linux/kernel/cpuset.c
<<
>>
Prefs
   1/*
   2 *  kernel/cpuset.c
   3 *
   4 *  Processor and Memory placement constraints for sets of tasks.
   5 *
   6 *  Copyright (C) 2003 BULL SA.
   7 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
   8 *  Copyright (C) 2006 Google, Inc
   9 *
  10 *  Portions derived from Patrick Mochel's sysfs code.
  11 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  12 *
  13 *  2003-10-10 Written by Simon Derr.
  14 *  2003-10-22 Updates by Stephen Hemminger.
  15 *  2004 May-July Rework by Paul Jackson.
  16 *  2006 Rework by Paul Menage to use generic cgroups
  17 *  2008 Rework of the scheduler domains and CPU hotplug handling
  18 *       by Max Krasnyansky
  19 *
  20 *  This file is subject to the terms and conditions of the GNU General Public
  21 *  License.  See the file COPYING in the main directory of the Linux
  22 *  distribution for more details.
  23 */
  24
  25#include <linux/cpu.h>
  26#include <linux/cpumask.h>
  27#include <linux/cpuset.h>
  28#include <linux/err.h>
  29#include <linux/errno.h>
  30#include <linux/file.h>
  31#include <linux/fs.h>
  32#include <linux/init.h>
  33#include <linux/interrupt.h>
  34#include <linux/kernel.h>
  35#include <linux/kmod.h>
  36#include <linux/list.h>
  37#include <linux/mempolicy.h>
  38#include <linux/mm.h>
  39#include <linux/memory.h>
  40#include <linux/export.h>
  41#include <linux/mount.h>
  42#include <linux/namei.h>
  43#include <linux/pagemap.h>
  44#include <linux/proc_fs.h>
  45#include <linux/rcupdate.h>
  46#include <linux/sched.h>
  47#include <linux/seq_file.h>
  48#include <linux/security.h>
  49#include <linux/slab.h>
  50#include <linux/spinlock.h>
  51#include <linux/stat.h>
  52#include <linux/string.h>
  53#include <linux/time.h>
  54#include <linux/backing-dev.h>
  55#include <linux/sort.h>
  56
  57#include <asm/uaccess.h>
  58#include <linux/atomic.h>
  59#include <linux/mutex.h>
  60#include <linux/workqueue.h>
  61#include <linux/cgroup.h>
  62#include <linux/wait.h>
  63
  64struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
  65
  66/* See "Frequency meter" comments, below. */
  67
  68struct fmeter {
  69        int cnt;                /* unprocessed events count */
  70        int val;                /* most recent output value */
  71        time_t time;            /* clock (secs) when val computed */
  72        spinlock_t lock;        /* guards read or write of above */
  73};
  74
  75struct cpuset {
  76        struct cgroup_subsys_state css;
  77
  78        unsigned long flags;            /* "unsigned long" so bitops work */
  79
  80        /*
  81         * On default hierarchy:
  82         *
  83         * The user-configured masks can only be changed by writing to
  84         * cpuset.cpus and cpuset.mems, and won't be limited by the
  85         * parent masks.
  86         *
  87         * The effective masks is the real masks that apply to the tasks
  88         * in the cpuset. They may be changed if the configured masks are
  89         * changed or hotplug happens.
  90         *
  91         * effective_mask == configured_mask & parent's effective_mask,
  92         * and if it ends up empty, it will inherit the parent's mask.
  93         *
  94         *
  95         * On legacy hierachy:
  96         *
  97         * The user-configured masks are always the same with effective masks.
  98         */
  99
 100        /* user-configured CPUs and Memory Nodes allow to tasks */
 101        cpumask_var_t cpus_allowed;
 102        nodemask_t mems_allowed;
 103
 104        /* effective CPUs and Memory Nodes allow to tasks */
 105        cpumask_var_t effective_cpus;
 106        nodemask_t effective_mems;
 107
 108        /*
 109         * This is old Memory Nodes tasks took on.
 110         *
 111         * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
 112         * - A new cpuset's old_mems_allowed is initialized when some
 113         *   task is moved into it.
 114         * - old_mems_allowed is used in cpuset_migrate_mm() when we change
 115         *   cpuset.mems_allowed and have tasks' nodemask updated, and
 116         *   then old_mems_allowed is updated to mems_allowed.
 117         */
 118        nodemask_t old_mems_allowed;
 119
 120        struct fmeter fmeter;           /* memory_pressure filter */
 121
 122        /*
 123         * Tasks are being attached to this cpuset.  Used to prevent
 124         * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
 125         */
 126        int attach_in_progress;
 127
 128        /* partition number for rebuild_sched_domains() */
 129        int pn;
 130
 131        /* for custom sched domain */
 132        int relax_domain_level;
 133};
 134
 135static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
 136{
 137        return css ? container_of(css, struct cpuset, css) : NULL;
 138}
 139
 140/* Retrieve the cpuset for a task */
 141static inline struct cpuset *task_cs(struct task_struct *task)
 142{
 143        return css_cs(task_css(task, cpuset_cgrp_id));
 144}
 145
 146static inline struct cpuset *parent_cs(struct cpuset *cs)
 147{
 148        return css_cs(cs->css.parent);
 149}
 150
 151#ifdef CONFIG_NUMA
 152static inline bool task_has_mempolicy(struct task_struct *task)
 153{
 154        return task->mempolicy;
 155}
 156#else
 157static inline bool task_has_mempolicy(struct task_struct *task)
 158{
 159        return false;
 160}
 161#endif
 162
 163
 164/* bits in struct cpuset flags field */
 165typedef enum {
 166        CS_ONLINE,
 167        CS_CPU_EXCLUSIVE,
 168        CS_MEM_EXCLUSIVE,
 169        CS_MEM_HARDWALL,
 170        CS_MEMORY_MIGRATE,
 171        CS_SCHED_LOAD_BALANCE,
 172        CS_SPREAD_PAGE,
 173        CS_SPREAD_SLAB,
 174} cpuset_flagbits_t;
 175
 176/* convenient tests for these bits */
 177static inline bool is_cpuset_online(const struct cpuset *cs)
 178{
 179        return test_bit(CS_ONLINE, &cs->flags);
 180}
 181
 182static inline int is_cpu_exclusive(const struct cpuset *cs)
 183{
 184        return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
 185}
 186
 187static inline int is_mem_exclusive(const struct cpuset *cs)
 188{
 189        return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
 190}
 191
 192static inline int is_mem_hardwall(const struct cpuset *cs)
 193{
 194        return test_bit(CS_MEM_HARDWALL, &cs->flags);
 195}
 196
 197static inline int is_sched_load_balance(const struct cpuset *cs)
 198{
 199        return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
 200}
 201
 202static inline int is_memory_migrate(const struct cpuset *cs)
 203{
 204        return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
 205}
 206
 207static inline int is_spread_page(const struct cpuset *cs)
 208{
 209        return test_bit(CS_SPREAD_PAGE, &cs->flags);
 210}
 211
 212static inline int is_spread_slab(const struct cpuset *cs)
 213{
 214        return test_bit(CS_SPREAD_SLAB, &cs->flags);
 215}
 216
 217static struct cpuset top_cpuset = {
 218        .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
 219                  (1 << CS_MEM_EXCLUSIVE)),
 220};
 221
 222/**
 223 * cpuset_for_each_child - traverse online children of a cpuset
 224 * @child_cs: loop cursor pointing to the current child
 225 * @pos_css: used for iteration
 226 * @parent_cs: target cpuset to walk children of
 227 *
 228 * Walk @child_cs through the online children of @parent_cs.  Must be used
 229 * with RCU read locked.
 230 */
 231#define cpuset_for_each_child(child_cs, pos_css, parent_cs)             \
 232        css_for_each_child((pos_css), &(parent_cs)->css)                \
 233                if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
 234
 235/**
 236 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 237 * @des_cs: loop cursor pointing to the current descendant
 238 * @pos_css: used for iteration
 239 * @root_cs: target cpuset to walk ancestor of
 240 *
 241 * Walk @des_cs through the online descendants of @root_cs.  Must be used
 242 * with RCU read locked.  The caller may modify @pos_css by calling
 243 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 244 * iteration and the first node to be visited.
 245 */
 246#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)        \
 247        css_for_each_descendant_pre((pos_css), &(root_cs)->css)         \
 248                if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
 249
 250/*
 251 * There are two global locks guarding cpuset structures - cpuset_mutex and
 252 * callback_lock. We also require taking task_lock() when dereferencing a
 253 * task's cpuset pointer. See "The task_lock() exception", at the end of this
 254 * comment.
 255 *
 256 * A task must hold both locks to modify cpusets.  If a task holds
 257 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
 258 * is the only task able to also acquire callback_lock and be able to
 259 * modify cpusets.  It can perform various checks on the cpuset structure
 260 * first, knowing nothing will change.  It can also allocate memory while
 261 * just holding cpuset_mutex.  While it is performing these checks, various
 262 * callback routines can briefly acquire callback_lock to query cpusets.
 263 * Once it is ready to make the changes, it takes callback_lock, blocking
 264 * everyone else.
 265 *
 266 * Calls to the kernel memory allocator can not be made while holding
 267 * callback_lock, as that would risk double tripping on callback_lock
 268 * from one of the callbacks into the cpuset code from within
 269 * __alloc_pages().
 270 *
 271 * If a task is only holding callback_lock, then it has read-only
 272 * access to cpusets.
 273 *
 274 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 275 * by other task, we use alloc_lock in the task_struct fields to protect
 276 * them.
 277 *
 278 * The cpuset_common_file_read() handlers only hold callback_lock across
 279 * small pieces of code, such as when reading out possibly multi-word
 280 * cpumasks and nodemasks.
 281 *
 282 * Accessing a task's cpuset should be done in accordance with the
 283 * guidelines for accessing subsystem state in kernel/cgroup.c
 284 */
 285
 286static DEFINE_MUTEX(cpuset_mutex);
 287static DEFINE_SPINLOCK(callback_lock);
 288
 289/*
 290 * CPU / memory hotplug is handled asynchronously.
 291 */
 292static void cpuset_hotplug_workfn(struct work_struct *work);
 293static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
 294
 295static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
 296
 297/*
 298 * This is ugly, but preserves the userspace API for existing cpuset
 299 * users. If someone tries to mount the "cpuset" filesystem, we
 300 * silently switch it to mount "cgroup" instead
 301 */
 302static struct dentry *cpuset_mount(struct file_system_type *fs_type,
 303                         int flags, const char *unused_dev_name, void *data)
 304{
 305        struct file_system_type *cgroup_fs = get_fs_type("cgroup");
 306        struct dentry *ret = ERR_PTR(-ENODEV);
 307        if (cgroup_fs) {
 308                char mountopts[] =
 309                        "cpuset,noprefix,"
 310                        "release_agent=/sbin/cpuset_release_agent";
 311                ret = cgroup_fs->mount(cgroup_fs, flags,
 312                                           unused_dev_name, mountopts);
 313                put_filesystem(cgroup_fs);
 314        }
 315        return ret;
 316}
 317
 318static struct file_system_type cpuset_fs_type = {
 319        .name = "cpuset",
 320        .mount = cpuset_mount,
 321};
 322
 323/*
 324 * Return in pmask the portion of a cpusets's cpus_allowed that
 325 * are online.  If none are online, walk up the cpuset hierarchy
 326 * until we find one that does have some online cpus.  The top
 327 * cpuset always has some cpus online.
