
1863{
1864        skb_reset_inner_mac_header(skb);
1865        skb->inner_mac_header += offset;
1866}
1867static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1868{
1869        return skb->transport_header != (typeof(skb->transport_header))~0U;
1870}
1871
1872static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1873{
1874        return skb->head + skb->transport_header;
1875}
1876
1877static inline void skb_reset_transport_header(struct sk_buff *skb)
1878{
1879        skb->transport_header = skb->data - skb->head;
1880}
1881
1882static inline void skb_set_transport_header(struct sk_buff *skb,
1883                                            const int offset)
1884{
1885        skb_reset_transport_header(skb);
1886        skb->transport_header += offset;
1887}
1888
1889static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1890{
1891        return skb->head + skb->network_header;
1892}
1893
1894static inline void skb_reset_network_header(struct sk_buff *skb)
1895{
1896        skb->network_header = skb->data - skb->head;
1897}
1898
1899static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1900{
1901        skb_reset_network_header(skb);
1902        skb->network_header += offset;
1903}
1904
1905static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1906{
1907        return skb->head + skb->mac_header;
1908}
1909
1910static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1911{
1912        return skb->mac_header != (typeof(skb->mac_header))~0U;
1913}
1914
1915static inline void skb_reset_mac_header(struct sk_buff *skb)
1916{
1917        skb->mac_header = skb->data - skb->head;
1918}
1919
1920static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1921{
1922        skb_reset_mac_header(skb);
1923        skb->mac_header += offset;
1924}
1925
1926static inline void skb_pop_mac_header(struct sk_buff *skb)
1927{
1928        skb->mac_header = skb->network_header;
1929}
1930
1931static inline void skb_probe_transport_header(struct sk_buff *skb,
1932                                              const int offset_hint)
1933{
1934        struct flow_keys keys;
1935
1936        if (skb_transport_header_was_set(skb))
1937                return;
1938        else if (skb_flow_dissect(skb, &keys))
1939                skb_set_transport_header(skb, keys.thoff);
1940        else
1941                skb_set_transport_header(skb, offset_hint);
1942}
1943
1944static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1945{
1946        if (skb_mac_header_was_set(skb)) {
1947                const unsigned char *old_mac = skb_mac_header(skb);
1948
1949                skb_set_mac_header(skb, -skb->mac_len);
1950                memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1951        }
1952}
1953
1954static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1955{
1956        return skb->csum_start - skb_headroom(skb);
1957}
1958
1959static inline int skb_transport_offset(const struct sk_buff *skb)
1960{
1961        return skb_transport_header(skb) - skb->data;
1962}
1963
1964static inline u32 skb_network_header_len(const struct sk_buff *skb)
1965{
1966        return skb->transport_header - skb->network_header;
1967}
1968
1969static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
1970{
1971        return skb->inner_transport_header - skb->inner_network_header;
1972}
1973
1974static inline int skb_network_offset(const struct sk_buff *skb)
1975{
1976        return skb_network_header(skb) - skb->data;
1977}
1978
1979static inline int skb_inner_network_offset(const struct sk_buff *skb)
1980{
1981        return skb_inner_network_header(skb) - skb->data;
1982}
1983
1984static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1985{
1986        return pskb_may_pull(skb, skb_network_offset(skb) + len);
1987}
1988
1989/*
1990 * CPUs often take a performance hit when accessing unaligned memory
1991 * locations. The actual performance hit varies, it can be small if the
1992 * hardware handles it or large if we have to take an exception and fix it
1993 * in software.
1994 *
1995 * Since an ethernet header is 14 bytes network drivers often end up with
1996 * the IP header at an unaligned offset. The IP header can be aligned by
1997 * shifting the start of the packet by 2 bytes. Drivers should do this
1998 * with:
1999 *
2000 * skb_reserve(skb, NET_IP_ALIGN);
2001 *
2002 * The downside to this alignment of the IP header is that the DMA is now
2003 * unaligned. On some architectures the cost of an unaligned DMA is high
2004 * and this cost outweighs the gains made by aligning the IP header.
2005 *
2006 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2007 * to be overridden.
2008 */
2009#ifndef NET_IP_ALIGN
2010#define NET_IP_ALIGN    2
2011#endif
2012
2013/*
2014 * The networking layer reserves some headroom in skb data (via
2015 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2016 * the header has to grow. In the default case, if the header has to grow
2017 * 32 bytes or less we avoid the reallocation.
2018 *
2019 * Unfortunately this headroom changes the DMA alignment of the resulting
2020 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2021 * on some architectures. An architecture can override this value,
2022 * perhaps setting it to a cacheline in size (since that will maintain
2023 * cacheline alignment of the DMA). It must be a power of 2.
2024 *
2025 * Various parts of the networking layer expect at least 32 bytes of
2026 * headroom, you should not reduce this.
2027 *
2028 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2029 * to reduce average number of cache lines per packet.
2030 * get_rps_cpus() for example only access one 64 bytes aligned block :
2031 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2032 */
2033#ifndef NET_SKB_PAD
2034#define NET_SKB_PAD     max(32, L1_CACHE_BYTES)
2035#endif
2036
2037int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2038
2039static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2040{
2041        if (unlikely(skb_is_nonlinear(skb))) {
2042                WARN_ON(1);
2043                return;
2044        }
2045        skb->len = len;
2046        skb_set_tail_pointer(skb, len);
2047}
2048
2049void skb_trim(struct sk_buff *skb, unsigned int len);
2050
2051static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2052{
2053        if (skb->data_len)
2054                return ___pskb_trim(skb, len);
2055        __skb_trim(skb, len);
2056        return 0;
2057}
2058
2059static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2060{
2061        return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2062}
2063
2064/**
2065 *      pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2066 *      @skb: buffer to alter
2067 *      @len: new length
2068 *
2069 *      This is identical to pskb_trim except that the caller knows that
2070 *      the skb is not cloned so we should never get an error due to out-
2071 *      of-memory.
