linux/kernel/audit.c
<<
>>
Prefs
   1/* audit.c -- Auditing support
   2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
   3 * System-call specific features have moved to auditsc.c
   4 *
   5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
   6 * All Rights Reserved.
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  21 *
  22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  23 *
  24 * Goals: 1) Integrate fully with Security Modules.
  25 *        2) Minimal run-time overhead:
  26 *           a) Minimal when syscall auditing is disabled (audit_enable=0).
  27 *           b) Small when syscall auditing is enabled and no audit record
  28 *              is generated (defer as much work as possible to record
  29 *              generation time):
  30 *              i) context is allocated,
  31 *              ii) names from getname are stored without a copy, and
  32 *              iii) inode information stored from path_lookup.
  33 *        3) Ability to disable syscall auditing at boot time (audit=0).
  34 *        4) Usable by other parts of the kernel (if audit_log* is called,
  35 *           then a syscall record will be generated automatically for the
  36 *           current syscall).
  37 *        5) Netlink interface to user-space.
  38 *        6) Support low-overhead kernel-based filtering to minimize the
  39 *           information that must be passed to user-space.
  40 *
  41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
  42 */
  43
  44#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  45
  46#include <linux/file.h>
  47#include <linux/init.h>
  48#include <linux/types.h>
  49#include <linux/atomic.h>
  50#include <linux/mm.h>
  51#include <linux/export.h>
  52#include <linux/slab.h>
  53#include <linux/err.h>
  54#include <linux/kthread.h>
  55#include <linux/kernel.h>
  56#include <linux/syscalls.h>
  57
  58#include <linux/audit.h>
  59
  60#include <net/sock.h>
  61#include <net/netlink.h>
  62#include <linux/skbuff.h>
  63#ifdef CONFIG_SECURITY
  64#include <linux/security.h>
  65#endif
  66#include <linux/freezer.h>
  67#include <linux/tty.h>
  68#include <linux/pid_namespace.h>
  69#include <net/netns/generic.h>
  70
  71#include "audit.h"
  72
  73/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
  74 * (Initialization happens after skb_init is called.) */
  75#define AUDIT_DISABLED          -1
  76#define AUDIT_UNINITIALIZED     0
  77#define AUDIT_INITIALIZED       1
  78static int      audit_initialized;
  79
  80#define AUDIT_OFF       0
  81#define AUDIT_ON        1
  82#define AUDIT_LOCKED    2
  83u32             audit_enabled;
  84u32             audit_ever_enabled;
  85
  86EXPORT_SYMBOL_GPL(audit_enabled);
  87
  88/* Default state when kernel boots without any parameters. */
  89static u32      audit_default;
  90
  91/* If auditing cannot proceed, audit_failure selects what happens. */
  92static u32      audit_failure = AUDIT_FAIL_PRINTK;
  93
  94/*
  95 * If audit records are to be written to the netlink socket, audit_pid
  96 * contains the pid of the auditd process and audit_nlk_portid contains
  97 * the portid to use to send netlink messages to that process.
  98 */
  99int             audit_pid;
 100static __u32    audit_nlk_portid;
 101
 102/* If audit_rate_limit is non-zero, limit the rate of sending audit records
 103 * to that number per second.  This prevents DoS attacks, but results in
 104 * audit records being dropped. */
 105static u32      audit_rate_limit;
 106
 107/* Number of outstanding audit_buffers allowed.
 108 * When set to zero, this means unlimited. */
 109static u32      audit_backlog_limit = 64;
 110#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
 111static u32      audit_backlog_wait_time_master = AUDIT_BACKLOG_WAIT_TIME;
 112static u32      audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
 113static u32      audit_backlog_wait_overflow = 0;
 114
 115/* The identity of the user shutting down the audit system. */
 116kuid_t          audit_sig_uid = INVALID_UID;
 117pid_t           audit_sig_pid = -1;
 118u32             audit_sig_sid = 0;
 119
 120/* Records can be lost in several ways:
 121   0) [suppressed in audit_alloc]
 122   1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
 123   2) out of memory in audit_log_move [alloc_skb]
 124   3) suppressed due to audit_rate_limit
 125   4) suppressed due to audit_backlog_limit
 126*/
 127static atomic_t    audit_lost = ATOMIC_INIT(0);
 128
 129/* The netlink socket. */
 130static struct sock *audit_sock;
 131static int audit_net_id;
 132
 133/* Hash for inode-based rules */
 134struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
 135
 136/* The audit_freelist is a list of pre-allocated audit buffers (if more
 137 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
 138 * being placed on the freelist). */
 139static DEFINE_SPINLOCK(audit_freelist_lock);
 140static int         audit_freelist_count;
 141static LIST_HEAD(audit_freelist);
 142
 143static struct sk_buff_head audit_skb_queue;
 144/* queue of skbs to send to auditd when/if it comes back */
 145static struct sk_buff_head audit_skb_hold_queue;
 146static struct task_struct *kauditd_task;
 147static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
 148static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
 149
 150static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
 151                                   .mask = -1,
 152                                   .features = 0,
 153                                   .lock = 0,};
 154
 155static char *audit_feature_names[2] = {
 156        "only_unset_loginuid",
 157        "loginuid_immutable",
 158};
 159
 160
 161/* Serialize requests from userspace. */
 162DEFINE_MUTEX(audit_cmd_mutex);
 163
 164/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
 165 * audit records.  Since printk uses a 1024 byte buffer, this buffer
 166 * should be at least that large. */
 167#define AUDIT_BUFSIZ 1024
 168
 169/* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
 170 * audit_freelist.  Doing so eliminates many kmalloc/kfree calls. */
 171#define AUDIT_MAXFREE  (2*NR_CPUS)
 172
 173/* The audit_buffer is used when formatting an audit record.  The caller
 174 * locks briefly to get the record off the freelist or to allocate the
 175 * buffer, and locks briefly to send the buffer to the netlink layer or
 176 * to place it on a transmit queue.  Multiple audit_buffers can be in
 177 * use simultaneously. */
 178struct audit_buffer {
 179        struct list_head     list;
 180        struct sk_buff       *skb;      /* formatted skb ready to send */
 181        struct audit_context *ctx;      /* NULL or associated context */
 182        gfp_t                gfp_mask;
 183};
 184
 185struct audit_reply {
 186        __u32 portid;
 187        struct net *net;
 188        struct sk_buff *skb;
 189};
 190
 191static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
 192{
 193        if (ab) {
 194                struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
 195                nlh->nlmsg_pid = portid;
 196        }
 197}
 198
 199void audit_panic(const char *message)
 200{
 201        switch (audit_failure) {
 202        case AUDIT_FAIL_SILENT:
 203                break;
 204        case AUDIT_FAIL_PRINTK:
 205                if (printk_ratelimit())
 206                        pr_err("%s\n", message);
 207                break;
 208        case AUDIT_FAIL_PANIC:
 209                /* test audit_pid since printk is always losey, why bother? */
 210                if (audit_pid)
 211                        panic("audit: %s\n", message);
 212                break;
 213        }
 214}
 215
 216static inline int audit_rate_check(void)
 217{
 218        static unsigned long    last_check = 0;
 219        static int              messages   = 0;
 220        static DEFINE_SPINLOCK(lock);
 221        unsigned long           flags;
 222        unsigned long           now;
 223        unsigned long           elapsed;
 224        int                     retval     = 0;
 225
 226        if (!audit_rate_limit) return 1;
 227
 228        spin_lock_irqsave(&lock, flags);
 229        if (++messages < audit_rate_limit) {
 230                retval = 1;
 231        } else {
 232                now     = jiffies;
 233                elapsed = now - last_check;
 234                if (elapsed > HZ) {
 235                        last_check = now;
 236                        messages   = 0;
 237                        retval     = 1;
 238                }
 239        }
 240        spin_unlock_irqrestore(&lock, flags);
 241
 242        return retval;
 243}
 244
 245/**
 246 * audit_log_lost - conditionally log lost audit message event
 247 * @message: the message stating reason for lost audit message
 248 *
 249 * Emit at least 1 message per second, even if audit_rate_check is
 250 * throttling.
 251 * Always increment the lost messages counter.
