linux/include/net/sock.h
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Definitions for the AF_INET socket handler.
   7 *
   8 * Version:     @(#)sock.h      1.0.4   05/13/93
   9 *
  10 * Authors:     Ross Biro
  11 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *              Florian La Roche <flla@stud.uni-sb.de>
  14 *
  15 * Fixes:
  16 *              Alan Cox        :       Volatiles in skbuff pointers. See
  17 *                                      skbuff comments. May be overdone,
  18 *                                      better to prove they can be removed
  19 *                                      than the reverse.
  20 *              Alan Cox        :       Added a zapped field for tcp to note
  21 *                                      a socket is reset and must stay shut up
  22 *              Alan Cox        :       New fields for options
  23 *      Pauline Middelink       :       identd support
  24 *              Alan Cox        :       Eliminate low level recv/recvfrom
  25 *              David S. Miller :       New socket lookup architecture.
  26 *              Steve Whitehouse:       Default routines for sock_ops
  27 *              Arnaldo C. Melo :       removed net_pinfo, tp_pinfo and made
  28 *                                      protinfo be just a void pointer, as the
  29 *                                      protocol specific parts were moved to
  30 *                                      respective headers and ipv4/v6, etc now
  31 *                                      use private slabcaches for its socks
  32 *              Pedro Hortas    :       New flags field for socket options
  33 *
  34 *
  35 *              This program is free software; you can redistribute it and/or
  36 *              modify it under the terms of the GNU General Public License
  37 *              as published by the Free Software Foundation; either version
  38 *              2 of the License, or (at your option) any later version.
  39 */
  40#ifndef _SOCK_H
  41#define _SOCK_H
  42
  43#include <linux/hardirq.h>
  44#include <linux/kernel.h>
  45#include <linux/list.h>
  46#include <linux/list_nulls.h>
  47#include <linux/timer.h>
  48#include <linux/cache.h>
  49#include <linux/bitops.h>
  50#include <linux/lockdep.h>
  51#include <linux/netdevice.h>
  52#include <linux/skbuff.h>       /* struct sk_buff */
  53#include <linux/mm.h>
  54#include <linux/security.h>
  55#include <linux/slab.h>
  56#include <linux/uaccess.h>
  57#include <linux/page_counter.h>
  58#include <linux/memcontrol.h>
  59#include <linux/static_key.h>
  60#include <linux/sched.h>
  61
  62#include <linux/filter.h>
  63#include <linux/rculist_nulls.h>
  64#include <linux/poll.h>
  65
  66#include <linux/atomic.h>
  67#include <net/dst.h>
  68#include <net/checksum.h>
  69#include <net/tcp_states.h>
  70#include <linux/net_tstamp.h>
  71
  72struct cgroup;
  73struct cgroup_subsys;
  74#ifdef CONFIG_NET
  75int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
  76void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
  77#else
  78static inline
  79int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  80{
  81        return 0;
  82}
  83static inline
  84void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
  85{
  86}
  87#endif
  88/*
  89 * This structure really needs to be cleaned up.
  90 * Most of it is for TCP, and not used by any of
  91 * the other protocols.
  92 */
  93
  94/* Define this to get the SOCK_DBG debugging facility. */
  95#define SOCK_DEBUGGING
  96#ifdef SOCK_DEBUGGING
  97#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
  98                                        printk(KERN_DEBUG msg); } while (0)
  99#else
 100/* Validate arguments and do nothing */
 101static inline __printf(2, 3)
 102void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
 103{
 104}
 105#endif
 106
 107/* This is the per-socket lock.  The spinlock provides a synchronization
 108 * between user contexts and software interrupt processing, whereas the
 109 * mini-semaphore synchronizes multiple users amongst themselves.
 110 */
 111typedef struct {
 112        spinlock_t              slock;
 113        int                     owned;
 114        wait_queue_head_t       wq;
 115        /*
 116         * We express the mutex-alike socket_lock semantics
 117         * to the lock validator by explicitly managing
 118         * the slock as a lock variant (in addition to
 119         * the slock itself):
 120         */
 121#ifdef CONFIG_DEBUG_LOCK_ALLOC
 122        struct lockdep_map dep_map;
 123#endif
 124} socket_lock_t;
 125
 126struct sock;
 127struct proto;
 128struct net;
 129
 130typedef __u32 __bitwise __portpair;
 131typedef __u64 __bitwise __addrpair;
 132
 133/**
 134 *      struct sock_common - minimal network layer representation of sockets
 135 *      @skc_daddr: Foreign IPv4 addr
 136 *      @skc_rcv_saddr: Bound local IPv4 addr
 137 *      @skc_hash: hash value used with various protocol lookup tables
 138 *      @skc_u16hashes: two u16 hash values used by UDP lookup tables
 139 *      @skc_dport: placeholder for inet_dport/tw_dport
 140 *      @skc_num: placeholder for inet_num/tw_num
 141 *      @skc_family: network address family
 142 *      @skc_state: Connection state
 143 *      @skc_reuse: %SO_REUSEADDR setting
 144 *      @skc_reuseport: %SO_REUSEPORT setting
 145 *      @skc_bound_dev_if: bound device index if != 0
 146 *      @skc_bind_node: bind hash linkage for various protocol lookup tables
 147 *      @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 148 *      @skc_prot: protocol handlers inside a network family
 149 *      @skc_net: reference to the network namespace of this socket
 150 *      @skc_node: main hash linkage for various protocol lookup tables
 151 *      @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 152 *      @skc_tx_queue_mapping: tx queue number for this connection
 153 *      @skc_refcnt: reference count
 154 *
 155 *      This is the minimal network layer representation of sockets, the header
 156 *      for struct sock and struct inet_timewait_sock.
 157 */
 158struct sock_common {
 159        /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
 160         * address on 64bit arches : cf INET_MATCH()
 161         */
 162        union {
 163                __addrpair      skc_addrpair;
 164                struct {
 165                        __be32  skc_daddr;
 166                        __be32  skc_rcv_saddr;
 167                };
 168        };
 169        union  {
 170                unsigned int    skc_hash;
 171                __u16           skc_u16hashes[2];
 172        };
 173        /* skc_dport && skc_num must be grouped as well */
 174        union {
 175                __portpair      skc_portpair;
 176                struct {
 177                        __be16  skc_dport;
 178                        __u16   skc_num;
 179                };
 180        };
 181
 182        unsigned short          skc_family;
 183        volatile unsigned char  skc_state;
 184        unsigned char           skc_reuse:4;
 185        unsigned char           skc_reuseport:1;
 186        unsigned char           skc_ipv6only:1;
 187        int                     skc_bound_dev_if;
 188        union {
 189                struct hlist_node       skc_bind_node;
 190                struct hlist_nulls_node skc_portaddr_node;
 191        };
 192        struct proto            *skc_prot;
 193        possible_net_t          skc_net;
 194
 195#if IS_ENABLED(CONFIG_IPV6)
 196        struct in6_addr         skc_v6_daddr;
 197        struct in6_addr         skc_v6_rcv_saddr;
 198#endif
 199
 200        atomic64_t              skc_cookie;
 201
 202        /*
 203         * fields between dontcopy_begin/dontcopy_end
 204         * are not copied in sock_copy()
 205         */
 206        /* private: */
 207        int                     skc_dontcopy_begin[0];
 208        /* public: */
 209        union {
 210                struct hlist_node       skc_node;
 211                struct hlist_nulls_node skc_nulls_node;
 212        };
 213        int                     skc_tx_queue_mapping;
 214        atomic_t                skc_refcnt;
 215        /* private: */
 216        int                     skc_dontcopy_end[0];
 217        /* public: */
 218};
 219
 220struct cg_proto;
 221/**
 222  *     struct sock - network layer representation of sockets
 223  *     @__sk_common: shared layout with inet_timewait_sock
 224  *     @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
 225  *     @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
 226  *     @sk_lock:       synchronizer
 227  *     @sk_rcvbuf: size of receive buffer in bytes
 228  *     @sk_wq: sock wait queue and async head
 229  *     @sk_rx_dst: receive input route used by early demux
 230  *     @sk_dst_cache: destination cache
 231  *     @sk_dst_lock: destination cache lock
 232  *     @sk_policy: flow policy
 233  *     @sk_receive_queue: incoming packets
 234  *     @sk_wmem_alloc: transmit queue bytes committed
 235  *     @sk_write_queue: Packet sending queue
 236  *     @sk_omem_alloc: "o" is "option" or "other"
 237  *     @sk_wmem_queued: persistent queue size
 238  *     @sk_forward_alloc: space allocated forward
 239  *     @sk_napi_id: id of the last napi context to receive data for sk
 240  *     @sk_ll_usec: usecs to busypoll when there is no data
 241  *     @sk_allocation: allocation mode
 242  *     @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
 243  *     @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
 244  *     @sk_sndbuf: size of send buffer in bytes
 245  *     @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 246  *                %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 247  *     @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
 248  *     @sk_no_check_rx: allow zero checksum in RX packets
 249  *     @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
 250  *     @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
 251  *     @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