 328 *
 329 * One way or another, we guarantee to return some non-empty subset
 330 * of cpu_online_mask.
 331 *
 332 * Call with callback_lock or cpuset_mutex held.
 333 */
 334static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
 335{
 336        while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask))
 337                cs = parent_cs(cs);
 338        cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
 339}
 340
 341/*
 342 * Return in *pmask the portion of a cpusets's mems_allowed that
 343 * are online, with memory.  If none are online with memory, walk
 344 * up the cpuset hierarchy until we find one that does have some
 345 * online mems.  The top cpuset always has some mems online.
 346 *
 347 * One way or another, we guarantee to return some non-empty subset
 348 * of node_states[N_MEMORY].
 349 *
 350 * Call with callback_lock or cpuset_mutex held.
 351 */
 352static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
 353{
 354        while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
 355                cs = parent_cs(cs);
 356        nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
 357}
 358
 359/*
 360 * update task's spread flag if cpuset's page/slab spread flag is set
 361 *
 362 * Call with callback_lock or cpuset_mutex held.
 363 */
 364static void cpuset_update_task_spread_flag(struct cpuset *cs,
 365                                        struct task_struct *tsk)
 366{
 367        if (is_spread_page(cs))
 368                task_set_spread_page(tsk);
 369        else
 370                task_clear_spread_page(tsk);
 371
 372        if (is_spread_slab(cs))
 373                task_set_spread_slab(tsk);
 374        else
 375                task_clear_spread_slab(tsk);
 376}
 377
 378/*
 379 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 380 *
 381 * One cpuset is a subset of another if all its allowed CPUs and
 382 * Memory Nodes are a subset of the other, and its exclusive flags
 383 * are only set if the other's are set.  Call holding cpuset_mutex.
 384 */
 385
 386static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
 387{
 388        return  cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
 389                nodes_subset(p->mems_allowed, q->mems_allowed) &&
 390                is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
 391                is_mem_exclusive(p) <= is_mem_exclusive(q);
 392}
 393
 394/**
 395 * alloc_trial_cpuset - allocate a trial cpuset
 396 * @cs: the cpuset that the trial cpuset duplicates
 397 */
 398static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
 399{
 400        struct cpuset *trial;
 401
 402        trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
 403        if (!trial)
 404                return NULL;
 405
 406        if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
 407                goto free_cs;
 408        if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
 409                goto free_cpus;
 410
 411        cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
 412        cpumask_copy(trial->effective_cpus, cs->effective_cpus);
 413        return trial;
 414
 415free_cpus:
 416        free_cpumask_var(trial->cpus_allowed);
 417free_cs:
 418        kfree(trial);
 419        return NULL;
 420}
 421
 422/**
 423 * free_trial_cpuset - free the trial cpuset
 424 * @trial: the trial cpuset to be freed
 425 */
 426static void free_trial_cpuset(struct cpuset *trial)
 427{
 428        free_cpumask_var(trial->effective_cpus);
 429        free_cpumask_var(trial->cpus_allowed);
 430        kfree(trial);
 431}
 432
 433/*
 434 * validate_change() - Used to validate that any proposed cpuset change
 435 *                     follows the structural rules for cpusets.
 436 *
 437 * If we replaced the flag and mask values of the current cpuset
 438 * (cur) with those values in the trial cpuset (trial), would
 439 * our various subset and exclusive rules still be valid?  Presumes
 440 * cpuset_mutex held.
 441 *
 442 * 'cur' is the address of an actual, in-use cpuset.  Operations
 443 * such as list traversal that depend on the actual address of the
 444 * cpuset in the list must use cur below, not trial.
 445 *
 446 * 'trial' is the address of bulk structure copy of cur, with
 447 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 448 * or flags changed to new, trial values.
 449 *
 450 * Return 0 if valid, -errno if not.
 451 */
 452
 453static int validate_change(struct cpuset *cur, struct cpuset *trial)
 454{
 455        struct cgroup_subsys_state *css;
 456        struct cpuset *c, *par;
 457        int ret;
 458
 459        rcu_read_lock();
 460
 461        /* Each of our child cpusets must be a subset of us */
 462        ret = -EBUSY;
 463        cpuset_for_each_child(c, css, cur)
 464                if (!is_cpuset_subset(c, trial))
 465                        goto out;
 466
 467        /* Remaining checks don't apply to root cpuset */
 468        ret = 0;
 469        if (cur == &top_cpuset)
 470                goto out;
 471
 472        par = parent_cs(cur);
 473
 474        /* On legacy hiearchy, we must be a subset of our parent cpuset. */
 475        ret = -EACCES;
 476        if (!cgroup_on_dfl(cur->css.cgroup) && !is_cpuset_subset(trial, par))
 477                goto out;
 478
 479        /*
 480         * If either I or some sibling (!= me) is exclusive, we can't
 481         * overlap
 482         */
 483        ret = -EINVAL;
 484        cpuset_for_each_child(c, css, par) {
 485                if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
 486                    c != cur &&
 487                    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
 488                        goto out;
 489                if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
 490                    c != cur &&
 491                    nodes_intersects(trial->mems_allowed, c->mems_allowed))
 492                        goto out;
 493        }
 494
 495        /*
 496         * Cpusets with tasks - existing or newly being attached - can't
 497         * be changed to have empty cpus_allowed or mems_allowed.
 498         */
 499        ret = -ENOSPC;
 500        if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) {
 501                if (!cpumask_empty(cur->cpus_allowed) &&
 502                    cpumask_empty(trial->cpus_allowed))
 503                        goto out;
 504                if (!nodes_empty(cur->mems_allowed) &&
 505                    nodes_empty(trial->mems_allowed))
 506                        goto out;
 507        }
 508
 509        /*
 510         * We can't shrink if we won't have enough room for SCHED_DEADLINE
 511         * tasks.
 512         */
 513        ret = -EBUSY;
 514        if (is_cpu_exclusive(cur) &&
 515            !cpuset_cpumask_can_shrink(cur->cpus_allowed,
 516                                       trial->cpus_allowed))
 517                goto out;
 518
 519        ret = 0;
 520out:
 521        rcu_read_unlock();
 522        return ret;
 523}
 524
 525#ifdef CONFIG_SMP
 526/*
 527 * Helper routine for generate_sched_domains().
 528 * Do cpusets a, b have overlapping effective cpus_allowed masks?
 529 */
 530static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
 531{
 532        return cpumask_intersects(a->effective_cpus, b->effective_cpus);
 533}
 534
 535static void
 536update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
 537{
 538        if (dattr->relax_domain_level < c->relax_domain_level)
 539                dattr->relax_domain_level = c->relax_domain_level;
 540        return;
 541}
 542
 543static void update_domain_attr_tree(struct sched_domain_attr *dattr,
 544                                    struct cpuset *root_cs)
 545{
 546        struct cpuset *cp;
 547        struct cgroup_subsys_state *pos_css;
 548
 549        rcu_read_lock();
 550        cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
 551                /* skip the whole subtree if @cp doesn't have any CPU */
 552                if (cpumask_empty(cp->cpus_allowed)) {
 553                        pos_css = css_rightmost_descendant(pos_css);
 554                        continue;
 555                }
 556
 557                if (is_sched_load_balance(cp))
 558                        update_domain_attr(dattr, cp);
 559        }
 560        rcu_read_unlock();
 561}
 562
 563/*
 564 * generate_sched_domains()
 565 *
 566 * This function builds a partial partition of the systems CPUs
 567 * A 'partial partition' is a set of non-overlapping subsets whose
 568 * union is a subset of that set.
 569 * The output of this function needs to be passed to kernel/sched/core.c
 570 * partition_sched_domains() routine, which will rebuild the scheduler's
 571 * load balancing domains (sched domains) as specified by that partial
 572 * partition.
 573 *
 574 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
 575 * for a background explanation of this.
 576 *
 577 * Does not return errors, on the theory that the callers of this
 578 * routine would rather not worry about failures to rebuild sched
 579 * domains when operating in the severe memory shortage situations
 580 * that could cause allocation failures below.
 581 *
 582 * Must be called with cpuset_mutex held.
 583 *
 584 * The three key local variables below are:
 585 *    q  - a linked-list queue of cpuset pointers, used to implement a
 586 *         top-down scan of all cpusets.  This scan loads a pointer
 587 *         to each cpuset marked is_sched_load_balance into the
 588 *         array 'csa'.  For our purposes, rebuilding the schedulers
 589 *         sched domains, we can ignore !is_sched_load_balance cpusets.
 590 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 591 *         that need to be load balanced, for convenient iterative
 592 *         access by the subsequent code that finds the best partition,
 593 *         i.e the set of domains (subsets) of CPUs such that the
 594 *         cpus_allowed of every cpuset marked is_sched_load_balance
 595 *         is a subset of one of these domains, while there are as
 596 *         many such domains as possible, each as small as possible.
 597 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 598 *         the kernel/sched/core.c routine partition_sched_domains() in a
 599 *         convenient format, that can be easily compared to the prior
 600 *         value to determine what partition elements (sched domains)
 601 *         were changed (added or removed.)
 602 *
 603 * Finding the best partition (set of domains):
 604 *      The triple nested loops below over i, j, k scan over the
 605 *      load balanced cpusets (using the array of cpuset pointers in
 606 *      csa[]) looking for pairs of cpusets that have overlapping
 607 *      cpus_allowed, but which don't have the same 'pn' partition
 608 *      number and gives them in the same partition number.  It keeps
 609 *      looping on the 'restart' label until it can no longer find
 610 *      any such pairs.
 611 *
 612 *      The union of the cpus_allowed masks from the set of
 613 *      all cpusets having the same 'pn' value then form the one
 614 *      element of the partition (one sched domain) to be passed to
 615 *      partition_sched_domains().