 252*/
 253void audit_log_lost(const char *message)
 254{
 255        static unsigned long    last_msg = 0;
 256        static DEFINE_SPINLOCK(lock);
 257        unsigned long           flags;
 258        unsigned long           now;
 259        int                     print;
 260
 261        atomic_inc(&audit_lost);
 262
 263        print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
 264
 265        if (!print) {
 266                spin_lock_irqsave(&lock, flags);
 267                now = jiffies;
 268                if (now - last_msg > HZ) {
 269                        print = 1;
 270                        last_msg = now;
 271                }
 272                spin_unlock_irqrestore(&lock, flags);
 273        }
 274
 275        if (print) {
 276                if (printk_ratelimit())
 277                        pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
 278                                atomic_read(&audit_lost),
 279                                audit_rate_limit,
 280                                audit_backlog_limit);
 281                audit_panic(message);
 282        }
 283}
 284
 285static int audit_log_config_change(char *function_name, u32 new, u32 old,
 286                                   int allow_changes)
 287{
 288        struct audit_buffer *ab;
 289        int rc = 0;
 290
 291        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
 292        if (unlikely(!ab))
 293                return rc;
 294        audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
 295        audit_log_session_info(ab);
 296        rc = audit_log_task_context(ab);
 297        if (rc)
 298                allow_changes = 0; /* Something weird, deny request */
 299        audit_log_format(ab, " res=%d", allow_changes);
 300        audit_log_end(ab);
 301        return rc;
 302}
 303
 304static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
 305{
 306        int allow_changes, rc = 0;
 307        u32 old = *to_change;
 308
 309        /* check if we are locked */
 310        if (audit_enabled == AUDIT_LOCKED)
 311                allow_changes = 0;
 312        else
 313                allow_changes = 1;
 314
 315        if (audit_enabled != AUDIT_OFF) {
 316                rc = audit_log_config_change(function_name, new, old, allow_changes);
 317                if (rc)
 318                        allow_changes = 0;
 319        }
 320
 321        /* If we are allowed, make the change */
 322        if (allow_changes == 1)
 323                *to_change = new;
 324        /* Not allowed, update reason */
 325        else if (rc == 0)
 326                rc = -EPERM;
 327        return rc;
 328}
 329
 330static int audit_set_rate_limit(u32 limit)
 331{
 332        return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
 333}
 334
 335static int audit_set_backlog_limit(u32 limit)
 336{
 337        return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
 338}
 339
 340static int audit_set_backlog_wait_time(u32 timeout)
 341{
 342        return audit_do_config_change("audit_backlog_wait_time",
 343                                      &audit_backlog_wait_time_master, timeout);
 344}
 345
 346static int audit_set_enabled(u32 state)
 347{
 348        int rc;
 349        if (state > AUDIT_LOCKED)
 350                return -EINVAL;
 351
 352        rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
 353        if (!rc)
 354                audit_ever_enabled |= !!state;
 355
 356        return rc;
 357}
 358
 359static int audit_set_failure(u32 state)
 360{
 361        if (state != AUDIT_FAIL_SILENT
 362            && state != AUDIT_FAIL_PRINTK
 363            && state != AUDIT_FAIL_PANIC)
 364                return -EINVAL;
 365
 366        return audit_do_config_change("audit_failure", &audit_failure, state);
 367}
 368
 369/*
 370 * Queue skbs to be sent to auditd when/if it comes back.  These skbs should
 371 * already have been sent via prink/syslog and so if these messages are dropped
 372 * it is not a huge concern since we already passed the audit_log_lost()
 373 * notification and stuff.  This is just nice to get audit messages during
 374 * boot before auditd is running or messages generated while auditd is stopped.
 375 * This only holds messages is audit_default is set, aka booting with audit=1
 376 * or building your kernel that way.
 377 */
 378static void audit_hold_skb(struct sk_buff *skb)
 379{
 380        if (audit_default &&
 381            (!audit_backlog_limit ||
 382             skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
 383                skb_queue_tail(&audit_skb_hold_queue, skb);
 384        else
 385                kfree_skb(skb);
 386}
 387
 388/*
 389 * For one reason or another this nlh isn't getting delivered to the userspace
 390 * audit daemon, just send it to printk.
 391 */
 392static void audit_printk_skb(struct sk_buff *skb)
 393{
 394        struct nlmsghdr *nlh = nlmsg_hdr(skb);
 395        char *data = nlmsg_data(nlh);
 396
 397        if (nlh->nlmsg_type != AUDIT_EOE) {
 398                if (printk_ratelimit())
 399                        pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
 400                else
 401                        audit_log_lost("printk limit exceeded");
 402        }
 403
 404        audit_hold_skb(skb);
 405}
 406
 407static void kauditd_send_skb(struct sk_buff *skb)
 408{
 409        int err;
 410        /* take a reference in case we can't send it and we want to hold it */
 411        skb_get(skb);
 412        err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
 413        if (err < 0) {
 414                BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
 415                if (audit_pid) {
 416                        pr_err("*NO* daemon at audit_pid=%d\n", audit_pid);
 417                        audit_log_lost("auditd disappeared");
 418                        audit_pid = 0;
 419                        audit_sock = NULL;
 420                }
 421                /* we might get lucky and get this in the next auditd */
 422                audit_hold_skb(skb);
 423        } else
 424                /* drop the extra reference if sent ok */
 425                consume_skb(skb);
 426}
 427
 428/*
 429 * kauditd_send_multicast_skb - send the skb to multicast userspace listeners
 430 *
 431 * This function doesn't consume an skb as might be expected since it has to
 432 * copy it anyways.
 433 */
 434static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask)
 435{
 436        struct sk_buff          *copy;
 437        struct audit_net        *aunet = net_generic(&init_net, audit_net_id);
 438        struct sock             *sock = aunet->nlsk;
 439
 440        if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
 441                return;
 442
 443        /*
 444         * The seemingly wasteful skb_copy() rather than bumping the refcount
 445         * using skb_get() is necessary because non-standard mods are made to
 446         * the skb by the original kaudit unicast socket send routine.  The
 447         * existing auditd daemon assumes this breakage.  Fixing this would
 448         * require co-ordinating a change in the established protocol between
 449         * the kaudit kernel subsystem and the auditd userspace code.  There is
 450         * no reason for new multicast clients to continue with this
 451         * non-compliance.
 452         */
 453        copy = skb_copy(skb, gfp_mask);
 454        if (!copy)
 455                return;
 456
 457        nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask);
 458}
 459
 460/*
 461 * flush_hold_queue - empty the hold queue if auditd appears
 462 *
 463 * If auditd just started, drain the queue of messages already
 464 * sent to syslog/printk.  Remember loss here is ok.  We already
 465 * called audit_log_lost() if it didn't go out normally.  so the
 466 * race between the skb_dequeue and the next check for audit_pid
 467 * doesn't matter.
 468 *
 469 * If you ever find kauditd to be too slow we can get a perf win
 470 * by doing our own locking and keeping better track if there
 471 * are messages in this queue.  I don't see the need now, but
 472 * in 5 years when I want to play with this again I'll see this
 473 * note and still have no friggin idea what i'm thinking today.
