linux/kernel/events/core.c
<<
>>
Prefs
   1/*
   2 * Performance events core code:
   3 *
   4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
   6 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
   7 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   8 *
   9 * For licensing details see kernel-base/COPYING
  10 */
  11
  12#include <linux/fs.h>
  13#include <linux/mm.h>
  14#include <linux/cpu.h>
  15#include <linux/smp.h>
  16#include <linux/idr.h>
  17#include <linux/file.h>
  18#include <linux/poll.h>
  19#include <linux/slab.h>
  20#include <linux/hash.h>
  21#include <linux/tick.h>
  22#include <linux/sysfs.h>
  23#include <linux/dcache.h>
  24#include <linux/percpu.h>
  25#include <linux/ptrace.h>
  26#include <linux/reboot.h>
  27#include <linux/vmstat.h>
  28#include <linux/device.h>
  29#include <linux/export.h>
  30#include <linux/vmalloc.h>
  31#include <linux/hardirq.h>
  32#include <linux/rculist.h>
  33#include <linux/uaccess.h>
  34#include <linux/syscalls.h>
  35#include <linux/anon_inodes.h>
  36#include <linux/kernel_stat.h>
  37#include <linux/cgroup.h>
  38#include <linux/perf_event.h>
  39#include <linux/ftrace_event.h>
  40#include <linux/hw_breakpoint.h>
  41#include <linux/mm_types.h>
  42#include <linux/module.h>
  43#include <linux/mman.h>
  44#include <linux/compat.h>
  45#include <linux/bpf.h>
  46#include <linux/filter.h>
  47
  48#include "internal.h"
  49
  50#include <asm/irq_regs.h>
  51
  52static struct workqueue_struct *perf_wq;
  53
  54struct remote_function_call {
  55        struct task_struct      *p;
  56        int                     (*func)(void *info);
  57        void                    *info;
  58        int                     ret;
  59};
  60
  61static void remote_function(void *data)
  62{
  63        struct remote_function_call *tfc = data;
  64        struct task_struct *p = tfc->p;
  65
  66        if (p) {
  67                tfc->ret = -EAGAIN;
  68                if (task_cpu(p) != smp_processor_id() || !task_curr(p))
  69                        return;
  70        }
  71
  72        tfc->ret = tfc->func(tfc->info);
  73}
  74
  75/**
  76 * task_function_call - call a function on the cpu on which a task runs
  77 * @p:          the task to evaluate
  78 * @func:       the function to be called
  79 * @info:       the function call argument
  80 *
  81 * Calls the function @func when the task is currently running. This might
  82 * be on the current CPU, which just calls the function directly
  83 *
  84 * returns: @func return value, or
  85 *          -ESRCH  - when the process isn't running
  86 *          -EAGAIN - when the process moved away
  87 */
  88static int
  89task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
  90{
  91        struct remote_function_call data = {
  92                .p      = p,
  93                .func   = func,
  94                .info   = info,
  95                .ret    = -ESRCH, /* No such (running) process */
  96        };
  97
  98        if (task_curr(p))
  99                smp_call_function_single(task_cpu(p), remote_function, &data, 1);
 100
 101        return data.ret;
 102}
 103
 104/**
 105 * cpu_function_call - call a function on the cpu
 106 * @func:       the function to be called
 107 * @info:       the function call argument
 108 *
 109 * Calls the function @func on the remote cpu.
 110 *
 111 * returns: @func return value or -ENXIO when the cpu is offline
 112 */
 113static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
 114{
 115        struct remote_function_call data = {
 116                .p      = NULL,
 117                .func   = func,
 118                .info   = info,
 119                .ret    = -ENXIO, /* No such CPU */
 120        };
 121
 122        smp_call_function_single(cpu, remote_function, &data, 1);
 123
 124        return data.ret;
 125}
 126
 127#define EVENT_OWNER_KERNEL ((void *) -1)
 128
 129static bool is_kernel_event(struct perf_event *event)
 130{
 131        return event->owner == EVENT_OWNER_KERNEL;
 132}
 133
 134#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
 135                       PERF_FLAG_FD_OUTPUT  |\
 136                       PERF_FLAG_PID_CGROUP |\
 137                       PERF_FLAG_FD_CLOEXEC)
 138
 139/*
 140 * branch priv levels that need permission checks
 141 */
 142#define PERF_SAMPLE_BRANCH_PERM_PLM \
 143        (PERF_SAMPLE_BRANCH_KERNEL |\
 144         PERF_SAMPLE_BRANCH_HV)
 145
 146enum event_type_t {
 147        EVENT_FLEXIBLE = 0x1,
 148        EVENT_PINNED = 0x2,
 149        EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
 150};
 151
 152/*
 153 * perf_sched_events : >0 events exist
 154 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 155 */
 156struct static_key_deferred perf_sched_events __read_mostly;
 157static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
 158static DEFINE_PER_CPU(int, perf_sched_cb_usages);
 159
 160static atomic_t nr_mmap_events __read_mostly;
 161static atomic_t nr_comm_events __read_mostly;
 162static atomic_t nr_task_events __read_mostly;
 163static atomic_t nr_freq_events __read_mostly;
 164
 165static LIST_HEAD(pmus);
 166static DEFINE_MUTEX(pmus_lock);
 167static struct srcu_struct pmus_srcu;
 168
 169/*
 170 * perf event paranoia level:
 171 *  -1 - not paranoid at all
 172 *   0 - disallow raw tracepoint access for unpriv
 173 *   1 - disallow cpu events for unpriv
 174 *   2 - disallow kernel profiling for unpriv
 175 */
 176int sysctl_perf_event_paranoid __read_mostly = 1;
 177
 178/* Minimum for 512 kiB + 1 user control page */
 179int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
 180
 181/*
 182 * max perf event sample rate
 183 */
 184#define DEFAULT_MAX_SAMPLE_RATE         100000
 185#define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
 186#define DEFAULT_CPU_TIME_MAX_PERCENT    25
 187
 188int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
 189
 190static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
 191static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
 192
 193static int perf_sample_allowed_ns __read_mostly =
 194        DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
 195
 196void update_perf_cpu_limits(void)
 197{
 198        u64 tmp = perf_sample_period_ns;
 199
 200        tmp *= sysctl_perf_cpu_time_max_percent;
 201        do_div(tmp, 100);
 202        ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
 203}
 204
 205static int perf_rotate_context(struct perf_cpu_context *cpuctx);
 206
 207int perf_proc_update_handler(struct ctl_table *table, int write,
 208                void __user *buffer, size_t *lenp,
 209                loff_t *ppos)
 210{
 211        int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 212
 213        if (ret || !write)
 214                return ret;
 215
 216        max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
 217        perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
 218        update_perf_cpu_limits();
 219
 220        return 0;
 221}
 222
 223int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
 224
 225int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
 226                                void __user *buffer, size_t *lenp,
 227                                loff_t *ppos)
 228{
 229        int ret = proc_dointvec(table, write, buffer, lenp, ppos);
 230
 231        if (ret || !write)
 232                return ret;
 233
 234        update_perf_cpu_limits();
 235
 236        return 0;
 237}
 238
 239/*
 240 * perf samples are done in some very critical code paths (NMIs).
 241 * If they take too much CPU time, the system can lock up and not
 242 * get any real work done.  This will drop the sample rate when
 243 * we detect that events are taking too long.
 244 */
 245#define NR_ACCUMULATED_SAMPLES 128
 246static DEFINE_PER_CPU(u64, running_sample_length);
 247
 248static void perf_duration_warn(struct irq_work *w)
 249{
 250        u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
 251        u64 avg_local_sample_len;
 252        u64 local_samples_len;
 253
 254        local_samples_len = __this_cpu_read(running_sample_length);
 255        avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
 256
 257        printk_ratelimited(KERN_WARNING
 258                        "perf interrupt took too long (%lld > %lld), lowering "
 259                        "kernel.perf_event_max_sample_rate to %d\n",
 260                        avg_local_sample_len, allowed_ns >> 1,
 261                        sysctl_perf_event_sample_rate);
 262}
 263
 264static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
 265
 266void perf_sample_event_took(u64 sample_len_ns)
 267{
 268        u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
 269        u64 avg_local_sample_len;
 270        u64 local_samples_len;
 271
 272        if (allowed_ns == 0)
 273                return;
 274
 275        /* decay the counter by 1 average sample */
 276        local_samples_len = __this_cpu_read(running_sample_length);
 277        local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
 278        local_samples_len += sample_len_ns;
 279        __this_cpu_write(running_sample_length, local_samples_len);
 280
 281        /*
 282         * note: this will be biased artifically low until we have
 283         * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
 284         * from having to maintain a count.
 285         */
 286        avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
 287
 288        if (avg_local_sample_len <= allowed_ns)
 289                return;
 290
 291        if (max_samples_per_tick <= 1)
 292                return;
 293
 294        max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
 295        sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
 296        perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
 297
 298        update_perf_cpu_limits();
 299
 300        if (!irq_work_queue(&perf_duration_work)) {
 301                early_printk("perf interrupt took too long (%lld > %lld), lowering "
 302                             "kernel.perf_event_max_sample_rate to %d\n",
 303                             avg_local_sample_len, allowed_ns >> 1,
 304                             sysctl_perf_event_sample_rate);
 305        }
 306}
 307
 308static atomic64_t perf_event_id;
 309
 310static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
 311                              enum event_type_t event_type);
 312
 313static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
 314                             enum event_type_t event_type,
 315                             struct task_struct *task);
 316
 317static void update_context_time(struct perf_event_context *ctx);
 318static u64 perf_event_time(struct perf_event *event);
 319
 320void __weak perf_event_print_debug(void)        { }
 321
 322extern __weak const char *perf_pmu_name(void)
 323{
 324        return "pmu";
 325}
 326
 327static inline u64 perf_clock(void)
 328{
 329        return local_clock();
 330}
 331
 332static inline u64 perf_event_clock(struct perf_event *event)
 333{
 334        return event->clock();
 335}
 336
 337static inline struct perf_cpu_context *
 338__get_cpu_context(struct perf_event_context *ctx)
 339{
 340        return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
 341}
 342
 343static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
 344                          struct perf_event_context *ctx)
 345{
 346        raw_spin_lock(&cpuctx->ctx.lock);
 347        if (ctx)
 348                raw_spin_lock(&ctx->lock);
 349}
 350
 351static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
 352                            struct perf_event_context *ctx)
 353{
 354        if (ctx)
 355                raw_spin_unlock(&ctx->lock);
 356        raw_spin_unlock(&cpuctx->ctx.lock);
 357}
 358
 359#ifdef CONFIG_CGROUP_PERF
 360
 361static inline bool
 362perf_cgroup_match(struct perf_event *event)
 363{
 364        struct perf_event_context *ctx = event->ctx;
 365        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 366
 367        /* @event doesn't care about cgroup */
 368        if (!event->cgrp)
 369                return true;
 370
 371        /* wants specific cgroup scope but @cpuctx isn't associated with any */
 372        if (!cpuctx->cgrp)
 373                return false;
 374
 375        /*
 376         * Cgroup scoping is recursive.  An event enabled for a cgroup is
 377         * also enabled for all its descendant cgroups.  If @cpuctx's
 378         * cgroup is a descendant of @event's (the test covers identity
 379         * case), it's a match.
 380         */
 381        return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
 382                                    event->cgrp->css.cgroup);
 383}
 384
 385static inline void perf_detach_cgroup(struct perf_event *event)
 386{
 387        css_put(&event->cgrp->css);
 388        event->cgrp = NULL;
 389}
 390
 391static inline int is_cgroup_event(struct perf_event *event)
 392{
 393        return event->cgrp != NULL;
 394}
 395
 396static inline u64 perf_cgroup_event_time(struct perf_event *event)
 397{
 398        struct perf_cgroup_info *t;
 399
 400        t = per_cpu_ptr(event->cgrp->info, event->cpu);
 401        return t->time;
 402}
 403
 404static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
 405{
 406        struct perf_cgroup_info *info;
 407        u64 now;
 408
 409        now = perf_clock();
 410
 411        info = this_cpu_ptr(cgrp->info);
 412
 413        info->time += now - info->timestamp;
 414        info->timestamp = now;
 415}
 416
 417static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
 418{
 419        struct perf_cgroup *cgrp_out = cpuctx->cgrp;
 420        if (cgrp_out)
 421                __update_cgrp_time(cgrp_out);
 422}
 423
 424static inline void update_cgrp_time_from_event(struct perf_event *event)
 425{
 426        struct perf_cgroup *cgrp;
 427
 428        /*
 429         * ensure we access cgroup data only when needed and
 430         * when we know the cgroup is pinned (css_get)
 431         */
 432        if (!is_cgroup_event(event))
 433                return;
 434
 435        cgrp = perf_cgroup_from_task(current);
 436        /*
 437         * Do not update time when cgroup is not active
 438         */
 439        if (cgrp == event->cgrp)
 440                __update_cgrp_time(event->cgrp);
 441}
 442
 443static inline void
 444perf_cgroup_set_timestamp(struct task_struct *task,
 445                          struct perf_event_context *ctx)
 446{
 447        struct perf_cgroup *cgrp;
 448        struct perf_cgroup_info *info;
 449
 450        /*
 451         * ctx->lock held by caller
 452         * ensure we do not access cgroup data
 453         * unless we have the cgroup pinned (css_get)
 454         */
 455        if (!task || !ctx->nr_cgroups)
 456                return;
 457
 458        cgrp = perf_cgroup_from_task(task);
 459        info = this_cpu_ptr(cgrp->info);
 460        info->timestamp = ctx->timestamp;
 461}
 462
 463#define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
 464#define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
 465
 466/*
 467 * reschedule events based on the cgroup constraint of task.
 468 *
 469 * mode SWOUT : schedule out everything
 470 * mode SWIN : schedule in based on cgroup for next
 471 */
 472void perf_cgroup_switch(struct task_struct *task, int mode)
 473{
 474        struct perf_cpu_context *cpuctx;
 475        struct pmu *pmu;
 476        unsigned long flags;
 477
 478        /*
 479         * disable interrupts to avoid geting nr_cgroup
 480         * changes via __perf_event_disable(). Also
 481         * avoids preemption.
 482         */
 483        local_irq_save(flags);
 484
 485        /*
 486         * we reschedule only in the presence of cgroup
 487         * constrained events.
 488         */
 489        rcu_read_lock();
 490
 491        list_for_each_entry_rcu(pmu, &pmus, entry) {
 492                cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 493                if (cpuctx->unique_pmu != pmu)
 494                        continue; /* ensure we process each cpuctx once */
 495
 496                /*
 497                 * perf_cgroup_events says at least one
 498                 * context on this CPU has cgroup events.
 499                 *
 500                 * ctx->nr_cgroups reports the number of cgroup
 501                 * events for a context.
 502                 */
 503                if (cpuctx->ctx.nr_cgroups > 0) {
 504                        perf_ctx_lock(cpuctx, cpuctx->task_ctx);
 505                        perf_pmu_disable(cpuctx->ctx.pmu);
 506
 507                        if (mode & PERF_CGROUP_SWOUT) {
 508                                cpu_ctx_sched_out(cpuctx, EVENT_ALL);
 509                                /*
 510                                 * must not be done before ctxswout due
 511                                 * to event_filter_match() in event_sched_out()
 512                                 */
 513                                cpuctx->cgrp = NULL;
 514                        }
 515
 516                        if (mode & PERF_CGROUP_SWIN) {
 517                                WARN_ON_ONCE(cpuctx->cgrp);
 518                                /*
 519                                 * set cgrp before ctxsw in to allow
 520                                 * event_filter_match() to not have to pass
 521                                 * task around
 522                                 */
 523                                cpuctx->cgrp = perf_cgroup_from_task(task);
 524                                cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
 525                        }
 526                        perf_pmu_enable(cpuctx->ctx.pmu);
 527                        perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
 528                }
 529        }
 530
 531        rcu_read_unlock();
 532
 533        local_irq_restore(flags);
 534}
 535
 536static inline void perf_cgroup_sched_out(struct task_struct *task,
 537                                         struct task_struct *next)
 538{
 539        struct perf_cgroup *cgrp1;
 540        struct perf_cgroup *cgrp2 = NULL;
 541
 542        /*
 543         * we come here when we know perf_cgroup_events > 0
 544         */
 545        cgrp1 = perf_cgroup_from_task(task);
 546
 547        /*
 548         * next is NULL when called from perf_event_enable_on_exec()
 549         * that will systematically cause a cgroup_switch()
 550         */
 551        if (next)
 552                cgrp2 = perf_cgroup_from_task(next);
 553
 554        /*
 555         * only schedule out current cgroup events if we know
 556         * that we are switching to a different cgroup. Otherwise,
 557         * do no touch the cgroup events.