 616 */
 617static int generate_sched_domains(cpumask_var_t **domains,
 618                        struct sched_domain_attr **attributes)
 619{
 620        struct cpuset *cp;      /* scans q */
 621        struct cpuset **csa;    /* array of all cpuset ptrs */
 622        int csn;                /* how many cpuset ptrs in csa so far */
 623        int i, j, k;            /* indices for partition finding loops */
 624        cpumask_var_t *doms;    /* resulting partition; i.e. sched domains */
 625        cpumask_var_t non_isolated_cpus;  /* load balanced CPUs */
 626        struct sched_domain_attr *dattr;  /* attributes for custom domains */
 627        int ndoms = 0;          /* number of sched domains in result */
 628        int nslot;              /* next empty doms[] struct cpumask slot */
 629        struct cgroup_subsys_state *pos_css;
 630
 631        doms = NULL;
 632        dattr = NULL;
 633        csa = NULL;
 634
 635        if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
 636                goto done;
 637        cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
 638
 639        /* Special case for the 99% of systems with one, full, sched domain */
 640        if (is_sched_load_balance(&top_cpuset)) {
 641                ndoms = 1;
 642                doms = alloc_sched_domains(ndoms);
 643                if (!doms)
 644                        goto done;
 645
 646                dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
 647                if (dattr) {
 648                        *dattr = SD_ATTR_INIT;
 649                        update_domain_attr_tree(dattr, &top_cpuset);
 650                }
 651                cpumask_and(doms[0], top_cpuset.effective_cpus,
 652                                     non_isolated_cpus);
 653
 654                goto done;
 655        }
 656
 657        csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
 658        if (!csa)
 659                goto done;
 660        csn = 0;
 661
 662        rcu_read_lock();
 663        cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
 664                if (cp == &top_cpuset)
 665                        continue;
 666                /*
 667                 * Continue traversing beyond @cp iff @cp has some CPUs and
 668                 * isn't load balancing.  The former is obvious.  The
 669                 * latter: All child cpusets contain a subset of the
 670                 * parent's cpus, so just skip them, and then we call
 671                 * update_domain_attr_tree() to calc relax_domain_level of
 672                 * the corresponding sched domain.
 673                 */
 674                if (!cpumask_empty(cp->cpus_allowed) &&
 675                    !(is_sched_load_balance(cp) &&
 676                      cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
 677                        continue;
 678
 679                if (is_sched_load_balance(cp))
 680                        csa[csn++] = cp;
 681
 682                /* skip @cp's subtree */
 683                pos_css = css_rightmost_descendant(pos_css);
 684        }
 685        rcu_read_unlock();
 686
 687        for (i = 0; i < csn; i++)
 688                csa[i]->pn = i;
 689        ndoms = csn;
 690
 691restart:
 692        /* Find the best partition (set of sched domains) */
 693        for (i = 0; i < csn; i++) {
 694                struct cpuset *a = csa[i];
 695                int apn = a->pn;
 696
 697                for (j = 0; j < csn; j++) {
 698                        struct cpuset *b = csa[j];
 699                        int bpn = b->pn;
 700
 701                        if (apn != bpn && cpusets_overlap(a, b)) {
 702                                for (k = 0; k < csn; k++) {
 703                                        struct cpuset *c = csa[k];
 704
 705                                        if (c->pn == bpn)
 706                                                c->pn = apn;
 707                                }
 708                                ndoms--;        /* one less element */
 709                                goto restart;
 710                        }
 711                }
 712        }
 713
 714        /*
 715         * Now we know how many domains to create.
 716         * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
 717         */
 718        doms = alloc_sched_domains(ndoms);
 719        if (!doms)
 720                goto done;
 721
 722        /*
 723         * The rest of the code, including the scheduler, can deal with
 724         * dattr==NULL case. No need to abort if alloc fails.
 725         */
 726        dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
 727
 728        for (nslot = 0, i = 0; i < csn; i++) {
 729                struct cpuset *a = csa[i];
 730                struct cpumask *dp;
 731                int apn = a->pn;
 732
 733                if (apn < 0) {
 734                        /* Skip completed partitions */
 735                        continue;
 736                }
 737
 738                dp = doms[nslot];
 739
 740                if (nslot == ndoms) {
 741                        static int warnings = 10;
 742                        if (warnings) {
 743                                pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
 744                                        nslot, ndoms, csn, i, apn);
 745                                warnings--;
 746                        }
 747                        continue;
 748                }
 749
 750                cpumask_clear(dp);
 751                if (dattr)
 752                        *(dattr + nslot) = SD_ATTR_INIT;
 753                for (j = i; j < csn; j++) {
 754                        struct cpuset *b = csa[j];
 755
 756                        if (apn == b->pn) {
 757                                cpumask_or(dp, dp, b->effective_cpus);
 758                                cpumask_and(dp, dp, non_isolated_cpus);
 759                                if (dattr)
 760                                        update_domain_attr_tree(dattr + nslot, b);
 761
 762                                /* Done with this partition */
 763                                b->pn = -1;
 764                        }
 765                }
 766                nslot++;
 767        }
 768        BUG_ON(nslot != ndoms);
 769
 770done:
 771        free_cpumask_var(non_isolated_cpus);
 772        kfree(csa);
 773
 774        /*
 775         * Fallback to the default domain if kmalloc() failed.
 776         * See comments in partition_sched_domains().
 777         */
 778        if (doms == NULL)
 779                ndoms = 1;
 780
 781        *domains    = doms;
 782        *attributes = dattr;
 783        return ndoms;
 784}
 785
 786/*
 787 * Rebuild scheduler domains.
 788 *
 789 * If the flag 'sched_load_balance' of any cpuset with non-empty
 790 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 791 * which has that flag enabled, or if any cpuset with a non-empty
 792 * 'cpus' is removed, then call this routine to rebuild the
 793 * scheduler's dynamic sched domains.
 794 *
 795 * Call with cpuset_mutex held.  Takes get_online_cpus().
 796 */
 797static void rebuild_sched_domains_locked(void)
 798{
 799        struct sched_domain_attr *attr;
 800        cpumask_var_t *doms;
 801        int ndoms;
 802
 803        lockdep_assert_held(&cpuset_mutex);
 804        get_online_cpus();
 805
 806        /*
 807         * We have raced with CPU hotplug. Don't do anything to avoid
 808         * passing doms with offlined cpu to partition_sched_domains().
 809         * Anyways, hotplug work item will rebuild sched domains.
 810         */
 811        if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
 812                goto out;
 813
 814        /* Generate domain masks and attrs */
 815        ndoms = generate_sched_domains(&doms, &attr);
 816
 817        /* Have scheduler rebuild the domains */
 818        partition_sched_domains(ndoms, doms, attr);
 819out:
 820        put_online_cpus();
 821}
 822#else /* !CONFIG_SMP */
 823static void rebuild_sched_domains_locked(void)
 824{
 825}
 826#endif /* CONFIG_SMP */
 827
 828void rebuild_sched_domains(void)
 829{
 830        mutex_lock(&cpuset_mutex);
 831        rebuild_sched_domains_locked();
 832        mutex_unlock(&cpuset_mutex);
 833}
 834
 835/**
 836 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 837 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 838 *
 839 * Iterate through each task of @cs updating its cpus_allowed to the
 840 * effective cpuset's.  As this function is called with cpuset_mutex held,
 841 * cpuset membership stays stable.
 842 */
 843static void update_tasks_cpumask(struct cpuset *cs)
 844{
 845        struct css_task_iter it;
 846        struct task_struct *task;
 847
 848        css_task_iter_start(&cs->css, &it);
 849        while ((task = css_task_iter_next(&it)))
 850                set_cpus_allowed_ptr(task, cs->effective_cpus);
 851        css_task_iter_end(&it);
 852}
 853
 854/*
 855 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
 856 * @cs: the cpuset to consider
 857 * @new_cpus: temp variable for calculating new effective_cpus
 858 *
 859 * When congifured cpumask is changed, the effective cpumasks of this cpuset
 860 * and all its descendants need to be updated.
 861 *
 862 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
 863 *
 864 * Called with cpuset_mutex held
 865 */
 866static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
 867{
 868        struct cpuset *cp;
 869        struct cgroup_subsys_state *pos_css;
 870        bool need_rebuild_sched_domains = false;
 871
 872        rcu_read_lock();
 873        cpuset_for_each_descendant_pre(cp, pos_css, cs) {
 874                struct cpuset *parent = parent_cs(cp);
 875
 876                cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
 877
 878                /*
 879                 * If it becomes empty, inherit the effective mask of the
 880                 * parent, which is guaranteed to have some CPUs.
 881                 */
 882                if (cgroup_on_dfl(cp->css.cgroup) && cpumask_empty(new_cpus))
 883                        cpumask_copy(new_cpus, parent->effective_cpus);
 884
 885                /* Skip the whole subtree if the cpumask remains the same. */
 886                if (cpumask_equal(new_cpus, cp->effective_cpus)) {
 887                        pos_css = css_rightmost_descendant(pos_css);
 888                        continue;
 889                }
 890
 891                if (!css_tryget_online(&cp->css))
 892                        continue;
 893                rcu_read_unlock();
 894
 895                spin_lock_irq(&callback_lock);
 896                cpumask_copy(cp->effective_cpus, new_cpus);
 897                spin_unlock_irq(&callback_lock);
 898
 899                WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
 900                        !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
 901
 902                update_tasks_cpumask(cp);
 903
 904                /*
 905                 * If the effective cpumask of any non-empty cpuset is changed,
 906                 * we need to rebuild sched domains.
 907                 */
 908                if (!cpumask_empty(cp->cpus_allowed) &&
 909                    is_sched_load_balance(cp))
 910                        need_rebuild_sched_domains = true;
 911
 912                rcu_read_lock();
 913                css_put(&cp->css);
 914        }
 915        rcu_read_unlock();
 916
 917        if (need_rebuild_sched_domains)
 918                rebuild_sched_domains_locked();
 919}
 920
 921/**
 922 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 923 * @cs: the cpuset to consider
 924 * @trialcs: trial cpuset
 925 * @buf: buffer of cpu numbers written to this cpuset
 926 */
 927static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
 928                          const char *buf)
 929{
 930        int retval;
 931
 932        /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
 933        if (cs == &top_cpuset)
 934                return -EACCES;
 935
 936        /*
 937         * An empty cpus_allowed is ok only if the cpuset has no tasks.
 938         * Since cpulist_parse() fails on an empty mask, we special case
 939         * that parsing.  The validate_change() call ensures that cpusets
 940         * with tasks have cpus.
 941         */
 942        if (!*buf) {
 943                cpumask_clear(trialcs->cpus_allowed);
 944        } else {
 945                retval = cpulist_parse(buf, trialcs->cpus_allowed);
 946                if (retval < 0)
 947                        return retval;
 948
 949                if (!cpumask_subset(trialcs->cpus_allowed,
 950                                    top_cpuset.cpus_allowed))
 951                        return -EINVAL;
 952        }
 953
 954        /* Nothing to do if the cpus didn't change */
 955        if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
 956                return 0;
 957
 958        retval = validate_change(cs, trialcs);
 959        if (retval < 0)
 960                return retval;
 961
 962        spin_lock_irq(&callback_lock);
 963        cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
 964        spin_unlock_irq(&callback_lock);
 965
 966        /* use trialcs->cpus_allowed as a temp variable */
 967        update_cpumasks_hier(cs, trialcs->cpus_allowed);
 968        return 0;
 969}
 970
 971/*
 972 * cpuset_migrate_mm
 973 *
 974 *    Migrate memory region from one set of nodes to another.
 975 *
 976 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 977 *    so that the migration code can allocate pages on these nodes.
 978 *
 979 *    While the mm_struct we are migrating is typically from some
 980 *    other task, the task_struct mems_allowed that we are hacking
 981 *    is for our current task, which must allocate new pages for that
 982 *    migrating memory region.