2072 */
2073static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2074{
2075        int err = pskb_trim(skb, len);
2076        BUG_ON(err);
2077}
2078
2079/**
2080 *      skb_orphan - orphan a buffer
2081 *      @skb: buffer to orphan
2082 *
2083 *      If a buffer currently has an owner then we call the owner's
2084 *      destructor function and make the @skb unowned. The buffer continues
2085 *      to exist but is no longer charged to its former owner.
2086 */
2087static inline void skb_orphan(struct sk_buff *skb)
2088{
2089        if (skb->destructor) {
2090                skb->destructor(skb);
2091                skb->destructor = NULL;
2092                skb->sk         = NULL;
2093        } else {
2094                BUG_ON(skb->sk);
2095        }
2096}
2097
2098/**
2099 *      skb_orphan_frags - orphan the frags contained in a buffer
2100 *      @skb: buffer to orphan frags from
2101 *      @gfp_mask: allocation mask for replacement pages
2102 *
2103 *      For each frag in the SKB which needs a destructor (i.e. has an
2104 *      owner) create a copy of that frag and release the original
2105 *      page by calling the destructor.
2106 */
2107static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2108{
2109        if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2110                return 0;
2111        return skb_copy_ubufs(skb, gfp_mask);
2112}
2113
2114/**
2115 *      __skb_queue_purge - empty a list
2116 *      @list: list to empty
2117 *
2118 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
2119 *      the list and one reference dropped. This function does not take the
2120 *      list lock and the caller must hold the relevant locks to use it.
2121 */
2122void skb_queue_purge(struct sk_buff_head *list);
2123static inline void __skb_queue_purge(struct sk_buff_head *list)
2124{
2125        struct sk_buff *skb;
2126        while ((skb = __skb_dequeue(list)) != NULL)
2127                kfree_skb(skb);
2128}
2129
2130#define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
2131#define NETDEV_FRAG_PAGE_MAX_SIZE  (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
2132#define NETDEV_PAGECNT_MAX_BIAS    NETDEV_FRAG_PAGE_MAX_SIZE
2133
2134void *netdev_alloc_frag(unsigned int fragsz);
2135
2136struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2137                                   gfp_t gfp_mask);
2138
2139/**
2140 *      netdev_alloc_skb - allocate an skbuff for rx on a specific device
2141 *      @dev: network device to receive on
2142 *      @length: length to allocate
2143 *
2144 *      Allocate a new &sk_buff and assign it a usage count of one. The
2145 *      buffer has unspecified headroom built in. Users should allocate
2146 *      the headroom they think they need without accounting for the
2147 *      built in space. The built in space is used for optimisations.
2148 *
2149 *      %NULL is returned if there is no free memory. Although this function
2150 *      allocates memory it can be called from an interrupt.
2151 */
2152static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2153                                               unsigned int length)
2154{
2155        return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2156}
2157
2158/* legacy helper around __netdev_alloc_skb() */
2159static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2160                                              gfp_t gfp_mask)
2161{
2162        return __netdev_alloc_skb(NULL, length, gfp_mask);
2163}
2164
2165/* legacy helper around netdev_alloc_skb() */
2166static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2167{
2168        return netdev_alloc_skb(NULL, length);
2169}
2170
2171
2172static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2173                unsigned int length, gfp_t gfp)
2174{
2175        struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2176
2177        if (NET_IP_ALIGN && skb)
2178                skb_reserve(skb, NET_IP_ALIGN);
2179        return skb;
2180}
2181
2182static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2183                unsigned int length)
2184{
2185        return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2186}
2187
2188void *napi_alloc_frag(unsigned int fragsz);
2189struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2190                                 unsigned int length, gfp_t gfp_mask);
2191static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2192                                             unsigned int length)
2193{
2194        return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2195}
2196
2197/**
2198 * __dev_alloc_pages - allocate page for network Rx
2199 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2200 * @order: size of the allocation
2201 *
2202 * Allocate a new page.
2203 *
2204 * %NULL is returned if there is no free memory.
2205*/
2206static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2207                                             unsigned int order)
2208{
2209        /* This piece of code contains several assumptions.
2210         * 1.  This is for device Rx, therefor a cold page is preferred.
2211         * 2.  The expectation is the user wants a compound page.
2212         * 3.  If requesting a order 0 page it will not be compound
2213         *     due to the check to see if order has a value in prep_new_page
2214         * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2215         *     code in gfp_to_alloc_flags that should be enforcing this.
2216         */
2217        gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2218
2219        return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2220}
2221
2222static inline struct page *dev_alloc_pages(unsigned int order)
2223{
2224        return __dev_alloc_pages(GFP_ATOMIC, order);
2225}
2226
2227/**
2228 * __dev_alloc_page - allocate a page for network Rx
2229 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2230 *
2231 * Allocate a new page.
2232 *
2233 * %NULL is returned if there is no free memory.
2234 */
2235static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2236{
2237        return __dev_alloc_pages(gfp_mask, 0);
2238}
2239
2240static inline struct page *dev_alloc_page(void)
2241{
2242        return __dev_alloc_page(GFP_ATOMIC);
2243}
2244
2245/**
2246 *      skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2247 *      @page: The page that was allocated from skb_alloc_page
2248 *      @skb: The skb that may need pfmemalloc set
2249 */
2250static inline void skb_propagate_pfmemalloc(struct page *page,
2251                                             struct sk_buff *skb)
2252{
2253        if (page && page->pfmemalloc)
2254                skb->pfmemalloc = true;
2255}
2256
2257/**
2258 * skb_frag_page - retrieve the page referred to by a paged fragment
2259 * @frag: the paged fragment
2260 *
2261 * Returns the &struct page associated with @frag.