 558         */
 559        if (cgrp1 != cgrp2)
 560                perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
 561}
 562
 563static inline void perf_cgroup_sched_in(struct task_struct *prev,
 564                                        struct task_struct *task)
 565{
 566        struct perf_cgroup *cgrp1;
 567        struct perf_cgroup *cgrp2 = NULL;
 568
 569        /*
 570         * we come here when we know perf_cgroup_events > 0
 571         */
 572        cgrp1 = perf_cgroup_from_task(task);
 573
 574        /* prev can never be NULL */
 575        cgrp2 = perf_cgroup_from_task(prev);
 576
 577        /*
 578         * only need to schedule in cgroup events if we are changing
 579         * cgroup during ctxsw. Cgroup events were not scheduled
 580         * out of ctxsw out if that was not the case.
 581         */
 582        if (cgrp1 != cgrp2)
 583                perf_cgroup_switch(task, PERF_CGROUP_SWIN);
 584}
 585
 586static inline int perf_cgroup_connect(int fd, struct perf_event *event,
 587                                      struct perf_event_attr *attr,
 588                                      struct perf_event *group_leader)
 589{
 590        struct perf_cgroup *cgrp;
 591        struct cgroup_subsys_state *css;
 592        struct fd f = fdget(fd);
 593        int ret = 0;
 594
 595        if (!f.file)
 596                return -EBADF;
 597
 598        css = css_tryget_online_from_dir(f.file->f_path.dentry,
 599                                         &perf_event_cgrp_subsys);
 600        if (IS_ERR(css)) {
 601                ret = PTR_ERR(css);
 602                goto out;
 603        }
 604
 605        cgrp = container_of(css, struct perf_cgroup, css);
 606        event->cgrp = cgrp;
 607
 608        /*
 609         * all events in a group must monitor
 610         * the same cgroup because a task belongs
 611         * to only one perf cgroup at a time
 612         */
 613        if (group_leader && group_leader->cgrp != cgrp) {
 614                perf_detach_cgroup(event);
 615                ret = -EINVAL;
 616        }
 617out:
 618        fdput(f);
 619        return ret;
 620}
 621
 622static inline void
 623perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
 624{
 625        struct perf_cgroup_info *t;
 626        t = per_cpu_ptr(event->cgrp->info, event->cpu);
 627        event->shadow_ctx_time = now - t->timestamp;
 628}
 629
 630static inline void
 631perf_cgroup_defer_enabled(struct perf_event *event)
 632{
 633        /*
 634         * when the current task's perf cgroup does not match
 635         * the event's, we need to remember to call the
 636         * perf_mark_enable() function the first time a task with
 637         * a matching perf cgroup is scheduled in.
 638         */
 639        if (is_cgroup_event(event) && !perf_cgroup_match(event))
 640                event->cgrp_defer_enabled = 1;
 641}
 642
 643static inline void
 644perf_cgroup_mark_enabled(struct perf_event *event,
 645                         struct perf_event_context *ctx)
 646{
 647        struct perf_event *sub;
 648        u64 tstamp = perf_event_time(event);
 649
 650        if (!event->cgrp_defer_enabled)
 651                return;
 652
 653        event->cgrp_defer_enabled = 0;
 654
 655        event->tstamp_enabled = tstamp - event->total_time_enabled;
 656        list_for_each_entry(sub, &event->sibling_list, group_entry) {
 657                if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
 658                        sub->tstamp_enabled = tstamp - sub->total_time_enabled;
 659                        sub->cgrp_defer_enabled = 0;
 660                }
 661        }
 662}
 663#else /* !CONFIG_CGROUP_PERF */
 664
 665static inline bool
 666perf_cgroup_match(struct perf_event *event)
 667{
 668        return true;
 669}
 670
 671static inline void perf_detach_cgroup(struct perf_event *event)
 672{}
 673
 674static inline int is_cgroup_event(struct perf_event *event)
 675{
 676        return 0;
 677}
 678
 679static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
 680{
 681        return 0;
 682}
 683
 684static inline void update_cgrp_time_from_event(struct perf_event *event)
 685{
 686}
 687
 688static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
 689{
 690}
 691
 692static inline void perf_cgroup_sched_out(struct task_struct *task,
 693                                         struct task_struct *next)
 694{
 695}
 696
 697static inline void perf_cgroup_sched_in(struct task_struct *prev,
 698                                        struct task_struct *task)
 699{
 700}
 701
 702static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
 703                                      struct perf_event_attr *attr,
 704                                      struct perf_event *group_leader)
 705{
 706        return -EINVAL;
 707}
 708
 709static inline void
 710perf_cgroup_set_timestamp(struct task_struct *task,
 711                          struct perf_event_context *ctx)
 712{
 713}
 714
 715void
 716perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
 717{
 718}
 719
 720static inline void
 721perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
 722{
 723}
 724
 725static inline u64 perf_cgroup_event_time(struct perf_event *event)
 726{
 727        return 0;
 728}
 729
 730static inline void
 731perf_cgroup_defer_enabled(struct perf_event *event)
 732{
 733}
 734
 735static inline void
 736perf_cgroup_mark_enabled(struct perf_event *event,
 737                         struct perf_event_context *ctx)
 738{
 739}
 740#endif
 741
 742/*
 743 * set default to be dependent on timer tick just
 744 * like original code
 745 */
 746#define PERF_CPU_HRTIMER (1000 / HZ)
 747/*
 748 * function must be called with interrupts disbled
 749 */
 750static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
 751{
 752        struct perf_cpu_context *cpuctx;
 753        enum hrtimer_restart ret = HRTIMER_NORESTART;
 754        int rotations = 0;
 755
 756        WARN_ON(!irqs_disabled());
 757
 758        cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
 759
 760        rotations = perf_rotate_context(cpuctx);
 761
 762        /*
 763         * arm timer if needed
 764         */
 765        if (rotations) {
 766                hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
 767                ret = HRTIMER_RESTART;
 768        }
 769
 770        return ret;
 771}
 772
 773/* CPU is going down */
 774void perf_cpu_hrtimer_cancel(int cpu)
 775{
 776        struct perf_cpu_context *cpuctx;
 777        struct pmu *pmu;
 778        unsigned long flags;
 779
 780        if (WARN_ON(cpu != smp_processor_id()))
 781                return;
 782
 783        local_irq_save(flags);
 784
 785        rcu_read_lock();
 786
 787        list_for_each_entry_rcu(pmu, &pmus, entry) {
 788                cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 789
 790                if (pmu->task_ctx_nr == perf_sw_context)
 791                        continue;
 792
 793                hrtimer_cancel(&cpuctx->hrtimer);
 794        }
 795
 796        rcu_read_unlock();
 797
 798        local_irq_restore(flags);
 799}
 800
 801static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
 802{
 803        struct hrtimer *hr = &cpuctx->hrtimer;
 804        struct pmu *pmu = cpuctx->ctx.pmu;
 805        int timer;
 806
 807        /* no multiplexing needed for SW PMU */
 808        if (pmu->task_ctx_nr == perf_sw_context)
 809                return;
 810
 811        /*
 812         * check default is sane, if not set then force to
 813         * default interval (1/tick)
 814         */
 815        timer = pmu->hrtimer_interval_ms;
 816        if (timer < 1)
 817                timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
 818
 819        cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
 820
 821        hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
 822        hr->function = perf_cpu_hrtimer_handler;
 823}
 824
 825static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
 826{
 827        struct hrtimer *hr = &cpuctx->hrtimer;
 828        struct pmu *pmu = cpuctx->ctx.pmu;
 829
 830        /* not for SW PMU */
 831        if (pmu->task_ctx_nr == perf_sw_context)
 832                return;
 833
 834        if (hrtimer_active(hr))
 835                return;
 836
 837        if (!hrtimer_callback_running(hr))
 838                __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
 839                                         0, HRTIMER_MODE_REL_PINNED, 0);
 840}
 841
 842void perf_pmu_disable(struct pmu *pmu)
 843{
 844        int *count = this_cpu_ptr(pmu->pmu_disable_count);
 845        if (!(*count)++)
 846                pmu->pmu_disable(pmu);
 847}
 848
 849void perf_pmu_enable(struct pmu *pmu)
 850{
 851        int *count = this_cpu_ptr(pmu->pmu_disable_count);
 852        if (!--(*count))
 853                pmu->pmu_enable(pmu);
 854}
 855
 856static DEFINE_PER_CPU(struct list_head, active_ctx_list);
 857
 858/*
 859 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 860 * perf_event_task_tick() are fully serialized because they're strictly cpu
 861 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 862 * disabled, while perf_event_task_tick is called from IRQ context.
 863 */
 864static void perf_event_ctx_activate(struct perf_event_context *ctx)
 865{
 866        struct list_head *head = this_cpu_ptr(&active_ctx_list);
 867
 868        WARN_ON(!irqs_disabled());
 869
 870        WARN_ON(!list_empty(&ctx->active_ctx_list));
 871
 872        list_add(&ctx->active_ctx_list, head);
 873}
 874
 875static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
 876{
 877        WARN_ON(!irqs_disabled());
 878
 879        WARN_ON(list_empty(&ctx->active_ctx_list));
 880
 881        list_del_init(&ctx->active_ctx_list);
 882}
 883
 884static void get_ctx(struct perf_event_context *ctx)
 885{
 886        WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
 887}
 888
 889static void free_ctx(struct rcu_head *head)
 890{
 891        struct perf_event_context *ctx;
 892
 893        ctx = container_of(head, struct perf_event_context, rcu_head);
 894        kfree(ctx->task_ctx_data);
 895        kfree(ctx);
 896}
 897
 898static void put_ctx(struct perf_event_context *ctx)
 899{
 900        if (atomic_dec_and_test(&ctx->refcount)) {
 901                if (ctx->parent_ctx)
 902                        put_ctx(ctx->parent_ctx);
 903                if (ctx->task)
 904                        put_task_struct(ctx->task);
 905                call_rcu(&ctx->rcu_head, free_ctx);
 906        }
 907}
 908
 909/*
 910 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 911 * perf_pmu_migrate_context() we need some magic.
 912 *
 913 * Those places that change perf_event::ctx will hold both
 914 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 915 *
 916 * Lock ordering is by mutex address. There are two other sites where
 917 * perf_event_context::mutex nests and those are:
 918 *
 919 *  - perf_event_exit_task_context()    [ child , 0 ]
 920 *      __perf_event_exit_task()
 921 *        sync_child_event()
 922 *          put_event()                 [ parent, 1 ]
 923 *
 924 *  - perf_event_init_context()         [ parent, 0 ]
 925 *      inherit_task_group()
 926 *        inherit_group()
 927 *          inherit_event()
 928 *            perf_event_alloc()
 929 *              perf_init_event()
 930 *                perf_try_init_event() [ child , 1 ]
 931 *
 932 * While it appears there is an obvious deadlock here -- the parent and child
 933 * nesting levels are inverted between the two. This is in fact safe because
 934 * life-time rules separate them. That is an exiting task cannot fork, and a
 935 * spawning task cannot (yet) exit.
 936 *
 937 * But remember that that these are parent<->child context relations, and
 938 * migration does not affect children, therefore these two orderings should not
 939 * interact.
 940 *
 941 * The change in perf_event::ctx does not affect children (as claimed above)
 942 * because the sys_perf_event_open() case will install a new event and break
 943 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 944 * concerned with cpuctx and that doesn't have children.
 945 *
 946 * The places that change perf_event::ctx will issue:
 947 *
 948 *   perf_remove_from_context();
 949 *   synchronize_rcu();
 950 *   perf_install_in_context();
 951 *
 952 * to affect the change. The remove_from_context() + synchronize_rcu() should
 953 * quiesce the event, after which we can install it in the new location. This
 954 * means that only external vectors (perf_fops, prctl) can perturb the event
 955 * while in transit. Therefore all such accessors should also acquire
 956 * perf_event_context::mutex to serialize against this.
 957 *
 958 * However; because event->ctx can change while we're waiting to acquire
 959 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 960 * function.
 961 *
 962 * Lock order:
 963 *      task_struct::perf_event_mutex
 964 *        perf_event_context::mutex
 965 *          perf_event_context::lock
 966 *          perf_event::child_mutex;
 967 *          perf_event::mmap_mutex
 968 *          mmap_sem
 969 */
 970static struct perf_event_context *
 971perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
 972{
 973        struct perf_event_context *ctx;
 974
 975again:
 976        rcu_read_lock();
 977        ctx = ACCESS_ONCE(event->ctx);
 978        if (!atomic_inc_not_zero(&ctx->refcount)) {
 979                rcu_read_unlock();
 980                goto again;
 981        }
 982        rcu_read_unlock();
 983
 984        mutex_lock_nested(&ctx->mutex, nesting);
 985        if (event->ctx != ctx) {
 986                mutex_unlock(&ctx->mutex);
 987                put_ctx(ctx);
 988                goto again;
 989        }
 990
 991        return ctx;
 992}
 993
 994static inline struct perf_event_context *
 995perf_event_ctx_lock(struct perf_event *event)
 996{
 997        return perf_event_ctx_lock_nested(event, 0);
 998}
 999
1000static void perf_event_ctx_unlock(struct perf_event *event,
1001                                  struct perf_event_context *ctx)
1002{
1003        mutex_unlock(&ctx->mutex);
1004        put_ctx(ctx);
1005}
1006
1007/*
1008 * This must be done under the ctx->lock, such as to serialize against
1009 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1010 * calling scheduler related locks and ctx->lock nests inside those.
1011 */
1012static __must_check struct perf_event_context *
1013unclone_ctx(struct perf_event_context *ctx)
1014{
1015        struct perf_event_context *parent_ctx = ctx->parent_ctx;
1016
1017        lockdep_assert_held(&ctx->lock);
1018
1019        if (parent_ctx)
1020                ctx->parent_ctx = NULL;
1021        ctx->generation++;
1022
1023        return parent_ctx;
1024}
1025
1026static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1027{
1028        /*
1029         * only top level events have the pid namespace they were created in
1030         */
1031        if (event->parent)
1032                event = event->parent;
1033
1034        return task_tgid_nr_ns(p, event->ns);
1035}
1036
1037static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1038{
1039        /*
1040         * only top level events have the pid namespace they were created in
1041         */
1042        if (event->parent)
1043                event = event->parent;
1044
1045        return task_pid_nr_ns(p, event->ns);
1046}
1047
1048/*
1049 * If we inherit events we want to return the parent event id
1050 * to userspace.
1051 */
1052static u64 primary_event_id(struct perf_event *event)
1053{
1054        u64 id = event->id;
1055
1056        if (event->parent)
1057                id = event->parent->id;
1058
1059        return id;
1060}
1061
1062/*
1063 * Get the perf_event_context for a task and lock it.
1064 * This has to cope with with the fact that until it is locked,
1065 * the context could get moved to another task.
1066 */
1067static struct perf_event_context *
1068perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1069{
1070        struct perf_event_context *ctx;
1071
1072retry:
1073        /*
1074         * One of the few rules of preemptible RCU is that one cannot do
1075         * rcu_read_unlock() while holding a scheduler (or nested) lock when
1076         * part of the read side critical section was preemptible -- see
1077         * rcu_read_unlock_special().
1078         *
1079         * Since ctx->lock nests under rq->lock we must ensure the entire read
1080         * side critical section is non-preemptible.
1081         */
1082        preempt_disable();
1083        rcu_read_lock();
1084        ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1085        if (ctx) {
1086                /*
1087                 * If this context is a clone of another, it might
1088                 * get swapped for another underneath us by
1089                 * perf_event_task_sched_out, though the
1090                 * rcu_read_lock() protects us from any context
1091                 * getting freed.  Lock the context and check if it
1092                 * got swapped before we could get the lock, and retry
1093                 * if so.  If we locked the right context, then it
1094                 * can't get swapped on us any more.
