linux/kernel/bpf/core.c
<<
>>
Prefs
   1/*
   2 * Linux Socket Filter - Kernel level socket filtering
   3 *
   4 * Based on the design of the Berkeley Packet Filter. The new
   5 * internal format has been designed by PLUMgrid:
   6 *
   7 *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
   8 *
   9 * Authors:
  10 *
  11 *      Jay Schulist <jschlst@samba.org>
  12 *      Alexei Starovoitov <ast@plumgrid.com>
  13 *      Daniel Borkmann <dborkman@redhat.com>
  14 *
  15 * This program is free software; you can redistribute it and/or
  16 * modify it under the terms of the GNU General Public License
  17 * as published by the Free Software Foundation; either version
  18 * 2 of the License, or (at your option) any later version.
  19 *
  20 * Andi Kleen - Fix a few bad bugs and races.
  21 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
  22 */
  23
  24#include <linux/filter.h>
  25#include <linux/skbuff.h>
  26#include <linux/vmalloc.h>
  27#include <linux/random.h>
  28#include <linux/moduleloader.h>
  29#include <asm/unaligned.h>
  30#include <linux/bpf.h>
  31
  32/* Registers */
  33#define BPF_R0  regs[BPF_REG_0]
  34#define BPF_R1  regs[BPF_REG_1]
  35#define BPF_R2  regs[BPF_REG_2]
  36#define BPF_R3  regs[BPF_REG_3]
  37#define BPF_R4  regs[BPF_REG_4]
  38#define BPF_R5  regs[BPF_REG_5]
  39#define BPF_R6  regs[BPF_REG_6]
  40#define BPF_R7  regs[BPF_REG_7]
  41#define BPF_R8  regs[BPF_REG_8]
  42#define BPF_R9  regs[BPF_REG_9]
  43#define BPF_R10 regs[BPF_REG_10]
  44
  45/* Named registers */
  46#define DST     regs[insn->dst_reg]
  47#define SRC     regs[insn->src_reg]
  48#define FP      regs[BPF_REG_FP]
  49#define ARG1    regs[BPF_REG_ARG1]
  50#define CTX     regs[BPF_REG_CTX]
  51#define IMM     insn->imm
  52
  53/* No hurry in this branch
  54 *
  55 * Exported for the bpf jit load helper.
  56 */
  57void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
  58{
  59        u8 *ptr = NULL;
  60
  61        if (k >= SKF_NET_OFF)
  62                ptr = skb_network_header(skb) + k - SKF_NET_OFF;
  63        else if (k >= SKF_LL_OFF)
  64                ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
  65        if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
  66                return ptr;
  67
  68        return NULL;
  69}
  70
  71struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
  72{
  73        gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
  74                          gfp_extra_flags;
  75        struct bpf_prog_aux *aux;
  76        struct bpf_prog *fp;
  77
  78        size = round_up(size, PAGE_SIZE);
  79        fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
  80        if (fp == NULL)
  81                return NULL;
  82
  83        aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
  84        if (aux == NULL) {
  85                vfree(fp);
  86                return NULL;
  87        }
  88
  89        fp->pages = size / PAGE_SIZE;
  90        fp->aux = aux;
  91
  92        return fp;
  93}
  94EXPORT_SYMBOL_GPL(bpf_prog_alloc);
  95
  96struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
  97                                  gfp_t gfp_extra_flags)
  98{
  99        gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
 100                          gfp_extra_flags;
 101        struct bpf_prog *fp;
 102
 103        BUG_ON(fp_old == NULL);
 104
 105        size = round_up(size, PAGE_SIZE);
 106        if (size <= fp_old->pages * PAGE_SIZE)
 107                return fp_old;
 108
 109        fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
 110        if (fp != NULL) {
 111                memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
 112                fp->pages = size / PAGE_SIZE;
 113
 114                /* We keep fp->aux from fp_old around in the new
 115                 * reallocated structure.