2262 */
2263static inline struct page *skb_frag_page(const skb_frag_t *frag)
2264{
2265        return frag->page.p;
2266}
2267
2268/**
2269 * __skb_frag_ref - take an addition reference on a paged fragment.
2270 * @frag: the paged fragment
2271 *
2272 * Takes an additional reference on the paged fragment @frag.
2273 */
2274static inline void __skb_frag_ref(skb_frag_t *frag)
2275{
2276        get_page(skb_frag_page(frag));
2277}
2278
2279/**
2280 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2281 * @skb: the buffer
2282 * @f: the fragment offset.
2283 *
2284 * Takes an additional reference on the @f'th paged fragment of @skb.
2285 */
2286static inline void skb_frag_ref(struct sk_buff *skb, int f)
2287{
2288        __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2289}
2290
2291/**
2292 * __skb_frag_unref - release a reference on a paged fragment.
2293 * @frag: the paged fragment
2294 *
2295 * Releases a reference on the paged fragment @frag.
2296 */
2297static inline void __skb_frag_unref(skb_frag_t *frag)
2298{
2299        put_page(skb_frag_page(frag));
2300}
2301
2302/**
2303 * skb_frag_unref - release a reference on a paged fragment of an skb.
2304 * @skb: the buffer
2305 * @f: the fragment offset
2306 *
2307 * Releases a reference on the @f'th paged fragment of @skb.
2308 */
2309static inline void skb_frag_unref(struct sk_buff *skb, int f)
2310{
2311        __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2312}
2313
2314/**
2315 * skb_frag_address - gets the address of the data contained in a paged fragment
2316 * @frag: the paged fragment buffer
2317 *
2318 * Returns the address of the data within @frag. The page must already
2319 * be mapped.
2320 */
2321static inline void *skb_frag_address(const skb_frag_t *frag)
2322{
2323        return page_address(skb_frag_page(frag)) + frag->page_offset;
2324}
2325
2326/**
2327 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2328 * @frag: the paged fragment buffer
2329 *
2330 * Returns the address of the data within @frag. Checks that the page
2331 * is mapped and returns %NULL otherwise.
2332 */
2333static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2334{
2335        void *ptr = page_address(skb_frag_page(frag));
2336        if (unlikely(!ptr))
2337                return NULL;
2338
2339        return ptr + frag->page_offset;
2340}
2341
2342/**
2343 * __skb_frag_set_page - sets the page contained in a paged fragment
2344 * @frag: the paged fragment
2345 * @page: the page to set
2346 *
2347 * Sets the fragment @frag to contain @page.
2348 */
2349static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2350{
2351        frag->page.p = page;
2352}
2353
2354/**
2355 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2356 * @skb: the buffer
2357 * @f: the fragment offset
2358 * @page: the page to set
2359 *
2360 * Sets the @f'th fragment of @skb to contain @page.
2361 */
2362static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2363                                     struct page *page)
2364{
2365        __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2366}
2367
2368bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2369
2370/**
2371 * skb_frag_dma_map - maps a paged fragment via the DMA API
2372 * @dev: the device to map the fragment to
2373 * @frag: the paged fragment to map
2374 * @offset: the offset within the fragment (starting at the
2375 *          fragment's own offset)
2376 * @size: the number of bytes to map
2377 * @dir: the direction of the mapping (%PCI_DMA_*)
2378 *
2379 * Maps the page associated with @frag to @device.
2380 */
2381static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2382                                          const skb_frag_t *frag,
2383                                          size_t offset, size_t size,
2384                                          enum dma_data_direction dir)
2385{
2386        return dma_map_page(dev, skb_frag_page(frag),
2387                            frag->page_offset + offset, size, dir);
2388}
2389
2390static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2391                                        gfp_t gfp_mask)
2392{
2393        return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2394}
2395
2396
2397static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2398                                                  gfp_t gfp_mask)
2399{
2400        return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2401}
2402
2403
2404/**
2405 *      skb_clone_writable - is the header of a clone writable
2406 *      @skb: buffer to check
2407 *      @len: length up to which to write
2408 *
2409 *      Returns true if modifying the header part of the cloned buffer
2410 *      does not requires the data to be copied.
2411 */
2412static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2413{
2414        return !skb_header_cloned(skb) &&
2415               skb_headroom(skb) + len <= skb->hdr_len;
2416}
2417
2418static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2419                            int cloned)
2420{
2421        int delta = 0;
2422
2423        if (headroom > skb_headroom(skb))
2424                delta = headroom - skb_headroom(skb);
2425
2426        if (delta || cloned)
2427                return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2428                                        GFP_ATOMIC);
2429        return 0;
2430}
2431
2432/**
2433 *      skb_cow - copy header of skb when it is required
2434 *      @skb: buffer to cow
2435 *      @headroom: needed headroom
2436 *
2437 *      If the skb passed lacks sufficient headroom or its data part
2438 *      is shared, data is reallocated. If reallocation fails, an error
2439 *      is returned and original skb is not changed.
2440 *
2441 *      The result is skb with writable area skb->head...skb->tail
2442 *      and at least @headroom of space at head.
2443 */
2444static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2445{
2446        return __skb_cow(skb, headroom, skb_cloned(skb));
2447}
2448
2449/**
2450 *      skb_cow_head - skb_cow but only making the head writable
2451 *      @skb: buffer to cow
2452 *      @headroom: needed headroom
2453 *
2454 *      This function is identical to skb_cow except that we replace the
2455 *      skb_cloned check by skb_header_cloned.  It should be used when
2456 *      you only need to push on some header and do not need to modify
2457 *      the data.
2458 */
2459static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2460{
2461        return __skb_cow(skb, headroom, skb_header_cloned(skb));
2462}
2463
2464/**
2465 *      skb_padto       - pad an skbuff up to a minimal size
2466 *      @skb: buffer to pad
2467 *      @len: minimal length
2468 *
2469 *      Pads up a buffer to ensure the trailing bytes exist and are
2470 *      blanked. If the buffer already contains sufficient data it
2471 *      is untouched. Otherwise it is extended. Returns zero on
2472 *      success. The skb is freed on error.