 252  *     @sk_gso_max_size: Maximum GSO segment size to build
 253  *     @sk_gso_max_segs: Maximum number of GSO segments
 254  *     @sk_lingertime: %SO_LINGER l_linger setting
 255  *     @sk_backlog: always used with the per-socket spinlock held
 256  *     @sk_callback_lock: used with the callbacks in the end of this struct
 257  *     @sk_error_queue: rarely used
 258  *     @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
 259  *                       IPV6_ADDRFORM for instance)
 260  *     @sk_err: last error
 261  *     @sk_err_soft: errors that don't cause failure but are the cause of a
 262  *                   persistent failure not just 'timed out'
 263  *     @sk_drops: raw/udp drops counter
 264  *     @sk_ack_backlog: current listen backlog
 265  *     @sk_max_ack_backlog: listen backlog set in listen()
 266  *     @sk_priority: %SO_PRIORITY setting
 267  *     @sk_cgrp_prioidx: socket group's priority map index
 268  *     @sk_type: socket type (%SOCK_STREAM, etc)
 269  *     @sk_protocol: which protocol this socket belongs in this network family
 270  *     @sk_peer_pid: &struct pid for this socket's peer
 271  *     @sk_peer_cred: %SO_PEERCRED setting
 272  *     @sk_rcvlowat: %SO_RCVLOWAT setting
 273  *     @sk_rcvtimeo: %SO_RCVTIMEO setting
 274  *     @sk_sndtimeo: %SO_SNDTIMEO setting
 275  *     @sk_rxhash: flow hash received from netif layer
 276  *     @sk_incoming_cpu: record cpu processing incoming packets
 277  *     @sk_txhash: computed flow hash for use on transmit
 278  *     @sk_filter: socket filtering instructions
 279  *     @sk_protinfo: private area, net family specific, when not using slab
 280  *     @sk_timer: sock cleanup timer
 281  *     @sk_stamp: time stamp of last packet received
 282  *     @sk_tsflags: SO_TIMESTAMPING socket options
 283  *     @sk_tskey: counter to disambiguate concurrent tstamp requests
 284  *     @sk_socket: Identd and reporting IO signals
 285  *     @sk_user_data: RPC layer private data
 286  *     @sk_frag: cached page frag
 287  *     @sk_peek_off: current peek_offset value
 288  *     @sk_send_head: front of stuff to transmit
 289  *     @sk_security: used by security modules
 290  *     @sk_mark: generic packet mark
 291  *     @sk_classid: this socket's cgroup classid
 292  *     @sk_cgrp: this socket's cgroup-specific proto data
 293  *     @sk_write_pending: a write to stream socket waits to start
 294  *     @sk_state_change: callback to indicate change in the state of the sock
 295  *     @sk_data_ready: callback to indicate there is data to be processed
 296  *     @sk_write_space: callback to indicate there is bf sending space available
 297  *     @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
 298  *     @sk_backlog_rcv: callback to process the backlog
 299  *     @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 300 */
 301struct sock {
 302        /*
 303         * Now struct inet_timewait_sock also uses sock_common, so please just
 304         * don't add nothing before this first member (__sk_common) --acme
 305         */
 306        struct sock_common      __sk_common;
 307#define sk_node                 __sk_common.skc_node
 308#define sk_nulls_node           __sk_common.skc_nulls_node
 309#define sk_refcnt               __sk_common.skc_refcnt
 310#define sk_tx_queue_mapping     __sk_common.skc_tx_queue_mapping
 311
 312#define sk_dontcopy_begin       __sk_common.skc_dontcopy_begin
 313#define sk_dontcopy_end         __sk_common.skc_dontcopy_end
 314#define sk_hash                 __sk_common.skc_hash
 315#define sk_portpair             __sk_common.skc_portpair
 316#define sk_num                  __sk_common.skc_num
 317#define sk_dport                __sk_common.skc_dport
 318#define sk_addrpair             __sk_common.skc_addrpair
 319#define sk_daddr                __sk_common.skc_daddr
 320#define sk_rcv_saddr            __sk_common.skc_rcv_saddr
 321#define sk_family               __sk_common.skc_family
 322#define sk_state                __sk_common.skc_state
 323#define sk_reuse                __sk_common.skc_reuse
 324#define sk_reuseport            __sk_common.skc_reuseport
 325#define sk_ipv6only             __sk_common.skc_ipv6only
 326#define sk_bound_dev_if         __sk_common.skc_bound_dev_if
 327#define sk_bind_node            __sk_common.skc_bind_node
 328#define sk_prot                 __sk_common.skc_prot
 329#define sk_net                  __sk_common.skc_net
 330#define sk_v6_daddr             __sk_common.skc_v6_daddr
 331#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
 332#define sk_cookie               __sk_common.skc_cookie
 333
 334        socket_lock_t           sk_lock;
 335        struct sk_buff_head     sk_receive_queue;
 336        /*
 337         * The backlog queue is special, it is always used with
 338         * the per-socket spinlock held and requires low latency
 339         * access. Therefore we special case it's implementation.
 340         * Note : rmem_alloc is in this structure to fill a hole
 341         * on 64bit arches, not because its logically part of
 342         * backlog.
 343         */
 344        struct {
 345                atomic_t        rmem_alloc;
 346                int             len;
 347                struct sk_buff  *head;
 348                struct sk_buff  *tail;
 349        } sk_backlog;
 350#define sk_rmem_alloc sk_backlog.rmem_alloc
 351        int                     sk_forward_alloc;
 352#ifdef CONFIG_RPS
 353        __u32                   sk_rxhash;
 354#endif
 355        u16                     sk_incoming_cpu;
 356        /* 16bit hole
 357         * Warned : sk_incoming_cpu can be set from softirq,
 358         * Do not use this hole without fully understanding possible issues.
 359         */
 360
 361        __u32                   sk_txhash;
 362#ifdef CONFIG_NET_RX_BUSY_POLL
 363        unsigned int            sk_napi_id;
 364        unsigned int            sk_ll_usec;
 365#endif
 366        atomic_t                sk_drops;
 367        int                     sk_rcvbuf;
 368
 369        struct sk_filter __rcu  *sk_filter;
 370        struct socket_wq __rcu  *sk_wq;
 371
 372#ifdef CONFIG_XFRM
 373        struct xfrm_policy      *sk_policy[2];
 374#endif
 375        unsigned long           sk_flags;
 376        struct dst_entry        *sk_rx_dst;
 377        struct dst_entry __rcu  *sk_dst_cache;
 378        spinlock_t              sk_dst_lock;
 379        atomic_t                sk_wmem_alloc;
 380        atomic_t                sk_omem_alloc;
 381        int                     sk_sndbuf;
 382        struct sk_buff_head     sk_write_queue;
 383        kmemcheck_bitfield_begin(flags);
 384        unsigned int            sk_shutdown  : 2,
 385                                sk_no_check_tx : 1,
 386                                sk_no_check_rx : 1,
 387                                sk_userlocks : 4,
 388                                sk_protocol  : 8,
 389                                sk_type      : 16;
 390        kmemcheck_bitfield_end(flags);
 391        int                     sk_wmem_queued;
 392        gfp_t                   sk_allocation;
 393        u32                     sk_pacing_rate; /* bytes per second */
 394        u32                     sk_max_pacing_rate;
 395        netdev_features_t       sk_route_caps;
 396        netdev_features_t       sk_route_nocaps;
 397        int                     sk_gso_type;
 398        unsigned int            sk_gso_max_size;
 399        u16                     sk_gso_max_segs;
 400        int                     sk_rcvlowat;
 401        unsigned long           sk_lingertime;
 402        struct sk_buff_head     sk_error_queue;
 403        struct proto            *sk_prot_creator;
 404        rwlock_t                sk_callback_lock;
 405        int                     sk_err,
 406                                sk_err_soft;
 407        u32                     sk_ack_backlog;
 408        u32                     sk_max_ack_backlog;
 409        __u32                   sk_priority;
 410#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
 411        __u32                   sk_cgrp_prioidx;
 412#endif
 413        struct pid              *sk_peer_pid;
 414        const struct cred       *sk_peer_cred;
 415        long                    sk_rcvtimeo;
 416        long                    sk_sndtimeo;
 417        void                    *sk_protinfo;
 418        struct timer_list       sk_timer;
 419        ktime_t                 sk_stamp;
 420        u16                     sk_tsflags;
 421        u32                     sk_tskey;
 422        struct socket           *sk_socket;
 423        void                    *sk_user_data;
 424        struct page_frag        sk_frag;
 425        struct sk_buff          *sk_send_head;
 426        __s32                   sk_peek_off;
 427        int                     sk_write_pending;
 428#ifdef CONFIG_SECURITY
 429        void                    *sk_security;
 430#endif
 431        __u32                   sk_mark;
 432        u32                     sk_classid;
 433        struct cg_proto         *sk_cgrp;
 434        void                    (*sk_state_change)(struct sock *sk);
 435        void                    (*sk_data_ready)(struct sock *sk);
 436        void                    (*sk_write_space)(struct sock *sk);
 437        void                    (*sk_error_report)(struct sock *sk);
 438        int                     (*sk_backlog_rcv)(struct sock *sk,
 439                                                  struct sk_buff *skb);
 440        void                    (*sk_destruct)(struct sock *sk);
 441};
 442
 443#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
 444
 445#define rcu_dereference_sk_user_data(sk)        rcu_dereference(__sk_user_data((sk)))
 446#define rcu_assign_sk_user_data(sk, ptr)        rcu_assign_pointer(__sk_user_data((sk)), ptr)
 447
 448/*
 449 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
 450 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
 451 * on a socket means that the socket will reuse everybody else's port
 452 * without looking at the other's sk_reuse value.