1095                 */
1096                raw_spin_lock_irqsave(&ctx->lock, *flags);
1097                if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1098                        raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1099                        rcu_read_unlock();
1100                        preempt_enable();
1101                        goto retry;
1102                }
1103
1104                if (!atomic_inc_not_zero(&ctx->refcount)) {
1105                        raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1106                        ctx = NULL;
1107                }
1108        }
1109        rcu_read_unlock();
1110        preempt_enable();
1111        return ctx;
1112}
1113
1114/*
1115 * Get the context for a task and increment its pin_count so it
1116 * can't get swapped to another task.  This also increments its
1117 * reference count so that the context can't get freed.
1118 */
1119static struct perf_event_context *
1120perf_pin_task_context(struct task_struct *task, int ctxn)
1121{
1122        struct perf_event_context *ctx;
1123        unsigned long flags;
1124
1125        ctx = perf_lock_task_context(task, ctxn, &flags);
1126        if (ctx) {
1127                ++ctx->pin_count;
1128                raw_spin_unlock_irqrestore(&ctx->lock, flags);
1129        }
1130        return ctx;
1131}
1132
1133static void perf_unpin_context(struct perf_event_context *ctx)
1134{
1135        unsigned long flags;
1136
1137        raw_spin_lock_irqsave(&ctx->lock, flags);
1138        --ctx->pin_count;
1139        raw_spin_unlock_irqrestore(&ctx->lock, flags);
1140}
1141
1142/*
1143 * Update the record of the current time in a context.
1144 */
1145static void update_context_time(struct perf_event_context *ctx)
1146{
1147        u64 now = perf_clock();
1148
1149        ctx->time += now - ctx->timestamp;
1150        ctx->timestamp = now;
1151}
1152
1153static u64 perf_event_time(struct perf_event *event)
1154{
1155        struct perf_event_context *ctx = event->ctx;
1156
1157        if (is_cgroup_event(event))
1158                return perf_cgroup_event_time(event);
1159
1160        return ctx ? ctx->time : 0;
1161}
1162
1163/*
1164 * Update the total_time_enabled and total_time_running fields for a event.
1165 * The caller of this function needs to hold the ctx->lock.
1166 */
1167static void update_event_times(struct perf_event *event)
1168{
1169        struct perf_event_context *ctx = event->ctx;
1170        u64 run_end;
1171
1172        if (event->state < PERF_EVENT_STATE_INACTIVE ||
1173            event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1174                return;
1175        /*
1176         * in cgroup mode, time_enabled represents
1177         * the time the event was enabled AND active
1178         * tasks were in the monitored cgroup. This is
1179         * independent of the activity of the context as
1180         * there may be a mix of cgroup and non-cgroup events.
1181         *
1182         * That is why we treat cgroup events differently
1183         * here.
1184         */
1185        if (is_cgroup_event(event))
1186                run_end = perf_cgroup_event_time(event);
1187        else if (ctx->is_active)
1188                run_end = ctx->time;
1189        else
1190                run_end = event->tstamp_stopped;
1191
1192        event->total_time_enabled = run_end - event->tstamp_enabled;
1193
1194        if (event->state == PERF_EVENT_STATE_INACTIVE)
1195                run_end = event->tstamp_stopped;
1196        else
1197                run_end = perf_event_time(event);
1198
1199        event->total_time_running = run_end - event->tstamp_running;
1200
1201}
1202
1203/*
1204 * Update total_time_enabled and total_time_running for all events in a group.
1205 */
1206static void update_group_times(struct perf_event *leader)
1207{
1208        struct perf_event *event;
1209
1210        update_event_times(leader);
1211        list_for_each_entry(event, &leader->sibling_list, group_entry)
1212                update_event_times(event);
1213}
1214
1215static struct list_head *
1216ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1217{
1218        if (event->attr.pinned)
1219                return &ctx->pinned_groups;
1220        else
1221                return &ctx->flexible_groups;
1222}
1223
1224/*
1225 * Add a event from the lists for its context.
1226 * Must be called with ctx->mutex and ctx->lock held.
1227 */
1228static void
1229list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1230{
1231        WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1232        event->attach_state |= PERF_ATTACH_CONTEXT;
1233
1234        /*
1235         * If we're a stand alone event or group leader, we go to the context
1236         * list, group events are kept attached to the group so that
1237         * perf_group_detach can, at all times, locate all siblings.
1238         */
1239        if (event->group_leader == event) {
1240                struct list_head *list;
1241
1242                if (is_software_event(event))
1243                        event->group_flags |= PERF_GROUP_SOFTWARE;
1244
1245                list = ctx_group_list(event, ctx);
1246                list_add_tail(&event->group_entry, list);
1247        }
1248
1249        if (is_cgroup_event(event))
1250                ctx->nr_cgroups++;
1251
1252        list_add_rcu(&event->event_entry, &ctx->event_list);
1253        ctx->nr_events++;
1254        if (event->attr.inherit_stat)
1255                ctx->nr_stat++;
1256
1257        ctx->generation++;
1258}
1259
1260/*
1261 * Initialize event state based on the perf_event_attr::disabled.
1262 */
1263static inline void perf_event__state_init(struct perf_event *event)
1264{
1265        event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1266                                              PERF_EVENT_STATE_INACTIVE;
1267}
1268
1269/*
1270 * Called at perf_event creation and when events are attached/detached from a
1271 * group.
1272 */
1273static void perf_event__read_size(struct perf_event *event)
1274{
1275        int entry = sizeof(u64); /* value */
1276        int size = 0;
1277        int nr = 1;
1278
1279        if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1280                size += sizeof(u64);
1281
1282        if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1283                size += sizeof(u64);
1284
1285        if (event->attr.read_format & PERF_FORMAT_ID)
1286                entry += sizeof(u64);
1287
1288        if (event->attr.read_format & PERF_FORMAT_GROUP) {
1289                nr += event->group_leader->nr_siblings;
1290                size += sizeof(u64);
1291        }
1292
1293        size += entry * nr;
1294        event->read_size = size;
1295}
1296
1297static void perf_event__header_size(struct perf_event *event)
1298{
1299        struct perf_sample_data *data;
1300        u64 sample_type = event->attr.sample_type;
1301        u16 size = 0;
1302
1303        perf_event__read_size(event);
1304
1305        if (sample_type & PERF_SAMPLE_IP)
1306                size += sizeof(data->ip);
1307
1308        if (sample_type & PERF_SAMPLE_ADDR)
1309                size += sizeof(data->addr);
1310
1311        if (sample_type & PERF_SAMPLE_PERIOD)
1312                size += sizeof(data->period);
1313
1314        if (sample_type & PERF_SAMPLE_WEIGHT)
1315                size += sizeof(data->weight);
1316
1317        if (sample_type & PERF_SAMPLE_READ)
1318                size += event->read_size;
1319
1320        if (sample_type & PERF_SAMPLE_DATA_SRC)
1321                size += sizeof(data->data_src.val);
1322
1323        if (sample_type & PERF_SAMPLE_TRANSACTION)
1324                size += sizeof(data->txn);
1325
1326        event->header_size = size;
1327}
1328
1329static void perf_event__id_header_size(struct perf_event *event)
1330{
1331        struct perf_sample_data *data;
1332        u64 sample_type = event->attr.sample_type;
1333        u16 size = 0;
1334
1335        if (sample_type & PERF_SAMPLE_TID)
1336                size += sizeof(data->tid_entry);
1337
1338        if (sample_type & PERF_SAMPLE_TIME)
1339                size += sizeof(data->time);
1340
1341        if (sample_type & PERF_SAMPLE_IDENTIFIER)
1342                size += sizeof(data->id);
1343
1344        if (sample_type & PERF_SAMPLE_ID)
1345                size += sizeof(data->id);
1346
1347        if (sample_type & PERF_SAMPLE_STREAM_ID)
1348                size += sizeof(data->stream_id);
1349
1350        if (sample_type & PERF_SAMPLE_CPU)
1351                size += sizeof(data->cpu_entry);
1352
1353        event->id_header_size = size;
1354}
1355
1356static void perf_group_attach(struct perf_event *event)
1357{
1358        struct perf_event *group_leader = event->group_leader, *pos;
1359
1360        /*
1361         * We can have double attach due to group movement in perf_event_open.
1362         */
1363        if (event->attach_state & PERF_ATTACH_GROUP)
1364                return;
1365
1366        event->attach_state |= PERF_ATTACH_GROUP;
1367
1368        if (group_leader == event)
1369                return;
1370
1371        WARN_ON_ONCE(group_leader->ctx != event->ctx);
1372
1373        if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1374                        !is_software_event(event))
1375                group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1376
1377        list_add_tail(&event->group_entry, &group_leader->sibling_list);
1378        group_leader->nr_siblings++;
1379
1380        perf_event__header_size(group_leader);
1381
1382        list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1383                perf_event__header_size(pos);
1384}
1385
1386/*
1387 * Remove a event from the lists for its context.
1388 * Must be called with ctx->mutex and ctx->lock held.
1389 */
1390static void
1391list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1392{
1393        struct perf_cpu_context *cpuctx;
1394
1395        WARN_ON_ONCE(event->ctx != ctx);
1396        lockdep_assert_held(&ctx->lock);
1397
1398        /*
1399         * We can have double detach due to exit/hot-unplug + close.
1400         */
1401        if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1402                return;
1403
1404        event->attach_state &= ~PERF_ATTACH_CONTEXT;
1405
1406        if (is_cgroup_event(event)) {
1407                ctx->nr_cgroups--;
1408                cpuctx = __get_cpu_context(ctx);
1409                /*
1410                 * if there are no more cgroup events
1411                 * then cler cgrp to avoid stale pointer
1412                 * in update_cgrp_time_from_cpuctx()
1413                 */
1414                if (!ctx->nr_cgroups)
1415                        cpuctx->cgrp = NULL;
1416        }
1417
1418        ctx->nr_events--;
1419        if (event->attr.inherit_stat)
1420                ctx->nr_stat--;
1421
1422        list_del_rcu(&event->event_entry);
1423
1424        if (event->group_leader == event)
1425                list_del_init(&event->group_entry);
1426
1427        update_group_times(event);
1428
1429        /*
1430         * If event was in error state, then keep it
1431         * that way, otherwise bogus counts will be
1432         * returned on read(). The only way to get out
1433         * of error state is by explicit re-enabling
1434         * of the event
1435         */
1436        if (event->state > PERF_EVENT_STATE_OFF)
1437                event->state = PERF_EVENT_STATE_OFF;
1438
1439        ctx->generation++;
1440}
1441
1442static void perf_group_detach(struct perf_event *event)
1443{
1444        struct perf_event *sibling, *tmp;
1445        struct list_head *list = NULL;
1446
1447        /*
1448         * We can have double detach due to exit/hot-unplug + close.
1449         */
1450        if (!(event->attach_state & PERF_ATTACH_GROUP))
1451                return;
1452
1453        event->attach_state &= ~PERF_ATTACH_GROUP;
1454
1455        /*
1456         * If this is a sibling, remove it from its group.
1457         */
1458        if (event->group_leader != event) {
1459                list_del_init(&event->group_entry);
1460                event->group_leader->nr_siblings--;
1461                goto out;
1462        }
1463
1464        if (!list_empty(&event->group_entry))
1465                list = &event->group_entry;
1466
1467        /*
1468         * If this was a group event with sibling events then
1469         * upgrade the siblings to singleton events by adding them
1470         * to whatever list we are on.
1471         */
1472        list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1473                if (list)
1474                        list_move_tail(&sibling->group_entry, list);
1475                sibling->group_leader = sibling;
1476
1477                /* Inherit group flags from the previous leader */
1478                sibling->group_flags = event->group_flags;
1479
1480                WARN_ON_ONCE(sibling->ctx != event->ctx);
1481        }
1482
1483out:
1484        perf_event__header_size(event->group_leader);
1485
1486        list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1487                perf_event__header_size(tmp);
1488}
1489
1490/*
1491 * User event without the task.
1492 */
1493static bool is_orphaned_event(struct perf_event *event)
1494{
1495        return event && !is_kernel_event(event) && !event->owner;
1496}
1497
1498/*
1499 * Event has a parent but parent's task finished and it's
1500 * alive only because of children holding refference.
1501 */
1502static bool is_orphaned_child(struct perf_event *event)
1503{
1504        return is_orphaned_event(event->parent);
1505}
1506
1507static void orphans_remove_work(struct work_struct *work);
1508
1509static void schedule_orphans_remove(struct perf_event_context *ctx)
1510{
1511        if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1512                return;
1513
1514        if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1515                get_ctx(ctx);
1516                ctx->orphans_remove_sched = true;
1517        }
1518}
1519
1520static int __init perf_workqueue_init(void)
1521{
1522        perf_wq = create_singlethread_workqueue("perf");
1523        WARN(!perf_wq, "failed to create perf workqueue\n");
1524        return perf_wq ? 0 : -1;
1525}
1526
1527core_initcall(perf_workqueue_init);
1528
1529static inline int
1530event_filter_match(struct perf_event *event)
1531{
1532        return (event->cpu == -1 || event->cpu == smp_processor_id())
1533            && perf_cgroup_match(event);
1534}
1535
1536static void
1537event_sched_out(struct perf_event *event,
1538                  struct perf_cpu_context *cpuctx,
1539                  struct perf_event_context *ctx)
1540{
1541        u64 tstamp = perf_event_time(event);
1542        u64 delta;
1543
1544        WARN_ON_ONCE(event->ctx != ctx);
1545        lockdep_assert_held(&ctx->lock);
1546
1547        /*
1548         * An event which could not be activated because of
1549         * filter mismatch still needs to have its timings
1550         * maintained, otherwise bogus information is return
1551         * via read() for time_enabled, time_running:
1552         */
1553        if (event->state == PERF_EVENT_STATE_INACTIVE
1554            && !event_filter_match(event)) {
1555                delta = tstamp - event->tstamp_stopped;
1556                event->tstamp_running += delta;
1557                event->tstamp_stopped = tstamp;
1558        }
1559
1560        if (event->state != PERF_EVENT_STATE_ACTIVE)
1561                return;
1562
1563        perf_pmu_disable(event->pmu);
1564
1565        event->state = PERF_EVENT_STATE_INACTIVE;
1566        if (event->pending_disable) {
1567                event->pending_disable = 0;
1568                event->state = PERF_EVENT_STATE_OFF;
1569        }
1570        event->tstamp_stopped = tstamp;
1571        event->pmu->del(event, 0);
1572        event->oncpu = -1;
1573
1574        if (!is_software_event(event))
1575                cpuctx->active_oncpu--;
1576        if (!--ctx->nr_active)
1577                perf_event_ctx_deactivate(ctx);
1578        if (event->attr.freq && event->attr.sample_freq)
1579                ctx->nr_freq--;
1580        if (event->attr.exclusive || !cpuctx->active_oncpu)
1581                cpuctx->exclusive = 0;
1582
1583        if (is_orphaned_child(event))
1584                schedule_orphans_remove(ctx);
1585
1586        perf_pmu_enable(event->pmu);
1587}
1588
1589static void
1590group_sched_out(struct perf_event *group_event,
1591                struct perf_cpu_context *cpuctx,
1592                struct perf_event_context *ctx)
1593{
1594        struct perf_event *event;
1595        int state = group_event->state;
1596
1597        event_sched_out(group_event, cpuctx, ctx);
1598
1599        /*
1600         * Schedule out siblings (if any):
1601         */
1602        list_for_each_entry(event, &group_event->sibling_list, group_entry)
1603                event_sched_out(event, cpuctx, ctx);
1604
1605        if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1606                cpuctx->exclusive = 0;
1607}
1608
1609struct remove_event {
1610        struct perf_event *event;
1611        bool detach_group;
1612};
1613
1614/*
1615 * Cross CPU call to remove a performance event
1616 *
1617 * We disable the event on the hardware level first. After that we
1618 * remove it from the context list.
1619 */
1620static int __perf_remove_from_context(void *info)
1621{
1622        struct remove_event *re = info;
1623        struct perf_event *event = re->event;
1624        struct perf_event_context *ctx = event->ctx;
1625        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1626
1627        raw_spin_lock(&ctx->lock);
1628        event_sched_out(event, cpuctx, ctx);
1629        if (re->detach_group)
1630                perf_group_detach(event);
1631        list_del_event(event, ctx);
1632        if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1633                ctx->is_active = 0;
1634                cpuctx->task_ctx = NULL;
1635        }
1636        raw_spin_unlock(&ctx->lock);
1637
1638        return 0;
1639}
1640
1641
1642/*
1643 * Remove the event from a task's (or a CPU's) list of events.