2473 */
2474static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2475{
2476        unsigned int size = skb->len;
2477        if (likely(size >= len))
2478                return 0;
2479        return skb_pad(skb, len - size);
2480}
2481
2482/**
2483 *      skb_put_padto - increase size and pad an skbuff up to a minimal size
2484 *      @skb: buffer to pad
2485 *      @len: minimal length
2486 *
2487 *      Pads up a buffer to ensure the trailing bytes exist and are
2488 *      blanked. If the buffer already contains sufficient data it
2489 *      is untouched. Otherwise it is extended. Returns zero on
2490 *      success. The skb is freed on error.
2491 */
2492static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2493{
2494        unsigned int size = skb->len;
2495
2496        if (unlikely(size < len)) {
2497                len -= size;
2498                if (skb_pad(skb, len))
2499                        return -ENOMEM;
2500                __skb_put(skb, len);
2501        }
2502        return 0;
2503}
2504
2505static inline int skb_add_data(struct sk_buff *skb,
2506                               struct iov_iter *from, int copy)
2507{
2508        const int off = skb->len;
2509
2510        if (skb->ip_summed == CHECKSUM_NONE) {
2511                __wsum csum = 0;
2512                if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2513                                            &csum, from) == copy) {
2514                        skb->csum = csum_block_add(skb->csum, csum, off);
2515                        return 0;
2516                }
2517        } else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
2518                return 0;
2519
2520        __skb_trim(skb, off);
2521        return -EFAULT;
2522}
2523
2524static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2525                                    const struct page *page, int off)
2526{
2527        if (i) {
2528                const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2529
2530                return page == skb_frag_page(frag) &&
2531                       off == frag->page_offset + skb_frag_size(frag);
2532        }
2533        return false;
2534}
2535
2536static inline int __skb_linearize(struct sk_buff *skb)
2537{
2538        return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2539}
2540
2541/**
2542 *      skb_linearize - convert paged skb to linear one
2543 *      @skb: buffer to linarize
2544 *
2545 *      If there is no free memory -ENOMEM is returned, otherwise zero
2546 *      is returned and the old skb data released.
2547 */
2548static inline int skb_linearize(struct sk_buff *skb)
2549{
2550        return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2551}
2552
2553/**
2554 * skb_has_shared_frag - can any frag be overwritten
2555 * @skb: buffer to test
2556 *
2557 * Return true if the skb has at least one frag that might be modified
2558 * by an external entity (as in vmsplice()/sendfile())
2559 */
2560static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2561{
2562        return skb_is_nonlinear(skb) &&
2563               skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2564}
2565
2566/**
2567 *      skb_linearize_cow - make sure skb is linear and writable
2568 *      @skb: buffer to process
2569 *
2570 *      If there is no free memory -ENOMEM is returned, otherwise zero
2571 *      is returned and the old skb data released.
2572 */
2573static inline int skb_linearize_cow(struct sk_buff *skb)
2574{
2575        return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2576               __skb_linearize(skb) : 0;
2577}
2578
2579/**
2580 *      skb_postpull_rcsum - update checksum for received skb after pull
2581 *      @skb: buffer to update
2582 *      @start: start of data before pull
2583 *      @len: length of data pulled
2584 *
2585 *      After doing a pull on a received packet, you need to call this to
2586 *      update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2587 *      CHECKSUM_NONE so that it can be recomputed from scratch.
2588 */
2589
2590static inline void skb_postpull_rcsum(struct sk_buff *skb,
2591                                      const void *start, unsigned int len)
2592{
2593        if (skb->ip_summed == CHECKSUM_COMPLETE)
2594                skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2595}
2596
2597unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2598
2599/**
2600 *      pskb_trim_rcsum - trim received skb and update checksum
2601 *      @skb: buffer to trim
2602 *      @len: new length
2603 *
2604 *      This is exactly the same as pskb_trim except that it ensures the
2605 *      checksum of received packets are still valid after the operation.