 453 */
 454
 455#define SK_NO_REUSE     0
 456#define SK_CAN_REUSE    1
 457#define SK_FORCE_REUSE  2
 458
 459static inline int sk_peek_offset(struct sock *sk, int flags)
 460{
 461        if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
 462                return sk->sk_peek_off;
 463        else
 464                return 0;
 465}
 466
 467static inline void sk_peek_offset_bwd(struct sock *sk, int val)
 468{
 469        if (sk->sk_peek_off >= 0) {
 470                if (sk->sk_peek_off >= val)
 471                        sk->sk_peek_off -= val;
 472                else
 473                        sk->sk_peek_off = 0;
 474        }
 475}
 476
 477static inline void sk_peek_offset_fwd(struct sock *sk, int val)
 478{
 479        if (sk->sk_peek_off >= 0)
 480                sk->sk_peek_off += val;
 481}
 482
 483/*
 484 * Hashed lists helper routines
 485 */
 486static inline struct sock *sk_entry(const struct hlist_node *node)
 487{
 488        return hlist_entry(node, struct sock, sk_node);
 489}
 490
 491static inline struct sock *__sk_head(const struct hlist_head *head)
 492{
 493        return hlist_entry(head->first, struct sock, sk_node);
 494}
 495
 496static inline struct sock *sk_head(const struct hlist_head *head)
 497{
 498        return hlist_empty(head) ? NULL : __sk_head(head);
 499}
 500
 501static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
 502{
 503        return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
 504}
 505
 506static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
 507{
 508        return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
 509}
 510
 511static inline struct sock *sk_next(const struct sock *sk)
 512{
 513        return sk->sk_node.next ?
 514                hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
 515}
 516
 517static inline struct sock *sk_nulls_next(const struct sock *sk)
 518{
 519        return (!is_a_nulls(sk->sk_nulls_node.next)) ?
 520                hlist_nulls_entry(sk->sk_nulls_node.next,
 521                                  struct sock, sk_nulls_node) :
 522                NULL;
 523}
 524
 525static inline bool sk_unhashed(const struct sock *sk)
 526{
 527        return hlist_unhashed(&sk->sk_node);
 528}
 529
 530static inline bool sk_hashed(const struct sock *sk)
 531{
 532        return !sk_unhashed(sk);
 533}
 534
 535static inline void sk_node_init(struct hlist_node *node)
 536{
 537        node->pprev = NULL;
 538}
 539
 540static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
 541{
 542        node->pprev = NULL;
 543}
 544
 545static inline void __sk_del_node(struct sock *sk)
 546{
 547        __hlist_del(&sk->sk_node);
 548}
 549
 550/* NB: equivalent to hlist_del_init_rcu */
 551static inline bool __sk_del_node_init(struct sock *sk)
 552{
 553        if (sk_hashed(sk)) {
 554                __sk_del_node(sk);
 555                sk_node_init(&sk->sk_node);
 556                return true;
 557        }
 558        return false;
 559}
 560
 561/* Grab socket reference count. This operation is valid only
 562   when sk is ALREADY grabbed f.e. it is found in hash table
 563   or a list and the lookup is made under lock preventing hash table
 564   modifications.
 565 */
 566
 567static inline void sock_hold(struct sock *sk)
 568{
 569        atomic_inc(&sk->sk_refcnt);
 570}
 571
 572/* Ungrab socket in the context, which assumes that socket refcnt
 573   cannot hit zero, f.e. it is true in context of any socketcall.
 574 */
 575static inline void __sock_put(struct sock *sk)
 576{
 577        atomic_dec(&sk->sk_refcnt);
 578}
 579
 580static inline bool sk_del_node_init(struct sock *sk)
 581{
 582        bool rc = __sk_del_node_init(sk);
 583
 584        if (rc) {
 585                /* paranoid for a while -acme */
 586                WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 587                __sock_put(sk);
 588        }
 589        return rc;
 590}
 591#define sk_del_node_init_rcu(sk)        sk_del_node_init(sk)
 592
 593static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
 594{
 595        if (sk_hashed(sk)) {
 596                hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
 597                return true;
 598        }
 599        return false;
 600}
 601
 602static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
 603{
 604        bool rc = __sk_nulls_del_node_init_rcu(sk);
 605
 606        if (rc) {
 607                /* paranoid for a while -acme */
 608                WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 609                __sock_put(sk);
 610        }
 611        return rc;
 612}
 613
 614static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
 615{
 616        hlist_add_head(&sk->sk_node, list);
 617}
 618
 619static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
 620{
 621        sock_hold(sk);
 622        __sk_add_node(sk, list);
 623}
 624
 625static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
 626{
 627        sock_hold(sk);
 628        hlist_add_head_rcu(&sk->sk_node, list);
 629}
 630
 631static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 632{
 633        hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
 634}
 635
 636static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 637{
 638        sock_hold(sk);
 639        __sk_nulls_add_node_rcu(sk, list);
 640}
 641
 642static inline void __sk_del_bind_node(struct sock *sk)
 643{
 644        __hlist_del(&sk->sk_bind_node);
 645}
 646
 647static inline void sk_add_bind_node(struct sock *sk,
 648                                        struct hlist_head *list)
 649{
 650        hlist_add_head(&sk->sk_bind_node, list);
 651}
 652
 653#define sk_for_each(__sk, list) \
 654        hlist_for_each_entry(__sk, list, sk_node)
 655#define sk_for_each_rcu(__sk, list) \
 656        hlist_for_each_entry_rcu(__sk, list, sk_node)
 657#define sk_nulls_for_each(__sk, node, list) \
 658        hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
 659#define sk_nulls_for_each_rcu(__sk, node, list) \
 660        hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
 661#define sk_for_each_from(__sk) \
 662        hlist_for_each_entry_from(__sk, sk_node)
 663#define sk_nulls_for_each_from(__sk, node) \
 664        if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
 665                hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
 666#define sk_for_each_safe(__sk, tmp, list) \
 667        hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
 668#define sk_for_each_bound(__sk, list) \
 669        hlist_for_each_entry(__sk, list, sk_bind_node)
 670
 671/**
 672 * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset
 673 * @tpos:       the type * to use as a loop cursor.
 674 * @pos:        the &struct hlist_node to use as a loop cursor.
 675 * @head:       the head for your list.
 676 * @offset:     offset of hlist_node within the struct.
 677 *
 678 */
 679#define sk_nulls_for_each_entry_offset(tpos, pos, head, offset)                \
 680        for (pos = (head)->first;                                              \
 681             (!is_a_nulls(pos)) &&                                             \
 682                ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
 683             pos = pos->next)
 684
 685static inline struct user_namespace *sk_user_ns(struct sock *sk)
 686{
 687        /* Careful only use this in a context where these parameters
 688         * can not change and must all be valid, such as recvmsg from
 689         * userspace.
 690         */
 691        return sk->sk_socket->file->f_cred->user_ns;
 692}
 693
 694/* Sock flags */
 695enum sock_flags {
 696        SOCK_DEAD,
 697        SOCK_DONE,
 698        SOCK_URGINLINE,
 699        SOCK_KEEPOPEN,
 700        SOCK_LINGER,
 701        SOCK_DESTROY,
 702        SOCK_BROADCAST,
 703        SOCK_TIMESTAMP,
 704        SOCK_ZAPPED,
 705        SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
 706        SOCK_DBG, /* %SO_DEBUG setting */
 707        SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
 708        SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
 709        SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
 710        SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
 711        SOCK_MEMALLOC, /* VM depends on this socket for swapping */
 712        SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
 713        SOCK_FASYNC, /* fasync() active */
 714        SOCK_RXQ_OVFL,
 715        SOCK_ZEROCOPY, /* buffers from userspace */
 716        SOCK_WIFI_STATUS, /* push wifi status to userspace */
 717        SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
 718                     * Will use last 4 bytes of packet sent from
 719                     * user-space instead.
 720                     */
 721        SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
 722        SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
 723};
 724
 725static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
 726{
 727        nsk->sk_flags = osk->sk_flags;
 728}
 729
 730static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
 731{
 732        __set_bit(flag, &sk->sk_flags);
 733}
 734
 735static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
 736{
 737        __clear_bit(flag, &sk->sk_flags);
 738}
 739
 740static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
 741{
 742        return test_bit(flag, &sk->sk_flags);
 743}
 744
 745#ifdef CONFIG_NET
 746extern struct static_key memalloc_socks;
 747static inline int sk_memalloc_socks(void)
 748{
 749        return static_key_false(&memalloc_socks);
 750}
 751#else
 752
 753static inline int sk_memalloc_socks(void)
 754{
 755        return 0;
 756}
 757
 758#endif
 759
 760static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
 761{
 762        return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
 763}
 764
 765static inline void sk_acceptq_removed(struct sock *sk)
 766{
 767        sk->sk_ack_backlog--;
 768}
 769
 770static inline void sk_acceptq_added(struct sock *sk)
 771{
 772        sk->sk_ack_backlog++;
 773}
 774
 775static inline bool sk_acceptq_is_full(const struct sock *sk)
 776{
 777        return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
 778}
 779
 780/*
 781 * Compute minimal free write space needed to queue new packets.