 474 */
 475static void flush_hold_queue(void)
 476{
 477        struct sk_buff *skb;
 478
 479        if (!audit_default || !audit_pid)
 480                return;
 481
 482        skb = skb_dequeue(&audit_skb_hold_queue);
 483        if (likely(!skb))
 484                return;
 485
 486        while (skb && audit_pid) {
 487                kauditd_send_skb(skb);
 488                skb = skb_dequeue(&audit_skb_hold_queue);
 489        }
 490
 491        /*
 492         * if auditd just disappeared but we
 493         * dequeued an skb we need to drop ref
 494         */
 495        if (skb)
 496                consume_skb(skb);
 497}
 498
 499static int kauditd_thread(void *dummy)
 500{
 501        set_freezable();
 502        while (!kthread_should_stop()) {
 503                struct sk_buff *skb;
 504
 505                flush_hold_queue();
 506
 507                skb = skb_dequeue(&audit_skb_queue);
 508
 509                if (skb) {
 510                        if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit)
 511                                wake_up(&audit_backlog_wait);
 512                        if (audit_pid)
 513                                kauditd_send_skb(skb);
 514                        else
 515                                audit_printk_skb(skb);
 516                        continue;
 517                }
 518
 519                wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue));
 520        }
 521        return 0;
 522}
 523
 524int audit_send_list(void *_dest)
 525{
 526        struct audit_netlink_list *dest = _dest;
 527        struct sk_buff *skb;
 528        struct net *net = dest->net;
 529        struct audit_net *aunet = net_generic(net, audit_net_id);
 530
 531        /* wait for parent to finish and send an ACK */
 532        mutex_lock(&audit_cmd_mutex);
 533        mutex_unlock(&audit_cmd_mutex);
 534
 535        while ((skb = __skb_dequeue(&dest->q)) != NULL)
 536                netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
 537
 538        put_net(net);
 539        kfree(dest);
 540
 541        return 0;
 542}
 543
 544struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
 545                                 int multi, const void *payload, int size)
 546{
 547        struct sk_buff  *skb;
 548        struct nlmsghdr *nlh;
 549        void            *data;
 550        int             flags = multi ? NLM_F_MULTI : 0;
 551        int             t     = done  ? NLMSG_DONE  : type;
 552
 553        skb = nlmsg_new(size, GFP_KERNEL);
 554        if (!skb)
 555                return NULL;
 556
 557        nlh     = nlmsg_put(skb, portid, seq, t, size, flags);
 558        if (!nlh)
 559                goto out_kfree_skb;
 560        data = nlmsg_data(nlh);
 561        memcpy(data, payload, size);
 562        return skb;
 563
 564out_kfree_skb:
 565        kfree_skb(skb);
 566        return NULL;
 567}
 568
 569static int audit_send_reply_thread(void *arg)
 570{
 571        struct audit_reply *reply = (struct audit_reply *)arg;
 572        struct net *net = reply->net;
 573        struct audit_net *aunet = net_generic(net, audit_net_id);
 574
 575        mutex_lock(&audit_cmd_mutex);
 576        mutex_unlock(&audit_cmd_mutex);
 577
 578        /* Ignore failure. It'll only happen if the sender goes away,
 579           because our timeout is set to infinite. */
 580        netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
 581        put_net(net);
 582        kfree(reply);
 583        return 0;
 584}
 585/**
 586 * audit_send_reply - send an audit reply message via netlink
 587 * @request_skb: skb of request we are replying to (used to target the reply)
 588 * @seq: sequence number
 589 * @type: audit message type
 590 * @done: done (last) flag
 591 * @multi: multi-part message flag
 592 * @payload: payload data
 593 * @size: payload size
 594 *
 595 * Allocates an skb, builds the netlink message, and sends it to the port id.
 596 * No failure notifications.
 597 */
 598static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
 599                             int multi, const void *payload, int size)
 600{
 601        u32 portid = NETLINK_CB(request_skb).portid;
 602        struct net *net = sock_net(NETLINK_CB(request_skb).sk);
 603        struct sk_buff *skb;
 604        struct task_struct *tsk;
 605        struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
 606                                            GFP_KERNEL);
 607
 608        if (!reply)
 609                return;
 610
 611        skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
 612        if (!skb)
 613                goto out;
 614
 615        reply->net = get_net(net);
 616        reply->portid = portid;
 617        reply->skb = skb;
 618
 619        tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
 620        if (!IS_ERR(tsk))
 621                return;
 622        kfree_skb(skb);
 623out:
 624        kfree(reply);
 625}
 626
 627/*
 628 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
 629 * control messages.
 630 */
 631static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
 632{
 633        int err = 0;
 634
 635        /* Only support initial user namespace for now. */
 636        /*
 637         * We return ECONNREFUSED because it tricks userspace into thinking
 638         * that audit was not configured into the kernel.  Lots of users
 639         * configure their PAM stack (because that's what the distro does)
 640         * to reject login if unable to send messages to audit.  If we return
 641         * ECONNREFUSED the PAM stack thinks the kernel does not have audit
 642         * configured in and will let login proceed.  If we return EPERM
 643         * userspace will reject all logins.  This should be removed when we
 644         * support non init namespaces!!
 645         */
 646        if (current_user_ns() != &init_user_ns)
 647                return -ECONNREFUSED;
 648
 649        switch (msg_type) {
 650        case AUDIT_LIST:
 651        case AUDIT_ADD:
 652        case AUDIT_DEL:
 653                return -EOPNOTSUPP;
 654        case AUDIT_GET:
 655        case AUDIT_SET:
 656        case AUDIT_GET_FEATURE:
 657        case AUDIT_SET_FEATURE:
 658        case AUDIT_LIST_RULES:
 659        case AUDIT_ADD_RULE:
 660        case AUDIT_DEL_RULE:
 661        case AUDIT_SIGNAL_INFO:
 662        case AUDIT_TTY_GET:
 663        case AUDIT_TTY_SET:
 664        case AUDIT_TRIM:
 665        case AUDIT_MAKE_EQUIV:
 666                /* Only support auditd and auditctl in initial pid namespace
 667                 * for now. */
 668                if (task_active_pid_ns(current) != &init_pid_ns)
 669                        return -EPERM;
 670
 671                if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
 672                        err = -EPERM;
 673                break;
 674        case AUDIT_USER:
 675        case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
 676        case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
 677                if (!netlink_capable(skb, CAP_AUDIT_WRITE))
 678                        err = -EPERM;
 679                break;
 680        default:  /* bad msg */
 681                err = -EINVAL;
 682        }
 683
 684        return err;
 685}
 686
 687static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
 688{
 689        int rc = 0;
 690        uid_t uid = from_kuid(&init_user_ns, current_uid());
 691        pid_t pid = task_tgid_nr(current);
 692
 693        if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
 694                *ab = NULL;
 695                return rc;
 696        }
 697
 698        *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
 699        if (unlikely(!*ab))
 700                return rc;
 701        audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
 702        audit_log_session_info(*ab);
 703        audit_log_task_context(*ab);
 704
 705        return rc;
 706}
 707
 708int is_audit_feature_set(int i)
 709{
 710        return af.features & AUDIT_FEATURE_TO_MASK(i);
 711}
 712
 713
 714static int audit_get_feature(struct sk_buff *skb)
 715{
 716        u32 seq;
 717
 718        seq = nlmsg_hdr(skb)->nlmsg_seq;
 719
 720        audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
 721
 722        return 0;
 723}
 724
 725static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
 726                                     u32 old_lock, u32 new_lock, int res)
 727{
 728        struct audit_buffer *ab;
 729
 730        if (audit_enabled == AUDIT_OFF)
 731                return;
 732
 733        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
 734        audit_log_task_info(ab, current);
 735        audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
 736                         audit_feature_names[which], !!old_feature, !!new_feature,
 737                         !!old_lock, !!new_lock, res);
 738        audit_log_end(ab);
 739}
 740
 741static int audit_set_feature(struct sk_buff *skb)
 742{
 743        struct audit_features *uaf;
 744        int i;
 745
 746        BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
 747        uaf = nlmsg_data(nlmsg_hdr(skb));
 748
 749        /* if there is ever a version 2 we should handle that here */
 750
 751        for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
 752                u32 feature = AUDIT_FEATURE_TO_MASK(i);
 753                u32 old_feature, new_feature, old_lock, new_lock;
 754
 755                /* if we are not changing this feature, move along */
 756                if (!(feature & uaf->mask))
 757                        continue;
 758
 759                old_feature = af.features & feature;
 760                new_feature = uaf->features & feature;
 761                new_lock = (uaf->lock | af.lock) & feature;
 762                old_lock = af.lock & feature;
 763
 764                /* are we changing a locked feature? */
 765                if (old_lock && (new_feature != old_feature)) {
 766                        audit_log_feature_change(i, old_feature, new_feature,
 767                                                 old_lock, new_lock, 0);
 768                        return -EPERM;
 769                }
 770        }
 771        /* nothing invalid, do the changes */
 772        for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
 773                u32 feature = AUDIT_FEATURE_TO_MASK(i);
 774                u32 old_feature, new_feature, old_lock, new_lock;
 775
 776                /* if we are not changing this feature, move along */
 777                if (!(feature & uaf->mask))
 778                        continue;
 779
 780                old_feature = af.features & feature;
 781                new_feature = uaf->features & feature;
 782                old_lock = af.lock & feature;
 783                new_lock = (uaf->lock | af.lock) & feature;
 784
 785                if (new_feature != old_feature)
 786                        audit_log_feature_change(i, old_feature, new_feature,
 787                                                 old_lock, new_lock, 1);
 788
 789                if (new_feature)
 790                        af.features |= feature;
 791                else
 792                        af.features &= ~feature;
 793                af.lock |= new_lock;
 794        }
 795
 796        return 0;
 797}
 798
 799static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
 800{
 801        u32                     seq;
 802        void                    *data;
 803        int                     err;
 804        struct audit_buffer     *ab;
 805        u16                     msg_type = nlh->nlmsg_type;
 806        struct audit_sig_info   *sig_data;
 807        char                    *ctx = NULL;
 808        u32                     len;
 809
 810        err = audit_netlink_ok(skb, msg_type);
 811        if (err)
 812                return err;
 813