1644 *
1645 * CPU events are removed with a smp call. For task events we only
1646 * call when the task is on a CPU.
1647 *
1648 * If event->ctx is a cloned context, callers must make sure that
1649 * every task struct that event->ctx->task could possibly point to
1650 * remains valid.  This is OK when called from perf_release since
1651 * that only calls us on the top-level context, which can't be a clone.
1652 * When called from perf_event_exit_task, it's OK because the
1653 * context has been detached from its task.
1654 */
1655static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1656{
1657        struct perf_event_context *ctx = event->ctx;
1658        struct task_struct *task = ctx->task;
1659        struct remove_event re = {
1660                .event = event,
1661                .detach_group = detach_group,
1662        };
1663
1664        lockdep_assert_held(&ctx->mutex);
1665
1666        if (!task) {
1667                /*
1668                 * Per cpu events are removed via an smp call. The removal can
1669                 * fail if the CPU is currently offline, but in that case we
1670                 * already called __perf_remove_from_context from
1671                 * perf_event_exit_cpu.
1672                 */
1673                cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1674                return;
1675        }
1676
1677retry:
1678        if (!task_function_call(task, __perf_remove_from_context, &re))
1679                return;
1680
1681        raw_spin_lock_irq(&ctx->lock);
1682        /*
1683         * If we failed to find a running task, but find the context active now
1684         * that we've acquired the ctx->lock, retry.
1685         */
1686        if (ctx->is_active) {
1687                raw_spin_unlock_irq(&ctx->lock);
1688                /*
1689                 * Reload the task pointer, it might have been changed by
1690                 * a concurrent perf_event_context_sched_out().
1691                 */
1692                task = ctx->task;
1693                goto retry;
1694        }
1695
1696        /*
1697         * Since the task isn't running, its safe to remove the event, us
1698         * holding the ctx->lock ensures the task won't get scheduled in.
1699         */
1700        if (detach_group)
1701                perf_group_detach(event);
1702        list_del_event(event, ctx);
1703        raw_spin_unlock_irq(&ctx->lock);
1704}
1705
1706/*
1707 * Cross CPU call to disable a performance event
1708 */
1709int __perf_event_disable(void *info)
1710{
1711        struct perf_event *event = info;
1712        struct perf_event_context *ctx = event->ctx;
1713        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1714
1715        /*
1716         * If this is a per-task event, need to check whether this
1717         * event's task is the current task on this cpu.
1718         *
1719         * Can trigger due to concurrent perf_event_context_sched_out()
1720         * flipping contexts around.
1721         */
1722        if (ctx->task && cpuctx->task_ctx != ctx)
1723                return -EINVAL;
1724
1725        raw_spin_lock(&ctx->lock);
1726
1727        /*
1728         * If the event is on, turn it off.
1729         * If it is in error state, leave it in error state.
1730         */
1731        if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1732                update_context_time(ctx);
1733                update_cgrp_time_from_event(event);
1734                update_group_times(event);
1735                if (event == event->group_leader)
1736                        group_sched_out(event, cpuctx, ctx);
1737                else
1738                        event_sched_out(event, cpuctx, ctx);
1739                event->state = PERF_EVENT_STATE_OFF;
1740        }
1741
1742        raw_spin_unlock(&ctx->lock);
1743
1744        return 0;
1745}
1746
1747/*
1748 * Disable a event.
1749 *
1750 * If event->ctx is a cloned context, callers must make sure that
1751 * every task struct that event->ctx->task could possibly point to
1752 * remains valid.  This condition is satisifed when called through
1753 * perf_event_for_each_child or perf_event_for_each because they
1754 * hold the top-level event's child_mutex, so any descendant that
1755 * goes to exit will block in sync_child_event.
1756 * When called from perf_pending_event it's OK because event->ctx
1757 * is the current context on this CPU and preemption is disabled,
1758 * hence we can't get into perf_event_task_sched_out for this context.
1759 */
1760static void _perf_event_disable(struct perf_event *event)
1761{
1762        struct perf_event_context *ctx = event->ctx;
1763        struct task_struct *task = ctx->task;
1764
1765        if (!task) {
1766                /*
1767                 * Disable the event on the cpu that it's on
1768                 */
1769                cpu_function_call(event->cpu, __perf_event_disable, event);
1770                return;
1771        }
1772
1773retry:
1774        if (!task_function_call(task, __perf_event_disable, event))
1775                return;
1776
1777        raw_spin_lock_irq(&ctx->lock);
1778        /*
1779         * If the event is still active, we need to retry the cross-call.
1780         */
1781        if (event->state == PERF_EVENT_STATE_ACTIVE) {
1782                raw_spin_unlock_irq(&ctx->lock);
1783                /*
1784                 * Reload the task pointer, it might have been changed by
1785                 * a concurrent perf_event_context_sched_out().
1786                 */
1787                task = ctx->task;
1788                goto retry;
1789        }
1790
1791        /*
1792         * Since we have the lock this context can't be scheduled
1793         * in, so we can change the state safely.
1794         */
1795        if (event->state == PERF_EVENT_STATE_INACTIVE) {
1796                update_group_times(event);
1797                event->state = PERF_EVENT_STATE_OFF;
1798        }
1799        raw_spin_unlock_irq(&ctx->lock);
1800}
1801
1802/*
1803 * Strictly speaking kernel users cannot create groups and therefore this
1804 * interface does not need the perf_event_ctx_lock() magic.
1805 */
1806void perf_event_disable(struct perf_event *event)
1807{
1808        struct perf_event_context *ctx;
1809
1810        ctx = perf_event_ctx_lock(event);
1811        _perf_event_disable(event);
1812        perf_event_ctx_unlock(event, ctx);
1813}
1814EXPORT_SYMBOL_GPL(perf_event_disable);
1815
1816static void perf_set_shadow_time(struct perf_event *event,
1817                                 struct perf_event_context *ctx,
1818                                 u64 tstamp)
1819{
1820        /*
1821         * use the correct time source for the time snapshot
1822         *
1823         * We could get by without this by leveraging the
1824         * fact that to get to this function, the caller
1825         * has most likely already called update_context_time()
1826         * and update_cgrp_time_xx() and thus both timestamp
1827         * are identical (or very close). Given that tstamp is,
1828         * already adjusted for cgroup, we could say that:
1829         *    tstamp - ctx->timestamp
1830         * is equivalent to
1831         *    tstamp - cgrp->timestamp.
1832         *
1833         * Then, in perf_output_read(), the calculation would
1834         * work with no changes because:
1835         * - event is guaranteed scheduled in
1836         * - no scheduled out in between
1837         * - thus the timestamp would be the same
1838         *
1839         * But this is a bit hairy.
1840         *
1841         * So instead, we have an explicit cgroup call to remain
1842         * within the time time source all along. We believe it
1843         * is cleaner and simpler to understand.
1844         */
1845        if (is_cgroup_event(event))
1846                perf_cgroup_set_shadow_time(event, tstamp);
1847        else
1848                event->shadow_ctx_time = tstamp - ctx->timestamp;
1849}
1850
1851#define MAX_INTERRUPTS (~0ULL)
1852
1853static void perf_log_throttle(struct perf_event *event, int enable);
1854static void perf_log_itrace_start(struct perf_event *event);
1855
1856static int
1857event_sched_in(struct perf_event *event,
1858                 struct perf_cpu_context *cpuctx,
1859                 struct perf_event_context *ctx)
1860{
1861        u64 tstamp = perf_event_time(event);
1862        int ret = 0;
1863
1864        lockdep_assert_held(&ctx->lock);
1865
1866        if (event->state <= PERF_EVENT_STATE_OFF)
1867                return 0;
1868
1869        event->state = PERF_EVENT_STATE_ACTIVE;
1870        event->oncpu = smp_processor_id();
1871
1872        /*
1873         * Unthrottle events, since we scheduled we might have missed several
1874         * ticks already, also for a heavily scheduling task there is little
1875         * guarantee it'll get a tick in a timely manner.
1876         */
1877        if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1878                perf_log_throttle(event, 1);
1879                event->hw.interrupts = 0;
1880        }
1881
1882        /*
1883         * The new state must be visible before we turn it on in the hardware:
1884         */
1885        smp_wmb();
1886
1887        perf_pmu_disable(event->pmu);
1888
1889        event->tstamp_running += tstamp - event->tstamp_stopped;
1890
1891        perf_set_shadow_time(event, ctx, tstamp);
1892
1893        perf_log_itrace_start(event);
1894
1895        if (event->pmu->add(event, PERF_EF_START)) {
1896                event->state = PERF_EVENT_STATE_INACTIVE;
1897                event->oncpu = -1;
1898                ret = -EAGAIN;
1899                goto out;
1900        }
1901
1902        if (!is_software_event(event))
1903                cpuctx->active_oncpu++;
1904        if (!ctx->nr_active++)
1905                perf_event_ctx_activate(ctx);
1906        if (event->attr.freq && event->attr.sample_freq)
1907                ctx->nr_freq++;
1908
1909        if (event->attr.exclusive)
1910                cpuctx->exclusive = 1;
1911
1912        if (is_orphaned_child(event))
1913                schedule_orphans_remove(ctx);
1914
1915out:
1916        perf_pmu_enable(event->pmu);
1917
1918        return ret;
1919}
1920
1921static int
1922group_sched_in(struct perf_event *group_event,
1923               struct perf_cpu_context *cpuctx,
1924               struct perf_event_context *ctx)
1925{
1926        struct perf_event *event, *partial_group = NULL;
1927        struct pmu *pmu = ctx->pmu;
1928        u64 now = ctx->time;
1929        bool simulate = false;
1930
1931        if (group_event->state == PERF_EVENT_STATE_OFF)
1932                return 0;
1933
1934        pmu->start_txn(pmu);
1935
1936        if (event_sched_in(group_event, cpuctx, ctx)) {
1937                pmu->cancel_txn(pmu);
1938                perf_cpu_hrtimer_restart(cpuctx);
1939                return -EAGAIN;
1940        }
1941
1942        /*
1943         * Schedule in siblings as one group (if any):
1944         */
1945        list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1946                if (event_sched_in(event, cpuctx, ctx)) {
1947                        partial_group = event;
1948                        goto group_error;
1949                }
1950        }
1951
1952        if (!pmu->commit_txn(pmu))
1953                return 0;
1954
1955group_error:
1956        /*
1957         * Groups can be scheduled in as one unit only, so undo any
1958         * partial group before returning:
1959         * The events up to the failed event are scheduled out normally,
1960         * tstamp_stopped will be updated.
1961         *
1962         * The failed events and the remaining siblings need to have
1963         * their timings updated as if they had gone thru event_sched_in()
1964         * and event_sched_out(). This is required to get consistent timings
1965         * across the group. This also takes care of the case where the group
1966         * could never be scheduled by ensuring tstamp_stopped is set to mark
1967         * the time the event was actually stopped, such that time delta
1968         * calculation in update_event_times() is correct.
1969         */
1970        list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1971                if (event == partial_group)
1972                        simulate = true;
1973
1974                if (simulate) {
1975                        event->tstamp_running += now - event->tstamp_stopped;
1976                        event->tstamp_stopped = now;
1977                } else {
1978                        event_sched_out(event, cpuctx, ctx);
1979                }
1980        }
1981        event_sched_out(group_event, cpuctx, ctx);
1982
1983        pmu->cancel_txn(pmu);
1984
1985        perf_cpu_hrtimer_restart(cpuctx);
1986
1987        return -EAGAIN;
1988}
1989
1990/*
1991 * Work out whether we can put this event group on the CPU now.
1992 */
1993static int group_can_go_on(struct perf_event *event,
1994                           struct perf_cpu_context *cpuctx,
1995                           int can_add_hw)
1996{
1997        /*
1998         * Groups consisting entirely of software events can always go on.
1999         */
2000        if (event->group_flags & PERF_GROUP_SOFTWARE)
2001                return 1;
2002        /*
2003         * If an exclusive group is already on, no other hardware
2004         * events can go on.
2005         */
2006        if (cpuctx->exclusive)
2007                return 0;
2008        /*
2009         * If this group is exclusive and there are already
2010         * events on the CPU, it can't go on.
2011         */
2012        if (event->attr.exclusive && cpuctx->active_oncpu)
2013                return 0;
2014        /*
2015         * Otherwise, try to add it if all previous groups were able
2016         * to go on.
2017         */
2018        return can_add_hw;
2019}
2020
2021static void add_event_to_ctx(struct perf_event *event,
2022                               struct perf_event_context *ctx)
2023{
2024        u64 tstamp = perf_event_time(event);
2025
2026        list_add_event(event, ctx);
2027        perf_group_attach(event);
2028        event->tstamp_enabled = tstamp;
2029        event->tstamp_running = tstamp;
2030        event->tstamp_stopped = tstamp;
2031}
2032
2033static void task_ctx_sched_out(struct perf_event_context *ctx);
2034static void
2035ctx_sched_in(struct perf_event_context *ctx,
2036             struct perf_cpu_context *cpuctx,
2037             enum event_type_t event_type,
2038             struct task_struct *task);
2039
2040static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2041                                struct perf_event_context *ctx,
2042                                struct task_struct *task)
2043{
2044        cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2045        if (ctx)
2046                ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2047        cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2048        if (ctx)
2049                ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2050}
2051
2052/*
2053 * Cross CPU call to install and enable a performance event
2054 *
2055 * Must be called with ctx->mutex held
2056 */
2057static int  __perf_install_in_context(void *info)
2058{
2059        struct perf_event *event = info;
2060        struct perf_event_context *ctx = event->ctx;
2061        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2062        struct perf_event_context *task_ctx = cpuctx->task_ctx;
2063        struct task_struct *task = current;
2064
2065        perf_ctx_lock(cpuctx, task_ctx);
2066        perf_pmu_disable(cpuctx->ctx.pmu);
2067
2068        /*
2069         * If there was an active task_ctx schedule it out.
2070         */
2071        if (task_ctx)
2072                task_ctx_sched_out(task_ctx);
2073
2074        /*
2075         * If the context we're installing events in is not the
2076         * active task_ctx, flip them.
2077         */
2078        if (ctx->task && task_ctx != ctx) {
2079                if (task_ctx)
2080                        raw_spin_unlock(&task_ctx->lock);
2081                raw_spin_lock(&ctx->lock);
2082                task_ctx = ctx;
2083        }
2084
2085        if (task_ctx) {
2086                cpuctx->task_ctx = task_ctx;
2087                task = task_ctx->task;
2088        }
2089
2090        cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2091
2092        update_context_time(ctx);
2093        /*
2094         * update cgrp time only if current cgrp
2095         * matches event->cgrp. Must be done before
2096         * calling add_event_to_ctx()
2097         */
2098        update_cgrp_time_from_event(event);
2099
2100        add_event_to_ctx(event, ctx);
2101
2102        /*
2103         * Schedule everything back in
2104         */
2105        perf_event_sched_in(cpuctx, task_ctx, task);
2106
2107        perf_pmu_enable(cpuctx->ctx.pmu);
2108        perf_ctx_unlock(cpuctx, task_ctx);
2109
2110        return 0;
2111}
2112
2113/*
2114 * Attach a performance event to a context
2115 *
2116 * First we add the event to the list with the hardware enable bit
2117 * in event->hw_config cleared.
2118 *
2119 * If the event is attached to a task which is on a CPU we use a smp
2120 * call to enable it in the task context. The task might have been
2121 * scheduled away, but we check this in the smp call again.
2122 */
2123static void
2124perf_install_in_context(struct perf_event_context *ctx,
2125                        struct perf_event *event,
2126                        int cpu)
2127{
2128        struct task_struct *task = ctx->task;
2129
2130        lockdep_assert_held(&ctx->mutex);
2131
2132        event->ctx = ctx;
2133        if (event->cpu != -1)
2134                event->cpu = cpu;
2135
2136        if (!task) {
2137                /*
2138                 * Per cpu events are installed via an smp call and
2139                 * the install is always successful.
2140                 */
2141                cpu_function_call(cpu, __perf_install_in_context, event);
2142                return;
2143        }
2144
2145retry:
2146        if (!task_function_call(task, __perf_install_in_context, event))
2147                return;
2148
2149        raw_spin_lock_irq(&ctx->lock);
2150        /*
2151         * If we failed to find a running task, but find the context active now
2152         * that we've acquired the ctx->lock, retry.