 116                 */
 117                fp_old->aux = NULL;
 118                __bpf_prog_free(fp_old);
 119        }
 120
 121        return fp;
 122}
 123EXPORT_SYMBOL_GPL(bpf_prog_realloc);
 124
 125void __bpf_prog_free(struct bpf_prog *fp)
 126{
 127        kfree(fp->aux);
 128        vfree(fp);
 129}
 130EXPORT_SYMBOL_GPL(__bpf_prog_free);
 131
 132#ifdef CONFIG_BPF_JIT
 133struct bpf_binary_header *
 134bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
 135                     unsigned int alignment,
 136                     bpf_jit_fill_hole_t bpf_fill_ill_insns)
 137{
 138        struct bpf_binary_header *hdr;
 139        unsigned int size, hole, start;
 140
 141        /* Most of BPF filters are really small, but if some of them
 142         * fill a page, allow at least 128 extra bytes to insert a
 143         * random section of illegal instructions.
 144         */
 145        size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
 146        hdr = module_alloc(size);
 147        if (hdr == NULL)
 148                return NULL;
 149
 150        /* Fill space with illegal/arch-dep instructions. */
 151        bpf_fill_ill_insns(hdr, size);
 152
 153        hdr->pages = size / PAGE_SIZE;
 154        hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
 155                     PAGE_SIZE - sizeof(*hdr));
 156        start = (prandom_u32() % hole) & ~(alignment - 1);
 157
 158        /* Leave a random number of instructions before BPF code. */
 159        *image_ptr = &hdr->image[start];
 160
 161        return hdr;
 162}
 163
 164void bpf_jit_binary_free(struct bpf_binary_header *hdr)
 165{
 166        module_memfree(hdr);
 167}
 168#endif /* CONFIG_BPF_JIT */
 169
 170/* Base function for offset calculation. Needs to go into .text section,
 171 * therefore keeping it non-static as well; will also be used by JITs
 172 * anyway later on, so do not let the compiler omit it.
 173 */
 174noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 175{
 176        return 0;
 177}
 178
 179/**
 180 *      __bpf_prog_run - run eBPF program on a given context
 181 *      @ctx: is the data we are operating on
 182 *      @insn: is the array of eBPF instructions
 183 *
 184 * Decode and execute eBPF instructions.
 185 */
 186static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn)
 187{
 188        u64 stack[MAX_BPF_STACK / sizeof(u64)];
 189        u64 regs[MAX_BPF_REG], tmp;
 190        static const void *jumptable[256] = {
 191                [0 ... 255] = &&default_label,
 192                /* Now overwrite non-defaults ... */
 193                /* 32 bit ALU operations */
 194                [BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
 195                [BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
 196                [BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
 197                [BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
 198                [BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
 199                [BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
 200                [BPF_ALU | BPF_OR | BPF_X]  = &&ALU_OR_X,
 201                [BPF_ALU | BPF_OR | BPF_K]  = &&ALU_OR_K,
 202                [BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
 203                [BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
 204                [BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
 205                [BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
 206                [BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
 207                [BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
 208                [BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
 209                [BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
 210                [BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
 211                [BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
 212                [BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
 213                [BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
 214                [BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
 215                [BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
 216                [BPF_ALU | BPF_NEG] = &&ALU_NEG,
 217                [BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
 218                [BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
 219                /* 64 bit ALU operations */
 220                [BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
 221                [BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
 222                [BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
 223                [BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
 224                [BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
 225                [BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
 226                [BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
 227                [BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
 228                [BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
 229                [BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
 230                [BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
 231                [BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
 232                [BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
 233                [BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
 234                [BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
 235                [BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
 236                [BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
 237                [BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
 238                [BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
 239                [BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
 240                [BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
 241                [BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
 242                [BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
 243                [BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
 244                [BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
 245                /* Call instruction */
 246                [BPF_JMP | BPF_CALL] = &&JMP_CALL,
 247                /* Jumps */
 248                [BPF_JMP | BPF_JA] = &&JMP_JA,
 249                [BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
 250                [BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
 251                [BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
 252                [BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
 253                [BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
 254                [BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
 255                [BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