 983 */
 984
 985static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
 986                                                        const nodemask_t *to)
 987{
 988        struct task_struct *tsk = current;
 989
 990        tsk->mems_allowed = *to;
 991
 992        do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
 993
 994        rcu_read_lock();
 995        guarantee_online_mems(task_cs(tsk), &tsk->mems_allowed);
 996        rcu_read_unlock();
 997}
 998
 999/*
1000 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1001 * @tsk: the task to change
1002 * @newmems: new nodes that the task will be set
1003 *
1004 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1005 * we structure updates as setting all new allowed nodes, then clearing newly
1006 * disallowed ones.
1007 */
1008static void cpuset_change_task_nodemask(struct task_struct *tsk,
1009                                        nodemask_t *newmems)
1010{
1011        bool need_loop;
1012
1013        /*
1014         * Allow tasks that have access to memory reserves because they have
1015         * been OOM killed to get memory anywhere.
1016         */
1017        if (unlikely(test_thread_flag(TIF_MEMDIE)))
1018                return;
1019        if (current->flags & PF_EXITING) /* Let dying task have memory */
1020                return;
1021
1022        task_lock(tsk);
1023        /*
1024         * Determine if a loop is necessary if another thread is doing
1025         * read_mems_allowed_begin().  If at least one node remains unchanged and
1026         * tsk does not have a mempolicy, then an empty nodemask will not be
1027         * possible when mems_allowed is larger than a word.
1028         */
1029        need_loop = task_has_mempolicy(tsk) ||
1030                        !nodes_intersects(*newmems, tsk->mems_allowed);
1031
1032        if (need_loop) {
1033                local_irq_disable();
1034                write_seqcount_begin(&tsk->mems_allowed_seq);
1035        }
1036
1037        nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1038        mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1039
1040        mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1041        tsk->mems_allowed = *newmems;
1042
1043        if (need_loop) {
1044                write_seqcount_end(&tsk->mems_allowed_seq);
1045                local_irq_enable();
1046        }
1047
1048        task_unlock(tsk);
1049}
1050
1051static void *cpuset_being_rebound;
1052
1053/**
1054 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1055 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1056 *
1057 * Iterate through each task of @cs updating its mems_allowed to the
1058 * effective cpuset's.  As this function is called with cpuset_mutex held,
1059 * cpuset membership stays stable.
1060 */
1061static void update_tasks_nodemask(struct cpuset *cs)
1062{
1063        static nodemask_t newmems;      /* protected by cpuset_mutex */
1064        struct css_task_iter it;
1065        struct task_struct *task;
1066
1067        cpuset_being_rebound = cs;              /* causes mpol_dup() rebind */
1068
1069        guarantee_online_mems(cs, &newmems);
1070
1071        /*
1072         * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1073         * take while holding tasklist_lock.  Forks can happen - the
1074         * mpol_dup() cpuset_being_rebound check will catch such forks,
1075         * and rebind their vma mempolicies too.  Because we still hold
1076         * the global cpuset_mutex, we know that no other rebind effort
1077         * will be contending for the global variable cpuset_being_rebound.
1078         * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1079         * is idempotent.  Also migrate pages in each mm to new nodes.
1080         */
1081        css_task_iter_start(&cs->css, &it);
1082        while ((task = css_task_iter_next(&it))) {
1083                struct mm_struct *mm;
1084                bool migrate;
1085
1086                cpuset_change_task_nodemask(task, &newmems);
1087
1088                mm = get_task_mm(task);
1089                if (!mm)
1090                        continue;
1091
1092                migrate = is_memory_migrate(cs);
1093
1094                mpol_rebind_mm(mm, &cs->mems_allowed);
1095                if (migrate)
1096                        cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1097                mmput(mm);
1098        }
1099        css_task_iter_end(&it);
1100
1101        /*
1102         * All the tasks' nodemasks have been updated, update
1103         * cs->old_mems_allowed.
1104         */
1105        cs->old_mems_allowed = newmems;
1106
1107        /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1108        cpuset_being_rebound = NULL;
1109}
1110
1111/*
1112 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1113 * @cs: the cpuset to consider
1114 * @new_mems: a temp variable for calculating new effective_mems
1115 *
1116 * When configured nodemask is changed, the effective nodemasks of this cpuset
1117 * and all its descendants need to be updated.
1118 *
1119 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1120 *
1121 * Called with cpuset_mutex held
1122 */
1123static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1124{
1125        struct cpuset *cp;
1126        struct cgroup_subsys_state *pos_css;
1127
1128        rcu_read_lock();
1129        cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1130                struct cpuset *parent = parent_cs(cp);
1131
1132                nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1133
1134                /*
1135                 * If it becomes empty, inherit the effective mask of the
1136                 * parent, which is guaranteed to have some MEMs.
1137                 */
1138                if (cgroup_on_dfl(cp->css.cgroup) && nodes_empty(*new_mems))
1139                        *new_mems = parent->effective_mems;
1140
1141                /* Skip the whole subtree if the nodemask remains the same. */
1142                if (nodes_equal(*new_mems, cp->effective_mems)) {
1143                        pos_css = css_rightmost_descendant(pos_css);
1144                        continue;
1145                }
1146
1147                if (!css_tryget_online(&cp->css))
1148                        continue;
1149                rcu_read_unlock();
1150
1151                spin_lock_irq(&callback_lock);
1152                cp->effective_mems = *new_mems;
1153                spin_unlock_irq(&callback_lock);
1154
1155                WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
1156                        !nodes_equal(cp->mems_allowed, cp->effective_mems));
1157
1158                update_tasks_nodemask(cp);
1159
1160                rcu_read_lock();
1161                css_put(&cp->css);
1162        }
1163        rcu_read_unlock();
1164}
1165
1166/*
1167 * Handle user request to change the 'mems' memory placement
1168 * of a cpuset.  Needs to validate the request, update the
1169 * cpusets mems_allowed, and for each task in the cpuset,
1170 * update mems_allowed and rebind task's mempolicy and any vma
1171 * mempolicies and if the cpuset is marked 'memory_migrate',
1172 * migrate the tasks pages to the new memory.
1173 *
1174 * Call with cpuset_mutex held. May take callback_lock during call.
1175 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1176 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1177 * their mempolicies to the cpusets new mems_allowed.
1178 */
1179static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1180                           const char *buf)
1181{
1182        int retval;
1183
1184        /*
1185         * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1186         * it's read-only
1187         */
1188        if (cs == &top_cpuset) {
1189                retval = -EACCES;
1190                goto done;
1191        }
1192
1193        /*
1194         * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1195         * Since nodelist_parse() fails on an empty mask, we special case
1196         * that parsing.  The validate_change() call ensures that cpusets
1197         * with tasks have memory.
1198         */
1199        if (!*buf) {
1200                nodes_clear(trialcs->mems_allowed);
1201        } else {
1202                retval = nodelist_parse(buf, trialcs->mems_allowed);
1203                if (retval < 0)
1204                        goto done;
1205
1206                if (!nodes_subset(trialcs->mems_allowed,
1207                                  top_cpuset.mems_allowed)) {
1208                        retval = -EINVAL;
1209                        goto done;
1210                }
1211        }
1212
1213        if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1214                retval = 0;             /* Too easy - nothing to do */
1215                goto done;
1216        }
1217        retval = validate_change(cs, trialcs);
1218        if (retval < 0)
1219                goto done;
1220
1221        spin_lock_irq(&callback_lock);
1222        cs->mems_allowed = trialcs->mems_allowed;
1223        spin_unlock_irq(&callback_lock);
1224
1225        /* use trialcs->mems_allowed as a temp variable */
1226        update_nodemasks_hier(cs, &cs->mems_allowed);
1227done:
1228        return retval;
1229}
1230
1231int current_cpuset_is_being_rebound(void)
1232{
1233        int ret;
1234
1235        rcu_read_lock();
1236        ret = task_cs(current) == cpuset_being_rebound;
1237        rcu_read_unlock();
1238
1239        return ret;
1240}
1241
1242static int update_relax_domain_level(struct cpuset *cs, s64 val)
1243{
1244#ifdef CONFIG_SMP
1245        if (val < -1 || val >= sched_domain_level_max)
1246                return -EINVAL;
1247#endif
1248
1249        if (val != cs->relax_domain_level) {
1250                cs->relax_domain_level = val;
1251                if (!cpumask_empty(cs->cpus_allowed) &&
1252                    is_sched_load_balance(cs))
1253                        rebuild_sched_domains_locked();
1254        }
1255
1256        return 0;
1257}
1258
1259/**
1260 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1261 * @cs: the cpuset in which each task's spread flags needs to be changed
1262 *
1263 * Iterate through each task of @cs updating its spread flags.  As this
1264 * function is called with cpuset_mutex held, cpuset membership stays
1265 * stable.
1266 */
1267static void update_tasks_flags(struct cpuset *cs)
1268{
1269        struct css_task_iter it;
1270        struct task_struct *task;
1271
1272        css_task_iter_start(&cs->css, &it);
1273        while ((task = css_task_iter_next(&it)))
1274                cpuset_update_task_spread_flag(cs, task);
1275        css_task_iter_end(&it);
1276}
1277
1278/*
1279 * update_flag - read a 0 or a 1 in a file and update associated flag
1280 * bit:         the bit to update (see cpuset_flagbits_t)
1281 * cs:          the cpuset to update
1282 * turning_on:  whether the flag is being set or cleared
1283 *
1284 * Call with cpuset_mutex held.
1285 */
1286
1287static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1288                       int turning_on)
1289{
1290        struct cpuset *trialcs;
1291        int balance_flag_changed;
1292        int spread_flag_changed;
1293        int err;
1294
1295        trialcs = alloc_trial_cpuset(cs);
1296        if (!trialcs)
1297                return -ENOMEM;
1298
1299        if (turning_on)
1300                set_bit(bit, &trialcs->flags);
1301        else
1302                clear_bit(bit, &trialcs->flags);
1303
1304        err = validate_change(cs, trialcs);
1305        if (err < 0)
1306                goto out;
1307
1308        balance_flag_changed = (is_sched_load_balance(cs) !=
1309                                is_sched_load_balance(trialcs));
1310
1311        spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1312                        || (is_spread_page(cs) != is_spread_page(trialcs)));
1313
1314        spin_lock_irq(&callback_lock);
1315        cs->flags = trialcs->flags;
1316        spin_unlock_irq(&callback_lock);
1317
1318        if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1319                rebuild_sched_domains_locked();
1320
1321        if (spread_flag_changed)
1322                update_tasks_flags(cs);
1323out:
1324        free_trial_cpuset(trialcs);
1325        return err;
1326}
1327
1328/*
1329 * Frequency meter - How fast is some event occurring?
1330 *
1331 * These routines manage a digitally filtered, constant time based,
1332 * event frequency meter.  There are four routines:
1333 *   fmeter_init() - initialize a frequency meter.
1334 *   fmeter_markevent() - called each time the event happens.
1335 *   fmeter_getrate() - returns the recent rate of such events.
1336 *   fmeter_update() - internal routine used to update fmeter.
1337 *
1338 * A common data structure is passed to each of these routines,
1339 * which is used to keep track of the state required to manage the
1340 * frequency meter and its digital filter.
1341 *
1342 * The filter works on the number of events marked per unit time.
1343 * The filter is single-pole low-pass recursive (IIR).  The time unit
1344 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
1345 * simulate 3 decimal digits of precision (multiplied by 1000).