 814        /* As soon as there's any sign of userspace auditd,
 815         * start kauditd to talk to it */
 816        if (!kauditd_task) {
 817                kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
 818                if (IS_ERR(kauditd_task)) {
 819                        err = PTR_ERR(kauditd_task);
 820                        kauditd_task = NULL;
 821                        return err;
 822                }
 823        }
 824        seq  = nlh->nlmsg_seq;
 825        data = nlmsg_data(nlh);
 826
 827        switch (msg_type) {
 828        case AUDIT_GET: {
 829                struct audit_status     s;
 830                memset(&s, 0, sizeof(s));
 831                s.enabled               = audit_enabled;
 832                s.failure               = audit_failure;
 833                s.pid                   = audit_pid;
 834                s.rate_limit            = audit_rate_limit;
 835                s.backlog_limit         = audit_backlog_limit;
 836                s.lost                  = atomic_read(&audit_lost);
 837                s.backlog               = skb_queue_len(&audit_skb_queue);
 838                s.feature_bitmap        = AUDIT_FEATURE_BITMAP_ALL;
 839                s.backlog_wait_time     = audit_backlog_wait_time_master;
 840                audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
 841                break;
 842        }
 843        case AUDIT_SET: {
 844                struct audit_status     s;
 845                memset(&s, 0, sizeof(s));
 846                /* guard against past and future API changes */
 847                memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
 848                if (s.mask & AUDIT_STATUS_ENABLED) {
 849                        err = audit_set_enabled(s.enabled);
 850                        if (err < 0)
 851                                return err;
 852                }
 853                if (s.mask & AUDIT_STATUS_FAILURE) {
 854                        err = audit_set_failure(s.failure);
 855                        if (err < 0)
 856                                return err;
 857                }
 858                if (s.mask & AUDIT_STATUS_PID) {
 859                        int new_pid = s.pid;
 860
 861                        if ((!new_pid) && (task_tgid_vnr(current) != audit_pid))
 862                                return -EACCES;
 863                        if (audit_enabled != AUDIT_OFF)
 864                                audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
 865                        audit_pid = new_pid;
 866                        audit_nlk_portid = NETLINK_CB(skb).portid;
 867                        audit_sock = skb->sk;
 868                }
 869                if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
 870                        err = audit_set_rate_limit(s.rate_limit);
 871                        if (err < 0)
 872                                return err;
 873                }
 874                if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
 875                        err = audit_set_backlog_limit(s.backlog_limit);
 876                        if (err < 0)
 877                                return err;
 878                }
 879                if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
 880                        if (sizeof(s) > (size_t)nlh->nlmsg_len)
 881                                return -EINVAL;
 882                        if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
 883                                return -EINVAL;
 884                        err = audit_set_backlog_wait_time(s.backlog_wait_time);
 885                        if (err < 0)
 886                                return err;
 887                }
 888                break;
 889        }
 890        case AUDIT_GET_FEATURE:
 891                err = audit_get_feature(skb);
 892                if (err)
 893                        return err;
 894                break;
 895        case AUDIT_SET_FEATURE:
 896                err = audit_set_feature(skb);
 897                if (err)
 898                        return err;
 899                break;
 900        case AUDIT_USER:
 901        case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
 902        case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
 903                if (!audit_enabled && msg_type != AUDIT_USER_AVC)
 904                        return 0;
 905
 906                err = audit_filter_user(msg_type);
 907                if (err == 1) { /* match or error */
 908                        err = 0;
 909                        if (msg_type == AUDIT_USER_TTY) {
 910                                err = tty_audit_push_current();
 911                                if (err)
 912                                        break;
 913                        }
 914                        mutex_unlock(&audit_cmd_mutex);
 915                        audit_log_common_recv_msg(&ab, msg_type);
 916                        if (msg_type != AUDIT_USER_TTY)
 917                                audit_log_format(ab, " msg='%.*s'",
 918                                                 AUDIT_MESSAGE_TEXT_MAX,
 919                                                 (char *)data);
 920                        else {
 921                                int size;
 922
 923                                audit_log_format(ab, " data=");
 924                                size = nlmsg_len(nlh);
 925                                if (size > 0 &&
 926                                    ((unsigned char *)data)[size - 1] == '\0')
 927                                        size--;
 928                                audit_log_n_untrustedstring(ab, data, size);
 929                        }
 930                        audit_set_portid(ab, NETLINK_CB(skb).portid);
 931                        audit_log_end(ab);
 932                        mutex_lock(&audit_cmd_mutex);
 933                }
 934                break;
 935        case AUDIT_ADD_RULE:
 936        case AUDIT_DEL_RULE:
 937                if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
 938                        return -EINVAL;
 939                if (audit_enabled == AUDIT_LOCKED) {
 940                        audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
 941                        audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
 942                        audit_log_end(ab);
 943                        return -EPERM;
 944                }
 945                err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
 946                                           seq, data, nlmsg_len(nlh));
 947                break;
 948        case AUDIT_LIST_RULES:
 949                err = audit_list_rules_send(skb, seq);
 950                break;
 951        case AUDIT_TRIM:
 952                audit_trim_trees();
 953                audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
 954                audit_log_format(ab, " op=trim res=1");
 955                audit_log_end(ab);
 956                break;
 957        case AUDIT_MAKE_EQUIV: {
 958                void *bufp = data;
 959                u32 sizes[2];
 960                size_t msglen = nlmsg_len(nlh);
 961                char *old, *new;
 962
 963                err = -EINVAL;
 964                if (msglen < 2 * sizeof(u32))
 965                        break;
 966                memcpy(sizes, bufp, 2 * sizeof(u32));
 967                bufp += 2 * sizeof(u32);
 968                msglen -= 2 * sizeof(u32);
 969                old = audit_unpack_string(&bufp, &msglen, sizes[0]);
 970                if (IS_ERR(old)) {
 971                        err = PTR_ERR(old);
 972                        break;
 973                }
 974                new = audit_unpack_string(&bufp, &msglen, sizes[1]);
 975                if (IS_ERR(new)) {
 976                        err = PTR_ERR(new);
 977                        kfree(old);
 978                        break;
 979                }
 980                /* OK, here comes... */
 981                err = audit_tag_tree(old, new);
 982
 983                audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
 984
 985                audit_log_format(ab, " op=make_equiv old=");
 986                audit_log_untrustedstring(ab, old);
 987                audit_log_format(ab, " new=");
 988                audit_log_untrustedstring(ab, new);
 989                audit_log_format(ab, " res=%d", !err);
 990                audit_log_end(ab);
 991                kfree(old);
 992                kfree(new);
 993                break;
 994        }
 995        case AUDIT_SIGNAL_INFO:
 996                len = 0;
 997                if (audit_sig_sid) {
 998                        err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
 999                        if (err)
1000                                return err;
1001                }
1002                sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1003                if (!sig_data) {
1004                        if (audit_sig_sid)
1005                                security_release_secctx(ctx, len);
1006                        return -ENOMEM;
1007                }
1008                sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1009                sig_data->pid = audit_sig_pid;
1010                if (audit_sig_sid) {
1011                        memcpy(sig_data->ctx, ctx, len);
1012                        security_release_secctx(ctx, len);
1013                }
1014                audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1015                                 sig_data, sizeof(*sig_data) + len);
1016                kfree(sig_data);
1017                break;
1018        case AUDIT_TTY_GET: {
1019                struct audit_tty_status s;
1020                struct task_struct *tsk = current;
1021
1022                spin_lock(&tsk->sighand->siglock);
1023                s.enabled = tsk->signal->audit_tty;
1024                s.log_passwd = tsk->signal->audit_tty_log_passwd;
1025                spin_unlock(&tsk->sighand->siglock);
1026
1027                audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1028                break;
1029        }
1030        case AUDIT_TTY_SET: {
1031                struct audit_tty_status s, old;
1032                struct task_struct *tsk = current;
1033                struct audit_buffer     *ab;
1034
1035                memset(&s, 0, sizeof(s));
1036                /* guard against past and future API changes */
1037                memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1038                /* check if new data is valid */
1039                if ((s.enabled != 0 && s.enabled != 1) ||
1040                    (s.log_passwd != 0 && s.log_passwd != 1))
1041                        err = -EINVAL;
1042
1043                spin_lock(&tsk->sighand->siglock);
1044                old.enabled = tsk->signal->audit_tty;
1045                old.log_passwd = tsk->signal->audit_tty_log_passwd;
1046                if (!err) {
1047                        tsk->signal->audit_tty = s.enabled;
1048                        tsk->signal->audit_tty_log_passwd = s.log_passwd;
1049                }
1050                spin_unlock(&tsk->sighand->siglock);
1051
1052                audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1053                audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1054                                 " old-log_passwd=%d new-log_passwd=%d res=%d",
1055                                 old.enabled, s.enabled, old.log_passwd,
1056                                 s.log_passwd, !err);
1057                audit_log_end(ab);
1058                break;
1059        }
1060        default:
1061                err = -EINVAL;
1062                break;
1063        }
1064
1065        return err < 0 ? err : 0;
1066}
1067
1068/*
1069 * Get message from skb.  Each message is processed by audit_receive_msg.