 782 */
 783static inline int sk_stream_min_wspace(const struct sock *sk)
 784{
 785        return sk->sk_wmem_queued >> 1;
 786}
 787
 788static inline int sk_stream_wspace(const struct sock *sk)
 789{
 790        return sk->sk_sndbuf - sk->sk_wmem_queued;
 791}
 792
 793void sk_stream_write_space(struct sock *sk);
 794
 795/* OOB backlog add */
 796static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 797{
 798        /* dont let skb dst not refcounted, we are going to leave rcu lock */
 799        skb_dst_force(skb);
 800
 801        if (!sk->sk_backlog.tail)
 802                sk->sk_backlog.head = skb;
 803        else
 804                sk->sk_backlog.tail->next = skb;
 805
 806        sk->sk_backlog.tail = skb;
 807        skb->next = NULL;
 808}
 809
 810/*
 811 * Take into account size of receive queue and backlog queue
 812 * Do not take into account this skb truesize,
 813 * to allow even a single big packet to come.
 814 */
 815static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
 816{
 817        unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
 818
 819        return qsize > limit;
 820}
 821
 822/* The per-socket spinlock must be held here. */
 823static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
 824                                              unsigned int limit)
 825{
 826        if (sk_rcvqueues_full(sk, limit))
 827                return -ENOBUFS;
 828
 829        __sk_add_backlog(sk, skb);
 830        sk->sk_backlog.len += skb->truesize;
 831        return 0;
 832}
 833
 834int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
 835
 836static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 837{
 838        if (sk_memalloc_socks() && skb_pfmemalloc(skb))
 839                return __sk_backlog_rcv(sk, skb);
 840
 841        return sk->sk_backlog_rcv(sk, skb);
 842}
 843
 844static inline void sk_incoming_cpu_update(struct sock *sk)
 845{
 846        sk->sk_incoming_cpu = raw_smp_processor_id();
 847}
 848
 849static inline void sock_rps_record_flow_hash(__u32 hash)
 850{
 851#ifdef CONFIG_RPS
 852        struct rps_sock_flow_table *sock_flow_table;
 853
 854        rcu_read_lock();
 855        sock_flow_table = rcu_dereference(rps_sock_flow_table);
 856        rps_record_sock_flow(sock_flow_table, hash);
 857        rcu_read_unlock();
 858#endif
 859}
 860
 861static inline void sock_rps_record_flow(const struct sock *sk)
 862{
 863#ifdef CONFIG_RPS
 864        sock_rps_record_flow_hash(sk->sk_rxhash);
 865#endif
 866}
 867
 868static inline void sock_rps_save_rxhash(struct sock *sk,
 869                                        const struct sk_buff *skb)
 870{
 871#ifdef CONFIG_RPS
 872        if (unlikely(sk->sk_rxhash != skb->hash))
 873                sk->sk_rxhash = skb->hash;
 874#endif
 875}
 876
 877static inline void sock_rps_reset_rxhash(struct sock *sk)
 878{
 879#ifdef CONFIG_RPS
 880        sk->sk_rxhash = 0;
 881#endif
 882}
 883
 884#define sk_wait_event(__sk, __timeo, __condition)                       \
 885        ({      int __rc;                                               \
 886                release_sock(__sk);                                     \
 887                __rc = __condition;                                     \
 888                if (!__rc) {                                            \
 889                        *(__timeo) = schedule_timeout(*(__timeo));      \
 890                }                                                       \
 891                sched_annotate_sleep();                                         \
 892                lock_sock(__sk);                                        \
 893                __rc = __condition;                                     \
 894                __rc;                                                   \
 895        })
 896
 897int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
 898int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
 899void sk_stream_wait_close(struct sock *sk, long timeo_p);
 900int sk_stream_error(struct sock *sk, int flags, int err);
 901void sk_stream_kill_queues(struct sock *sk);
 902void sk_set_memalloc(struct sock *sk);
 903void sk_clear_memalloc(struct sock *sk);
 904
 905int sk_wait_data(struct sock *sk, long *timeo);
 906
 907struct request_sock_ops;
 908struct timewait_sock_ops;
 909struct inet_hashinfo;
 910struct raw_hashinfo;
 911struct module;
 912
 913/*
 914 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
 915 * un-modified. Special care is taken when initializing object to zero.
 916 */
 917static inline void sk_prot_clear_nulls(struct sock *sk, int size)
 918{
 919        if (offsetof(struct sock, sk_node.next) != 0)
 920                memset(sk, 0, offsetof(struct sock, sk_node.next));
 921        memset(&sk->sk_node.pprev, 0,
 922               size - offsetof(struct sock, sk_node.pprev));
 923}
 924
 925/* Networking protocol blocks we attach to sockets.
 926 * socket layer -> transport layer interface
 927 * transport -> network interface is defined by struct inet_proto
 928 */
 929struct proto {
 930        void                    (*close)(struct sock *sk,
 931                                        long timeout);
 932        int                     (*connect)(struct sock *sk,
 933                                        struct sockaddr *uaddr,
 934                                        int addr_len);
 935        int                     (*disconnect)(struct sock *sk, int flags);
 936
 937        struct sock *           (*accept)(struct sock *sk, int flags, int *err);
 938
 939        int                     (*ioctl)(struct sock *sk, int cmd,
 940                                         unsigned long arg);
 941        int                     (*init)(struct sock *sk);
 942        void                    (*destroy)(struct sock *sk);
 943        void                    (*shutdown)(struct sock *sk, int how);
 944        int                     (*setsockopt)(struct sock *sk, int level,
 945                                        int optname, char __user *optval,
 946                                        unsigned int optlen);
 947        int                     (*getsockopt)(struct sock *sk, int level,
 948                                        int optname, char __user *optval,
 949                                        int __user *option);
 950#ifdef CONFIG_COMPAT
 951        int                     (*compat_setsockopt)(struct sock *sk,
 952                                        int level,
 953                                        int optname, char __user *optval,
 954                                        unsigned int optlen);
 955        int                     (*compat_getsockopt)(struct sock *sk,
 956                                        int level,
 957                                        int optname, char __user *optval,
 958                                        int __user *option);
 959        int                     (*compat_ioctl)(struct sock *sk,
 960                                        unsigned int cmd, unsigned long arg);
 961#endif
 962        int                     (*sendmsg)(struct sock *sk, struct msghdr *msg,
 963                                           size_t len);
 964        int                     (*recvmsg)(struct sock *sk, struct msghdr *msg,
 965                                           size_t len, int noblock, int flags,
 966                                           int *addr_len);
 967        int                     (*sendpage)(struct sock *sk, struct page *page,
 968                                        int offset, size_t size, int flags);
 969        int                     (*bind)(struct sock *sk,
 970                                        struct sockaddr *uaddr, int addr_len);
 971
 972        int                     (*backlog_rcv) (struct sock *sk,
 973                                                struct sk_buff *skb);
 974
 975        void            (*release_cb)(struct sock *sk);
 976
 977        /* Keeping track of sk's, looking them up, and port selection methods. */
 978        void                    (*hash)(struct sock *sk);
 979        void                    (*unhash)(struct sock *sk);
 980        void                    (*rehash)(struct sock *sk);
 981        int                     (*get_port)(struct sock *sk, unsigned short snum);
 982        void                    (*clear_sk)(struct sock *sk, int size);
 983
 984        /* Keeping track of sockets in use */
 985#ifdef CONFIG_PROC_FS
 986        unsigned int            inuse_idx;
 987#endif
 988
 989        bool                    (*stream_memory_free)(const struct sock *sk);
 990        /* Memory pressure */
 991        void                    (*enter_memory_pressure)(struct sock *sk);
 992        atomic_long_t           *memory_allocated;      /* Current allocated memory. */
 993        struct percpu_counter   *sockets_allocated;     /* Current number of sockets. */
 994        /*
 995         * Pressure flag: try to collapse.
 996         * Technical note: it is used by multiple contexts non atomically.
 997         * All the __sk_mem_schedule() is of this nature: accounting
 998         * is strict, actions are advisory and have some latency.
 999         */
1000        int                     *memory_pressure;
1001        long                    *sysctl_mem;
1002        int                     *sysctl_wmem;
1003        int                     *sysctl_rmem;
1004        int                     max_header;
1005        bool                    no_autobind;
1006
1007        struct kmem_cache       *slab;
1008        unsigned int            obj_size;
1009        int                     slab_flags;
1010
1011        struct percpu_counter   *orphan_count;
1012
1013        struct request_sock_ops *rsk_prot;
1014        struct timewait_sock_ops *twsk_prot;
1015
1016        union {
1017                struct inet_hashinfo    *hashinfo;
1018                struct udp_table        *udp_table;
1019                struct raw_hashinfo     *raw_hash;
1020        } h;
1021
1022        struct module           *owner;
1023
1024        char                    name[32];
1025
1026        struct list_head        node;
1027#ifdef SOCK_REFCNT_DEBUG
1028        atomic_t                socks;
1029#endif
1030#ifdef CONFIG_MEMCG_KMEM
1031        /*
1032         * cgroup specific init/deinit functions. Called once for all
1033         * protocols that implement it, from cgroups populate function.