1346 *
1347 * With an FM_COEF of 933, and a time base of 1 second, the filter
1348 * has a half-life of 10 seconds, meaning that if the events quit
1349 * happening, then the rate returned from the fmeter_getrate()
1350 * will be cut in half each 10 seconds, until it converges to zero.
1351 *
1352 * It is not worth doing a real infinitely recursive filter.  If more
1353 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1354 * just compute FM_MAXTICKS ticks worth, by which point the level
1355 * will be stable.
1356 *
1357 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1358 * arithmetic overflow in the fmeter_update() routine.
1359 *
1360 * Given the simple 32 bit integer arithmetic used, this meter works
1361 * best for reporting rates between one per millisecond (msec) and
1362 * one per 32 (approx) seconds.  At constant rates faster than one
1363 * per msec it maxes out at values just under 1,000,000.  At constant
1364 * rates between one per msec, and one per second it will stabilize
1365 * to a value N*1000, where N is the rate of events per second.
1366 * At constant rates between one per second and one per 32 seconds,
1367 * it will be choppy, moving up on the seconds that have an event,
1368 * and then decaying until the next event.  At rates slower than
1369 * about one in 32 seconds, it decays all the way back to zero between
1370 * each event.
1371 */
1372
1373#define FM_COEF 933             /* coefficient for half-life of 10 secs */
1374#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1375#define FM_MAXCNT 1000000       /* limit cnt to avoid overflow */
1376#define FM_SCALE 1000           /* faux fixed point scale */
1377
1378/* Initialize a frequency meter */
1379static void fmeter_init(struct fmeter *fmp)
1380{
1381        fmp->cnt = 0;
1382        fmp->val = 0;
1383        fmp->time = 0;
1384        spin_lock_init(&fmp->lock);
1385}
1386
1387/* Internal meter update - process cnt events and update value */
1388static void fmeter_update(struct fmeter *fmp)
1389{
1390        time_t now = get_seconds();
1391        time_t ticks = now - fmp->time;
1392
1393        if (ticks == 0)
1394                return;
1395
1396        ticks = min(FM_MAXTICKS, ticks);
1397        while (ticks-- > 0)
1398                fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1399        fmp->time = now;
1400
1401        fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1402        fmp->cnt = 0;
1403}
1404
1405/* Process any previous ticks, then bump cnt by one (times scale). */
1406static void fmeter_markevent(struct fmeter *fmp)
1407{
1408        spin_lock(&fmp->lock);
1409        fmeter_update(fmp);
1410        fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1411        spin_unlock(&fmp->lock);
1412}
1413
1414/* Process any previous ticks, then return current value. */
1415static int fmeter_getrate(struct fmeter *fmp)
1416{
1417        int val;
1418
1419        spin_lock(&fmp->lock);
1420        fmeter_update(fmp);
1421        val = fmp->val;
1422        spin_unlock(&fmp->lock);
1423        return val;
1424}
1425
1426static struct cpuset *cpuset_attach_old_cs;
1427
1428/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1429static int cpuset_can_attach(struct cgroup_subsys_state *css,
1430                             struct cgroup_taskset *tset)
1431{
1432        struct cpuset *cs = css_cs(css);
1433        struct task_struct *task;
1434        int ret;
1435
1436        /* used later by cpuset_attach() */
1437        cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset));
1438
1439        mutex_lock(&cpuset_mutex);
1440
1441        /* allow moving tasks into an empty cpuset if on default hierarchy */
1442        ret = -ENOSPC;
1443        if (!cgroup_on_dfl(css->cgroup) &&
1444            (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1445                goto out_unlock;
1446
1447        cgroup_taskset_for_each(task, tset) {
1448                ret = task_can_attach(task, cs->cpus_allowed);
1449                if (ret)
1450                        goto out_unlock;
1451                ret = security_task_setscheduler(task);
1452                if (ret)
1453                        goto out_unlock;
1454        }
1455
1456        /*
1457         * Mark attach is in progress.  This makes validate_change() fail
1458         * changes which zero cpus/mems_allowed.
1459         */
1460        cs->attach_in_progress++;
1461        ret = 0;
1462out_unlock:
1463        mutex_unlock(&cpuset_mutex);
1464        return ret;
1465}
1466
1467static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
1468                                 struct cgroup_taskset *tset)
1469{
1470        mutex_lock(&cpuset_mutex);
1471        css_cs(css)->attach_in_progress--;
1472        mutex_unlock(&cpuset_mutex);
1473}
1474
1475/*
1476 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1477 * but we can't allocate it dynamically there.  Define it global and
1478 * allocate from cpuset_init().
1479 */
1480static cpumask_var_t cpus_attach;
1481
1482static void cpuset_attach(struct cgroup_subsys_state *css,
1483                          struct cgroup_taskset *tset)
1484{
1485        /* static buf protected by cpuset_mutex */
1486        static nodemask_t cpuset_attach_nodemask_to;
1487        struct mm_struct *mm;
1488        struct task_struct *task;
1489        struct task_struct *leader = cgroup_taskset_first(tset);
1490        struct cpuset *cs = css_cs(css);
1491        struct cpuset *oldcs = cpuset_attach_old_cs;
1492
1493        mutex_lock(&cpuset_mutex);
1494
1495        /* prepare for attach */
1496        if (cs == &top_cpuset)
1497                cpumask_copy(cpus_attach, cpu_possible_mask);
1498        else
1499                guarantee_online_cpus(cs, cpus_attach);
1500
1501        guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1502
1503        cgroup_taskset_for_each(task, tset) {
1504                /*
1505                 * can_attach beforehand should guarantee that this doesn't
1506                 * fail.  TODO: have a better way to handle failure here
1507                 */
1508                WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1509
1510                cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1511                cpuset_update_task_spread_flag(cs, task);
1512        }
1513
1514        /*
1515         * Change mm, possibly for multiple threads in a threadgroup. This is
1516         * expensive and may sleep.
1517         */
1518        cpuset_attach_nodemask_to = cs->effective_mems;
1519        mm = get_task_mm(leader);
1520        if (mm) {
1521                mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1522
1523                /*
1524                 * old_mems_allowed is the same with mems_allowed here, except
1525                 * if this task is being moved automatically due to hotplug.
1526                 * In that case @mems_allowed has been updated and is empty,
1527                 * so @old_mems_allowed is the right nodesets that we migrate
1528                 * mm from.
1529                 */
1530                if (is_memory_migrate(cs)) {
1531                        cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1532                                          &cpuset_attach_nodemask_to);
1533                }
1534                mmput(mm);
1535        }
1536
1537        cs->old_mems_allowed = cpuset_attach_nodemask_to;
1538
1539        cs->attach_in_progress--;
1540        if (!cs->attach_in_progress)
1541                wake_up(&cpuset_attach_wq);
1542
1543        mutex_unlock(&cpuset_mutex);
1544}
1545
1546/* The various types of files and directories in a cpuset file system */
1547
1548typedef enum {
1549        FILE_MEMORY_MIGRATE,
1550        FILE_CPULIST,
1551        FILE_MEMLIST,
1552        FILE_EFFECTIVE_CPULIST,
1553        FILE_EFFECTIVE_MEMLIST,
1554        FILE_CPU_EXCLUSIVE,
1555        FILE_MEM_EXCLUSIVE,
1556        FILE_MEM_HARDWALL,
1557        FILE_SCHED_LOAD_BALANCE,
1558        FILE_SCHED_RELAX_DOMAIN_LEVEL,
1559        FILE_MEMORY_PRESSURE_ENABLED,
1560        FILE_MEMORY_PRESSURE,
1561        FILE_SPREAD_PAGE,
1562        FILE_SPREAD_SLAB,
1563} cpuset_filetype_t;
1564
1565static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1566                            u64 val)
1567{
1568        struct cpuset *cs = css_cs(css);
1569        cpuset_filetype_t type = cft->private;
1570        int retval = 0;
1571
1572        mutex_lock(&cpuset_mutex);
1573        if (!is_cpuset_online(cs)) {
1574                retval = -ENODEV;
1575                goto out_unlock;
1576        }
1577
1578        switch (type) {
1579        case FILE_CPU_EXCLUSIVE:
1580                retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1581                break;
1582        case FILE_MEM_EXCLUSIVE:
1583                retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1584                break;
1585        case FILE_MEM_HARDWALL:
1586                retval = update_flag(CS_MEM_HARDWALL, cs, val);
1587                break;
1588        case FILE_SCHED_LOAD_BALANCE:
1589                retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1590                break;
1591        case FILE_MEMORY_MIGRATE:
1592                retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1593                break;
1594        case FILE_MEMORY_PRESSURE_ENABLED:
1595                cpuset_memory_pressure_enabled = !!val;
1596                break;
1597        case FILE_MEMORY_PRESSURE:
1598                retval = -EACCES;
1599                break;
1600        case FILE_SPREAD_PAGE:
1601                retval = update_flag(CS_SPREAD_PAGE, cs, val);
1602                break;
1603        case FILE_SPREAD_SLAB:
1604                retval = update_flag(CS_SPREAD_SLAB, cs, val);
1605                break;
1606        default:
1607                retval = -EINVAL;
1608                break;
1609        }
1610out_unlock:
1611        mutex_unlock(&cpuset_mutex);
1612        return retval;
1613}
1614
1615static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1616                            s64 val)
1617{
1618        struct cpuset *cs = css_cs(css);
1619        cpuset_filetype_t type = cft->private;
1620        int retval = -ENODEV;
1621
1622        mutex_lock(&cpuset_mutex);
1623        if (!is_cpuset_online(cs))
1624                goto out_unlock;
1625
1626        switch (type) {
1627        case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1628                retval = update_relax_domain_level(cs, val);
1629                break;
1630        default:
1631                retval = -EINVAL;
1632                break;
1633        }
1634out_unlock:
1635        mutex_unlock(&cpuset_mutex);
1636        return retval;
1637}
1638
1639/*
1640 * Common handling for a write to a "cpus" or "mems" file.
1641 */
1642static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1643                                    char *buf, size_t nbytes, loff_t off)
1644{
1645        struct cpuset *cs = css_cs(of_css(of));
1646        struct cpuset *trialcs;
1647        int retval = -ENODEV;
1648
1649        buf = strstrip(buf);
1650
1651        /*
1652         * CPU or memory hotunplug may leave @cs w/o any execution
1653         * resources, in which case the hotplug code asynchronously updates
1654         * configuration and transfers all tasks to the nearest ancestor
1655         * which can execute.
1656         *
1657         * As writes to "cpus" or "mems" may restore @cs's execution
1658         * resources, wait for the previously scheduled operations before
1659         * proceeding, so that we don't end up keep removing tasks added
1660         * after execution capability is restored.
1661         *
1662         * cpuset_hotplug_work calls back into cgroup core via
1663         * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1664         * operation like this one can lead to a deadlock through kernfs
1665         * active_ref protection.  Let's break the protection.  Losing the
1666         * protection is okay as we check whether @cs is online after
1667         * grabbing cpuset_mutex anyway.  This only happens on the legacy
1668         * hierarchies.