 256                [BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
 257                [BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
 258                [BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
 259                [BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
 260                [BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
 261                [BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
 262                [BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
 263                /* Program return */
 264                [BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
 265                /* Store instructions */
 266                [BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
 267                [BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
 268                [BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
 269                [BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
 270                [BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
 271                [BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
 272                [BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
 273                [BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
 274                [BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
 275                [BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
 276                /* Load instructions */
 277                [BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
 278                [BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
 279                [BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
 280                [BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
 281                [BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
 282                [BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
 283                [BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
 284                [BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
 285                [BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
 286                [BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
 287                [BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
 288        };
 289        void *ptr;
 290        int off;
 291
 292#define CONT     ({ insn++; goto select_insn; })
 293#define CONT_JMP ({ insn++; goto select_insn; })
 294
 295        FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)];
 296        ARG1 = (u64) (unsigned long) ctx;
 297
 298        /* Registers used in classic BPF programs need to be reset first. */
 299        regs[BPF_REG_A] = 0;
 300        regs[BPF_REG_X] = 0;
 301
 302select_insn:
 303        goto *jumptable[insn->code];
 304
 305        /* ALU */
 306#define ALU(OPCODE, OP)                 \
 307        ALU64_##OPCODE##_X:             \
 308                DST = DST OP SRC;       \
 309                CONT;                   \
 310        ALU_##OPCODE##_X:               \
 311                DST = (u32) DST OP (u32) SRC;   \
 312                CONT;                   \
 313        ALU64_##OPCODE##_K:             \
 314                DST = DST OP IMM;               \
 315                CONT;                   \
 316        ALU_##OPCODE##_K:               \
 317                DST = (u32) DST OP (u32) IMM;   \
 318                CONT;
 319
 320        ALU(ADD,  +)
 321        ALU(SUB,  -)
 322        ALU(AND,  &)
 323        ALU(OR,   |)
 324        ALU(LSH, <<)
 325        ALU(RSH, >>)
 326        ALU(XOR,  ^)
 327        ALU(MUL,  *)
 328#undef ALU
 329        ALU_NEG:
 330                DST = (u32) -DST;
 331                CONT;
 332        ALU64_NEG:
 333                DST = -DST;
 334                CONT;
 335        ALU_MOV_X:
 336                DST = (u32) SRC;
 337                CONT;
 338        ALU_MOV_K:
 339                DST = (u32) IMM;
 340                CONT;
 341        ALU64_MOV_X:
 342                DST = SRC;
 343                CONT;
 344        ALU64_MOV_K:
 345                DST = IMM;
 346                CONT;
 347        LD_IMM_DW:
 348                DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
 349                insn++;
 350                CONT;
 351        ALU64_ARSH_X:
 352                (*(s64 *) &DST) >>= SRC;
 353                CONT;
 354        ALU64_ARSH_K:
 355                (*(s64 *) &DST) >>= IMM;
 356                CONT;
 357        ALU64_MOD_X:
 358                if (unlikely(SRC == 0))
 359                        return 0;
 360                div64_u64_rem(DST, SRC, &tmp);
 361                DST = tmp;
 362                CONT;
 363        ALU_MOD_X:
 364                if (unlikely(SRC == 0))
 365                        return 0;
 366                tmp = (u32) DST;
 367                DST = do_div(tmp, (u32) SRC);
 368                CONT;
 369        ALU64_MOD_K:
 370                div64_u64_rem(DST, IMM, &tmp);
 371                DST = tmp;
 372                CONT;
 373        ALU_MOD_K:
 374                tmp = (u32) DST;
 375                DST = do_div(tmp, (u32) IMM);
 376                CONT;
 377        ALU64_DIV_X:
 378                if (unlikely(SRC == 0))
 379                        return 0;
 380                DST = div64_u64(DST, SRC);
 381                CONT;
 382        ALU_DIV_X:
 383                if (unlikely(SRC == 0))
 384                        return 0;
 385                tmp = (u32) DST;
 386                do_div(tmp, (u32) SRC);
 387                DST = (u32) tmp;
 388                CONT;
 389        ALU64_DIV_K:
 390                DST = div64_u64(DST, IMM);
 391                CONT;
 392        ALU_DIV_K:
 393                tmp = (u32) DST;
 394                do_div(tmp, (u32) IMM);
 395                DST = (u32) tmp;
 396                CONT;
 397        ALU_END_TO_BE:
 398                switch (IMM) {
 399                case 16:
 400                        DST = (__force u16) cpu_to_be16(DST);
 401                        break;
 402                case 32:
 403                        DST = (__force u32) cpu_to_be32(DST);
 404                        break;
 405                case 64:
 406                        DST = (__force u64) cpu_to_be64(DST);
 407                        break;
 408                }
 409                CONT;
 410        ALU_END_TO_LE:
 411                switch (IMM) {
 412                case 16:
 413                        DST = (__force u16) cpu_to_le16(DST);
 414                        break;
 415                case 32:
 416                        DST = (__force u32) cpu_to_le32(DST);
 417                        break;
 418                case 64:
 419                        DST = (__force u64) cpu_to_le64(DST);
 420                        break;
 421                }
 422                CONT;
 423
 424        /* CALL */
 425        JMP_CALL:
 426                /* Function call scratches BPF_R1-BPF_R5 registers,
 427                 * preserves BPF_R6-BPF_R9, and stores return value
 428                 * into BPF_R0.