1034         * This function has to setup any files the protocol want to
1035         * appear in the kmem cgroup filesystem.
1036         */
1037        int                     (*init_cgroup)(struct mem_cgroup *memcg,
1038                                               struct cgroup_subsys *ss);
1039        void                    (*destroy_cgroup)(struct mem_cgroup *memcg);
1040        struct cg_proto         *(*proto_cgroup)(struct mem_cgroup *memcg);
1041#endif
1042};
1043
1044/*
1045 * Bits in struct cg_proto.flags
1046 */
1047enum cg_proto_flags {
1048        /* Currently active and new sockets should be assigned to cgroups */
1049        MEMCG_SOCK_ACTIVE,
1050        /* It was ever activated; we must disarm static keys on destruction */
1051        MEMCG_SOCK_ACTIVATED,
1052};
1053
1054struct cg_proto {
1055        struct page_counter     memory_allocated;       /* Current allocated memory. */
1056        struct percpu_counter   sockets_allocated;      /* Current number of sockets. */
1057        int                     memory_pressure;
1058        long                    sysctl_mem[3];
1059        unsigned long           flags;
1060        /*
1061         * memcg field is used to find which memcg we belong directly
1062         * Each memcg struct can hold more than one cg_proto, so container_of
1063         * won't really cut.
1064         *
1065         * The elegant solution would be having an inverse function to
1066         * proto_cgroup in struct proto, but that means polluting the structure
1067         * for everybody, instead of just for memcg users.
1068         */
1069        struct mem_cgroup       *memcg;
1070};
1071
1072int proto_register(struct proto *prot, int alloc_slab);
1073void proto_unregister(struct proto *prot);
1074
1075static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1076{
1077        return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1078}
1079
1080#ifdef SOCK_REFCNT_DEBUG
1081static inline void sk_refcnt_debug_inc(struct sock *sk)
1082{
1083        atomic_inc(&sk->sk_prot->socks);
1084}
1085
1086static inline void sk_refcnt_debug_dec(struct sock *sk)
1087{
1088        atomic_dec(&sk->sk_prot->socks);
1089        printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1090               sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1091}
1092
1093static inline void sk_refcnt_debug_release(const struct sock *sk)
1094{
1095        if (atomic_read(&sk->sk_refcnt) != 1)
1096                printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1097                       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1098}
1099#else /* SOCK_REFCNT_DEBUG */
1100#define sk_refcnt_debug_inc(sk) do { } while (0)
1101#define sk_refcnt_debug_dec(sk) do { } while (0)
1102#define sk_refcnt_debug_release(sk) do { } while (0)
1103#endif /* SOCK_REFCNT_DEBUG */
1104
1105#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1106extern struct static_key memcg_socket_limit_enabled;
1107static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1108                                               struct cg_proto *cg_proto)
1109{
1110        return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1111}
1112#define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1113#else
1114#define mem_cgroup_sockets_enabled 0
1115static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1116                                               struct cg_proto *cg_proto)
1117{
1118        return NULL;
1119}
1120#endif
1121
1122static inline bool sk_stream_memory_free(const struct sock *sk)
1123{
1124        if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1125                return false;
1126
1127        return sk->sk_prot->stream_memory_free ?
1128                sk->sk_prot->stream_memory_free(sk) : true;
1129}
1130
1131static inline bool sk_stream_is_writeable(const struct sock *sk)
1132{
1133        return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1134               sk_stream_memory_free(sk);
1135}
1136
1137
1138static inline bool sk_has_memory_pressure(const struct sock *sk)
1139{
1140        return sk->sk_prot->memory_pressure != NULL;
1141}
1142
1143static inline bool sk_under_memory_pressure(const struct sock *sk)
1144{
1145        if (!sk->sk_prot->memory_pressure)
1146                return false;
1147
1148        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1149                return !!sk->sk_cgrp->memory_pressure;
1150
1151        return !!*sk->sk_prot->memory_pressure;
1152}
1153
1154static inline void sk_leave_memory_pressure(struct sock *sk)
1155{
1156        int *memory_pressure = sk->sk_prot->memory_pressure;
1157
1158        if (!memory_pressure)
1159                return;
1160
1161        if (*memory_pressure)
1162                *memory_pressure = 0;
1163
1164        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1165                struct cg_proto *cg_proto = sk->sk_cgrp;
1166                struct proto *prot = sk->sk_prot;
1167
1168                for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1169                        cg_proto->memory_pressure = 0;
1170        }
1171
1172}
1173
1174static inline void sk_enter_memory_pressure(struct sock *sk)
1175{
1176        if (!sk->sk_prot->enter_memory_pressure)
1177                return;
1178
1179        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1180                struct cg_proto *cg_proto = sk->sk_cgrp;
1181                struct proto *prot = sk->sk_prot;
1182
1183                for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1184                        cg_proto->memory_pressure = 1;
1185        }
1186
1187        sk->sk_prot->enter_memory_pressure(sk);
1188}
1189
1190static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1191{
1192        long *prot = sk->sk_prot->sysctl_mem;
1193        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1194                prot = sk->sk_cgrp->sysctl_mem;
1195        return prot[index];
1196}
1197
1198static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1199                                              unsigned long amt,
1200                                              int *parent_status)
1201{
1202        page_counter_charge(&prot->memory_allocated, amt);
1203
1204        if (page_counter_read(&prot->memory_allocated) >
1205            prot->memory_allocated.limit)
1206                *parent_status = OVER_LIMIT;
1207}
1208
1209static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1210                                              unsigned long amt)
1211{
1212        page_counter_uncharge(&prot->memory_allocated, amt);
1213}
1214
1215static inline long
1216sk_memory_allocated(const struct sock *sk)
1217{
1218        struct proto *prot = sk->sk_prot;
1219
1220        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1221                return page_counter_read(&sk->sk_cgrp->memory_allocated);
1222
1223        return atomic_long_read(prot->memory_allocated);
1224}
1225
1226static inline long
1227sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1228{
1229        struct proto *prot = sk->sk_prot;
1230
1231        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1232                memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1233                /* update the root cgroup regardless */
1234                atomic_long_add_return(amt, prot->memory_allocated);
1235                return page_counter_read(&sk->sk_cgrp->memory_allocated);
1236        }
1237
1238        return atomic_long_add_return(amt, prot->memory_allocated);
1239}
1240
1241static inline void
1242sk_memory_allocated_sub(struct sock *sk, int amt)
1243{
1244        struct proto *prot = sk->sk_prot;
1245
1246        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1247                memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1248
1249        atomic_long_sub(amt, prot->memory_allocated);
1250}
1251
1252static inline void sk_sockets_allocated_dec(struct sock *sk)
1253{
1254        struct proto *prot = sk->sk_prot;
1255
1256        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1257                struct cg_proto *cg_proto = sk->sk_cgrp;
1258
1259                for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1260                        percpu_counter_dec(&cg_proto->sockets_allocated);
1261        }
1262
1263        percpu_counter_dec(prot->sockets_allocated);
1264}
1265
1266static inline void sk_sockets_allocated_inc(struct sock *sk)
1267{
1268        struct proto *prot = sk->sk_prot;
1269
1270        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1271                struct cg_proto *cg_proto = sk->sk_cgrp;
1272
1273                for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1274                        percpu_counter_inc(&cg_proto->sockets_allocated);
1275        }
1276
1277        percpu_counter_inc(prot->sockets_allocated);
1278}
1279
1280static inline int
1281sk_sockets_allocated_read_positive(struct sock *sk)
1282{
1283        struct proto *prot = sk->sk_prot;
1284
1285        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1286                return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated);
1287
1288        return percpu_counter_read_positive(prot->sockets_allocated);
1289}
1290
1291static inline int
1292proto_sockets_allocated_sum_positive(struct proto *prot)
1293{
1294        return percpu_counter_sum_positive(prot->sockets_allocated);
1295}
1296
1297static inline long
1298proto_memory_allocated(struct proto *prot)
1299{
1300        return atomic_long_read(prot->memory_allocated);
1301}
1302
1303static inline bool
1304proto_memory_pressure(struct proto *prot)
1305{
1306        if (!prot->memory_pressure)
1307                return false;
1308        return !!*prot->memory_pressure;
1309}
1310
1311
1312#ifdef CONFIG_PROC_FS
1313/* Called with local bh disabled */
1314void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1315int sock_prot_inuse_get(struct net *net, struct proto *proto);
1316#else
1317static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1318                int inc)
1319{
1320}
1321#endif
1322
1323
1324/* With per-bucket locks this operation is not-atomic, so that
1325 * this version is not worse.