2606 */
2607
2608static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2609{
2610        if (likely(len >= skb->len))
2611                return 0;
2612        if (skb->ip_summed == CHECKSUM_COMPLETE)
2613                skb->ip_summed = CHECKSUM_NONE;
2614        return __pskb_trim(skb, len);
2615}
2616
2617#define skb_queue_walk(queue, skb) \
2618                for (skb = (queue)->next;                                       \
2619                     skb != (struct sk_buff *)(queue);                          \
2620                     skb = skb->next)
2621
2622#define skb_queue_walk_safe(queue, skb, tmp)                                    \
2623                for (skb = (queue)->next, tmp = skb->next;                      \
2624                     skb != (struct sk_buff *)(queue);                          \
2625                     skb = tmp, tmp = skb->next)
2626
2627#define skb_queue_walk_from(queue, skb)                                         \
2628                for (; skb != (struct sk_buff *)(queue);                        \
2629                     skb = skb->next)
2630
2631#define skb_queue_walk_from_safe(queue, skb, tmp)                               \
2632                for (tmp = skb->next;                                           \
2633                     skb != (struct sk_buff *)(queue);                          \
2634                     skb = tmp, tmp = skb->next)
2635
2636#define skb_queue_reverse_walk(queue, skb) \
2637                for (skb = (queue)->prev;                                       \
2638                     skb != (struct sk_buff *)(queue);                          \
2639                     skb = skb->prev)
2640
2641#define skb_queue_reverse_walk_safe(queue, skb, tmp)                            \
2642                for (skb = (queue)->prev, tmp = skb->prev;                      \
2643                     skb != (struct sk_buff *)(queue);                          \
2644                     skb = tmp, tmp = skb->prev)
2645
2646#define skb_queue_reverse_walk_from_safe(queue, skb, tmp)                       \
2647                for (tmp = skb->prev;                                           \
2648                     skb != (struct sk_buff *)(queue);                          \
2649                     skb = tmp, tmp = skb->prev)
2650
2651static inline bool skb_has_frag_list(const struct sk_buff *skb)
2652{
2653        return skb_shinfo(skb)->frag_list != NULL;
2654}
2655
2656static inline void skb_frag_list_init(struct sk_buff *skb)
2657{
2658        skb_shinfo(skb)->frag_list = NULL;
2659}
2660
2661static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2662{
2663        frag->next = skb_shinfo(skb)->frag_list;
2664        skb_shinfo(skb)->frag_list = frag;
2665}
2666
2667#define skb_walk_frags(skb, iter)       \
2668        for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2669
2670struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2671                                    int *peeked, int *off, int *err);
2672struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2673                                  int *err);
2674unsigned int datagram_poll(struct file *file, struct socket *sock,
2675                           struct poll_table_struct *wait);
2676int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
2677                           struct iov_iter *to, int size);
2678static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
2679                                        struct msghdr *msg, int size)
2680{
2681        return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
2682}
2683int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
2684                                   struct msghdr *msg);
2685int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
2686                                 struct iov_iter *from, int len);
2687int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
2688void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2689void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2690int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
2691int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2692int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2693__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2694                              int len, __wsum csum);
2695int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
2696                    struct pipe_inode_info *pipe, unsigned int len,
2697                    unsigned int flags);
2698void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2699unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
2700int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2701                 int len, int hlen);
2702void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2703int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2704void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2705unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2706struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2707struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
2708int skb_ensure_writable(struct sk_buff *skb, int write_len);
2709int skb_vlan_pop(struct sk_buff *skb);
2710int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
2711
2712static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
2713{
2714        return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2715}
2716
2717static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
2718{
2719        return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2720}
2721
2722struct skb_checksum_ops {
2723        __wsum (*update)(const void *mem, int len, __wsum wsum);
2724        __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
2725};
2726
2727__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2728                      __wsum csum, const struct skb_checksum_ops *ops);
2729__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2730                    __wsum csum);
2731
2732static inline void *__skb_header_pointer(const struct sk_buff *skb, int offset,
2733                                         int len, void *data, int hlen, void *buffer)
2734{
2735        if (hlen - offset >= len)
2736                return data + offset;
2737
2738        if (!skb ||
2739            skb_copy_bits(skb, offset, buffer, len) < 0)
2740                return NULL;
2741
2742        return buffer;
2743}
2744
2745static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2746                                       int len, void *buffer)
2747{
2748        return __skb_header_pointer(skb, offset, len, skb->data,
2749                                    skb_headlen(skb), buffer);
2750}
2751
2752/**
2753 *      skb_needs_linearize - check if we need to linearize a given skb
2754 *                            depending on the given device features.
2755 *      @skb: socket buffer to check
2756 *      @features: net device features
2757 *
2758 *      Returns true if either:
2759 *      1. skb has frag_list and the device doesn't support FRAGLIST, or
2760 *      2. skb is fragmented and the device does not support SG.
2761 */
2762static inline bool skb_needs_linearize(struct sk_buff *skb,
2763                                       netdev_features_t features)
2764{
2765        return skb_is_nonlinear(skb) &&
2766               ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
2767                (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
2768}
2769
2770static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2771                                             void *to,
2772                                             const unsigned int len)
2773{
2774        memcpy(to, skb->data, len);
2775}
2776
2777static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2778                                                    const int offset, void *to,
2779                                                    const unsigned int len)
2780{
2781        memcpy(to, skb->data + offset, len);
2782}
2783
2784static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2785                                           const void *from,
2786                                           const unsigned int len)
2787{
2788        memcpy(skb->data, from, len);
2789}
2790
2791static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2792                                                  const int offset,
2793                                                  const void *from,
2794                                                  const unsigned int len)
2795{
2796        memcpy(skb->data + offset, from, len);
2797}
2798
2799void skb_init(void);
2800
2801static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2802{
2803        return skb->tstamp;
2804}
2805
2806/**
2807 *      skb_get_timestamp - get timestamp from a skb
2808 *      @skb: skb to get stamp from
2809 *      @stamp: pointer to struct timeval to store stamp in
2810 *
2811 *      Timestamps are stored in the skb as offsets to a base timestamp.
2812 *      This function converts the offset back to a struct timeval and stores
2813 *      it in stamp.
2814 */
2815static inline void skb_get_timestamp(const struct sk_buff *skb,
2816                                     struct timeval *stamp)
2817{
2818        *stamp = ktime_to_timeval(skb->tstamp);
2819}
2820
2821static inline void skb_get_timestampns(const struct sk_buff *skb,
2822                                       struct timespec *stamp)
2823{
2824        *stamp = ktime_to_timespec(skb->tstamp);
2825}
2826
2827static inline void __net_timestamp(struct sk_buff *skb)
2828{
2829        skb->tstamp = ktime_get_real();
2830}
2831
2832static inline ktime_t net_timedelta(ktime_t t)
2833{
2834        return ktime_sub(ktime_get_real(), t);
2835}
2836
2837static inline ktime_t net_invalid_timestamp(void)
2838{
2839        return ktime_set(0, 0);
2840}
2841
2842struct sk_buff *skb_clone_sk(struct sk_buff *skb);
2843
2844#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2845
2846void skb_clone_tx_timestamp(struct sk_buff *skb);
2847bool skb_defer_rx_timestamp(struct sk_buff *skb);
2848
2849#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2850
2851static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2852{
2853}
2854
2855static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2856{
2857        return false;
2858}
2859
2860#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2861
2862/**
2863 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2864 *
2865 * PHY drivers may accept clones of transmitted packets for
2866 * timestamping via their phy_driver.txtstamp method. These drivers
2867 * must call this function to return the skb back to the stack, with
2868 * or without a timestamp.