1669         */
1670        css_get(&cs->css);
1671        kernfs_break_active_protection(of->kn);
1672        flush_work(&cpuset_hotplug_work);
1673
1674        mutex_lock(&cpuset_mutex);
1675        if (!is_cpuset_online(cs))
1676                goto out_unlock;
1677
1678        trialcs = alloc_trial_cpuset(cs);
1679        if (!trialcs) {
1680                retval = -ENOMEM;
1681                goto out_unlock;
1682        }
1683
1684        switch (of_cft(of)->private) {
1685        case FILE_CPULIST:
1686                retval = update_cpumask(cs, trialcs, buf);
1687                break;
1688        case FILE_MEMLIST:
1689                retval = update_nodemask(cs, trialcs, buf);
1690                break;
1691        default:
1692                retval = -EINVAL;
1693                break;
1694        }
1695
1696        free_trial_cpuset(trialcs);
1697out_unlock:
1698        mutex_unlock(&cpuset_mutex);
1699        kernfs_unbreak_active_protection(of->kn);
1700        css_put(&cs->css);
1701        return retval ?: nbytes;
1702}
1703
1704/*
1705 * These ascii lists should be read in a single call, by using a user
1706 * buffer large enough to hold the entire map.  If read in smaller
1707 * chunks, there is no guarantee of atomicity.  Since the display format
1708 * used, list of ranges of sequential numbers, is variable length,
1709 * and since these maps can change value dynamically, one could read
1710 * gibberish by doing partial reads while a list was changing.
1711 */
1712static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1713{
1714        struct cpuset *cs = css_cs(seq_css(sf));
1715        cpuset_filetype_t type = seq_cft(sf)->private;
1716        int ret = 0;
1717
1718        spin_lock_irq(&callback_lock);
1719
1720        switch (type) {
1721        case FILE_CPULIST:
1722                seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
1723                break;
1724        case FILE_MEMLIST:
1725                seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1726                break;
1727        case FILE_EFFECTIVE_CPULIST:
1728                seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1729                break;
1730        case FILE_EFFECTIVE_MEMLIST:
1731                seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1732                break;
1733        default:
1734                ret = -EINVAL;
1735        }
1736
1737        spin_unlock_irq(&callback_lock);
1738        return ret;
1739}
1740
1741static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1742{
1743        struct cpuset *cs = css_cs(css);
1744        cpuset_filetype_t type = cft->private;
1745        switch (type) {
1746        case FILE_CPU_EXCLUSIVE:
1747                return is_cpu_exclusive(cs);
1748        case FILE_MEM_EXCLUSIVE:
1749                return is_mem_exclusive(cs);
1750        case FILE_MEM_HARDWALL:
1751                return is_mem_hardwall(cs);
1752        case FILE_SCHED_LOAD_BALANCE:
1753                return is_sched_load_balance(cs);
1754        case FILE_MEMORY_MIGRATE:
1755                return is_memory_migrate(cs);
1756        case FILE_MEMORY_PRESSURE_ENABLED:
1757                return cpuset_memory_pressure_enabled;
1758        case FILE_MEMORY_PRESSURE:
1759                return fmeter_getrate(&cs->fmeter);
1760        case FILE_SPREAD_PAGE:
1761                return is_spread_page(cs);
1762        case FILE_SPREAD_SLAB:
1763                return is_spread_slab(cs);
1764        default:
1765                BUG();
1766        }
1767
1768        /* Unreachable but makes gcc happy */
1769        return 0;
1770}
1771
1772static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1773{
1774        struct cpuset *cs = css_cs(css);
1775        cpuset_filetype_t type = cft->private;
1776        switch (type) {
1777        case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1778                return cs->relax_domain_level;
1779        default:
1780                BUG();
1781        }
1782
1783        /* Unrechable but makes gcc happy */
1784        return 0;
1785}
1786
1787
1788/*
1789 * for the common functions, 'private' gives the type of file
1790 */
1791
1792static struct cftype files[] = {
1793        {
1794                .name = "cpus",
1795                .seq_show = cpuset_common_seq_show,
1796                .write = cpuset_write_resmask,
1797                .max_write_len = (100U + 6 * NR_CPUS),
1798                .private = FILE_CPULIST,
1799        },
1800
1801        {
1802                .name = "mems",
1803                .seq_show = cpuset_common_seq_show,
1804                .write = cpuset_write_resmask,
1805                .max_write_len = (100U + 6 * MAX_NUMNODES),
1806                .private = FILE_MEMLIST,
1807        },
1808
1809        {
1810                .name = "effective_cpus",
1811                .seq_show = cpuset_common_seq_show,
1812                .private = FILE_EFFECTIVE_CPULIST,
1813        },
1814
1815        {
1816                .name = "effective_mems",
1817                .seq_show = cpuset_common_seq_show,
1818                .private = FILE_EFFECTIVE_MEMLIST,
1819        },
1820
1821        {
1822                .name = "cpu_exclusive",
1823                .read_u64 = cpuset_read_u64,
1824                .write_u64 = cpuset_write_u64,
1825                .private = FILE_CPU_EXCLUSIVE,
1826        },
1827
1828        {
1829                .name = "mem_exclusive",
1830                .read_u64 = cpuset_read_u64,
1831                .write_u64 = cpuset_write_u64,
1832                .private = FILE_MEM_EXCLUSIVE,
1833        },
1834
1835        {
1836                .name = "mem_hardwall",
1837                .read_u64 = cpuset_read_u64,
1838                .write_u64 = cpuset_write_u64,
1839                .private = FILE_MEM_HARDWALL,
1840        },
1841
1842        {
1843                .name = "sched_load_balance",
1844                .read_u64 = cpuset_read_u64,
1845                .write_u64 = cpuset_write_u64,
1846                .private = FILE_SCHED_LOAD_BALANCE,
1847        },
1848
1849        {
1850                .name = "sched_relax_domain_level",
1851                .read_s64 = cpuset_read_s64,
1852                .write_s64 = cpuset_write_s64,
1853                .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1854        },
1855
1856        {
1857                .name = "memory_migrate",
1858                .read_u64 = cpuset_read_u64,
1859                .write_u64 = cpuset_write_u64,
1860                .private = FILE_MEMORY_MIGRATE,
1861        },
1862
1863        {
1864                .name = "memory_pressure",
1865                .read_u64 = cpuset_read_u64,
1866                .write_u64 = cpuset_write_u64,
1867                .private = FILE_MEMORY_PRESSURE,
1868                .mode = S_IRUGO,
1869        },
1870
1871        {
1872                .name = "memory_spread_page",
1873                .read_u64 = cpuset_read_u64,
1874                .write_u64 = cpuset_write_u64,
1875                .private = FILE_SPREAD_PAGE,
1876        },
1877
1878        {
1879                .name = "memory_spread_slab",
1880                .read_u64 = cpuset_read_u64,
1881                .write_u64 = cpuset_write_u64,
1882                .private = FILE_SPREAD_SLAB,
1883        },
1884
1885        {
1886                .name = "memory_pressure_enabled",
1887                .flags = CFTYPE_ONLY_ON_ROOT,
1888                .read_u64 = cpuset_read_u64,
1889                .write_u64 = cpuset_write_u64,
1890                .private = FILE_MEMORY_PRESSURE_ENABLED,
1891        },
1892
1893        { }     /* terminate */
1894};
1895
1896/*
1897 *      cpuset_css_alloc - allocate a cpuset css
1898 *      cgrp:   control group that the new cpuset will be part of
1899 */
1900
1901static struct cgroup_subsys_state *
1902cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1903{
1904        struct cpuset *cs;
1905
1906        if (!parent_css)
1907                return &top_cpuset.css;
1908
1909        cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1910        if (!cs)
1911                return ERR_PTR(-ENOMEM);
1912        if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1913                goto free_cs;
1914        if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1915                goto free_cpus;
1916
1917        set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1918        cpumask_clear(cs->cpus_allowed);
1919        nodes_clear(cs->mems_allowed);
1920        cpumask_clear(cs->effective_cpus);
1921        nodes_clear(cs->effective_mems);
1922        fmeter_init(&cs->fmeter);
1923        cs->relax_domain_level = -1;
1924
1925        return &cs->css;
1926
1927free_cpus:
1928        free_cpumask_var(cs->cpus_allowed);
1929free_cs:
1930        kfree(cs);
1931        return ERR_PTR(-ENOMEM);
1932}
1933
1934static int cpuset_css_online(struct cgroup_subsys_state *css)
1935{
1936        struct cpuset *cs = css_cs(css);
1937        struct cpuset *parent = parent_cs(cs);
1938        struct cpuset *tmp_cs;
1939        struct cgroup_subsys_state *pos_css;
1940
1941        if (!parent)
1942                return 0;
1943
1944        mutex_lock(&cpuset_mutex);
1945
1946        set_bit(CS_ONLINE, &cs->flags);
1947        if (is_spread_page(parent))
1948                set_bit(CS_SPREAD_PAGE, &cs->flags);
1949        if (is_spread_slab(parent))
1950                set_bit(CS_SPREAD_SLAB, &cs->flags);
1951
1952        cpuset_inc();
1953
1954        spin_lock_irq(&callback_lock);
1955        if (cgroup_on_dfl(cs->css.cgroup)) {
1956                cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1957                cs->effective_mems = parent->effective_mems;
1958        }
1959        spin_unlock_irq(&callback_lock);
1960
1961        if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1962                goto out_unlock;
1963
1964        /*
1965         * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1966         * set.  This flag handling is implemented in cgroup core for
1967         * histrical reasons - the flag may be specified during mount.
1968         *
1969         * Currently, if any sibling cpusets have exclusive cpus or mem, we
1970         * refuse to clone the configuration - thereby refusing the task to
1971         * be entered, and as a result refusing the sys_unshare() or
1972         * clone() which initiated it.  If this becomes a problem for some
1973         * users who wish to allow that scenario, then this could be
1974         * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1975         * (and likewise for mems) to the new cgroup.
1976         */
1977        rcu_read_lock();
1978        cpuset_for_each_child(tmp_cs, pos_css, parent) {
1979                if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1980                        rcu_read_unlock();
1981                        goto out_unlock;
1982                }
1983        }
1984        rcu_read_unlock();
1985
1986        spin_lock_irq(&callback_lock);
1987        cs->mems_allowed = parent->mems_allowed;
1988        cs->effective_mems = parent->mems_allowed;
1989        cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1990        cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
1991        spin_unlock_irq(&callback_lock);
1992out_unlock:
1993        mutex_unlock(&cpuset_mutex);
1994        return 0;
1995}
1996
1997/*
1998 * If the cpuset being removed has its flag 'sched_load_balance'
1999 * enabled, then simulate turning sched_load_balance off, which
2000 * will call rebuild_sched_domains_locked().