1326 */
1327static inline void __sk_prot_rehash(struct sock *sk)
1328{
1329        sk->sk_prot->unhash(sk);
1330        sk->sk_prot->hash(sk);
1331}
1332
1333void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1334
1335/* About 10 seconds */
1336#define SOCK_DESTROY_TIME (10*HZ)
1337
1338/* Sockets 0-1023 can't be bound to unless you are superuser */
1339#define PROT_SOCK       1024
1340
1341#define SHUTDOWN_MASK   3
1342#define RCV_SHUTDOWN    1
1343#define SEND_SHUTDOWN   2
1344
1345#define SOCK_SNDBUF_LOCK        1
1346#define SOCK_RCVBUF_LOCK        2
1347#define SOCK_BINDADDR_LOCK      4
1348#define SOCK_BINDPORT_LOCK      8
1349
1350struct socket_alloc {
1351        struct socket socket;
1352        struct inode vfs_inode;
1353};
1354
1355static inline struct socket *SOCKET_I(struct inode *inode)
1356{
1357        return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1358}
1359
1360static inline struct inode *SOCK_INODE(struct socket *socket)
1361{
1362        return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1363}
1364
1365/*
1366 * Functions for memory accounting
1367 */
1368int __sk_mem_schedule(struct sock *sk, int size, int kind);
1369void __sk_mem_reclaim(struct sock *sk);
1370
1371#define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1372#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1373#define SK_MEM_SEND     0
1374#define SK_MEM_RECV     1
1375
1376static inline int sk_mem_pages(int amt)
1377{
1378        return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1379}
1380
1381static inline bool sk_has_account(struct sock *sk)
1382{
1383        /* return true if protocol supports memory accounting */
1384        return !!sk->sk_prot->memory_allocated;
1385}
1386
1387static inline bool sk_wmem_schedule(struct sock *sk, int size)
1388{
1389        if (!sk_has_account(sk))
1390                return true;
1391        return size <= sk->sk_forward_alloc ||
1392                __sk_mem_schedule(sk, size, SK_MEM_SEND);
1393}
1394
1395static inline bool
1396sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1397{
1398        if (!sk_has_account(sk))
1399                return true;
1400        return size<= sk->sk_forward_alloc ||
1401                __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1402                skb_pfmemalloc(skb);
1403}
1404
1405static inline void sk_mem_reclaim(struct sock *sk)
1406{
1407        if (!sk_has_account(sk))
1408                return;
1409        if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1410                __sk_mem_reclaim(sk);
1411}
1412
1413static inline void sk_mem_reclaim_partial(struct sock *sk)
1414{
1415        if (!sk_has_account(sk))
1416                return;
1417        if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1418                __sk_mem_reclaim(sk);
1419}
1420
1421static inline void sk_mem_charge(struct sock *sk, int size)
1422{
1423        if (!sk_has_account(sk))
1424                return;
1425        sk->sk_forward_alloc -= size;
1426}
1427
1428static inline void sk_mem_uncharge(struct sock *sk, int size)
1429{
1430        if (!sk_has_account(sk))
1431                return;
1432        sk->sk_forward_alloc += size;
1433}
1434
1435static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1436{
1437        sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1438        sk->sk_wmem_queued -= skb->truesize;
1439        sk_mem_uncharge(sk, skb->truesize);
1440        __kfree_skb(skb);
1441}
1442
1443/* Used by processes to "lock" a socket state, so that
1444 * interrupts and bottom half handlers won't change it
1445 * from under us. It essentially blocks any incoming
1446 * packets, so that we won't get any new data or any
1447 * packets that change the state of the socket.
1448 *
1449 * While locked, BH processing will add new packets to
1450 * the backlog queue.  This queue is processed by the
1451 * owner of the socket lock right before it is released.
1452 *
1453 * Since ~2.3.5 it is also exclusive sleep lock serializing
1454 * accesses from user process context.
1455 */
1456#define sock_owned_by_user(sk)  ((sk)->sk_lock.owned)
1457
1458static inline void sock_release_ownership(struct sock *sk)
1459{
1460        sk->sk_lock.owned = 0;
1461}
1462
1463/*
1464 * Macro so as to not evaluate some arguments when
1465 * lockdep is not enabled.
1466 *
1467 * Mark both the sk_lock and the sk_lock.slock as a
1468 * per-address-family lock class.
1469 */
1470#define sock_lock_init_class_and_name(sk, sname, skey, name, key)       \
1471do {                                                                    \
1472        sk->sk_lock.owned = 0;                                          \
1473        init_waitqueue_head(&sk->sk_lock.wq);                           \
1474        spin_lock_init(&(sk)->sk_lock.slock);                           \
1475        debug_check_no_locks_freed((void *)&(sk)->sk_lock,              \
1476                        sizeof((sk)->sk_lock));                         \
1477        lockdep_set_class_and_name(&(sk)->sk_lock.slock,                \
1478                                (skey), (sname));                               \
1479        lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);     \
1480} while (0)
1481
1482void lock_sock_nested(struct sock *sk, int subclass);
1483
1484static inline void lock_sock(struct sock *sk)
1485{
1486        lock_sock_nested(sk, 0);
1487}
1488
1489void release_sock(struct sock *sk);
1490
1491/* BH context may only use the following locking interface. */
1492#define bh_lock_sock(__sk)      spin_lock(&((__sk)->sk_lock.slock))
1493#define bh_lock_sock_nested(__sk) \
1494                                spin_lock_nested(&((__sk)->sk_lock.slock), \
1495                                SINGLE_DEPTH_NESTING)
1496#define bh_unlock_sock(__sk)    spin_unlock(&((__sk)->sk_lock.slock))
1497
1498bool lock_sock_fast(struct sock *sk);
1499/**
1500 * unlock_sock_fast - complement of lock_sock_fast
1501 * @sk: socket
1502 * @slow: slow mode
1503 *
1504 * fast unlock socket for user context.
1505 * If slow mode is on, we call regular release_sock()
1506 */
1507static inline void unlock_sock_fast(struct sock *sk, bool slow)
1508{
1509        if (slow)
1510                release_sock(sk);
1511        else
1512                spin_unlock_bh(&sk->sk_lock.slock);
1513}
1514
1515
1516struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1517                      struct proto *prot);
1518void sk_free(struct sock *sk);
1519void sk_release_kernel(struct sock *sk);
1520struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1521
1522struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1523                             gfp_t priority);
1524void sock_wfree(struct sk_buff *skb);
1525void skb_orphan_partial(struct sk_buff *skb);
1526void sock_rfree(struct sk_buff *skb);
1527void sock_efree(struct sk_buff *skb);
1528#ifdef CONFIG_INET
1529void sock_edemux(struct sk_buff *skb);
1530#else
1531#define sock_edemux(skb) sock_efree(skb)
1532#endif
1533
1534int sock_setsockopt(struct socket *sock, int level, int op,
1535                    char __user *optval, unsigned int optlen);
1536
1537int sock_getsockopt(struct socket *sock, int level, int op,
1538                    char __user *optval, int __user *optlen);
1539struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1540                                    int noblock, int *errcode);
1541struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1542                                     unsigned long data_len, int noblock,
1543                                     int *errcode, int max_page_order);
1544void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1545void sock_kfree_s(struct sock *sk, void *mem, int size);
1546void sock_kzfree_s(struct sock *sk, void *mem, int size);
1547void sk_send_sigurg(struct sock *sk);
1548
1549/*
1550 * Functions to fill in entries in struct proto_ops when a protocol
1551 * does not implement a particular function.
1552 */
1553int sock_no_bind(struct socket *, struct sockaddr *, int);
1554int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1555int sock_no_socketpair(struct socket *, struct socket *);
1556int sock_no_accept(struct socket *, struct socket *, int);
1557int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1558unsigned int sock_no_poll(struct file *, struct socket *,
1559                          struct poll_table_struct *);
1560int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1561int sock_no_listen(struct socket *, int);
1562int sock_no_shutdown(struct socket *, int);
1563int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1564int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1565int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1566int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1567int sock_no_mmap(struct file *file, struct socket *sock,
1568                 struct vm_area_struct *vma);
1569ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1570                         size_t size, int flags);
1571
1572/*
1573 * Functions to fill in entries in struct proto_ops when a protocol
1574 * uses the inet style.
1575 */
1576int sock_common_getsockopt(struct socket *sock, int level, int optname,
1577                                  char __user *optval, int __user *optlen);
1578int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1579                        int flags);
1580int sock_common_setsockopt(struct socket *sock, int level, int optname,
1581                                  char __user *optval, unsigned int optlen);
1582int compat_sock_common_getsockopt(struct socket *sock, int level,
1583                int optname, char __user *optval, int __user *optlen);
1584int compat_sock_common_setsockopt(struct socket *sock, int level,
1585                int optname, char __user *optval, unsigned int optlen);
1586
1587void sk_common_release(struct sock *sk);
1588
1589/*
1590 *      Default socket callbacks and setup code
1591 */
1592
1593/* Initialise core socket variables */
1594void sock_init_data(struct socket *sock, struct sock *sk);
1595
1596/*
1597 * Socket reference counting postulates.
1598 *
1599 * * Each user of socket SHOULD hold a reference count.
1600 * * Each access point to socket (an hash table bucket, reference from a list,
1601 *   running timer, skb in flight MUST hold a reference count.
1602 * * When reference count hits 0, it means it will never increase back.