2869 *
2870 * @skb: clone of the the original outgoing packet
2871 * @hwtstamps: hardware time stamps, may be NULL if not available
2872 *
2873 */
2874void skb_complete_tx_timestamp(struct sk_buff *skb,
2875                               struct skb_shared_hwtstamps *hwtstamps);
2876
2877void __skb_tstamp_tx(struct sk_buff *orig_skb,
2878                     struct skb_shared_hwtstamps *hwtstamps,
2879                     struct sock *sk, int tstype);
2880
2881/**
2882 * skb_tstamp_tx - queue clone of skb with send time stamps
2883 * @orig_skb:   the original outgoing packet
2884 * @hwtstamps:  hardware time stamps, may be NULL if not available
2885 *
2886 * If the skb has a socket associated, then this function clones the
2887 * skb (thus sharing the actual data and optional structures), stores
2888 * the optional hardware time stamping information (if non NULL) or
2889 * generates a software time stamp (otherwise), then queues the clone
2890 * to the error queue of the socket.  Errors are silently ignored.
2891 */
2892void skb_tstamp_tx(struct sk_buff *orig_skb,
2893                   struct skb_shared_hwtstamps *hwtstamps);
2894
2895static inline void sw_tx_timestamp(struct sk_buff *skb)
2896{
2897        if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2898            !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2899                skb_tstamp_tx(skb, NULL);
2900}
2901
2902/**
2903 * skb_tx_timestamp() - Driver hook for transmit timestamping
2904 *
2905 * Ethernet MAC Drivers should call this function in their hard_xmit()
2906 * function immediately before giving the sk_buff to the MAC hardware.
2907 *
2908 * Specifically, one should make absolutely sure that this function is
2909 * called before TX completion of this packet can trigger.  Otherwise
2910 * the packet could potentially already be freed.
2911 *
2912 * @skb: A socket buffer.
2913 */
2914static inline void skb_tx_timestamp(struct sk_buff *skb)
2915{
2916        skb_clone_tx_timestamp(skb);
2917        sw_tx_timestamp(skb);
2918}
2919
2920/**
2921 * skb_complete_wifi_ack - deliver skb with wifi status
2922 *
2923 * @skb: the original outgoing packet
2924 * @acked: ack status
2925 *
2926 */
2927void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2928
2929__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2930__sum16 __skb_checksum_complete(struct sk_buff *skb);
2931
2932static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2933{
2934        return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
2935                skb->csum_valid ||
2936                (skb->ip_summed == CHECKSUM_PARTIAL &&
2937                 skb_checksum_start_offset(skb) >= 0));
2938}
2939
2940/**
2941 *      skb_checksum_complete - Calculate checksum of an entire packet
2942 *      @skb: packet to process
2943 *
2944 *      This function calculates the checksum over the entire packet plus
2945 *      the value of skb->csum.  The latter can be used to supply the
2946 *      checksum of a pseudo header as used by TCP/UDP.  It returns the
2947 *      checksum.
2948 *
2949 *      For protocols that contain complete checksums such as ICMP/TCP/UDP,
2950 *      this function can be used to verify that checksum on received
2951 *      packets.  In that case the function should return zero if the
2952 *      checksum is correct.  In particular, this function will return zero
2953 *      if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2954 *      hardware has already verified the correctness of the checksum.
2955 */
2956static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2957{
2958        return skb_csum_unnecessary(skb) ?
2959               0 : __skb_checksum_complete(skb);
2960}
2961
2962static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
2963{
2964        if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2965                if (skb->csum_level == 0)
2966                        skb->ip_summed = CHECKSUM_NONE;
2967                else
2968                        skb->csum_level--;
2969        }
2970}
2971
2972static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
2973{
2974        if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2975                if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
2976                        skb->csum_level++;
2977        } else if (skb->ip_summed == CHECKSUM_NONE) {
2978                skb->ip_summed = CHECKSUM_UNNECESSARY;
2979                skb->csum_level = 0;
2980        }
2981}
2982
2983static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
2984{
2985        /* Mark current checksum as bad (typically called from GRO
2986         * path). In the case that ip_summed is CHECKSUM_NONE
2987         * this must be the first checksum encountered in the packet.
2988         * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
2989         * checksum after the last one validated. For UDP, a zero
2990         * checksum can not be marked as bad.
2991         */
2992
2993        if (skb->ip_summed == CHECKSUM_NONE ||
2994            skb->ip_summed == CHECKSUM_UNNECESSARY)
2995                skb->csum_bad = 1;
2996}
2997
2998/* Check if we need to perform checksum complete validation.
2999 *
3000 * Returns true if checksum complete is needed, false otherwise
3001 * (either checksum is unnecessary or zero checksum is allowed).
3002 */
3003static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3004                                                  bool zero_okay,
3005                                                  __sum16 check)
3006{
3007        if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3008                skb->csum_valid = 1;
3009                __skb_decr_checksum_unnecessary(skb);
3010                return false;
3011        }
3012
3013        return true;
3014}
3015
3016/* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3017 * in checksum_init.
3018 */
3019#define CHECKSUM_BREAK 76
3020
3021/* Unset checksum-complete
3022 *
3023 * Unset checksum complete can be done when packet is being modified
3024 * (uncompressed for instance) and checksum-complete value is
3025 * invalidated.
3026 */
3027static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3028{
3029        if (skb->ip_summed == CHECKSUM_COMPLETE)
3030                skb->ip_summed = CHECKSUM_NONE;
3031}
3032
3033/* Validate (init) checksum based on checksum complete.