2001 */
2002
2003static void cpuset_css_offline(struct cgroup_subsys_state *css)
2004{
2005        struct cpuset *cs = css_cs(css);
2006
2007        mutex_lock(&cpuset_mutex);
2008
2009        if (is_sched_load_balance(cs))
2010                update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2011
2012        cpuset_dec();
2013        clear_bit(CS_ONLINE, &cs->flags);
2014
2015        mutex_unlock(&cpuset_mutex);
2016}
2017
2018static void cpuset_css_free(struct cgroup_subsys_state *css)
2019{
2020        struct cpuset *cs = css_cs(css);
2021
2022        free_cpumask_var(cs->effective_cpus);
2023        free_cpumask_var(cs->cpus_allowed);
2024        kfree(cs);
2025}
2026
2027static void cpuset_bind(struct cgroup_subsys_state *root_css)
2028{
2029        mutex_lock(&cpuset_mutex);
2030        spin_lock_irq(&callback_lock);
2031
2032        if (cgroup_on_dfl(root_css->cgroup)) {
2033                cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2034                top_cpuset.mems_allowed = node_possible_map;
2035        } else {
2036                cpumask_copy(top_cpuset.cpus_allowed,
2037                             top_cpuset.effective_cpus);
2038                top_cpuset.mems_allowed = top_cpuset.effective_mems;
2039        }
2040
2041        spin_unlock_irq(&callback_lock);
2042        mutex_unlock(&cpuset_mutex);
2043}
2044
2045struct cgroup_subsys cpuset_cgrp_subsys = {
2046        .css_alloc      = cpuset_css_alloc,
2047        .css_online     = cpuset_css_online,
2048        .css_offline    = cpuset_css_offline,
2049        .css_free       = cpuset_css_free,
2050        .can_attach     = cpuset_can_attach,
2051        .cancel_attach  = cpuset_cancel_attach,
2052        .attach         = cpuset_attach,
2053        .bind           = cpuset_bind,
2054        .legacy_cftypes = files,
2055        .early_init     = 1,
2056};
2057
2058/**
2059 * cpuset_init - initialize cpusets at system boot
2060 *
2061 * Description: Initialize top_cpuset and the cpuset internal file system,
2062 **/
2063
2064int __init cpuset_init(void)
2065{
2066        int err = 0;
2067
2068        if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2069                BUG();
2070        if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2071                BUG();
2072
2073        cpumask_setall(top_cpuset.cpus_allowed);
2074        nodes_setall(top_cpuset.mems_allowed);
2075        cpumask_setall(top_cpuset.effective_cpus);
2076        nodes_setall(top_cpuset.effective_mems);
2077
2078        fmeter_init(&top_cpuset.fmeter);
2079        set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2080        top_cpuset.relax_domain_level = -1;
2081
2082        err = register_filesystem(&cpuset_fs_type);
2083        if (err < 0)
2084                return err;
2085
2086        if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2087                BUG();
2088
2089        return 0;
2090}
2091
2092/*
2093 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2094 * or memory nodes, we need to walk over the cpuset hierarchy,
2095 * removing that CPU or node from all cpusets.  If this removes the
2096 * last CPU or node from a cpuset, then move the tasks in the empty
2097 * cpuset to its next-highest non-empty parent.
2098 */
2099static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2100{
2101        struct cpuset *parent;
2102
2103        /*
2104         * Find its next-highest non-empty parent, (top cpuset
2105         * has online cpus, so can't be empty).
2106         */
2107        parent = parent_cs(cs);
2108        while (cpumask_empty(parent->cpus_allowed) ||
2109                        nodes_empty(parent->mems_allowed))
2110                parent = parent_cs(parent);
2111
2112        if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2113                pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2114                pr_cont_cgroup_name(cs->css.cgroup);
2115                pr_cont("\n");
2116        }
2117}
2118
2119static void
2120hotplug_update_tasks_legacy(struct cpuset *cs,
2121                            struct cpumask *new_cpus, nodemask_t *new_mems,
2122                            bool cpus_updated, bool mems_updated)
2123{
2124        bool is_empty;
2125
2126        spin_lock_irq(&callback_lock);
2127        cpumask_copy(cs->cpus_allowed, new_cpus);
2128        cpumask_copy(cs->effective_cpus, new_cpus);
2129        cs->mems_allowed = *new_mems;
2130        cs->effective_mems = *new_mems;
2131        spin_unlock_irq(&callback_lock);
2132
2133        /*
2134         * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2135         * as the tasks will be migratecd to an ancestor.
2136         */
2137        if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2138                update_tasks_cpumask(cs);
2139        if (mems_updated && !nodes_empty(cs->mems_allowed))
2140                update_tasks_nodemask(cs);
2141
2142        is_empty = cpumask_empty(cs->cpus_allowed) ||
2143                   nodes_empty(cs->mems_allowed);
2144
2145        mutex_unlock(&cpuset_mutex);
2146
2147        /*
2148         * Move tasks to the nearest ancestor with execution resources,
2149         * This is full cgroup operation which will also call back into
2150         * cpuset. Should be done outside any lock.
2151         */
2152        if (is_empty)
2153                remove_tasks_in_empty_cpuset(cs);
2154
2155        mutex_lock(&cpuset_mutex);
2156}
2157
2158static void
2159hotplug_update_tasks(struct cpuset *cs,
2160                     struct cpumask *new_cpus, nodemask_t *new_mems,
2161                     bool cpus_updated, bool mems_updated)
2162{
2163        if (cpumask_empty(new_cpus))
2164                cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2165        if (nodes_empty(*new_mems))
2166                *new_mems = parent_cs(cs)->effective_mems;
2167
2168        spin_lock_irq(&callback_lock);
2169        cpumask_copy(cs->effective_cpus, new_cpus);
2170        cs->effective_mems = *new_mems;
2171        spin_unlock_irq(&callback_lock);
2172
2173        if (cpus_updated)
2174                update_tasks_cpumask(cs);
2175        if (mems_updated)
2176                update_tasks_nodemask(cs);
2177}
2178
2179/**
2180 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2181 * @cs: cpuset in interest
2182 *
2183 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2184 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
2185 * all its tasks are moved to the nearest ancestor with both resources.
2186 */
2187static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2188{
2189        static cpumask_t new_cpus;
2190        static nodemask_t new_mems;
2191        bool cpus_updated;
2192        bool mems_updated;
2193retry:
2194        wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2195
2196        mutex_lock(&cpuset_mutex);
2197
2198        /*
2199         * We have raced with task attaching. We wait until attaching
2200         * is finished, so we won't attach a task to an empty cpuset.
2201         */
2202        if (cs->attach_in_progress) {
2203                mutex_unlock(&cpuset_mutex);
2204                goto retry;
2205        }
2206
2207        cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2208        nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2209
2210        cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2211        mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2212
2213        if (cgroup_on_dfl(cs->css.cgroup))
2214                hotplug_update_tasks(cs, &new_cpus, &new_mems,
2215                                     cpus_updated, mems_updated);
2216        else
2217                hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2218                                            cpus_updated, mems_updated);
2219
2220        mutex_unlock(&cpuset_mutex);
2221}
2222
2223/**
2224 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2225 *
2226 * This function is called after either CPU or memory configuration has
2227 * changed and updates cpuset accordingly.  The top_cpuset is always
2228 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2229 * order to make cpusets transparent (of no affect) on systems that are
2230 * actively using CPU hotplug but making no active use of cpusets.
2231 *
2232 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2233 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2234 * all descendants.
2235 *
2236 * Note that CPU offlining during suspend is ignored.  We don't modify
2237 * cpusets across suspend/resume cycles at all.
2238 */
2239static void cpuset_hotplug_workfn(struct work_struct *work)
2240{
2241        static cpumask_t new_cpus;
2242        static nodemask_t new_mems;
2243        bool cpus_updated, mems_updated;
2244        bool on_dfl = cgroup_on_dfl(top_cpuset.css.cgroup);
2245
2246        mutex_lock(&cpuset_mutex);
2247
2248        /* fetch the available cpus/mems and find out which changed how */
2249        cpumask_copy(&new_cpus, cpu_active_mask);
2250        new_mems = node_states[N_MEMORY];
2251
2252        cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2253        mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2254
2255        /* synchronize cpus_allowed to cpu_active_mask */
2256        if (cpus_updated) {
2257                spin_lock_irq(&callback_lock);
2258                if (!on_dfl)
2259                        cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2260                cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2261                spin_unlock_irq(&callback_lock);
2262                /* we don't mess with cpumasks of tasks in top_cpuset */
2263        }
2264
2265        /* synchronize mems_allowed to N_MEMORY */
2266        if (mems_updated) {
2267                spin_lock_irq(&callback_lock);
2268                if (!on_dfl)
2269                        top_cpuset.mems_allowed = new_mems;
2270                top_cpuset.effective_mems = new_mems;
2271                spin_unlock_irq(&callback_lock);
2272                update_tasks_nodemask(&top_cpuset);
2273        }
2274
2275        mutex_unlock(&cpuset_mutex);
2276
2277        /* if cpus or mems changed, we need to propagate to descendants */
2278        if (cpus_updated || mems_updated) {
2279                struct cpuset *cs;
2280                struct cgroup_subsys_state *pos_css;
2281
2282                rcu_read_lock();
2283                cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2284                        if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2285                                continue;
2286                        rcu_read_unlock();
2287
2288                        cpuset_hotplug_update_tasks(cs);
2289
2290                        rcu_read_lock();
2291                        css_put(&cs->css);
2292                }
2293                rcu_read_unlock();
2294        }
2295
2296        /* rebuild sched domains if cpus_allowed has changed */
2297        if (cpus_updated)
2298                rebuild_sched_domains();
2299}
2300
2301void cpuset_update_active_cpus(bool cpu_online)
2302{
2303        /*
2304         * We're inside cpu hotplug critical region which usually nests
2305         * inside cgroup synchronization.  Bounce actual hotplug processing
2306         * to a work item to avoid reverse locking order.
2307         *
2308         * We still need to do partition_sched_domains() synchronously;
2309         * otherwise, the scheduler will get confused and put tasks to the
2310         * dead CPU.  Fall back to the default single domain.
2311         * cpuset_hotplug_workfn() will rebuild it as necessary.
2312         */
2313        partition_sched_domains(1, NULL, NULL);
2314        schedule_work(&cpuset_hotplug_work);
2315}
2316
2317/*
2318 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2319 * Call this routine anytime after node_states[N_MEMORY] changes.
2320 * See cpuset_update_active_cpus() for CPU hotplug handling.
2321 */
2322static int cpuset_track_online_nodes(struct notifier_block *self,
2323                                unsigned long action, void *arg)
2324{
2325        schedule_work(&cpuset_hotplug_work);
2326        return NOTIFY_OK;
2327}
2328
2329static struct notifier_block cpuset_track_online_nodes_nb = {
2330        .notifier_call = cpuset_track_online_nodes,
2331        .priority = 10,         /* ??! */
2332};
2333
2334/**
2335 * cpuset_init_smp - initialize cpus_allowed
2336 *
2337 * Description: Finish top cpuset after cpu, node maps are initialized
2338 */
2339void __init cpuset_init_smp(void)
2340{
2341        cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2342        top_cpuset.mems_allowed = node_states[N_MEMORY];
2343        top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2344
2345        cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2346        top_cpuset.effective_mems = node_states[N_MEMORY];
2347
2348        register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2349}
2350
2351/**
2352 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2353 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2354 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2355 *
2356 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2357 * attached to the specified @tsk.  Guaranteed to return some non-empty
2358 * subset of cpu_online_mask, even if this means going outside the
2359 * tasks cpuset.