1070 * Malformed skbs with wrong length are discarded silently.
1071 */
1072static void audit_receive_skb(struct sk_buff *skb)
1073{
1074        struct nlmsghdr *nlh;
1075        /*
1076         * len MUST be signed for nlmsg_next to be able to dec it below 0
1077         * if the nlmsg_len was not aligned
1078         */
1079        int len;
1080        int err;
1081
1082        nlh = nlmsg_hdr(skb);
1083        len = skb->len;
1084
1085        while (nlmsg_ok(nlh, len)) {
1086                err = audit_receive_msg(skb, nlh);
1087                /* if err or if this message says it wants a response */
1088                if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1089                        netlink_ack(skb, nlh, err);
1090
1091                nlh = nlmsg_next(nlh, &len);
1092        }
1093}
1094
1095/* Receive messages from netlink socket. */
1096static void audit_receive(struct sk_buff  *skb)
1097{
1098        mutex_lock(&audit_cmd_mutex);
1099        audit_receive_skb(skb);
1100        mutex_unlock(&audit_cmd_mutex);
1101}
1102
1103/* Run custom bind function on netlink socket group connect or bind requests. */
1104static int audit_bind(struct net *net, int group)
1105{
1106        if (!capable(CAP_AUDIT_READ))
1107                return -EPERM;
1108
1109        return 0;
1110}
1111
1112static int __net_init audit_net_init(struct net *net)
1113{
1114        struct netlink_kernel_cfg cfg = {
1115                .input  = audit_receive,
1116                .bind   = audit_bind,
1117                .flags  = NL_CFG_F_NONROOT_RECV,
1118                .groups = AUDIT_NLGRP_MAX,
1119        };
1120
1121        struct audit_net *aunet = net_generic(net, audit_net_id);
1122
1123        aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1124        if (aunet->nlsk == NULL) {
1125                audit_panic("cannot initialize netlink socket in namespace");
1126                return -ENOMEM;
1127        }
1128        aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1129        return 0;
1130}
1131
1132static void __net_exit audit_net_exit(struct net *net)
1133{
1134        struct audit_net *aunet = net_generic(net, audit_net_id);
1135        struct sock *sock = aunet->nlsk;
1136        if (sock == audit_sock) {
1137                audit_pid = 0;
1138                audit_sock = NULL;
1139        }
1140
1141        RCU_INIT_POINTER(aunet->nlsk, NULL);
1142        synchronize_net();
1143        netlink_kernel_release(sock);
1144}
1145
1146static struct pernet_operations audit_net_ops __net_initdata = {
1147        .init = audit_net_init,
1148        .exit = audit_net_exit,
1149        .id = &audit_net_id,
1150        .size = sizeof(struct audit_net),
1151};
1152
1153/* Initialize audit support at boot time. */
1154static int __init audit_init(void)
1155{
1156        int i;
1157
1158        if (audit_initialized == AUDIT_DISABLED)
1159                return 0;
1160
1161        pr_info("initializing netlink subsys (%s)\n",
1162                audit_default ? "enabled" : "disabled");
1163        register_pernet_subsys(&audit_net_ops);
1164
1165        skb_queue_head_init(&audit_skb_queue);
1166        skb_queue_head_init(&audit_skb_hold_queue);
1167        audit_initialized = AUDIT_INITIALIZED;
1168        audit_enabled = audit_default;
1169        audit_ever_enabled |= !!audit_default;
1170
1171        audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1172
1173        for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1174                INIT_LIST_HEAD(&audit_inode_hash[i]);
1175
1176        return 0;
1177}
1178__initcall(audit_init);
1179
1180/* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
1181static int __init audit_enable(char *str)
1182{
1183        audit_default = !!simple_strtol(str, NULL, 0);
1184        if (!audit_default)
1185                audit_initialized = AUDIT_DISABLED;
1186
1187        pr_info("%s\n", audit_default ?
1188                "enabled (after initialization)" : "disabled (until reboot)");
1189
1190        return 1;
1191}
1192__setup("audit=", audit_enable);
1193
1194/* Process kernel command-line parameter at boot time.
1195 * audit_backlog_limit=<n> */
1196static int __init audit_backlog_limit_set(char *str)
1197{
1198        u32 audit_backlog_limit_arg;
1199
1200        pr_info("audit_backlog_limit: ");
1201        if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1202                pr_cont("using default of %u, unable to parse %s\n",
1203                        audit_backlog_limit, str);
1204                return 1;
1205        }
1206
1207        audit_backlog_limit = audit_backlog_limit_arg;
1208        pr_cont("%d\n", audit_backlog_limit);
1209
1210        return 1;
1211}
1212__setup("audit_backlog_limit=", audit_backlog_limit_set);
1213
1214static void audit_buffer_free(struct audit_buffer *ab)
1215{
1216        unsigned long flags;
1217
1218        if (!ab)
1219                return;
1220
1221        if (ab->skb)
1222                kfree_skb(ab->skb);
1223
1224        spin_lock_irqsave(&audit_freelist_lock, flags);
1225        if (audit_freelist_count > AUDIT_MAXFREE)
1226                kfree(ab);
1227        else {
1228                audit_freelist_count++;
1229                list_add(&ab->list, &audit_freelist);
1230        }
1231        spin_unlock_irqrestore(&audit_freelist_lock, flags);
1232}
1233
1234static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1235                                                gfp_t gfp_mask, int type)
1236{
1237        unsigned long flags;
1238        struct audit_buffer *ab = NULL;
1239        struct nlmsghdr *nlh;
1240
1241        spin_lock_irqsave(&audit_freelist_lock, flags);
1242        if (!list_empty(&audit_freelist)) {
1243                ab = list_entry(audit_freelist.next,
1244                                struct audit_buffer, list);
1245                list_del(&ab->list);
1246                --audit_freelist_count;
1247        }
1248        spin_unlock_irqrestore(&audit_freelist_lock, flags);
1249
1250        if (!ab) {
1251                ab = kmalloc(sizeof(*ab), gfp_mask);
1252                if (!ab)
1253                        goto err;
1254        }
1255
1256        ab->ctx = ctx;
1257        ab->gfp_mask = gfp_mask;
1258
1259        ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1260        if (!ab->skb)
1261                goto err;
1262
1263        nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1264        if (!nlh)
1265                goto out_kfree_skb;
1266
1267        return ab;
1268
1269out_kfree_skb:
1270        kfree_skb(ab->skb);
1271        ab->skb = NULL;
1272err:
1273        audit_buffer_free(ab);
1274        return NULL;
1275}
1276
1277/**
1278 * audit_serial - compute a serial number for the audit record
1279 *
1280 * Compute a serial number for the audit record.  Audit records are
1281 * written to user-space as soon as they are generated, so a complete
1282 * audit record may be written in several pieces.  The timestamp of the
1283 * record and this serial number are used by the user-space tools to
1284 * determine which pieces belong to the same audit record.  The
1285 * (timestamp,serial) tuple is unique for each syscall and is live from
1286 * syscall entry to syscall exit.