1603 * * When reference count hits 0, it means that no references from
1604 *   outside exist to this socket and current process on current CPU
1605 *   is last user and may/should destroy this socket.
1606 * * sk_free is called from any context: process, BH, IRQ. When
1607 *   it is called, socket has no references from outside -> sk_free
1608 *   may release descendant resources allocated by the socket, but
1609 *   to the time when it is called, socket is NOT referenced by any
1610 *   hash tables, lists etc.
1611 * * Packets, delivered from outside (from network or from another process)
1612 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1613 *   when they sit in queue. Otherwise, packets will leak to hole, when
1614 *   socket is looked up by one cpu and unhasing is made by another CPU.
1615 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1616 *   (leak to backlog). Packet socket does all the processing inside
1617 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1618 *   use separate SMP lock, so that they are prone too.
1619 */
1620
1621/* Ungrab socket and destroy it, if it was the last reference. */
1622static inline void sock_put(struct sock *sk)
1623{
1624        if (atomic_dec_and_test(&sk->sk_refcnt))
1625                sk_free(sk);
1626}
1627/* Generic version of sock_put(), dealing with all sockets
1628 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1629 */
1630void sock_gen_put(struct sock *sk);
1631
1632int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1633
1634static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1635{
1636        sk->sk_tx_queue_mapping = tx_queue;
1637}
1638
1639static inline void sk_tx_queue_clear(struct sock *sk)
1640{
1641        sk->sk_tx_queue_mapping = -1;
1642}
1643
1644static inline int sk_tx_queue_get(const struct sock *sk)
1645{
1646        return sk ? sk->sk_tx_queue_mapping : -1;
1647}
1648
1649static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1650{
1651        sk_tx_queue_clear(sk);
1652        sk->sk_socket = sock;
1653}
1654
1655static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1656{
1657        BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1658        return &rcu_dereference_raw(sk->sk_wq)->wait;
1659}
1660/* Detach socket from process context.
1661 * Announce socket dead, detach it from wait queue and inode.
1662 * Note that parent inode held reference count on this struct sock,
1663 * we do not release it in this function, because protocol
1664 * probably wants some additional cleanups or even continuing
1665 * to work with this socket (TCP).
1666 */
1667static inline void sock_orphan(struct sock *sk)
1668{
1669        write_lock_bh(&sk->sk_callback_lock);
1670        sock_set_flag(sk, SOCK_DEAD);
1671        sk_set_socket(sk, NULL);
1672        sk->sk_wq  = NULL;
1673        write_unlock_bh(&sk->sk_callback_lock);
1674}
1675
1676static inline void sock_graft(struct sock *sk, struct socket *parent)
1677{
1678        write_lock_bh(&sk->sk_callback_lock);
1679        sk->sk_wq = parent->wq;
1680        parent->sk = sk;
1681        sk_set_socket(sk, parent);
1682        security_sock_graft(sk, parent);
1683        write_unlock_bh(&sk->sk_callback_lock);
1684}
1685
1686kuid_t sock_i_uid(struct sock *sk);
1687unsigned long sock_i_ino(struct sock *sk);
1688
1689static inline struct dst_entry *
1690__sk_dst_get(struct sock *sk)
1691{
1692        return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1693                                                       lockdep_is_held(&sk->sk_lock.slock));
1694}
1695
1696static inline struct dst_entry *
1697sk_dst_get(struct sock *sk)
1698{
1699        struct dst_entry *dst;
1700
1701        rcu_read_lock();
1702        dst = rcu_dereference(sk->sk_dst_cache);
1703        if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1704                dst = NULL;
1705        rcu_read_unlock();
1706        return dst;
1707}
1708
1709static inline void dst_negative_advice(struct sock *sk)
1710{
1711        struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1712
1713        if (dst && dst->ops->negative_advice) {
1714                ndst = dst->ops->negative_advice(dst);
1715
1716                if (ndst != dst) {
1717                        rcu_assign_pointer(sk->sk_dst_cache, ndst);
1718                        sk_tx_queue_clear(sk);
1719                }
1720        }
1721}
1722
1723static inline void
1724__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1725{
1726        struct dst_entry *old_dst;
1727
1728        sk_tx_queue_clear(sk);
1729        /*
1730         * This can be called while sk is owned by the caller only,
1731         * with no state that can be checked in a rcu_dereference_check() cond
1732         */
1733        old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1734        rcu_assign_pointer(sk->sk_dst_cache, dst);
1735        dst_release(old_dst);
1736}
1737
1738static inline void
1739sk_dst_set(struct sock *sk, struct dst_entry *dst)
1740{
1741        struct dst_entry *old_dst;
1742
1743        sk_tx_queue_clear(sk);
1744        old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1745        dst_release(old_dst);
1746}
1747
1748static inline void
1749__sk_dst_reset(struct sock *sk)
1750{
1751        __sk_dst_set(sk, NULL);
1752}
1753
1754static inline void
1755sk_dst_reset(struct sock *sk)
1756{
1757        sk_dst_set(sk, NULL);
1758}
1759
1760struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1761
1762struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1763
1764bool sk_mc_loop(struct sock *sk);
1765
1766static inline bool sk_can_gso(const struct sock *sk)
1767{
1768        return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1769}
1770
1771void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1772
1773static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1774{
1775        sk->sk_route_nocaps |= flags;
1776        sk->sk_route_caps &= ~flags;
1777}
1778
1779static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1780                                           struct iov_iter *from, char *to,
1781                                           int copy, int offset)
1782{
1783        if (skb->ip_summed == CHECKSUM_NONE) {
1784                __wsum csum = 0;
1785                if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1786                        return -EFAULT;
1787                skb->csum = csum_block_add(skb->csum, csum, offset);
1788        } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1789                if (copy_from_iter_nocache(to, copy, from) != copy)
1790                        return -EFAULT;
1791        } else if (copy_from_iter(to, copy, from) != copy)
1792                return -EFAULT;
1793
1794        return 0;
1795}
1796
1797static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1798                                       struct iov_iter *from, int copy)
1799{
1800        int err, offset = skb->len;
1801
1802        err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1803                                       copy, offset);
1804        if (err)
1805                __skb_trim(skb, offset);
1806
1807        return err;
1808}
1809
1810static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1811                                           struct sk_buff *skb,
1812                                           struct page *page,
1813                                           int off, int copy)
1814{
1815        int err;
1816
1817        err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1818                                       copy, skb->len);
1819        if (err)
1820                return err;
1821
1822        skb->len             += copy;
1823        skb->data_len        += copy;
1824        skb->truesize        += copy;
1825        sk->sk_wmem_queued   += copy;
1826        sk_mem_charge(sk, copy);
1827        return 0;
1828}
1829
1830/**
1831 * sk_wmem_alloc_get - returns write allocations
1832 * @sk: socket
1833 *
1834 * Returns sk_wmem_alloc minus initial offset of one
1835 */
1836static inline int sk_wmem_alloc_get(const struct sock *sk)
1837{
1838        return atomic_read(&sk->sk_wmem_alloc) - 1;
1839}
1840
1841/**
1842 * sk_rmem_alloc_get - returns read allocations
1843 * @sk: socket
1844 *
1845 * Returns sk_rmem_alloc
1846 */
1847static inline int sk_rmem_alloc_get(const struct sock *sk)
1848{
1849        return atomic_read(&sk->sk_rmem_alloc);
1850}
1851
1852/**
1853 * sk_has_allocations - check if allocations are outstanding
1854 * @sk: socket
1855 *
1856 * Returns true if socket has write or read allocations
1857 */
1858static inline bool sk_has_allocations(const struct sock *sk)
1859{
1860        return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1861}
1862
1863/**
1864 * wq_has_sleeper - check if there are any waiting processes
1865 * @wq: struct socket_wq
1866 *
1867 * Returns true if socket_wq has waiting processes
1868 *
1869 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1870 * barrier call. They were added due to the race found within the tcp code.
1871 *
1872 * Consider following tcp code paths:
1873 *
1874 * CPU1                  CPU2
1875 *
1876 * sys_select            receive packet
1877 *   ...                 ...
1878 *   __add_wait_queue    update tp->rcv_nxt
1879 *   ...                 ...
1880 *   tp->rcv_nxt check   sock_def_readable
1881 *   ...                 {
1882 *   schedule               rcu_read_lock();
1883 *                          wq = rcu_dereference(sk->sk_wq);
1884 *                          if (wq && waitqueue_active(&wq->wait))
1885 *                              wake_up_interruptible(&wq->wait)
1886 *                          ...
1887 *                       }
1888 *
1889 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1890 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1891 * could then endup calling schedule and sleep forever if there are no more
1892 * data on the socket.
1893 *
1894 */
1895static inline bool wq_has_sleeper(struct socket_wq *wq)
1896{
1897        /* We need to be sure we are in sync with the
1898         * add_wait_queue modifications to the wait queue.
1899         *
1900         * This memory barrier is paired in the sock_poll_wait.
1901         */
1902        smp_mb();
1903        return wq && waitqueue_active(&wq->wait);
1904}
1905
1906/**
1907 * sock_poll_wait - place memory barrier behind the poll_wait call.