 429                 */
 430                BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
 431                                                       BPF_R4, BPF_R5);
 432                CONT;
 433
 434        /* JMP */
 435        JMP_JA:
 436                insn += insn->off;
 437                CONT;
 438        JMP_JEQ_X:
 439                if (DST == SRC) {
 440                        insn += insn->off;
 441                        CONT_JMP;
 442                }
 443                CONT;
 444        JMP_JEQ_K:
 445                if (DST == IMM) {
 446                        insn += insn->off;
 447                        CONT_JMP;
 448                }
 449                CONT;
 450        JMP_JNE_X:
 451                if (DST != SRC) {
 452                        insn += insn->off;
 453                        CONT_JMP;
 454                }
 455                CONT;
 456        JMP_JNE_K:
 457                if (DST != IMM) {
 458                        insn += insn->off;
 459                        CONT_JMP;
 460                }
 461                CONT;
 462        JMP_JGT_X:
 463                if (DST > SRC) {
 464                        insn += insn->off;
 465                        CONT_JMP;
 466                }
 467                CONT;
 468        JMP_JGT_K:
 469                if (DST > IMM) {
 470                        insn += insn->off;
 471                        CONT_JMP;
 472                }
 473                CONT;
 474        JMP_JGE_X:
 475                if (DST >= SRC) {
 476                        insn += insn->off;
 477                        CONT_JMP;
 478                }
 479                CONT;
 480        JMP_JGE_K:
 481                if (DST >= IMM) {
 482                        insn += insn->off;
 483                        CONT_JMP;
 484                }
 485                CONT;
 486        JMP_JSGT_X:
 487                if (((s64) DST) > ((s64) SRC)) {
 488                        insn += insn->off;
 489                        CONT_JMP;
 490                }
 491                CONT;
 492        JMP_JSGT_K:
 493                if (((s64) DST) > ((s64) IMM)) {
 494                        insn += insn->off;
 495                        CONT_JMP;
 496                }
 497                CONT;
 498        JMP_JSGE_X:
 499                if (((s64) DST) >= ((s64) SRC)) {
 500                        insn += insn->off;
 501                        CONT_JMP;
 502                }
 503                CONT;
 504        JMP_JSGE_K:
 505                if (((s64) DST) >= ((s64) IMM)) {
 506                        insn += insn->off;
 507                        CONT_JMP;
 508                }
 509                CONT;
 510        JMP_JSET_X:
 511                if (DST & SRC) {
 512                        insn += insn->off;
 513                        CONT_JMP;
 514                }
 515                CONT;
 516        JMP_JSET_K:
 517                if (DST & IMM) {
 518                        insn += insn->off;
 519                        CONT_JMP;
 520                }
 521                CONT;
 522        JMP_EXIT:
 523                return BPF_R0;
 524
 525        /* STX and ST and LDX*/
 526#define LDST(SIZEOP, SIZE)                                              \
 527        STX_MEM_##SIZEOP:                                               \
 528                *(SIZE *)(unsigned long) (DST + insn->off) = SRC;       \
 529                CONT;                                                   \
 530        ST_MEM_##SIZEOP:                                                \
 531                *(SIZE *)(unsigned long) (DST + insn->off) = IMM;       \
 532                CONT;                                                   \
 533        LDX_MEM_##SIZEOP:                                               \
 534                DST = *(SIZE *)(unsigned long) (SRC + insn->off);       \
 535                CONT;
 536
 537        LDST(B,   u8)
 538        LDST(H,  u16)
 539        LDST(W,  u32)
 540        LDST(DW, u64)
 541#undef LDST
 542        STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
 543                atomic_add((u32) SRC, (atomic_t *)(unsigned long)
 544                           (DST + insn->off));
 545                CONT;
 546        STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
 547                atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
 548                             (DST + insn->off));
 549                CONT;
 550        LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
 551                off = IMM;
 552load_word:
 553                /* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are
 554                 * only appearing in the programs where ctx ==
 555                 * skb. All programs keep 'ctx' in regs[BPF_REG_CTX]
 556                 * == BPF_R6, bpf_convert_filter() saves it in BPF_R6,
 557                 * internal BPF verifier will check that BPF_R6 ==
 558                 * ctx.