1287 *
1288 * NOTE: Another possibility is to store the formatted records off the
1289 * audit context (for those records that have a context), and emit them
1290 * all at syscall exit.  However, this could delay the reporting of
1291 * significant errors until syscall exit (or never, if the system
1292 * halts).
1293 */
1294unsigned int audit_serial(void)
1295{
1296        static atomic_t serial = ATOMIC_INIT(0);
1297
1298        return atomic_add_return(1, &serial);
1299}
1300
1301static inline void audit_get_stamp(struct audit_context *ctx,
1302                                   struct timespec *t, unsigned int *serial)
1303{
1304        if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1305                *t = CURRENT_TIME;
1306                *serial = audit_serial();
1307        }
1308}
1309
1310/*
1311 * Wait for auditd to drain the queue a little
1312 */
1313static long wait_for_auditd(long sleep_time)
1314{
1315        DECLARE_WAITQUEUE(wait, current);
1316        set_current_state(TASK_UNINTERRUPTIBLE);
1317        add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1318
1319        if (audit_backlog_limit &&
1320            skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1321                sleep_time = schedule_timeout(sleep_time);
1322
1323        __set_current_state(TASK_RUNNING);
1324        remove_wait_queue(&audit_backlog_wait, &wait);
1325
1326        return sleep_time;
1327}
1328
1329/**
1330 * audit_log_start - obtain an audit buffer
1331 * @ctx: audit_context (may be NULL)
1332 * @gfp_mask: type of allocation
1333 * @type: audit message type
1334 *
1335 * Returns audit_buffer pointer on success or NULL on error.
1336 *
1337 * Obtain an audit buffer.  This routine does locking to obtain the
1338 * audit buffer, but then no locking is required for calls to
1339 * audit_log_*format.  If the task (ctx) is a task that is currently in a
1340 * syscall, then the syscall is marked as auditable and an audit record
1341 * will be written at syscall exit.  If there is no associated task, then
1342 * task context (ctx) should be NULL.
1343 */
1344struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1345                                     int type)
1346{
1347        struct audit_buffer     *ab     = NULL;
1348        struct timespec         t;
1349        unsigned int            uninitialized_var(serial);
1350        int reserve = 5; /* Allow atomic callers to go up to five
1351                            entries over the normal backlog limit */
1352        unsigned long timeout_start = jiffies;
1353
1354        if (audit_initialized != AUDIT_INITIALIZED)
1355                return NULL;
1356
1357        if (unlikely(audit_filter_type(type)))
1358                return NULL;
1359
1360        if (gfp_mask & __GFP_WAIT) {
1361                if (audit_pid && audit_pid == current->pid)
1362                        gfp_mask &= ~__GFP_WAIT;
1363                else
1364                        reserve = 0;
1365        }
1366
1367        while (audit_backlog_limit
1368               && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1369                if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time) {
1370                        long sleep_time;
1371
1372                        sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1373                        if (sleep_time > 0) {
1374                                sleep_time = wait_for_auditd(sleep_time);
1375                                if (sleep_time > 0)
1376                                        continue;
1377                        }
1378                }
1379                if (audit_rate_check() && printk_ratelimit())
1380                        pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1381                                skb_queue_len(&audit_skb_queue),
1382                                audit_backlog_limit);
1383                audit_log_lost("backlog limit exceeded");
1384                audit_backlog_wait_time = audit_backlog_wait_overflow;
1385                wake_up(&audit_backlog_wait);
1386                return NULL;
1387        }
1388
1389        if (!reserve)
1390                audit_backlog_wait_time = audit_backlog_wait_time_master;
1391
1392        ab = audit_buffer_alloc(ctx, gfp_mask, type);
1393        if (!ab) {
1394                audit_log_lost("out of memory in audit_log_start");
1395                return NULL;
1396        }
1397
1398        audit_get_stamp(ab->ctx, &t, &serial);
1399
1400        audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1401                         t.tv_sec, t.tv_nsec/1000000, serial);
1402        return ab;
1403}
1404
1405/**
1406 * audit_expand - expand skb in the audit buffer
1407 * @ab: audit_buffer
1408 * @extra: space to add at tail of the skb
1409 *
1410 * Returns 0 (no space) on failed expansion, or available space if
1411 * successful.
1412 */
1413static inline int audit_expand(struct audit_buffer *ab, int extra)
1414{
1415        struct sk_buff *skb = ab->skb;
1416        int oldtail = skb_tailroom(skb);
1417        int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1418        int newtail = skb_tailroom(skb);
1419
1420        if (ret < 0) {
1421                audit_log_lost("out of memory in audit_expand");
1422                return 0;
1423        }
1424
1425        skb->truesize += newtail - oldtail;
1426        return newtail;
1427}
1428
1429/*
1430 * Format an audit message into the audit buffer.  If there isn't enough
1431 * room in the audit buffer, more room will be allocated and vsnprint
1432 * will be called a second time.  Currently, we assume that a printk
1433 * can't format message larger than 1024 bytes, so we don't either.
1434 */
1435static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1436                              va_list args)
1437{
1438        int len, avail;
1439        struct sk_buff *skb;
1440        va_list args2;
1441
1442        if (!ab)
1443                return;
1444
1445        BUG_ON(!ab->skb);
1446        skb = ab->skb;
1447        avail = skb_tailroom(skb);
1448        if (avail == 0) {
1449                avail = audit_expand(ab, AUDIT_BUFSIZ);
1450                if (!avail)
1451                        goto out;
1452        }
1453        va_copy(args2, args);
1454        len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1455        if (len >= avail) {
1456                /* The printk buffer is 1024 bytes long, so if we get
1457                 * here and AUDIT_BUFSIZ is at least 1024, then we can
1458                 * log everything that printk could have logged. */
1459                avail = audit_expand(ab,
1460                        max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1461                if (!avail)
1462                        goto out_va_end;
1463                len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1464        }
1465        if (len > 0)
1466                skb_put(skb, len);
1467out_va_end:
1468        va_end(args2);
1469out:
1470        return;
1471}
1472
1473/**
1474 * audit_log_format - format a message into the audit buffer.
1475 * @ab: audit_buffer
1476 * @fmt: format string
1477 * @...: optional parameters matching @fmt string
1478 *
1479 * All the work is done in audit_log_vformat.
1480 */
1481void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1482{
1483        va_list args;
1484
1485        if (!ab)
1486                return;
1487        va_start(args, fmt);
1488        audit_log_vformat(ab, fmt, args);
1489        va_end(args);
1490}
1491
1492/**
1493 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1494 * @ab: the audit_buffer
1495 * @buf: buffer to convert to hex
1496 * @len: length of @buf to be converted
1497 *
1498 * No return value; failure to expand is silently ignored.
1499 *
1500 * This function will take the passed buf and convert it into a string of
1501 * ascii hex digits. The new string is placed onto the skb.
1502 */
1503void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1504                size_t len)
1505{
1506        int i, avail, new_len;
1507        unsigned char *ptr;
1508        struct sk_buff *skb;
1509
1510        if (!ab)
1511                return;
1512
1513        BUG_ON(!ab->skb);
1514        skb = ab->skb;
1515        avail = skb_tailroom(skb);
1516        new_len = len<<1;
1517        if (new_len >= avail) {
1518                /* Round the buffer request up to the next multiple */
1519                new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1520                avail = audit_expand(ab, new_len);
1521                if (!avail)
1522                        return;
1523        }
1524
1525        ptr = skb_tail_pointer(skb);
1526        for (i = 0; i < len; i++)
1527                ptr = hex_byte_pack_upper(ptr, buf[i]);
1528        *ptr = 0;
1529        skb_put(skb, len << 1); /* new string is twice the old string */
1530}
1531
1532/*
1533 * Format a string of no more than slen characters into the audit buffer,
1534 * enclosed in quote marks.