1908 * @filp:           file
1909 * @wait_address:   socket wait queue
1910 * @p:              poll_table
1911 *
1912 * See the comments in the wq_has_sleeper function.
1913 */
1914static inline void sock_poll_wait(struct file *filp,
1915                wait_queue_head_t *wait_address, poll_table *p)
1916{
1917        if (!poll_does_not_wait(p) && wait_address) {
1918                poll_wait(filp, wait_address, p);
1919                /* We need to be sure we are in sync with the
1920                 * socket flags modification.
1921                 *
1922                 * This memory barrier is paired in the wq_has_sleeper.
1923                 */
1924                smp_mb();
1925        }
1926}
1927
1928static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1929{
1930        if (sk->sk_txhash) {
1931                skb->l4_hash = 1;
1932                skb->hash = sk->sk_txhash;
1933        }
1934}
1935
1936/*
1937 *      Queue a received datagram if it will fit. Stream and sequenced
1938 *      protocols can't normally use this as they need to fit buffers in
1939 *      and play with them.
1940 *
1941 *      Inlined as it's very short and called for pretty much every
1942 *      packet ever received.
1943 */
1944
1945static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1946{
1947        skb_orphan(skb);
1948        skb->sk = sk;
1949        skb->destructor = sock_wfree;
1950        skb_set_hash_from_sk(skb, sk);
1951        /*
1952         * We used to take a refcount on sk, but following operation
1953         * is enough to guarantee sk_free() wont free this sock until
1954         * all in-flight packets are completed
1955         */
1956        atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1957}
1958
1959static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1960{
1961        skb_orphan(skb);
1962        skb->sk = sk;
1963        skb->destructor = sock_rfree;
1964        atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1965        sk_mem_charge(sk, skb->truesize);
1966}
1967
1968void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1969                    unsigned long expires);
1970
1971void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1972
1973int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1974
1975int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1976struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1977
1978/*
1979 *      Recover an error report and clear atomically
1980 */
1981
1982static inline int sock_error(struct sock *sk)
1983{
1984        int err;
1985        if (likely(!sk->sk_err))
1986                return 0;
1987        err = xchg(&sk->sk_err, 0);
1988        return -err;
1989}
1990
1991static inline unsigned long sock_wspace(struct sock *sk)
1992{
1993        int amt = 0;
1994
1995        if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1996                amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1997                if (amt < 0)
1998                        amt = 0;
1999        }
2000        return amt;
2001}
2002
2003static inline void sk_wake_async(struct sock *sk, int how, int band)
2004{
2005        if (sock_flag(sk, SOCK_FASYNC))
2006                sock_wake_async(sk->sk_socket, how, band);
2007}
2008
2009/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2010 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2011 * Note: for send buffers, TCP works better if we can build two skbs at
2012 * minimum.
2013 */
2014#define TCP_SKB_MIN_TRUESIZE    (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2015
2016#define SOCK_MIN_SNDBUF         (TCP_SKB_MIN_TRUESIZE * 2)
2017#define SOCK_MIN_RCVBUF          TCP_SKB_MIN_TRUESIZE
2018
2019static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2020{
2021        if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2022                sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2023                sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2024        }
2025}
2026
2027struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2028
2029/**
2030 * sk_page_frag - return an appropriate page_frag
2031 * @sk: socket
2032 *
2033 * If socket allocation mode allows current thread to sleep, it means its
2034 * safe to use the per task page_frag instead of the per socket one.
2035 */
2036static inline struct page_frag *sk_page_frag(struct sock *sk)
2037{
2038        if (sk->sk_allocation & __GFP_WAIT)
2039                return &current->task_frag;
2040
2041        return &sk->sk_frag;
2042}
2043
2044bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2045
2046/*
2047 *      Default write policy as shown to user space via poll/select/SIGIO
2048 */
2049static inline bool sock_writeable(const struct sock *sk)
2050{
2051        return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2052}
2053
2054static inline gfp_t gfp_any(void)
2055{
2056        return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2057}
2058
2059static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2060{
2061        return noblock ? 0 : sk->sk_rcvtimeo;
2062}
2063
2064static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2065{
2066        return noblock ? 0 : sk->sk_sndtimeo;
2067}
2068
2069static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2070{
2071        return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2072}
2073
2074/* Alas, with timeout socket operations are not restartable.
2075 * Compare this to poll().
2076 */
2077static inline int sock_intr_errno(long timeo)
2078{
2079        return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2080}
2081
2082struct sock_skb_cb {
2083        u32 dropcount;
2084};
2085
2086/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2087 * using skb->cb[] would keep using it directly and utilize its
2088 * alignement guarantee.
2089 */
2090#define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2091                            sizeof(struct sock_skb_cb)))
2092
2093#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2094                            SOCK_SKB_CB_OFFSET))
2095
2096#define sock_skb_cb_check_size(size) \
2097        BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2098
2099static inline void
2100sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2101{
2102        SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
2103}
2104
2105void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2106                           struct sk_buff *skb);
2107void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2108                             struct sk_buff *skb);
2109
2110static inline void
2111sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2112{
2113        ktime_t kt = skb->tstamp;
2114        struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2115
2116        /*
2117         * generate control messages if
2118         * - receive time stamping in software requested
2119         * - software time stamp available and wanted
2120         * - hardware time stamps available and wanted
2121         */
2122        if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2123            (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2124            (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2125            (hwtstamps->hwtstamp.tv64 &&
2126             (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2127                __sock_recv_timestamp(msg, sk, skb);
2128        else
2129                sk->sk_stamp = kt;
2130
2131        if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2132                __sock_recv_wifi_status(msg, sk, skb);
2133}
2134
2135void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2136                              struct sk_buff *skb);
2137
2138static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2139                                          struct sk_buff *skb)
2140{
2141#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)                       | \
2142                           (1UL << SOCK_RCVTSTAMP))
2143#define TSFLAGS_ANY       (SOF_TIMESTAMPING_SOFTWARE                    | \
2144                           SOF_TIMESTAMPING_RAW_HARDWARE)
2145
2146        if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2147                __sock_recv_ts_and_drops(msg, sk, skb);
2148        else
2149                sk->sk_stamp = skb->tstamp;
2150}
2151
2152void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags);
2153
2154/**
2155 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2156 * @sk:         socket sending this packet
2157 * @tx_flags:   completed with instructions for time stamping
2158 *
2159 * Note : callers should take care of initial *tx_flags value (usually 0)
2160 */
2161static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
2162{
2163        if (unlikely(sk->sk_tsflags))
2164                __sock_tx_timestamp(sk, tx_flags);
2165        if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2166                *tx_flags |= SKBTX_WIFI_STATUS;
2167}
2168
2169/**
2170 * sk_eat_skb - Release a skb if it is no longer needed
2171 * @sk: socket to eat this skb from
2172 * @skb: socket buffer to eat
2173 *
2174 * This routine must be called with interrupts disabled or with the socket
2175 * locked so that the sk_buff queue operation is ok.
2176*/
2177static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2178{
2179        __skb_unlink(skb, &sk->sk_receive_queue);
2180        __kfree_skb(skb);
2181}
2182
2183static inline
2184struct net *sock_net(const struct sock *sk)
2185{
2186        return read_pnet(&sk->sk_net);
2187}
2188
2189static inline
2190void sock_net_set(struct sock *sk, struct net *net)
2191{
2192        write_pnet(&sk->sk_net, net);
2193}
2194
2195/*
2196 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2197 * They should not hold a reference to a namespace in order to allow
2198 * to stop it.
2199 * Sockets after sk_change_net should be released using sk_release_kernel
2200 */
2201static inline void sk_change_net(struct sock *sk, struct net *net)
2202{
2203        struct net *current_net = sock_net(sk);
2204
2205        if (!net_eq(current_net, net)) {
2206                put_net(current_net);
2207                sock_net_set(sk, net);
2208        }
2209}
2210
2211static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2212{
2213        if (skb->sk) {
2214                struct sock *sk = skb->sk;
2215
2216                skb->destructor = NULL;
2217                skb->sk = NULL;
2218                return sk;
2219        }
2220        return NULL;
2221}
2222
2223/* This helper checks if a socket is a full socket,
2224 * ie _not_ a timewait or request socket.
2225 */
2226static inline bool sk_fullsock(const struct sock *sk)
2227{
2228        return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2229}
2230
2231void sock_enable_timestamp(struct sock *sk, int flag);
2232int sock_get_timestamp(struct sock *, struct timeval __user *);
2233int sock_get_timestampns(struct sock *, struct timespec __user *);
2234int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2235                       int type);
2236
2237bool sk_ns_capable(const struct sock *sk,
2238                   struct user_namespace *user_ns, int cap);
2239bool sk_capable(const struct sock *sk, int cap);
2240bool sk_net_capable(const struct sock *sk, int cap);
2241
2242extern __u32 sysctl_wmem_max;
2243extern __u32 sysctl_rmem_max;
2244
2245extern int sysctl_tstamp_allow_data;
2246extern int sysctl_optmem_max;
2247
2248extern __u32 sysctl_wmem_default;
2249extern __u32 sysctl_rmem_default;
2250
2251#endif  /* _SOCK_H */
2252