2153         */
2154        if (ctx->is_active) {
2155                raw_spin_unlock_irq(&ctx->lock);
2156                /*
2157                 * Reload the task pointer, it might have been changed by
2158                 * a concurrent perf_event_context_sched_out().
2159                 */
2160                task = ctx->task;
2161                goto retry;
2162        }
2163
2164        /*
2165         * Since the task isn't running, its safe to add the event, us holding
2166         * the ctx->lock ensures the task won't get scheduled in.
2167         */
2168        add_event_to_ctx(event, ctx);
2169        raw_spin_unlock_irq(&ctx->lock);
2170}
2171
2172/*
2173 * Put a event into inactive state and update time fields.
2174 * Enabling the leader of a group effectively enables all
2175 * the group members that aren't explicitly disabled, so we
2176 * have to update their ->tstamp_enabled also.
2177 * Note: this works for group members as well as group leaders
2178 * since the non-leader members' sibling_lists will be empty.
2179 */
2180static void __perf_event_mark_enabled(struct perf_event *event)
2181{
2182        struct perf_event *sub;
2183        u64 tstamp = perf_event_time(event);
2184
2185        event->state = PERF_EVENT_STATE_INACTIVE;
2186        event->tstamp_enabled = tstamp - event->total_time_enabled;
2187        list_for_each_entry(sub, &event->sibling_list, group_entry) {
2188                if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2189                        sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2190        }
2191}
2192
2193/*
2194 * Cross CPU call to enable a performance event
2195 */
2196static int __perf_event_enable(void *info)
2197{
2198        struct perf_event *event = info;
2199        struct perf_event_context *ctx = event->ctx;
2200        struct perf_event *leader = event->group_leader;
2201        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2202        int err;
2203
2204        /*
2205         * There's a time window between 'ctx->is_active' check
2206         * in perf_event_enable function and this place having:
2207         *   - IRQs on
2208         *   - ctx->lock unlocked
2209         *
2210         * where the task could be killed and 'ctx' deactivated
2211         * by perf_event_exit_task.
2212         */
2213        if (!ctx->is_active)
2214                return -EINVAL;
2215
2216        raw_spin_lock(&ctx->lock);
2217        update_context_time(ctx);
2218
2219        if (event->state >= PERF_EVENT_STATE_INACTIVE)
2220                goto unlock;
2221
2222        /*
2223         * set current task's cgroup time reference point
2224         */
2225        perf_cgroup_set_timestamp(current, ctx);
2226
2227        __perf_event_mark_enabled(event);
2228
2229        if (!event_filter_match(event)) {
2230                if (is_cgroup_event(event))
2231                        perf_cgroup_defer_enabled(event);
2232                goto unlock;
2233        }
2234
2235        /*
2236         * If the event is in a group and isn't the group leader,
2237         * then don't put it on unless the group is on.
2238         */
2239        if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2240                goto unlock;
2241
2242        if (!group_can_go_on(event, cpuctx, 1)) {
2243                err = -EEXIST;
2244        } else {
2245                if (event == leader)
2246                        err = group_sched_in(event, cpuctx, ctx);
2247                else
2248                        err = event_sched_in(event, cpuctx, ctx);
2249        }
2250
2251        if (err) {
2252                /*
2253                 * If this event can't go on and it's part of a
2254                 * group, then the whole group has to come off.
2255                 */
2256                if (leader != event) {
2257                        group_sched_out(leader, cpuctx, ctx);
2258                        perf_cpu_hrtimer_restart(cpuctx);
2259                }
2260                if (leader->attr.pinned) {
2261                        update_group_times(leader);
2262                        leader->state = PERF_EVENT_STATE_ERROR;
2263                }
2264        }
2265
2266unlock:
2267        raw_spin_unlock(&ctx->lock);
2268
2269        return 0;
2270}
2271
2272/*
2273 * Enable a event.
2274 *
2275 * If event->ctx is a cloned context, callers must make sure that
2276 * every task struct that event->ctx->task could possibly point to
2277 * remains valid.  This condition is satisfied when called through
2278 * perf_event_for_each_child or perf_event_for_each as described
2279 * for perf_event_disable.
2280 */
2281static void _perf_event_enable(struct perf_event *event)
2282{
2283        struct perf_event_context *ctx = event->ctx;
2284        struct task_struct *task = ctx->task;
2285
2286        if (!task) {
2287                /*
2288                 * Enable the event on the cpu that it's on
2289                 */
2290                cpu_function_call(event->cpu, __perf_event_enable, event);
2291                return;
2292        }
2293
2294        raw_spin_lock_irq(&ctx->lock);
2295        if (event->state >= PERF_EVENT_STATE_INACTIVE)
2296                goto out;
2297
2298        /*
2299         * If the event is in error state, clear that first.
2300         * That way, if we see the event in error state below, we
2301         * know that it has gone back into error state, as distinct
2302         * from the task having been scheduled away before the
2303         * cross-call arrived.
2304         */
2305        if (event->state == PERF_EVENT_STATE_ERROR)
2306                event->state = PERF_EVENT_STATE_OFF;
2307
2308retry:
2309        if (!ctx->is_active) {
2310                __perf_event_mark_enabled(event);
2311                goto out;
2312        }
2313
2314        raw_spin_unlock_irq(&ctx->lock);
2315
2316        if (!task_function_call(task, __perf_event_enable, event))
2317                return;
2318
2319        raw_spin_lock_irq(&ctx->lock);
2320
2321        /*
2322         * If the context is active and the event is still off,
2323         * we need to retry the cross-call.
2324         */
2325        if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2326                /*
2327                 * task could have been flipped by a concurrent
2328                 * perf_event_context_sched_out()
2329                 */
2330                task = ctx->task;
2331                goto retry;
2332        }
2333
2334out:
2335        raw_spin_unlock_irq(&ctx->lock);
2336}
2337
2338/*
2339 * See perf_event_disable();
2340 */
2341void perf_event_enable(struct perf_event *event)
2342{
2343        struct perf_event_context *ctx;
2344
2345        ctx = perf_event_ctx_lock(event);
2346        _perf_event_enable(event);
2347        perf_event_ctx_unlock(event, ctx);
2348}
2349EXPORT_SYMBOL_GPL(perf_event_enable);
2350
2351static int _perf_event_refresh(struct perf_event *event, int refresh)
2352{
2353        /*
2354         * not supported on inherited events
2355         */
2356        if (event->attr.inherit || !is_sampling_event(event))
2357                return -EINVAL;
2358
2359        atomic_add(refresh, &event->event_limit);
2360        _perf_event_enable(event);
2361
2362        return 0;
2363}
2364
2365/*
2366 * See perf_event_disable()
2367 */
2368int perf_event_refresh(struct perf_event *event, int refresh)
2369{
2370        struct perf_event_context *ctx;
2371        int ret;
2372
2373        ctx = perf_event_ctx_lock(event);
2374        ret = _perf_event_refresh(event, refresh);
2375        perf_event_ctx_unlock(event, ctx);
2376
2377        return ret;
2378}
2379EXPORT_SYMBOL_GPL(perf_event_refresh);
2380
2381static void ctx_sched_out(struct perf_event_context *ctx,
2382                          struct perf_cpu_context *cpuctx,
2383                          enum event_type_t event_type)
2384{
2385        struct perf_event *event;
2386        int is_active = ctx->is_active;
2387
2388        ctx->is_active &= ~event_type;
2389        if (likely(!ctx->nr_events))
2390                return;
2391
2392        update_context_time(ctx);
2393        update_cgrp_time_from_cpuctx(cpuctx);
2394        if (!ctx->nr_active)
2395                return;
2396
2397        perf_pmu_disable(ctx->pmu);
2398        if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2399                list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2400                        group_sched_out(event, cpuctx, ctx);
2401        }
2402
2403        if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2404                list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2405                        group_sched_out(event, cpuctx, ctx);
2406        }
2407        perf_pmu_enable(ctx->pmu);
2408}
2409
2410/*
2411 * Test whether two contexts are equivalent, i.e. whether they have both been
2412 * cloned from the same version of the same context.
2413 *
2414 * Equivalence is measured using a generation number in the context that is
2415 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2416 * and list_del_event().
2417 */
2418static int context_equiv(struct perf_event_context *ctx1,
2419                         struct perf_event_context *ctx2)
2420{
2421        lockdep_assert_held(&ctx1->lock);
2422        lockdep_assert_held(&ctx2->lock);
2423
2424        /* Pinning disables the swap optimization */
2425        if (ctx1->pin_count || ctx2->pin_count)
2426                return 0;
2427
2428        /* If ctx1 is the parent of ctx2 */
2429        if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2430                return 1;
2431
2432        /* If ctx2 is the parent of ctx1 */
2433        if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2434                return 1;
2435
2436        /*
2437         * If ctx1 and ctx2 have the same parent; we flatten the parent
2438         * hierarchy, see perf_event_init_context().
2439         */
2440        if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2441                        ctx1->parent_gen == ctx2->parent_gen)
2442                return 1;
2443
2444        /* Unmatched */
2445        return 0;
2446}
2447
2448static void __perf_event_sync_stat(struct perf_event *event,
2449                                     struct perf_event *next_event)
2450{
2451        u64 value;
2452
2453        if (!event->attr.inherit_stat)
2454                return;
2455
2456        /*
2457         * Update the event value, we cannot use perf_event_read()
2458         * because we're in the middle of a context switch and have IRQs
2459         * disabled, which upsets smp_call_function_single(), however
2460         * we know the event must be on the current CPU, therefore we
2461         * don't need to use it.
2462         */
2463        switch (event->state) {
2464        case PERF_EVENT_STATE_ACTIVE:
2465                event->pmu->read(event);
2466                /* fall-through */
2467
2468        case PERF_EVENT_STATE_INACTIVE:
2469                update_event_times(event);
2470                break;
2471
2472        default:
2473                break;
2474        }
2475
2476        /*
2477         * In order to keep per-task stats reliable we need to flip the event
2478         * values when we flip the contexts.
2479         */
2480        value = local64_read(&next_event->count);
2481        value = local64_xchg(&event->count, value);
2482        local64_set(&next_event->count, value);
2483
2484        swap(event->total_time_enabled, next_event->total_time_enabled);
2485        swap(event->total_time_running, next_event->total_time_running);
2486
2487        /*
2488         * Since we swizzled the values, update the user visible data too.
2489         */
2490        perf_event_update_userpage(event);
2491        perf_event_update_userpage(next_event);
2492}
2493
2494static void perf_event_sync_stat(struct perf_event_context *ctx,
2495                                   struct perf_event_context *next_ctx)
2496{
2497        struct perf_event *event, *next_event;
2498
2499        if (!ctx->nr_stat)
2500                return;
2501
2502        update_context_time(ctx);
2503
2504        event = list_first_entry(&ctx->event_list,
2505                                   struct perf_event, event_entry);
2506
2507        next_event = list_first_entry(&next_ctx->event_list,
2508                                        struct perf_event, event_entry);
2509
2510        while (&event->event_entry != &ctx->event_list &&
2511               &next_event->event_entry != &next_ctx->event_list) {
2512
2513                __perf_event_sync_stat(event, next_event);
2514
2515                event = list_next_entry(event, event_entry);
2516                next_event = list_next_entry(next_event, event_entry);
2517        }
2518}
2519
2520static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2521                                         struct task_struct *next)
2522{
2523        struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2524        struct perf_event_context *next_ctx;
2525        struct perf_event_context *parent, *next_parent;
2526        struct perf_cpu_context *cpuctx;
2527        int do_switch = 1;
2528
2529        if (likely(!ctx))
2530                return;
2531
2532        cpuctx = __get_cpu_context(ctx);
2533        if (!cpuctx->task_ctx)
2534                return;
2535
2536        rcu_read_lock();
2537        next_ctx = next->perf_event_ctxp[ctxn];
2538        if (!next_ctx)
2539                goto unlock;
2540
2541        parent = rcu_dereference(ctx->parent_ctx);
2542        next_parent = rcu_dereference(next_ctx->parent_ctx);
2543
2544        /* If neither context have a parent context; they cannot be clones. */
2545        if (!parent && !next_parent)
2546                goto unlock;
2547
2548        if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2549                /*
2550                 * Looks like the two contexts are clones, so we might be
2551                 * able to optimize the context switch.  We lock both
2552                 * contexts and check that they are clones under the
2553                 * lock (including re-checking that neither has been
2554                 * uncloned in the meantime).  It doesn't matter which
2555                 * order we take the locks because no other cpu could
2556                 * be trying to lock both of these tasks.
2557                 */
2558                raw_spin_lock(&ctx->lock);
2559                raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2560                if (context_equiv(ctx, next_ctx)) {
2561                        /*
2562                         * XXX do we need a memory barrier of sorts
2563                         * wrt to rcu_dereference() of perf_event_ctxp
2564                         */
2565                        task->perf_event_ctxp[ctxn] = next_ctx;
2566                        next->perf_event_ctxp[ctxn] = ctx;
2567                        ctx->task = next;
2568                        next_ctx->task = task;
2569
2570                        swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2571
2572                        do_switch = 0;
2573
2574                        perf_event_sync_stat(ctx, next_ctx);
2575                }
2576                raw_spin_unlock(&next_ctx->lock);
2577                raw_spin_unlock(&ctx->lock);
2578        }
2579unlock:
2580        rcu_read_unlock();
2581
2582        if (do_switch) {
2583                raw_spin_lock(&ctx->lock);
2584                ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2585                cpuctx->task_ctx = NULL;
2586                raw_spin_unlock(&ctx->lock);
2587        }
2588}
2589
2590void perf_sched_cb_dec(struct pmu *pmu)
2591{
2592        this_cpu_dec(perf_sched_cb_usages);
2593}
2594
2595void perf_sched_cb_inc(struct pmu *pmu)
2596{
2597        this_cpu_inc(perf_sched_cb_usages);
2598}
2599
2600/*
2601 * This function provides the context switch callback to the lower code
2602 * layer. It is invoked ONLY when the context switch callback is enabled.
2603 */
2604static void perf_pmu_sched_task(struct task_struct *prev,
2605                                struct task_struct *next,
2606                                bool sched_in)
2607{
2608        struct perf_cpu_context *cpuctx;
2609        struct pmu *pmu;
2610        unsigned long flags;
2611
2612        if (prev == next)
2613                return;
2614
2615        local_irq_save(flags);
2616
2617        rcu_read_lock();
2618
2619        list_for_each_entry_rcu(pmu, &pmus, entry) {
2620                if (pmu->sched_task) {
2621                        cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2622
2623                        perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2624
2625                        perf_pmu_disable(pmu);
2626
2627                        pmu->sched_task(cpuctx->task_ctx, sched_in);
2628
2629                        perf_pmu_enable(pmu);
2630
2631                        perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2632                }
2633        }
2634
2635        rcu_read_unlock();
2636
2637        local_irq_restore(flags);
2638}
2639
2640#define for_each_task_context_nr(ctxn)                                  \
2641        for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2642
2643/*
2644 * Called from scheduler to remove the events of the current task,
2645 * with interrupts disabled.
2646 *
2647 * We stop each event and update the event value in event->count.
2648 *
2649 * This does not protect us against NMI, but disable()
2650 * sets the disabled bit in the control field of event _before_
2651 * accessing the event control register. If a NMI hits, then it will
2652 * not restart the event.
2653 */
2654void __perf_event_task_sched_out(struct task_struct *task,
2655                                 struct task_struct *next)
2656{
2657        int ctxn;
2658
2659        if (__this_cpu_read(perf_sched_cb_usages))
2660                perf_pmu_sched_task(task, next, false);
2661
2662        for_each_task_context_nr(ctxn)
2663                perf_event_context_sched_out(task, ctxn, next);
2664
2665        /*
2666         * if cgroup events exist on this CPU, then we need
2667         * to check if we have to switch out PMU state.