1535 */
1536void audit_log_n_string(struct audit_buffer *ab, const char *string,
1537                        size_t slen)
1538{
1539        int avail, new_len;
1540        unsigned char *ptr;
1541        struct sk_buff *skb;
1542
1543        if (!ab)
1544                return;
1545
1546        BUG_ON(!ab->skb);
1547        skb = ab->skb;
1548        avail = skb_tailroom(skb);
1549        new_len = slen + 3;     /* enclosing quotes + null terminator */
1550        if (new_len > avail) {
1551                avail = audit_expand(ab, new_len);
1552                if (!avail)
1553                        return;
1554        }
1555        ptr = skb_tail_pointer(skb);
1556        *ptr++ = '"';
1557        memcpy(ptr, string, slen);
1558        ptr += slen;
1559        *ptr++ = '"';
1560        *ptr = 0;
1561        skb_put(skb, slen + 2); /* don't include null terminator */
1562}
1563
1564/**
1565 * audit_string_contains_control - does a string need to be logged in hex
1566 * @string: string to be checked
1567 * @len: max length of the string to check
1568 */
1569int audit_string_contains_control(const char *string, size_t len)
1570{
1571        const unsigned char *p;
1572        for (p = string; p < (const unsigned char *)string + len; p++) {
1573                if (*p == '"' || *p < 0x21 || *p > 0x7e)
1574                        return 1;
1575        }
1576        return 0;
1577}
1578
1579/**
1580 * audit_log_n_untrustedstring - log a string that may contain random characters
1581 * @ab: audit_buffer
1582 * @len: length of string (not including trailing null)
1583 * @string: string to be logged
1584 *
1585 * This code will escape a string that is passed to it if the string
1586 * contains a control character, unprintable character, double quote mark,
1587 * or a space. Unescaped strings will start and end with a double quote mark.
1588 * Strings that are escaped are printed in hex (2 digits per char).
1589 *
1590 * The caller specifies the number of characters in the string to log, which may
1591 * or may not be the entire string.
1592 */
1593void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1594                                 size_t len)
1595{
1596        if (audit_string_contains_control(string, len))
1597                audit_log_n_hex(ab, string, len);
1598        else
1599                audit_log_n_string(ab, string, len);
1600}
1601
1602/**
1603 * audit_log_untrustedstring - log a string that may contain random characters
1604 * @ab: audit_buffer
1605 * @string: string to be logged
1606 *
1607 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1608 * determine string length.
1609 */
1610void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1611{
1612        audit_log_n_untrustedstring(ab, string, strlen(string));
1613}
1614
1615/* This is a helper-function to print the escaped d_path */
1616void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1617                      const struct path *path)
1618{
1619        char *p, *pathname;
1620
1621        if (prefix)
1622                audit_log_format(ab, "%s", prefix);
1623
1624        /* We will allow 11 spaces for ' (deleted)' to be appended */
1625        pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1626        if (!pathname) {
1627                audit_log_string(ab, "<no_memory>");
1628                return;
1629        }
1630        p = d_path(path, pathname, PATH_MAX+11);
1631        if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1632                /* FIXME: can we save some information here? */
1633                audit_log_string(ab, "<too_long>");
1634        } else
1635                audit_log_untrustedstring(ab, p);
1636        kfree(pathname);
1637}
1638
1639void audit_log_session_info(struct audit_buffer *ab)
1640{
1641        unsigned int sessionid = audit_get_sessionid(current);
1642        uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1643
1644        audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1645}
1646
1647void audit_log_key(struct audit_buffer *ab, char *key)
1648{
1649        audit_log_format(ab, " key=");
1650        if (key)
1651                audit_log_untrustedstring(ab, key);
1652        else
1653                audit_log_format(ab, "(null)");
1654}
1655
1656void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1657{
1658        int i;
1659
1660        audit_log_format(ab, " %s=", prefix);
1661        CAP_FOR_EACH_U32(i) {
1662                audit_log_format(ab, "%08x",
1663                                 cap->cap[CAP_LAST_U32 - i]);
1664        }
1665}
1666
1667static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1668{
1669        kernel_cap_t *perm = &name->fcap.permitted;
1670        kernel_cap_t *inh = &name->fcap.inheritable;
1671        int log = 0;
1672
1673        if (!cap_isclear(*perm)) {
1674                audit_log_cap(ab, "cap_fp", perm);
1675                log = 1;
1676        }
1677        if (!cap_isclear(*inh)) {
1678                audit_log_cap(ab, "cap_fi", inh);
1679                log = 1;
1680        }
1681
1682        if (log)
1683                audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1684                                 name->fcap.fE, name->fcap_ver);
1685}
1686
1687static inline int audit_copy_fcaps(struct audit_names *name,
1688                                   const struct dentry *dentry)
1689{
1690        struct cpu_vfs_cap_data caps;
1691        int rc;
1692
1693        if (!dentry)
1694                return 0;
1695
1696        rc = get_vfs_caps_from_disk(dentry, &caps);
1697        if (rc)
1698                return rc;
1699
1700        name->fcap.permitted = caps.permitted;
1701        name->fcap.inheritable = caps.inheritable;
1702        name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1703        name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1704                                VFS_CAP_REVISION_SHIFT;
1705
1706        return 0;
1707}
1708
1709/* Copy inode data into an audit_names. */
1710void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1711                      const struct inode *inode)
1712{
1713        name->ino   = inode->i_ino;
1714        name->dev   = inode->i_sb->s_dev;
1715        name->mode  = inode->i_mode;
1716        name->uid   = inode->i_uid;
1717        name->gid   = inode->i_gid;
1718        name->rdev  = inode->i_rdev;
1719        security_inode_getsecid(inode, &name->osid);
1720        audit_copy_fcaps(name, dentry);
1721}
1722
1723/**
1724 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1725 * @context: audit_context for the task
1726 * @n: audit_names structure with reportable details
1727 * @path: optional path to report instead of audit_names->name
1728 * @record_num: record number to report when handling a list of names
1729 * @call_panic: optional pointer to int that will be updated if secid fails
1730 */
1731void audit_log_name(struct audit_context *context, struct audit_names *n,
1732                    struct path *path, int record_num, int *call_panic)
1733{
1734        struct audit_buffer *ab;
1735        ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1736        if (!ab)
1737                return;
1738
1739        audit_log_format(ab, "item=%d", record_num);
1740
1741        if (path)
1742                audit_log_d_path(ab, " name=", path);
1743        else if (n->name) {
1744                switch (n->name_len) {
1745                case AUDIT_NAME_FULL:
1746                        /* log the full path */
1747                        audit_log_format(ab, " name=");
1748                        audit_log_untrustedstring(ab, n->name->name);
1749                        break;
1750                case 0:
1751                        /* name was specified as a relative path and the
1752                         * directory component is the cwd */
1753                        audit_log_d_path(ab, " name=", &context->pwd);
1754                        break;
1755                default:
1756                        /* log the name's directory component */
1757                        audit_log_format(ab, " name=");
1758                        audit_log_n_untrustedstring(ab, n->name->name,
1759                                                    n->name_len);
1760                }
1761        } else
1762                audit_log_format(ab, " name=(null)");
1763
1764        if (n->ino != (unsigned long)-1)
1765                audit_log_format(ab, " inode=%lu"
1766                                 " dev=%02x:%02x mode=%#ho"
1767                                 " ouid=%u ogid=%u rdev=%02x:%02x",
1768                                 n->ino,
1769                                 MAJOR(n->dev),
1770                                 MINOR(n->dev),
1771                                 n->mode,
1772                                 from_kuid(&init_user_ns, n->uid),
1773                                 from_kgid(&init_user_ns, n->gid),
1774                                 MAJOR(n->rdev),
1775                                 MINOR(n->rdev));
1776        if (n->osid != 0) {
1777                char *ctx = NULL;
1778                u32 len;
1779                if (security_secid_to_secctx(
1780                        n->osid, &ctx, &len)) {