3034 *
3035 * Return values:
3036 *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3037 *      case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3038 *      checksum is stored in skb->csum for use in __skb_checksum_complete
3039 *   non-zero: value of invalid checksum
3040 *
3041 */
3042static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3043                                                       bool complete,
3044                                                       __wsum psum)
3045{
3046        if (skb->ip_summed == CHECKSUM_COMPLETE) {
3047                if (!csum_fold(csum_add(psum, skb->csum))) {
3048                        skb->csum_valid = 1;
3049                        return 0;
3050                }
3051        } else if (skb->csum_bad) {
3052                /* ip_summed == CHECKSUM_NONE in this case */
3053                return 1;
3054        }
3055
3056        skb->csum = psum;
3057
3058        if (complete || skb->len <= CHECKSUM_BREAK) {
3059                __sum16 csum;
3060
3061                csum = __skb_checksum_complete(skb);
3062                skb->csum_valid = !csum;
3063                return csum;
3064        }
3065
3066        return 0;
3067}
3068
3069static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3070{
3071        return 0;
3072}
3073
3074/* Perform checksum validate (init). Note that this is a macro since we only
3075 * want to calculate the pseudo header which is an input function if necessary.
3076 * First we try to validate without any computation (checksum unnecessary) and
3077 * then calculate based on checksum complete calling the function to compute
3078 * pseudo header.
3079 *
3080 * Return values:
3081 *   0: checksum is validated or try to in skb_checksum_complete
3082 *   non-zero: value of invalid checksum
3083 */
3084#define __skb_checksum_validate(skb, proto, complete,                   \
3085                                zero_okay, check, compute_pseudo)       \
3086({                                                                      \
3087        __sum16 __ret = 0;                                              \
3088        skb->csum_valid = 0;                                            \
3089        if (__skb_checksum_validate_needed(skb, zero_okay, check))      \
3090                __ret = __skb_checksum_validate_complete(skb,           \
3091                                complete, compute_pseudo(skb, proto));  \
3092        __ret;                                                          \
3093})
3094
3095#define skb_checksum_init(skb, proto, compute_pseudo)                   \
3096        __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3097
3098#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3099        __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3100
3101#define skb_checksum_validate(skb, proto, compute_pseudo)               \
3102        __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3103
3104#define skb_checksum_validate_zero_check(skb, proto, check,             \
3105                                         compute_pseudo)                \
3106        __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3107
3108#define skb_checksum_simple_validate(skb)                               \
3109        __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3110
3111static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3112{
3113        return (skb->ip_summed == CHECKSUM_NONE &&
3114                skb->csum_valid && !skb->csum_bad);
3115}
3116
3117static inline void __skb_checksum_convert(struct sk_buff *skb,
3118                                          __sum16 check, __wsum pseudo)
3119{
3120        skb->csum = ~pseudo;
3121        skb->ip_summed = CHECKSUM_COMPLETE;
3122}
3123
3124#define skb_checksum_try_convert(skb, proto, check, compute_pseudo)     \
3125do {                                                                    \
3126        if (__skb_checksum_convert_check(skb))                          \
3127                __skb_checksum_convert(skb, check,                      \
3128                                       compute_pseudo(skb, proto));     \
3129} while (0)
3130
3131static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3132                                              u16 start, u16 offset)
3133{
3134        skb->ip_summed = CHECKSUM_PARTIAL;
3135        skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3136        skb->csum_offset = offset - start;
3137}
3138
3139/* Update skbuf and packet to reflect the remote checksum offload operation.
3140 * When called, ptr indicates the starting point for skb->csum when
3141 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3142 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3143 */
3144static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3145                                       int start, int offset, bool nopartial)
3146{
3147        __wsum delta;
3148
3149        if (!nopartial) {
3150                skb_remcsum_adjust_partial(skb, ptr, start, offset);
3151                return;
3152        }
3153
3154         if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3155                __skb_checksum_complete(skb);
3156                skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3157        }
3158
3159        delta = remcsum_adjust(ptr, skb->csum, start, offset);
3160
3161        /* Adjust skb->csum since we changed the packet */
3162        skb->csum = csum_add(skb->csum, delta);
3163}
3164
3165#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3166void nf_conntrack_destroy(struct nf_conntrack *nfct);
3167static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3168{
3169        if (nfct && atomic_dec_and_test(&nfct->use))
3170                nf_conntrack_destroy(nfct);
3171}
3172static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3173{
3174        if (nfct)
3175                atomic_inc(&nfct->use);
3176}
3177#endif
3178#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3179static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3180{
3181        if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3182                kfree(nf_bridge);
3183}
3184static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3185{
3186        if (nf_bridge)
3187                atomic_inc(&nf_bridge->use);
3188}
3189#endif /* CONFIG_BRIDGE_NETFILTER */
3190static inline void nf_reset(struct sk_buff *skb)
3191{
3192#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3193        nf_conntrack_put(skb->nfct);
3194        skb->nfct = NULL;
3195#endif
3196#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3197        nf_bridge_put(skb->nf_bridge);
3198        skb->nf_bridge = NULL;
3199#endif
3200}
3201
3202static inline void nf_reset_trace(struct sk_buff *skb)
3203{
3204#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3205        skb->nf_trace = 0;
3206#endif
3207}
3208
3209/* Note: This doesn't put any conntrack and bridge info in dst. */
3210static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3211                             bool copy)
3212{
3213#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3214        dst->nfct = src->nfct;
3215        nf_conntrack_get(src->nfct);
3216        if (copy)
3217                dst->nfctinfo = src->nfctinfo;
3218#endif
3219#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3220        dst->nf_bridge  = src->nf_bridge;
3221        nf_bridge_get(src->nf_bridge);
3222#endif
3223#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3224        if (copy)
3225                dst->nf_trace = src->nf_trace;
3226#endif
3227}
3228
3229static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3230{
3231#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3232        nf_conntrack_put(dst->nfct);
3233#endif
3234#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3235        nf_bridge_put(dst->nf_bridge);
3236#endif
3237        __nf_copy(dst, src, true);
3238}
3239
3240#ifdef CONFIG_NETWORK_SECMARK
3241static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3242{
3243        to->secmark = from->secmark;
3244}
3245
3246static inline void skb_init_secmark(struct sk_buff *skb)
3247{
3248        skb->secmark = 0;
3249}
3250#else
3251static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3252{ }
3253
3254static inline void skb_init_secmark(struct sk_buff *skb)
3255{ }
3256#endif
3257
3258static inline bool skb_irq_freeable(const struct sk_buff *skb)
3259{
3260        return !skb->destructor &&
3261#if IS_ENABLED(CONFIG_XFRM)
3262                !skb->sp &&
3263#endif
3264#if IS_ENABLED(CONFIG_NF_CONNTRACK)
3265                !skb->nfct &&
3266#endif
3267                !skb->_skb_refdst &&
3268                !skb_has_frag_list(skb);
3269}
3270
3271static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3272{
3273        skb->queue_mapping = queue_mapping;
3274}
3275
3276static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3277{
3278        return skb->queue_mapping;
3279}
3280
3281static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3282{
3283        to->queue_mapping = from->queue_mapping;
3284}
3285
3286static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3287{
3288        skb->queue_mapping = rx_queue + 1;
3289}
3290
3291static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3292{
3293        return skb->queue_mapping - 1;
3294}
3295
3296static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3297{
3298        return skb->queue_mapping != 0;
3299}
3300
3301u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3302                  unsigned int num_tx_queues);
3303
3304static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3305{
3306#ifdef CONFIG_XFRM
3307        return skb->sp;
3308#else
3309        return NULL;
3310#endif
3311}
3312
3313/* Keeps track of mac header offset relative to skb->head.