2360 **/
2361
2362void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2363{
2364        unsigned long flags;
2365
2366        spin_lock_irqsave(&callback_lock, flags);
2367        rcu_read_lock();
2368        guarantee_online_cpus(task_cs(tsk), pmask);
2369        rcu_read_unlock();
2370        spin_unlock_irqrestore(&callback_lock, flags);
2371}
2372
2373void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2374{
2375        rcu_read_lock();
2376        do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2377        rcu_read_unlock();
2378
2379        /*
2380         * We own tsk->cpus_allowed, nobody can change it under us.
2381         *
2382         * But we used cs && cs->cpus_allowed lockless and thus can
2383         * race with cgroup_attach_task() or update_cpumask() and get
2384         * the wrong tsk->cpus_allowed. However, both cases imply the
2385         * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2386         * which takes task_rq_lock().
2387         *
2388         * If we are called after it dropped the lock we must see all
2389         * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2390         * set any mask even if it is not right from task_cs() pov,
2391         * the pending set_cpus_allowed_ptr() will fix things.
2392         *
2393         * select_fallback_rq() will fix things ups and set cpu_possible_mask
2394         * if required.
2395         */
2396}
2397
2398void __init cpuset_init_current_mems_allowed(void)
2399{
2400        nodes_setall(current->mems_allowed);
2401}
2402
2403/**
2404 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2405 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2406 *
2407 * Description: Returns the nodemask_t mems_allowed of the cpuset
2408 * attached to the specified @tsk.  Guaranteed to return some non-empty
2409 * subset of node_states[N_MEMORY], even if this means going outside the
2410 * tasks cpuset.
2411 **/
2412
2413nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2414{
2415        nodemask_t mask;
2416        unsigned long flags;
2417
2418        spin_lock_irqsave(&callback_lock, flags);
2419        rcu_read_lock();
2420        guarantee_online_mems(task_cs(tsk), &mask);
2421        rcu_read_unlock();
2422        spin_unlock_irqrestore(&callback_lock, flags);
2423
2424        return mask;
2425}
2426
2427/**
2428 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2429 * @nodemask: the nodemask to be checked
2430 *
2431 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2432 */
2433int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2434{
2435        return nodes_intersects(*nodemask, current->mems_allowed);
2436}
2437
2438/*
2439 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2440 * mem_hardwall ancestor to the specified cpuset.  Call holding
2441 * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
2442 * (an unusual configuration), then returns the root cpuset.
2443 */
2444static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2445{
2446        while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2447                cs = parent_cs(cs);
2448        return cs;
2449}
2450
2451/**
2452 * cpuset_node_allowed - Can we allocate on a memory node?
2453 * @node: is this an allowed node?
2454 * @gfp_mask: memory allocation flags
2455 *
2456 * If we're in interrupt, yes, we can always allocate.  If @node is set in
2457 * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
2458 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2459 * yes.  If current has access to memory reserves due to TIF_MEMDIE, yes.
2460 * Otherwise, no.
2461 *
2462 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2463 * and do not allow allocations outside the current tasks cpuset
2464 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2465 * GFP_KERNEL allocations are not so marked, so can escape to the
2466 * nearest enclosing hardwalled ancestor cpuset.
2467 *
2468 * Scanning up parent cpusets requires callback_lock.  The
2469 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2470 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2471 * current tasks mems_allowed came up empty on the first pass over
2472 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
2473 * cpuset are short of memory, might require taking the callback_lock.
2474 *
2475 * The first call here from mm/page_alloc:get_page_from_freelist()
2476 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2477 * so no allocation on a node outside the cpuset is allowed (unless
2478 * in interrupt, of course).
2479 *
2480 * The second pass through get_page_from_freelist() doesn't even call
2481 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
2482 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2483 * in alloc_flags.  That logic and the checks below have the combined
2484 * affect that:
2485 *      in_interrupt - any node ok (current task context irrelevant)
2486 *      GFP_ATOMIC   - any node ok
2487 *      TIF_MEMDIE   - any node ok
2488 *      GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2489 *      GFP_USER     - only nodes in current tasks mems allowed ok.
2490 */
2491int __cpuset_node_allowed(int node, gfp_t gfp_mask)
2492{
2493        struct cpuset *cs;              /* current cpuset ancestors */
2494        int allowed;                    /* is allocation in zone z allowed? */
2495        unsigned long flags;
2496
2497        if (in_interrupt())
2498                return 1;
2499        if (node_isset(node, current->mems_allowed))
2500                return 1;
2501        /*
2502         * Allow tasks that have access to memory reserves because they have
2503         * been OOM killed to get memory anywhere.
2504         */
2505        if (unlikely(test_thread_flag(TIF_MEMDIE)))
2506                return 1;
2507        if (gfp_mask & __GFP_HARDWALL)  /* If hardwall request, stop here */
2508                return 0;
2509
2510        if (current->flags & PF_EXITING) /* Let dying task have memory */
2511                return 1;
2512
2513        /* Not hardwall and node outside mems_allowed: scan up cpusets */
2514        spin_lock_irqsave(&callback_lock, flags);
2515
2516        rcu_read_lock();
2517        cs = nearest_hardwall_ancestor(task_cs(current));
2518        allowed = node_isset(node, cs->mems_allowed);
2519        rcu_read_unlock();
2520
2521        spin_unlock_irqrestore(&callback_lock, flags);
2522        return allowed;
2523}
2524
2525/**
2526 * cpuset_mem_spread_node() - On which node to begin search for a file page
2527 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2528 *
2529 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2530 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2531 * and if the memory allocation used cpuset_mem_spread_node()
2532 * to determine on which node to start looking, as it will for
2533 * certain page cache or slab cache pages such as used for file
2534 * system buffers and inode caches, then instead of starting on the
2535 * local node to look for a free page, rather spread the starting
2536 * node around the tasks mems_allowed nodes.
2537 *
2538 * We don't have to worry about the returned node being offline
2539 * because "it can't happen", and even if it did, it would be ok.
2540 *
2541 * The routines calling guarantee_online_mems() are careful to
2542 * only set nodes in task->mems_allowed that are online.  So it
2543 * should not be possible for the following code to return an
2544 * offline node.  But if it did, that would be ok, as this routine
2545 * is not returning the node where the allocation must be, only
2546 * the node where the search should start.  The zonelist passed to
2547 * __alloc_pages() will include all nodes.  If the slab allocator
2548 * is passed an offline node, it will fall back to the local node.
2549 * See kmem_cache_alloc_node().
2550 */
2551
2552static int cpuset_spread_node(int *rotor)
2553{
2554        int node;
2555
2556        node = next_node(*rotor, current->mems_allowed);
2557        if (node == MAX_NUMNODES)
2558                node = first_node(current->mems_allowed);
2559        *rotor = node;
2560        return node;
2561}
2562
2563int cpuset_mem_spread_node(void)
2564{
2565        if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2566                current->cpuset_mem_spread_rotor =
2567                        node_random(&current->mems_allowed);
2568
2569        return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2570}
2571
2572int cpuset_slab_spread_node(void)
2573{
2574        if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2575                current->cpuset_slab_spread_rotor =
2576                        node_random(&current->mems_allowed);
2577
2578        return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2579}
2580
2581EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2582
2583/**
2584 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2585 * @tsk1: pointer to task_struct of some task.
2586 * @tsk2: pointer to task_struct of some other task.
2587 *
2588 * Description: Return true if @tsk1's mems_allowed intersects the
2589 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
2590 * one of the task's memory usage might impact the memory available
2591 * to the other.
2592 **/
2593
2594int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2595                                   const struct task_struct *tsk2)
2596{
2597        return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2598}
2599
2600/**
2601 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2602 * @tsk: pointer to task_struct of some task.
2603 *
2604 * Description: Prints @task's name, cpuset name, and cached copy of its
2605 * mems_allowed to the kernel log.
2606 */
2607void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2608{
2609        struct cgroup *cgrp;
2610
2611        rcu_read_lock();
2612
2613        cgrp = task_cs(tsk)->css.cgroup;
2614        pr_info("%s cpuset=", tsk->comm);
2615        pr_cont_cgroup_name(cgrp);
2616        pr_cont(" mems_allowed=%*pbl\n", nodemask_pr_args(&tsk->mems_allowed));
2617
2618        rcu_read_unlock();
2619}
2620
2621/*
2622 * Collection of memory_pressure is suppressed unless
2623 * this flag is enabled by writing "1" to the special
2624 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2625 */
2626
2627int cpuset_memory_pressure_enabled __read_mostly;
2628
2629/**
2630 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2631 *
2632 * Keep a running average of the rate of synchronous (direct)
2633 * page reclaim efforts initiated by tasks in each cpuset.
2634 *
2635 * This represents the rate at which some task in the cpuset
2636 * ran low on memory on all nodes it was allowed to use, and
2637 * had to enter the kernels page reclaim code in an effort to
2638 * create more free memory by tossing clean pages or swapping
2639 * or writing dirty pages.
2640 *
2641 * Display to user space in the per-cpuset read-only file
2642 * "memory_pressure".  Value displayed is an integer
2643 * representing the recent rate of entry into the synchronous
2644 * (direct) page reclaim by any task attached to the cpuset.
2645 **/
2646
2647void __cpuset_memory_pressure_bump(void)
2648{
2649        rcu_read_lock();
2650        fmeter_markevent(&task_cs(current)->fmeter);
2651        rcu_read_unlock();
2652}
2653
2654#ifdef CONFIG_PROC_PID_CPUSET
2655/*
2656 * proc_cpuset_show()
2657 *  - Print tasks cpuset path into seq_file.
2658 *  - Used for /proc/<pid>/cpuset.
2659 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2660 *    doesn't really matter if tsk->cpuset changes after we read it,
2661 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2662 *    anyway.
2663 */
2664int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2665                     struct pid *pid, struct task_struct *tsk)
2666{
2667        char *buf, *p;
2668        struct cgroup_subsys_state *css;
2669        int retval;
2670
2671        retval = -ENOMEM;
2672        buf = kmalloc(PATH_MAX, GFP_KERNEL);
2673        if (!buf)
2674                goto out;
2675
2676        retval = -ENAMETOOLONG;
2677        rcu_read_lock();
2678        css = task_css(tsk, cpuset_cgrp_id);
2679        p = cgroup_path(css->cgroup, buf, PATH_MAX);
2680        rcu_read_unlock();
2681        if (!p)
2682                goto out_free;
2683        seq_puts(m, p);
2684        seq_putc(m, '\n');
2685        retval = 0;
2686out_free:
2687        kfree(buf);
2688out:
2689        return retval;
2690}
2691#endif /* CONFIG_PROC_PID_CPUSET */
2692
2693/* Display task mems_allowed in /proc/<pid>/status file. */
2694void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2695{
2696        seq_printf(m, "Mems_allowed:\t%*pb\n",
2697                   nodemask_pr_args(&task->mems_allowed));
2698        seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2699                   nodemask_pr_args(&task->mems_allowed));
2700}
2701