2668         * cgroup event are system-wide mode only
2669         */
2670        if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2671                perf_cgroup_sched_out(task, next);
2672}
2673
2674static void task_ctx_sched_out(struct perf_event_context *ctx)
2675{
2676        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2677
2678        if (!cpuctx->task_ctx)
2679                return;
2680
2681        if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2682                return;
2683
2684        ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2685        cpuctx->task_ctx = NULL;
2686}
2687
2688/*
2689 * Called with IRQs disabled
2690 */
2691static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2692                              enum event_type_t event_type)
2693{
2694        ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2695}
2696
2697static void
2698ctx_pinned_sched_in(struct perf_event_context *ctx,
2699                    struct perf_cpu_context *cpuctx)
2700{
2701        struct perf_event *event;
2702
2703        list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2704                if (event->state <= PERF_EVENT_STATE_OFF)
2705                        continue;
2706                if (!event_filter_match(event))
2707                        continue;
2708
2709                /* may need to reset tstamp_enabled */
2710                if (is_cgroup_event(event))
2711                        perf_cgroup_mark_enabled(event, ctx);
2712
2713                if (group_can_go_on(event, cpuctx, 1))
2714                        group_sched_in(event, cpuctx, ctx);
2715
2716                /*
2717                 * If this pinned group hasn't been scheduled,
2718                 * put it in error state.
2719                 */
2720                if (event->state == PERF_EVENT_STATE_INACTIVE) {
2721                        update_group_times(event);
2722                        event->state = PERF_EVENT_STATE_ERROR;
2723                }
2724        }
2725}
2726
2727static void
2728ctx_flexible_sched_in(struct perf_event_context *ctx,
2729                      struct perf_cpu_context *cpuctx)
2730{
2731        struct perf_event *event;
2732        int can_add_hw = 1;
2733
2734        list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2735                /* Ignore events in OFF or ERROR state */
2736                if (event->state <= PERF_EVENT_STATE_OFF)
2737                        continue;
2738                /*
2739                 * Listen to the 'cpu' scheduling filter constraint
2740                 * of events:
2741                 */
2742                if (!event_filter_match(event))
2743                        continue;
2744
2745                /* may need to reset tstamp_enabled */
2746                if (is_cgroup_event(event))
2747                        perf_cgroup_mark_enabled(event, ctx);
2748
2749                if (group_can_go_on(event, cpuctx, can_add_hw)) {
2750                        if (group_sched_in(event, cpuctx, ctx))
2751                                can_add_hw = 0;
2752                }
2753        }
2754}
2755
2756static void
2757ctx_sched_in(struct perf_event_context *ctx,
2758             struct perf_cpu_context *cpuctx,
2759             enum event_type_t event_type,
2760             struct task_struct *task)
2761{
2762        u64 now;
2763        int is_active = ctx->is_active;
2764
2765        ctx->is_active |= event_type;
2766        if (likely(!ctx->nr_events))
2767                return;
2768
2769        now = perf_clock();
2770        ctx->timestamp = now;
2771        perf_cgroup_set_timestamp(task, ctx);
2772        /*
2773         * First go through the list and put on any pinned groups
2774         * in order to give them the best chance of going on.
2775         */
2776        if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2777                ctx_pinned_sched_in(ctx, cpuctx);
2778
2779        /* Then walk through the lower prio flexible groups */
2780        if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2781                ctx_flexible_sched_in(ctx, cpuctx);
2782}
2783
2784static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2785                             enum event_type_t event_type,
2786                             struct task_struct *task)
2787{
2788        struct perf_event_context *ctx = &cpuctx->ctx;
2789
2790        ctx_sched_in(ctx, cpuctx, event_type, task);
2791}
2792
2793static void perf_event_context_sched_in(struct perf_event_context *ctx,
2794                                        struct task_struct *task)
2795{
2796        struct perf_cpu_context *cpuctx;
2797
2798        cpuctx = __get_cpu_context(ctx);
2799        if (cpuctx->task_ctx == ctx)
2800                return;
2801
2802        perf_ctx_lock(cpuctx, ctx);
2803        perf_pmu_disable(ctx->pmu);
2804        /*
2805         * We want to keep the following priority order:
2806         * cpu pinned (that don't need to move), task pinned,
2807         * cpu flexible, task flexible.
2808         */
2809        cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2810
2811        if (ctx->nr_events)
2812                cpuctx->task_ctx = ctx;
2813
2814        perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2815
2816        perf_pmu_enable(ctx->pmu);
2817        perf_ctx_unlock(cpuctx, ctx);
2818}
2819
2820/*
2821 * Called from scheduler to add the events of the current task
2822 * with interrupts disabled.
2823 *
2824 * We restore the event value and then enable it.
2825 *
2826 * This does not protect us against NMI, but enable()
2827 * sets the enabled bit in the control field of event _before_
2828 * accessing the event control register. If a NMI hits, then it will
2829 * keep the event running.
2830 */
2831void __perf_event_task_sched_in(struct task_struct *prev,
2832                                struct task_struct *task)
2833{
2834        struct perf_event_context *ctx;
2835        int ctxn;
2836
2837        for_each_task_context_nr(ctxn) {
2838                ctx = task->perf_event_ctxp[ctxn];
2839                if (likely(!ctx))
2840                        continue;
2841
2842                perf_event_context_sched_in(ctx, task);
2843        }
2844        /*
2845         * if cgroup events exist on this CPU, then we need
2846         * to check if we have to switch in PMU state.
2847         * cgroup event are system-wide mode only
2848         */
2849        if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2850                perf_cgroup_sched_in(prev, task);
2851
2852        if (__this_cpu_read(perf_sched_cb_usages))
2853                perf_pmu_sched_task(prev, task, true);
2854}
2855
2856static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2857{
2858        u64 frequency = event->attr.sample_freq;
2859        u64 sec = NSEC_PER_SEC;
2860        u64 divisor, dividend;
2861
2862        int count_fls, nsec_fls, frequency_fls, sec_fls;
2863
2864        count_fls = fls64(count);
2865        nsec_fls = fls64(nsec);
2866        frequency_fls = fls64(frequency);
2867        sec_fls = 30;
2868
2869        /*
2870         * We got @count in @nsec, with a target of sample_freq HZ
2871         * the target period becomes:
2872         *
2873         *             @count * 10^9
2874         * period = -------------------
2875         *          @nsec * sample_freq
2876         *
2877         */
2878
2879        /*
2880         * Reduce accuracy by one bit such that @a and @b converge
2881         * to a similar magnitude.
2882         */
2883#define REDUCE_FLS(a, b)                \
2884do {                                    \
2885        if (a##_fls > b##_fls) {        \
2886                a >>= 1;                \
2887                a##_fls--;              \
2888        } else {                        \
2889                b >>= 1;                \
2890                b##_fls--;              \
2891        }                               \
2892} while (0)
2893
2894        /*
2895         * Reduce accuracy until either term fits in a u64, then proceed with
2896         * the other, so that finally we can do a u64/u64 division.
2897         */
2898        while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2899                REDUCE_FLS(nsec, frequency);
2900                REDUCE_FLS(sec, count);
2901        }
2902
2903        if (count_fls + sec_fls > 64) {
2904                divisor = nsec * frequency;
2905
2906                while (count_fls + sec_fls > 64) {
2907                        REDUCE_FLS(count, sec);
2908                        divisor >>= 1;
2909                }
2910
2911                dividend = count * sec;
2912        } else {
2913                dividend = count * sec;
2914
2915                while (nsec_fls + frequency_fls > 64) {
2916                        REDUCE_FLS(nsec, frequency);
2917                        dividend >>= 1;
2918                }
2919
2920                divisor = nsec * frequency;
2921        }
2922
2923        if (!divisor)
2924                return dividend;
2925
2926        return div64_u64(dividend, divisor);
2927}
2928
2929static DEFINE_PER_CPU(int, perf_throttled_count);
2930static DEFINE_PER_CPU(u64, perf_throttled_seq);
2931
2932static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2933{
2934        struct hw_perf_event *hwc = &event->hw;
2935        s64 period, sample_period;
2936        s64 delta;
2937
2938        period = perf_calculate_period(event, nsec, count);
2939
2940        delta = (s64)(period - hwc->sample_period);
2941        delta = (delta + 7) / 8; /* low pass filter */
2942
2943        sample_period = hwc->sample_period + delta;
2944
2945        if (!sample_period)
2946                sample_period = 1;
2947
2948        hwc->sample_period = sample_period;
2949
2950        if (local64_read(&hwc->period_left) > 8*sample_period) {
2951                if (disable)
2952                        event->pmu->stop(event, PERF_EF_UPDATE);
2953
2954                local64_set(&hwc->period_left, 0);
2955
2956                if (disable)
2957                        event->pmu->start(event, PERF_EF_RELOAD);
2958        }
2959}
2960
2961/*
2962 * combine freq adjustment with unthrottling to avoid two passes over the
2963 * events. At the same time, make sure, having freq events does not change
2964 * the rate of unthrottling as that would introduce bias.
2965 */
2966static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2967                                           int needs_unthr)
2968{
2969        struct perf_event *event;
2970        struct hw_perf_event *hwc;
2971        u64 now, period = TICK_NSEC;
2972        s64 delta;
2973
2974        /*
2975         * only need to iterate over all events iff:
2976         * - context have events in frequency mode (needs freq adjust)
2977         * - there are events to unthrottle on this cpu
2978         */
2979        if (!(ctx->nr_freq || needs_unthr))
2980                return;
2981
2982        raw_spin_lock(&ctx->lock);
2983        perf_pmu_disable(ctx->pmu);
2984
2985        list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2986                if (event->state != PERF_EVENT_STATE_ACTIVE)
2987                        continue;
2988
2989                if (!event_filter_match(event))
2990                        continue;
2991
2992                perf_pmu_disable(event->pmu);
2993
2994                hwc = &event->hw;
2995
2996                if (hwc->interrupts == MAX_INTERRUPTS) {
2997                        hwc->interrupts = 0;
2998                        perf_log_throttle(event, 1);
2999                        event->pmu->start(event, 0);
3000                }
3001
3002                if (!event->attr.freq || !event->attr.sample_freq)
3003                        goto next;
3004
3005                /*
3006                 * stop the event and update event->count
3007                 */
3008                event->pmu->stop(event, PERF_EF_UPDATE);
3009
3010                now = local64_read(&event->count);
3011                delta = now - hwc->freq_count_stamp;
3012                hwc->freq_count_stamp = now;
3013
3014                /*
3015                 * restart the event
3016                 * reload only if value has changed
3017                 * we have stopped the event so tell that
3018                 * to perf_adjust_period() to avoid stopping it
3019                 * twice.
3020                 */
3021                if (delta > 0)
3022                        perf_adjust_period(event, period, delta, false);
3023
3024                event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3025        next:
3026                perf_pmu_enable(event->pmu);
3027        }
3028
3029        perf_pmu_enable(ctx->pmu);
3030        raw_spin_unlock(&ctx->lock);
3031}
3032
3033/*
3034 * Round-robin a context's events:
3035 */
3036static void rotate_ctx(struct perf_event_context *ctx)
3037{
3038        /*
3039         * Rotate the first entry last of non-pinned groups. Rotation might be
3040         * disabled by the inheritance code.
3041         */
3042        if (!ctx->rotate_disable)
3043                list_rotate_left(&ctx->flexible_groups);
3044}
3045
3046static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3047{
3048        struct perf_event_context *ctx = NULL;
3049        int rotate = 0;
3050
3051        if (cpuctx->ctx.nr_events) {
3052                if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3053                        rotate = 1;
3054        }
3055
3056        ctx = cpuctx->task_ctx;
3057        if (ctx && ctx->nr_events) {
3058                if (ctx->nr_events != ctx->nr_active)
3059                        rotate = 1;
3060        }
3061
3062        if (!rotate)
3063                goto done;
3064
3065        perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3066        perf_pmu_disable(cpuctx->ctx.pmu);
3067
3068        cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3069        if (ctx)
3070                ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3071
3072        rotate_ctx(&cpuctx->ctx);
3073        if (ctx)
3074                rotate_ctx(ctx);
3075
3076        perf_event_sched_in(cpuctx, ctx, current);
3077
3078        perf_pmu_enable(cpuctx->ctx.pmu);
3079        perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3080done:
3081
3082        return rotate;
3083}
3084
3085#ifdef CONFIG_NO_HZ_FULL
3086bool perf_event_can_stop_tick(void)
3087{
3088        if (atomic_read(&nr_freq_events) ||
3089            __this_cpu_read(perf_throttled_count))
3090                return false;
3091        else
3092                return true;
3093}
3094#endif
3095
3096void perf_event_task_tick(void)
3097{
3098        struct list_head *head = this_cpu_ptr(&active_ctx_list);
3099        struct perf_event_context *ctx, *tmp;
3100        int throttled;
3101
3102        WARN_ON(!irqs_disabled());
3103
3104        __this_cpu_inc(perf_throttled_seq);
3105        throttled = __this_cpu_xchg(perf_throttled_count, 0);
3106
3107        list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3108                perf_adjust_freq_unthr_context(ctx, throttled);
3109}
3110
3111static int event_enable_on_exec(struct perf_event *event,
3112                                struct perf_event_context *ctx)
3113{
3114        if (!event->attr.enable_on_exec)
3115                return 0;
3116
3117        event->attr.enable_on_exec = 0;
3118        if (event->state >= PERF_EVENT_STATE_INACTIVE)
3119                return 0;
3120
3121        __perf_event_mark_enabled(event);
3122
3123        return 1;
3124}
3125
3126/*
3127 * Enable all of a task's events that have been marked enable-on-exec.
3128 * This expects task == current.
3129 */
3130static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3131{
3132        struct perf_event_context *clone_ctx = NULL;
3133        struct perf_event *event;
3134        unsigned long flags;
3135        int enabled = 0;
3136        int ret;
3137
3138        local_irq_save(flags);
3139        if (!ctx || !ctx->nr_events)
3140                goto out;
3141
3142        /*
3143         * We must ctxsw out cgroup events to avoid conflict
3144         * when invoking perf_task_event_sched_in() later on
3145         * in this function. Otherwise we end up trying to
3146         * ctxswin cgroup events which are already scheduled
3147         * in.
3148         */
3149        perf_cgroup_sched_out(current, NULL);
3150
3151        raw_spin_lock(&ctx->lock);
3152        task_ctx_sched_out(ctx);
3153
3154        list_for_each_entry(event, &ctx->event_list, event_entry) {
3155                ret = event_enable_on_exec(event, ctx);
3156                if (ret)
3157                        enabled = 1;
3158        }
3159
3160        /*
3161         * Unclone this context if we enabled any event.
3162         */
3163        if (enabled)
3164                clone_ctx = unclone_ctx(ctx);
3165
3166        raw_spin_unlock(&ctx->lock);
3167
3168        /*
3169         * Also calls ctxswin for cgroup events, if any:
3170         */
3171        perf_event_context_sched_in(ctx, ctx->task);
3172out:
3173        local_irq_restore(flags);
3174
3175        if (clone_ctx)
3176                put_ctx(clone_ctx);
3177}
3178
3179void perf_event_exec(void)
3180{
3181        struct perf_event_context *ctx;
3182        int ctxn;
3183
3184        rcu_read_lock();
3185        for_each_task_context_nr(ctxn) {
3186                ctx = current->perf_event_ctxp[ctxn];
3187                if (!ctx)
3188                        continue;
3189
3190                perf_event_enable_on_exec(ctx);
3191        }
3192        rcu_read_unlock();
3193}
3194
3195/*
3196 * Cross CPU call to read the hardware event
3197 */
3198static void __perf_event_read(void *info)
3199{
3200        struct perf_event *event = info;
3201        struct perf_event_context *ctx = event->ctx;
3202        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3203
3204        /*
3205         * If this is a task context, we need to check whether it is
3206         * the current task context of this cpu.  If not it has been
3207         * scheduled out before the smp call arrived.  In that case
3208         * event->count would have been updated to a recent sample
3209         * when the event was scheduled out.