1781                        audit_log_format(ab, " osid=%u", n->osid);
1782                        if (call_panic)
1783                                *call_panic = 2;
1784                } else {
1785                        audit_log_format(ab, " obj=%s", ctx);
1786                        security_release_secctx(ctx, len);
1787                }
1788        }
1789
1790        /* log the audit_names record type */
1791        audit_log_format(ab, " nametype=");
1792        switch(n->type) {
1793        case AUDIT_TYPE_NORMAL:
1794                audit_log_format(ab, "NORMAL");
1795                break;
1796        case AUDIT_TYPE_PARENT:
1797                audit_log_format(ab, "PARENT");
1798                break;
1799        case AUDIT_TYPE_CHILD_DELETE:
1800                audit_log_format(ab, "DELETE");
1801                break;
1802        case AUDIT_TYPE_CHILD_CREATE:
1803                audit_log_format(ab, "CREATE");
1804                break;
1805        default:
1806                audit_log_format(ab, "UNKNOWN");
1807                break;
1808        }
1809
1810        audit_log_fcaps(ab, n);
1811        audit_log_end(ab);
1812}
1813
1814int audit_log_task_context(struct audit_buffer *ab)
1815{
1816        char *ctx = NULL;
1817        unsigned len;
1818        int error;
1819        u32 sid;
1820
1821        security_task_getsecid(current, &sid);
1822        if (!sid)
1823                return 0;
1824
1825        error = security_secid_to_secctx(sid, &ctx, &len);
1826        if (error) {
1827                if (error != -EINVAL)
1828                        goto error_path;
1829                return 0;
1830        }
1831
1832        audit_log_format(ab, " subj=%s", ctx);
1833        security_release_secctx(ctx, len);
1834        return 0;
1835
1836error_path:
1837        audit_panic("error in audit_log_task_context");
1838        return error;
1839}
1840EXPORT_SYMBOL(audit_log_task_context);
1841
1842void audit_log_d_path_exe(struct audit_buffer *ab,
1843                          struct mm_struct *mm)
1844{
1845        struct file *exe_file;
1846
1847        if (!mm)
1848                goto out_null;
1849
1850        exe_file = get_mm_exe_file(mm);
1851        if (!exe_file)
1852                goto out_null;
1853
1854        audit_log_d_path(ab, " exe=", &exe_file->f_path);
1855        fput(exe_file);
1856        return;
1857out_null:
1858        audit_log_format(ab, " exe=(null)");
1859}
1860
1861void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1862{
1863        const struct cred *cred;
1864        char comm[sizeof(tsk->comm)];
1865        char *tty;
1866
1867        if (!ab)
1868                return;
1869
1870        /* tsk == current */
1871        cred = current_cred();
1872
1873        spin_lock_irq(&tsk->sighand->siglock);
1874        if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1875                tty = tsk->signal->tty->name;
1876        else
1877                tty = "(none)";
1878        spin_unlock_irq(&tsk->sighand->siglock);
1879
1880        audit_log_format(ab,
1881                         " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1882                         " euid=%u suid=%u fsuid=%u"
1883                         " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1884                         task_ppid_nr(tsk),
1885                         task_pid_nr(tsk),
1886                         from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1887                         from_kuid(&init_user_ns, cred->uid),
1888                         from_kgid(&init_user_ns, cred->gid),
1889                         from_kuid(&init_user_ns, cred->euid),
1890                         from_kuid(&init_user_ns, cred->suid),
1891                         from_kuid(&init_user_ns, cred->fsuid),
1892                         from_kgid(&init_user_ns, cred->egid),
1893                         from_kgid(&init_user_ns, cred->sgid),
1894                         from_kgid(&init_user_ns, cred->fsgid),
1895                         tty, audit_get_sessionid(tsk));
1896
1897        audit_log_format(ab, " comm=");
1898        audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
1899
1900        audit_log_d_path_exe(ab, tsk->mm);
1901        audit_log_task_context(ab);
1902}
1903EXPORT_SYMBOL(audit_log_task_info);
1904
1905/**
1906 * audit_log_link_denied - report a link restriction denial
1907 * @operation: specific link opreation
1908 * @link: the path that triggered the restriction
1909 */
1910void audit_log_link_denied(const char *operation, struct path *link)
1911{
1912        struct audit_buffer *ab;
1913        struct audit_names *name;
1914
1915        name = kzalloc(sizeof(*name), GFP_NOFS);
1916        if (!name)
1917                return;
1918
1919        /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1920        ab = audit_log_start(current->audit_context, GFP_KERNEL,
1921                             AUDIT_ANOM_LINK);
1922        if (!ab)
1923                goto out;
1924        audit_log_format(ab, "op=%s", operation);
1925        audit_log_task_info(ab, current);
1926        audit_log_format(ab, " res=0");
1927        audit_log_end(ab);
1928
1929        /* Generate AUDIT_PATH record with object. */
1930        name->type = AUDIT_TYPE_NORMAL;
1931        audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
1932        audit_log_name(current->audit_context, name, link, 0, NULL);
1933out:
1934        kfree(name);
1935}
1936
1937/**
1938 * audit_log_end - end one audit record
1939 * @ab: the audit_buffer
1940 *
1941 * netlink_unicast() cannot be called inside an irq context because it blocks
1942 * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed
1943 * on a queue and a tasklet is scheduled to remove them from the queue outside
1944 * the irq context.  May be called in any context.
1945 */
1946void audit_log_end(struct audit_buffer *ab)
1947{
1948        if (!ab)
1949                return;
1950        if (!audit_rate_check()) {
1951                audit_log_lost("rate limit exceeded");
1952        } else {
1953                struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1954
1955                nlh->nlmsg_len = ab->skb->len;
1956                kauditd_send_multicast_skb(ab->skb, ab->gfp_mask);
1957
1958                /*
1959                 * The original kaudit unicast socket sends up messages with
1960                 * nlmsg_len set to the payload length rather than the entire
1961                 * message length.  This breaks the standard set by netlink.
1962                 * The existing auditd daemon assumes this breakage.  Fixing
1963                 * this would require co-ordinating a change in the established
1964                 * protocol between the kaudit kernel subsystem and the auditd
1965                 * userspace code.
1966                 */
1967                nlh->nlmsg_len -= NLMSG_HDRLEN;
1968
1969                if (audit_pid) {
1970                        skb_queue_tail(&audit_skb_queue, ab->skb);
1971                        wake_up_interruptible(&kauditd_wait);
1972                } else {
1973                        audit_printk_skb(ab->skb);
1974                }
1975                ab->skb = NULL;
1976        }
1977        audit_buffer_free(ab);
1978}
1979
1980/**
1981 * audit_log - Log an audit record
1982 * @ctx: audit context
1983 * @gfp_mask: type of allocation
1984 * @type: audit message type
1985 * @fmt: format string to use
1986 * @...: variable parameters matching the format string
1987 *
1988 * This is a convenience function that calls audit_log_start,
1989 * audit_log_vformat, and audit_log_end.  It may be called
1990 * in any context.
1991 */
1992void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1993               const char *fmt, ...)
1994{
1995        struct audit_buffer *ab;
1996        va_list args;
1997
1998        ab = audit_log_start(ctx, gfp_mask, type);
1999        if (ab) {
2000                va_start(args, fmt);
2001                audit_log_vformat(ab, fmt, args);
2002                va_end(args);
2003                audit_log_end(ab);
2004        }
2005}
2006
2007#ifdef CONFIG_SECURITY
2008/**
2009 * audit_log_secctx - Converts and logs SELinux context
2010 * @ab: audit_buffer
2011 * @secid: security number
2012 *
2013 * This is a helper function that calls security_secid_to_secctx to convert
2014 * secid to secctx and then adds the (converted) SELinux context to the audit
2015 * log by calling audit_log_format, thus also preventing leak of internal secid
2016 * to userspace. If secid cannot be converted audit_panic is called.
2017 */
2018void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2019{
2020        u32 len;
2021        char *secctx;
2022
2023        if (security_secid_to_secctx(secid, &secctx, &len)) {
2024                audit_panic("Cannot convert secid to context");
2025        } else {
2026                audit_log_format(ab, " obj=%s", secctx);
2027                security_release_secctx(secctx, len);
2028        }
2029}
2030EXPORT_SYMBOL(audit_log_secctx);
2031#endif
2032
2033EXPORT_SYMBOL(audit_log_start);
2034EXPORT_SYMBOL(audit_log_end);
2035EXPORT_SYMBOL(audit_log_format);
2036EXPORT_SYMBOL(audit_log);
2037