 559                 *
 560                 * BPF_ABS and BPF_IND are wrappers of function calls,
 561                 * so they scratch BPF_R1-BPF_R5 registers, preserve
 562                 * BPF_R6-BPF_R9, and store return value into BPF_R0.
 563                 *
 564                 * Implicit input:
 565                 *   ctx == skb == BPF_R6 == CTX
 566                 *
 567                 * Explicit input:
 568                 *   SRC == any register
 569                 *   IMM == 32-bit immediate
 570                 *
 571                 * Output:
 572                 *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
 573                 */
 574
 575                ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
 576                if (likely(ptr != NULL)) {
 577                        BPF_R0 = get_unaligned_be32(ptr);
 578                        CONT;
 579                }
 580
 581                return 0;
 582        LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
 583                off = IMM;
 584load_half:
 585                ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
 586                if (likely(ptr != NULL)) {
 587                        BPF_R0 = get_unaligned_be16(ptr);
 588                        CONT;
 589                }
 590
 591                return 0;
 592        LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
 593                off = IMM;
 594load_byte:
 595                ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
 596                if (likely(ptr != NULL)) {
 597                        BPF_R0 = *(u8 *)ptr;
 598                        CONT;
 599                }
 600
 601                return 0;
 602        LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
 603                off = IMM + SRC;
 604                goto load_word;
 605        LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
 606                off = IMM + SRC;
 607                goto load_half;
 608        LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
 609                off = IMM + SRC;
 610                goto load_byte;
 611
 612        default_label:
 613                /* If we ever reach this, we have a bug somewhere. */
 614                WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
 615                return 0;
 616}
 617
 618void __weak bpf_int_jit_compile(struct bpf_prog *prog)
 619{
 620}
 621
 622/**
 623 *      bpf_prog_select_runtime - select execution runtime for BPF program
 624 *      @fp: bpf_prog populated with internal BPF program
 625 *
 626 * try to JIT internal BPF program, if JIT is not available select interpreter
 627 * BPF program will be executed via BPF_PROG_RUN() macro
 628 */
 629void bpf_prog_select_runtime(struct bpf_prog *fp)
 630{
 631        fp->bpf_func = (void *) __bpf_prog_run;
 632
 633        /* Probe if internal BPF can be JITed */
 634        bpf_int_jit_compile(fp);
 635        /* Lock whole bpf_prog as read-only */
 636        bpf_prog_lock_ro(fp);
 637}
 638EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
 639
 640static void bpf_prog_free_deferred(struct work_struct *work)
 641{
 642        struct bpf_prog_aux *aux;
 643
 644        aux = container_of(work, struct bpf_prog_aux, work);
 645        bpf_jit_free(aux->prog);
 646}
 647
 648/* Free internal BPF program */
 649void bpf_prog_free(struct bpf_prog *fp)
 650{
 651        struct bpf_prog_aux *aux = fp->aux;
 652
 653        INIT_WORK(&aux->work, bpf_prog_free_deferred);
 654        aux->prog = fp;
 655        schedule_work(&aux->work);
 656}
 657EXPORT_SYMBOL_GPL(bpf_prog_free);
 658
 659/* Weak definitions of helper functions in case we don't have bpf syscall. */
 660const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
 661const struct bpf_func_proto bpf_map_update_elem_proto __weak;
 662const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
 663
 664const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
 665const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
 666
 667/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
 668 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
 669 */
 670int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
 671                         int len)
 672{
 673        return -EFAULT;
 674}
 675