3210         */
3211        if (ctx->task && cpuctx->task_ctx != ctx)
3212                return;
3213
3214        raw_spin_lock(&ctx->lock);
3215        if (ctx->is_active) {
3216                update_context_time(ctx);
3217                update_cgrp_time_from_event(event);
3218        }
3219        update_event_times(event);
3220        if (event->state == PERF_EVENT_STATE_ACTIVE)
3221                event->pmu->read(event);
3222        raw_spin_unlock(&ctx->lock);
3223}
3224
3225static inline u64 perf_event_count(struct perf_event *event)
3226{
3227        if (event->pmu->count)
3228                return event->pmu->count(event);
3229
3230        return __perf_event_count(event);
3231}
3232
3233static u64 perf_event_read(struct perf_event *event)
3234{
3235        /*
3236         * If event is enabled and currently active on a CPU, update the
3237         * value in the event structure:
3238         */
3239        if (event->state == PERF_EVENT_STATE_ACTIVE) {
3240                smp_call_function_single(event->oncpu,
3241                                         __perf_event_read, event, 1);
3242        } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3243                struct perf_event_context *ctx = event->ctx;
3244                unsigned long flags;
3245
3246                raw_spin_lock_irqsave(&ctx->lock, flags);
3247                /*
3248                 * may read while context is not active
3249                 * (e.g., thread is blocked), in that case
3250                 * we cannot update context time
3251                 */
3252                if (ctx->is_active) {
3253                        update_context_time(ctx);
3254                        update_cgrp_time_from_event(event);
3255                }
3256                update_event_times(event);
3257                raw_spin_unlock_irqrestore(&ctx->lock, flags);
3258        }
3259
3260        return perf_event_count(event);
3261}
3262
3263/*
3264 * Initialize the perf_event context in a task_struct:
3265 */
3266static void __perf_event_init_context(struct perf_event_context *ctx)
3267{
3268        raw_spin_lock_init(&ctx->lock);
3269        mutex_init(&ctx->mutex);
3270        INIT_LIST_HEAD(&ctx->active_ctx_list);
3271        INIT_LIST_HEAD(&ctx->pinned_groups);
3272        INIT_LIST_HEAD(&ctx->flexible_groups);
3273        INIT_LIST_HEAD(&ctx->event_list);
3274        atomic_set(&ctx->refcount, 1);
3275        INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3276}
3277
3278static struct perf_event_context *
3279alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3280{
3281        struct perf_event_context *ctx;
3282
3283        ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3284        if (!ctx)
3285                return NULL;
3286
3287        __perf_event_init_context(ctx);
3288        if (task) {
3289                ctx->task = task;
3290                get_task_struct(task);
3291        }
3292        ctx->pmu = pmu;
3293
3294        return ctx;
3295}
3296
3297static struct task_struct *
3298find_lively_task_by_vpid(pid_t vpid)
3299{
3300        struct task_struct *task;
3301        int err;
3302
3303        rcu_read_lock();
3304        if (!vpid)
3305                task = current;
3306        else
3307                task = find_task_by_vpid(vpid);
3308        if (task)
3309                get_task_struct(task);
3310        rcu_read_unlock();
3311
3312        if (!task)
3313                return ERR_PTR(-ESRCH);
3314
3315        /* Reuse ptrace permission checks for now. */
3316        err = -EACCES;
3317        if (!ptrace_may_access(task, PTRACE_MODE_READ))
3318                goto errout;
3319
3320        return task;
3321errout:
3322        put_task_struct(task);
3323        return ERR_PTR(err);
3324
3325}
3326
3327/*
3328 * Returns a matching context with refcount and pincount.
3329 */
3330static struct perf_event_context *
3331find_get_context(struct pmu *pmu, struct task_struct *task,
3332                struct perf_event *event)
3333{
3334        struct perf_event_context *ctx, *clone_ctx = NULL;
3335        struct perf_cpu_context *cpuctx;
3336        void *task_ctx_data = NULL;
3337        unsigned long flags;
3338        int ctxn, err;
3339        int cpu = event->cpu;
3340
3341        if (!task) {
3342                /* Must be root to operate on a CPU event: */
3343                if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3344                        return ERR_PTR(-EACCES);
3345
3346                /*
3347                 * We could be clever and allow to attach a event to an
3348                 * offline CPU and activate it when the CPU comes up, but
3349                 * that's for later.
3350                 */
3351                if (!cpu_online(cpu))
3352                        return ERR_PTR(-ENODEV);
3353
3354                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3355                ctx = &cpuctx->ctx;
3356                get_ctx(ctx);
3357                ++ctx->pin_count;
3358
3359                return ctx;
3360        }
3361
3362        err = -EINVAL;
3363        ctxn = pmu->task_ctx_nr;
3364        if (ctxn < 0)
3365                goto errout;
3366
3367        if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3368                task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3369                if (!task_ctx_data) {
3370                        err = -ENOMEM;
3371                        goto errout;
3372                }
3373        }
3374
3375retry:
3376        ctx = perf_lock_task_context(task, ctxn, &flags);
3377        if (ctx) {
3378                clone_ctx = unclone_ctx(ctx);
3379                ++ctx->pin_count;
3380
3381                if (task_ctx_data && !ctx->task_ctx_data) {
3382                        ctx->task_ctx_data = task_ctx_data;
3383                        task_ctx_data = NULL;
3384                }
3385                raw_spin_unlock_irqrestore(&ctx->lock, flags);
3386
3387                if (clone_ctx)
3388                        put_ctx(clone_ctx);
3389        } else {
3390                ctx = alloc_perf_context(pmu, task);
3391                err = -ENOMEM;
3392                if (!ctx)
3393                        goto errout;
3394
3395                if (task_ctx_data) {
3396                        ctx->task_ctx_data = task_ctx_data;
3397                        task_ctx_data = NULL;
3398                }
3399
3400                err = 0;
3401                mutex_lock(&task->perf_event_mutex);
3402                /*
3403                 * If it has already passed perf_event_exit_task().
3404                 * we must see PF_EXITING, it takes this mutex too.
3405                 */
3406                if (task->flags & PF_EXITING)
3407                        err = -ESRCH;
3408                else if (task->perf_event_ctxp[ctxn])
3409                        err = -EAGAIN;
3410                else {
3411                        get_ctx(ctx);
3412                        ++ctx->pin_count;
3413                        rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3414                }
3415                mutex_unlock(&task->perf_event_mutex);
3416
3417                if (unlikely(err)) {
3418                        put_ctx(ctx);
3419
3420                        if (err == -EAGAIN)
3421                                goto retry;
3422                        goto errout;
3423                }
3424        }
3425
3426        kfree(task_ctx_data);
3427        return ctx;
3428
3429errout:
3430        kfree(task_ctx_data);
3431        return ERR_PTR(err);
3432}
3433
3434static void perf_event_free_filter(struct perf_event *event);
3435static void perf_event_free_bpf_prog(struct perf_event *event);
3436
3437static void free_event_rcu(struct rcu_head *head)
3438{
3439        struct perf_event *event;
3440
3441        event = container_of(head, struct perf_event, rcu_head);
3442        if (event->ns)
3443                put_pid_ns(event->ns);
3444        perf_event_free_filter(event);
3445        kfree(event);
3446}
3447
3448static void ring_buffer_attach(struct perf_event *event,
3449                               struct ring_buffer *rb);
3450
3451static void unaccount_event_cpu(struct perf_event *event, int cpu)
3452{
3453        if (event->parent)
3454                return;
3455
3456        if (is_cgroup_event(event))
3457                atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3458}
3459
3460static void unaccount_event(struct perf_event *event)
3461{
3462        if (event->parent)
3463                return;
3464
3465        if (event->attach_state & PERF_ATTACH_TASK)
3466                static_key_slow_dec_deferred(&perf_sched_events);
3467        if (event->attr.mmap || event->attr.mmap_data)
3468                atomic_dec(&nr_mmap_events);
3469        if (event->attr.comm)
3470                atomic_dec(&nr_comm_events);
3471        if (event->attr.task)
3472                atomic_dec(&nr_task_events);
3473        if (event->attr.freq)
3474                atomic_dec(&nr_freq_events);
3475        if (is_cgroup_event(event))
3476                static_key_slow_dec_deferred(&perf_sched_events);
3477        if (has_branch_stack(event))
3478                static_key_slow_dec_deferred(&perf_sched_events);
3479
3480        unaccount_event_cpu(event, event->cpu);
3481}
3482
3483/*
3484 * The following implement mutual exclusion of events on "exclusive" pmus
3485 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3486 * at a time, so we disallow creating events that might conflict, namely:
3487 *
3488 *  1) cpu-wide events in the presence of per-task events,
3489 *  2) per-task events in the presence of cpu-wide events,
3490 *  3) two matching events on the same context.
3491 *
3492 * The former two cases are handled in the allocation path (perf_event_alloc(),
3493 * __free_event()), the latter -- before the first perf_install_in_context().
3494 */
3495static int exclusive_event_init(struct perf_event *event)
3496{
3497        struct pmu *pmu = event->pmu;
3498
3499        if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3500                return 0;
3501
3502        /*
3503         * Prevent co-existence of per-task and cpu-wide events on the
3504         * same exclusive pmu.
3505         *
3506         * Negative pmu::exclusive_cnt means there are cpu-wide
3507         * events on this "exclusive" pmu, positive means there are
3508         * per-task events.
3509         *
3510         * Since this is called in perf_event_alloc() path, event::ctx
3511         * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3512         * to mean "per-task event", because unlike other attach states it
3513         * never gets cleared.
3514         */
3515        if (event->attach_state & PERF_ATTACH_TASK) {
3516                if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3517                        return -EBUSY;
3518        } else {
3519                if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3520                        return -EBUSY;
3521        }
3522
3523        return 0;
3524}
3525
3526static void exclusive_event_destroy(struct perf_event *event)
3527{
3528        struct pmu *pmu = event->pmu;
3529
3530        if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3531                return;
3532
3533        /* see comment in exclusive_event_init() */
3534        if (event->attach_state & PERF_ATTACH_TASK)
3535                atomic_dec(&pmu->exclusive_cnt);
3536        else
3537                atomic_inc(&pmu->exclusive_cnt);
3538}
3539
3540static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3541{
3542        if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3543            (e1->cpu == e2->cpu ||
3544             e1->cpu == -1 ||
3545             e2->cpu == -1))
3546                return true;
3547        return false;
3548}
3549
3550/* Called under the same ctx::mutex as perf_install_in_context() */
3551static bool exclusive_event_installable(struct perf_event *event,
3552                                        struct perf_event_context *ctx)
3553{
3554        struct perf_event *iter_event;
3555        struct pmu *pmu = event->pmu;
3556
3557        if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3558                return true;
3559
3560        list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3561                if (exclusive_event_match(iter_event, event))
3562                        return false;
3563        }
3564
3565        return true;
3566}
3567
3568static void __free_event(struct perf_event *event)
3569{
3570        if (!event->parent) {
3571                if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3572                        put_callchain_buffers();
3573        }
3574
3575        perf_event_free_bpf_prog(event);
3576
3577        if (event->destroy)
3578                event->destroy(event);
3579
3580        if (event->ctx)
3581                put_ctx(event->ctx);
3582
3583        if (event->pmu) {
3584                exclusive_event_destroy(event);
3585                module_put(event->pmu->module);
3586        }
3587
3588        call_rcu(&event->rcu_head, free_event_rcu);
3589}
3590
3591static void _free_event(struct perf_event *event)
3592{
3593        irq_work_sync(&event->pending);
3594
3595        unaccount_event(event);
3596
3597        if (event->rb) {
3598                /*
3599                 * Can happen when we close an event with re-directed output.
3600                 *
3601                 * Since we have a 0 refcount, perf_mmap_close() will skip
3602                 * over us; possibly making our ring_buffer_put() the last.
3603                 */
3604                mutex_lock(&event->mmap_mutex);
3605                ring_buffer_attach(event, NULL);
3606                mutex_unlock(&event->mmap_mutex);
3607        }
3608
3609        if (is_cgroup_event(event))
3610                perf_detach_cgroup(event);
3611
3612        __free_event(event);
3613}
3614
3615/*
3616 * Used to free events which have a known refcount of 1, such as in error paths
3617 * where the event isn't exposed yet and inherited events.
3618 */
3619static void free_event(struct perf_event *event)
3620{
3621        if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3622                                "unexpected event refcount: %ld; ptr=%p\n",
3623                                atomic_long_read(&event->refcount), event)) {
3624                /* leak to avoid use-after-free */
3625                return;
3626        }
3627
3628        _free_event(event);
3629}
3630
3631/*
3632 * Remove user event from the owner task.
3633 */
3634static void perf_remove_from_owner(struct perf_event *event)
3635{
3636        struct task_struct *owner;
3637
3638        rcu_read_lock();
3639        owner = ACCESS_ONCE(event->owner);
3640        /*
3641         * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3642         * !owner it means the list deletion is complete and we can indeed
3643         * free this event, otherwise we need to serialize on
3644         * owner->perf_event_mutex.
3645         */
3646        smp_read_barrier_depends();
3647        if (owner) {
3648                /*
3649                 * Since delayed_put_task_struct() also drops the last
3650                 * task reference we can safely take a new reference
3651                 * while holding the rcu_read_lock().
3652                 */
3653                get_task_struct(owner);
3654        }
3655        rcu_read_unlock();
3656
3657        if (owner) {
3658                /*
3659                 * If we're here through perf_event_exit_task() we're already
3660                 * holding ctx->mutex which would be an inversion wrt. the
3661                 * normal lock order.
3662                 *
3663                 * However we can safely take this lock because its the child
3664                 * ctx->mutex.
3665                 */
3666                mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3667
3668                /*
3669                 * We have to re-check the event->owner field, if it is cleared
3670                 * we raced with perf_event_exit_task(), acquiring the mutex
3671                 * ensured they're done, and we can proceed with freeing the
3672                 * event.
3673                 */
3674                if (event->owner)
3675                        list_del_init(&event->owner_entry);
3676                mutex_unlock(&owner->perf_event_mutex);
3677                put_task_struct(owner);
3678        }
3679}
3680
3681static void put_event(struct perf_event *event)
3682{
3683        struct perf_event_context *ctx;
3684
3685        if (!atomic_long_dec_and_test(&event->refcount))
3686                return;
3687
3688        if (!is_kernel_event(event))
3689                perf_remove_from_owner(event);
3690
3691        /*
3692         * There are two ways this annotation is useful:
3693         *
3694         *  1) there is a lock recursion from perf_event_exit_task
3695         *     see the comment there.
3696         *
3697         *  2) there is a lock-inversion with mmap_sem through
3698         *     perf_event_read_group(), which takes faults while
3699         *     holding ctx->mutex, however this is called after
3700         *     the last filedesc died, so there is no possibility
3701         *     to trigger the AB-BA case.
3702         */
3703        ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3704        WARN_ON_ONCE(ctx->parent_ctx);
3705        perf_remove_from_context(event, true);
3706        perf_event_ctx_unlock(event, ctx);
3707
3708        _free_event(event);
3709}
3710
3711int perf_event_release_kernel(struct perf_event *event)
3712{
3713        put_event(event);
3714        return 0;
3715}
3716EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3717
3718/*
3719 * Called when the last reference to the file is gone.
3720 */
3721static int perf_release(struct inode *inode, struct file *file)
3722{
3723        put_event(file->private_data);
3724        return 0;
3725}
3726
3727/*
3728 * Remove all orphanes events from the context.