3314 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3315 * For non-tunnel skb it points to skb_mac_header() and for
3316 * tunnel skb it points to outer mac header.
3317 * Keeps track of level of encapsulation of network headers.
3318 */
3319struct skb_gso_cb {
3320        int     mac_offset;
3321        int     encap_level;
3322        __u16   csum_start;
3323};
3324#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
3325
3326static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3327{
3328        return (skb_mac_header(inner_skb) - inner_skb->head) -
3329                SKB_GSO_CB(inner_skb)->mac_offset;
3330}
3331
3332static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3333{
3334        int new_headroom, headroom;
3335        int ret;
3336
3337        headroom = skb_headroom(skb);
3338        ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3339        if (ret)
3340                return ret;
3341
3342        new_headroom = skb_headroom(skb);
3343        SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3344        return 0;
3345}
3346
3347/* Compute the checksum for a gso segment. First compute the checksum value
3348 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3349 * then add in skb->csum (checksum from csum_start to end of packet).
3350 * skb->csum and csum_start are then updated to reflect the checksum of the
3351 * resultant packet starting from the transport header-- the resultant checksum
3352 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3353 * header.
3354 */
3355static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3356{
3357        int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
3358            skb_transport_offset(skb);
3359        __u16 csum;
3360
3361        csum = csum_fold(csum_partial(skb_transport_header(skb),
3362                                      plen, skb->csum));
3363        skb->csum = res;
3364        SKB_GSO_CB(skb)->csum_start -= plen;
3365
3366        return csum;
3367}
3368
3369static inline bool skb_is_gso(const struct sk_buff *skb)
3370{
3371        return skb_shinfo(skb)->gso_size;
3372}
3373
3374/* Note: Should be called only if skb_is_gso(skb) is true */
3375static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3376{
3377        return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3378}
3379
3380void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3381
3382static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3383{
3384        /* LRO sets gso_size but not gso_type, whereas if GSO is really
3385         * wanted then gso_type will be set. */
3386        const struct skb_shared_info *shinfo = skb_shinfo(skb);
3387
3388        if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3389            unlikely(shinfo->gso_type == 0)) {
3390                __skb_warn_lro_forwarding(skb);
3391                return true;
3392        }
3393        return false;
3394}
3395
3396static inline void skb_forward_csum(struct sk_buff *skb)
3397{
3398        /* Unfortunately we don't support this one.  Any brave souls? */
3399        if (skb->ip_summed == CHECKSUM_COMPLETE)
3400                skb->ip_summed = CHECKSUM_NONE;
3401}
3402
3403/**
3404 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3405 * @skb: skb to check
3406 *
3407 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3408 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3409 * use this helper, to document places where we make this assertion.
3410 */
3411static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3412{
3413#ifdef DEBUG
3414        BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3415#endif
3416}
3417
3418bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3419
3420int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3421
3422u32 skb_get_poff(const struct sk_buff *skb);
3423u32 __skb_get_poff(const struct sk_buff *skb, void *data,
3424                   const struct flow_keys *keys, int hlen);
3425
3426/**
3427 * skb_head_is_locked - Determine if the skb->head is locked down
3428 * @skb: skb to check
3429 *
3430 * The head on skbs build around a head frag can be removed if they are
3431 * not cloned.  This function returns true if the skb head is locked down
3432 * due to either being allocated via kmalloc, or by being a clone with
3433 * multiple references to the head.
3434 */
3435static inline bool skb_head_is_locked(const struct sk_buff *skb)
3436{
3437        return !skb->head_frag || skb_cloned(skb);
3438}
3439
3440/**
3441 * skb_gso_network_seglen - Return length of individual segments of a gso packet
3442 *
3443 * @skb: GSO skb
3444 *
3445 * skb_gso_network_seglen is used to determine the real size of the
3446 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3447 *
3448 * The MAC/L2 header is not accounted for.
3449 */
3450static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3451{
3452        unsigned int hdr_len = skb_transport_header(skb) -
3453                               skb_network_header(skb);
3454        return hdr_len + skb_gso_transport_seglen(skb);
3455}
3456#endif  /* __KERNEL__ */
3457#endif  /* _LINUX_SKBUFF_H */
3458