3729 */
3730static void orphans_remove_work(struct work_struct *work)
3731{
3732        struct perf_event_context *ctx;
3733        struct perf_event *event, *tmp;
3734
3735        ctx = container_of(work, struct perf_event_context,
3736                           orphans_remove.work);
3737
3738        mutex_lock(&ctx->mutex);
3739        list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3740                struct perf_event *parent_event = event->parent;
3741
3742                if (!is_orphaned_child(event))
3743                        continue;
3744
3745                perf_remove_from_context(event, true);
3746
3747                mutex_lock(&parent_event->child_mutex);
3748                list_del_init(&event->child_list);
3749                mutex_unlock(&parent_event->child_mutex);
3750
3751                free_event(event);
3752                put_event(parent_event);
3753        }
3754
3755        raw_spin_lock_irq(&ctx->lock);
3756        ctx->orphans_remove_sched = false;
3757        raw_spin_unlock_irq(&ctx->lock);
3758        mutex_unlock(&ctx->mutex);
3759
3760        put_ctx(ctx);
3761}
3762
3763u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3764{
3765        struct perf_event *child;
3766        u64 total = 0;
3767
3768        *enabled = 0;
3769        *running = 0;
3770
3771        mutex_lock(&event->child_mutex);
3772        total += perf_event_read(event);
3773        *enabled += event->total_time_enabled +
3774                        atomic64_read(&event->child_total_time_enabled);
3775        *running += event->total_time_running +
3776                        atomic64_read(&event->child_total_time_running);
3777
3778        list_for_each_entry(child, &event->child_list, child_list) {
3779                total += perf_event_read(child);
3780                *enabled += child->total_time_enabled;
3781                *running += child->total_time_running;
3782        }
3783        mutex_unlock(&event->child_mutex);
3784
3785        return total;
3786}
3787EXPORT_SYMBOL_GPL(perf_event_read_value);
3788
3789static int perf_event_read_group(struct perf_event *event,
3790                                   u64 read_format, char __user *buf)
3791{
3792        struct perf_event *leader = event->group_leader, *sub;
3793        struct perf_event_context *ctx = leader->ctx;
3794        int n = 0, size = 0, ret;
3795        u64 count, enabled, running;
3796        u64 values[5];
3797
3798        lockdep_assert_held(&ctx->mutex);
3799
3800        count = perf_event_read_value(leader, &enabled, &running);
3801
3802        values[n++] = 1 + leader->nr_siblings;
3803        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3804                values[n++] = enabled;
3805        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3806                values[n++] = running;
3807        values[n++] = count;
3808        if (read_format & PERF_FORMAT_ID)
3809                values[n++] = primary_event_id(leader);
3810
3811        size = n * sizeof(u64);
3812
3813        if (copy_to_user(buf, values, size))
3814                return -EFAULT;
3815
3816        ret = size;
3817
3818        list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3819                n = 0;
3820
3821                values[n++] = perf_event_read_value(sub, &enabled, &running);
3822                if (read_format & PERF_FORMAT_ID)
3823                        values[n++] = primary_event_id(sub);
3824
3825                size = n * sizeof(u64);
3826
3827                if (copy_to_user(buf + ret, values, size)) {
3828                        return -EFAULT;
3829                }
3830
3831                ret += size;
3832        }
3833
3834        return ret;
3835}
3836
3837static int perf_event_read_one(struct perf_event *event,
3838                                 u64 read_format, char __user *buf)
3839{
3840        u64 enabled, running;
3841        u64 values[4];
3842        int n = 0;
3843
3844        values[n++] = perf_event_read_value(event, &enabled, &running);
3845        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3846                values[n++] = enabled;
3847        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3848                values[n++] = running;
3849        if (read_format & PERF_FORMAT_ID)
3850                values[n++] = primary_event_id(event);
3851
3852        if (copy_to_user(buf, values, n * sizeof(u64)))
3853                return -EFAULT;
3854
3855        return n * sizeof(u64);
3856}
3857
3858static bool is_event_hup(struct perf_event *event)
3859{
3860        bool no_children;
3861
3862        if (event->state != PERF_EVENT_STATE_EXIT)
3863                return false;
3864
3865        mutex_lock(&event->child_mutex);
3866        no_children = list_empty(&event->child_list);
3867        mutex_unlock(&event->child_mutex);
3868        return no_children;
3869}
3870
3871/*
3872 * Read the performance event - simple non blocking version for now
3873 */
3874static ssize_t
3875perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3876{
3877        u64 read_format = event->attr.read_format;
3878        int ret;
3879
3880        /*
3881         * Return end-of-file for a read on a event that is in
3882         * error state (i.e. because it was pinned but it couldn't be
3883         * scheduled on to the CPU at some point).
3884         */
3885        if (event->state == PERF_EVENT_STATE_ERROR)
3886                return 0;
3887
3888        if (count < event->read_size)
3889                return -ENOSPC;
3890
3891        WARN_ON_ONCE(event->ctx->parent_ctx);
3892        if (read_format & PERF_FORMAT_GROUP)
3893                ret = perf_event_read_group(event, read_format, buf);
3894        else
3895                ret = perf_event_read_one(event, read_format, buf);
3896
3897        return ret;
3898}
3899
3900static ssize_t
3901perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3902{
3903        struct perf_event *event = file->private_data;
3904        struct perf_event_context *ctx;
3905        int ret;
3906
3907        ctx = perf_event_ctx_lock(event);
3908        ret = perf_read_hw(event, buf, count);
3909        perf_event_ctx_unlock(event, ctx);
3910
3911        return ret;
3912}
3913
3914static unsigned int perf_poll(struct file *file, poll_table *wait)
3915{
3916        struct perf_event *event = file->private_data;
3917        struct ring_buffer *rb;
3918        unsigned int events = POLLHUP;
3919
3920        poll_wait(file, &event->waitq, wait);
3921
3922        if (is_event_hup(event))
3923                return events;
3924
3925        /*
3926         * Pin the event->rb by taking event->mmap_mutex; otherwise
3927         * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3928         */
3929        mutex_lock(&event->mmap_mutex);
3930        rb = event->rb;
3931        if (rb)
3932                events = atomic_xchg(&rb->poll, 0);
3933        mutex_unlock(&event->mmap_mutex);
3934        return events;
3935}
3936
3937static void _perf_event_reset(struct perf_event *event)
3938{
3939        (void)perf_event_read(event);
3940        local64_set(&event->count, 0);
3941        perf_event_update_userpage(event);
3942}
3943
3944/*
3945 * Holding the top-level event's child_mutex means that any
3946 * descendant process that has inherited this event will block
3947 * in sync_child_event if it goes to exit, thus satisfying the
3948 * task existence requirements of perf_event_enable/disable.
3949 */
3950static void perf_event_for_each_child(struct perf_event *event,
3951                                        void (*func)(struct perf_event *))
3952{
3953        struct perf_event *child;
3954
3955        WARN_ON_ONCE(event->ctx->parent_ctx);
3956
3957        mutex_lock(&event->child_mutex);
3958        func(event);
3959        list_for_each_entry(child, &event->child_list, child_list)
3960                func(child);
3961        mutex_unlock(&event->child_mutex);
3962}
3963
3964static void perf_event_for_each(struct perf_event *event,
3965                                  void (*func)(struct perf_event *))
3966{
3967        struct perf_event_context *ctx = event->ctx;
3968        struct perf_event *sibling;
3969
3970        lockdep_assert_held(&ctx->mutex);
3971
3972        event = event->group_leader;
3973
3974        perf_event_for_each_child(event, func);
3975        list_for_each_entry(sibling, &event->sibling_list, group_entry)
3976                perf_event_for_each_child(sibling, func);
3977}
3978
3979static int perf_event_period(struct perf_event *event, u64 __user *arg)
3980{
3981        struct perf_event_context *ctx = event->ctx;
3982        int ret = 0, active;
3983        u64 value;
3984
3985        if (!is_sampling_event(event))
3986                return -EINVAL;
3987
3988        if (copy_from_user(&value, arg, sizeof(value)))
3989                return -EFAULT;
3990
3991        if (!value)
3992                return -EINVAL;
3993
3994        raw_spin_lock_irq(&ctx->lock);
3995        if (event->attr.freq) {
3996                if (value > sysctl_perf_event_sample_rate) {
3997                        ret = -EINVAL;
3998                        goto unlock;
3999                }
4000
4001                event->attr.sample_freq = value;
4002        } else {
4003                event->attr.sample_period = value;
4004                event->hw.sample_period = value;
4005        }
4006
4007        active = (event->state == PERF_EVENT_STATE_ACTIVE);
4008        if (active) {
4009                perf_pmu_disable(ctx->pmu);
4010                event->pmu->stop(event, PERF_EF_UPDATE);
4011        }
4012
4013        local64_set(&event->hw.period_left, 0);
4014
4015        if (active) {
4016                event->pmu->start(event, PERF_EF_RELOAD);
4017                perf_pmu_enable(ctx->pmu);
4018        }
4019
4020unlock:
4021        raw_spin_unlock_irq(&ctx->lock);
4022
4023        return ret;
4024}
4025
4026static const struct file_operations perf_fops;
4027
4028static inline int perf_fget_light(int fd, struct fd *p)
4029{
4030        struct fd f = fdget(fd);
4031        if (!f.file)
4032                return -EBADF;
4033
4034        if (f.file->f_op != &perf_fops) {
4035                fdput(f);
4036                return -EBADF;
4037        }
4038        *p = f;
4039        return 0;
4040}
4041
4042static int perf_event_set_output(struct perf_event *event,
4043                                 struct perf_event *output_event);
4044static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4045static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4046
4047static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4048{
4049        void (*func)(struct perf_event *);
4050        u32 flags = arg;
4051
4052        switch (cmd) {
4053        case PERF_EVENT_IOC_ENABLE:
4054                func = _perf_event_enable;
4055                break;
4056        case PERF_EVENT_IOC_DISABLE:
4057                func = _perf_event_disable;
4058                break;
4059        case PERF_EVENT_IOC_RESET:
4060                func = _perf_event_reset;
4061                break;
4062
4063        case PERF_EVENT_IOC_REFRESH:
4064                return _perf_event_refresh(event, arg);
4065
4066        case PERF_EVENT_IOC_PERIOD:
4067                return perf_event_period(event, (u64 __user *)arg);
4068
4069        case PERF_EVENT_IOC_ID:
4070        {
4071                u64 id = primary_event_id(event);
4072
4073                if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4074                        return -EFAULT;
4075                return 0;
4076        }
4077
4078        case PERF_EVENT_IOC_SET_OUTPUT:
4079        {
4080                int ret;
4081                if (arg != -1) {
4082                        struct perf_event *output_event;
4083                        struct fd output;
4084                        ret = perf_fget_light(arg, &output);
4085                        if (ret)
4086                                return ret;
4087                        output_event = output.file->private_data;
4088                        ret = perf_event_set_output(event, output_event);
4089                        fdput(output);
4090                } else {
4091                        ret = perf_event_set_output(event, NULL);
4092                }
4093                return ret;
4094        }
4095
4096        case PERF_EVENT_IOC_SET_FILTER:
4097                return perf_event_set_filter(event, (void __user *)arg);
4098
4099        case PERF_EVENT_IOC_SET_BPF:
4100                return perf_event_set_bpf_prog(event, arg);
4101
4102        default:
4103                return -ENOTTY;
4104        }
4105
4106        if (flags & PERF_IOC_FLAG_GROUP)
4107                perf_event_for_each(event, func);
4108        else
4109                perf_event_for_each_child(event, func);
4110
4111        return 0;
4112}
4113
4114static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4115{
4116        struct perf_event *event = file->private_data;
4117        struct perf_event_context *ctx;
4118        long ret;
4119
4120        ctx = perf_event_ctx_lock(event);
4121        ret = _perf_ioctl(event, cmd, arg);
4122        perf_event_ctx_unlock(event, ctx);
4123
4124        return ret;
4125}
4126
4127#ifdef CONFIG_COMPAT
4128static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4129                                unsigned long arg)
4130{
4131        switch (_IOC_NR(cmd)) {
4132        case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4133        case _IOC_NR(PERF_EVENT_IOC_ID):
4134                /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4135                if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4136                        cmd &= ~IOCSIZE_MASK;
4137                        cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4138                }
4139                break;
4140        }
4141        return perf_ioctl(file, cmd, arg);
4142}
4143#else
4144# define perf_compat_ioctl NULL
4145#endif
4146
4147int perf_event_task_enable(void)
4148{
4149        struct perf_event_context *ctx;
4150        struct perf_event *event;
4151
4152        mutex_lock(&current->perf_event_mutex);
4153        list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4154                ctx = perf_event_ctx_lock(event);
4155                perf_event_for_each_child(event, _perf_event_enable);
4156                perf_event_ctx_unlock(event, ctx);
4157        }
4158        mutex_unlock(&current->perf_event_mutex);
4159
4160        return 0;
4161}
4162
4163int perf_event_task_disable(void)
4164{
4165        struct perf_event_context *ctx;
4166        struct perf_event *event;
4167
4168        mutex_lock(&current->perf_event_mutex);
4169        list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4170                ctx = perf_event_ctx_lock(event);
4171                perf_event_for_each_child(event, _perf_event_disable);
4172                perf_event_ctx_unlock(event, ctx);
4173        }
4174        mutex_unlock(&current->perf_event_mutex);
4175
4176        return 0;
4177}
4178
4179static int perf_event_index(struct perf_event *event)
4180{
4181        if (event->hw.state & PERF_HES_STOPPED)
4182                return 0;
4183
4184        if (event->state != PERF_EVENT_STATE_ACTIVE)
4185                return 0;
4186
4187        return event->pmu->event_idx(event);
4188}
4189
4190static void calc_timer_values(struct perf_event *event,
4191                                u64 *now,
4192                                u64 *enabled,
4193                                u64 *running)
4194{
4195        u64 ctx_time;
4196
4197        *now = perf_clock();
4198        ctx_time = event->shadow_ctx_time + *now;
4199        *enabled = ctx_time - event->tstamp_enabled;
4200        *running = ctx_time - event->tstamp_running;
4201}
4202
4203static void perf_event_init_userpage(struct perf_event *event)
4204{
4205        struct perf_event_mmap_page *userpg;
4206        struct ring_buffer *rb;
4207
4208        rcu_read_lock();
4209        rb = rcu_dereference(event->rb);
4210        if (!rb)
4211                goto unlock;
4212
4213        userpg = rb->user_page;
4214
4215        /* Allow new userspace to detect that bit 0 is deprecated */
4216        userpg->cap_bit0_is_deprecated = 1;
4217        userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4218        userpg->data_offset = PAGE_SIZE;
4219        userpg->data_size = perf_data_size(rb);
4220
4221unlock:
4222        rcu_read_unlock();
4223}
4224
4225void __weak arch_perf_update_userpage(
4226        struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4227{
4228}
4229
4230/*
4231 * Callers need to ensure there can be no nesting of this function, otherwise
4232 * the seqlock logic goes bad. We can not serialize this because the arch
4233 * code calls this from NMI context.
4234 */
4235void perf_event_update_userpage(struct perf_event *event)
4236{
4237        struct perf_event_mmap_page *userpg;
4238        struct ring_buffer *rb;
4239        u64 enabled, running, now;
4240
4241        rcu_read_lock();
4242        rb = rcu_dereference(event->rb);
4243        if (!rb)
4244                goto unlock;
4245
4246        /*
4247         * compute total_time_enabled, total_time_running
4248         * based on snapshot values taken when the event
4249         * was last scheduled in.
4250         *
4251         * we cannot simply called update_context_time()
4252         * because of locking issue as we can be called in
4253         * NMI context
4254         */
4255        calc_timer_values(event, &now, &enabled, &running);
4256
4257        userpg = rb->user_page;
4258        /*
4259         * Disable preemption so as to not let the corresponding user-space
4260         * spin too long if we get preempted.
4261         */
4262        preempt_disable();
4263        ++userpg->lock;
4264        barrier();
4265        userpg->index = perf_event_index(event);
4266        userpg->offset = perf_event_count(event);
4267        if (userpg->index)
4268                userpg->offset -= local64_read(&event->hw.prev_count);
4269
4270        userpg->time_enabled = enabled +
4271                        atomic64_read(&event->child_total_time_enabled);
4272
4273        userpg->time_running = running +
4274                        atomic64_read(&event->child_total_time_running);
4275
4276        arch_perf_update_userpage(event, userpg, now);
4277
4278        barrier();
4279        ++userpg->lock;
4280        preempt_enable();
4281unlock:
4282        rcu_read_unlock();
4283}
4284
4285static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4286{
4287        struct perf_event *event = vma->vm_file->private_data;
4288        struct ring_buffer *rb;
4289        int ret = VM_FAULT_SIGBUS;
4290
4291        if (vmf->flags & FAULT_FLAG_MKWRITE) {
4292                if (vmf->pgoff == 0)
4293                        ret = 0;
4294                return ret;
4295        }
4296
4297        rcu_read_lock();
4298        rb = rcu_dereference(event->rb);
4299        if (!rb)
4300                goto unlock;
4301
4302        if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4303                goto unlock;
4304
4305        vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4306        if (!vmf->page)
4307                goto unlock;
4308
4309        get_page(vmf->page);
4310        vmf->page->mapping = vma->vm_file->f_mapping;
4311        vmf->page->index   = vmf->pgoff;
4312
4313        ret = 0;
4314unlock:
4315        rcu_read_unlock();
4316
4317        return ret;
4318}
4319
4320static void ring_buffer_attach(struct perf_event *event,
4321                               struct ring_buffer *rb)
4322{
4323        struct ring_buffer *old_rb = NULL;
4324        unsigned long flags;
4325
4326        if (event->rb) {
4327                /*
4328                 * Should be impossible, we set this when removing
4329                 * event->rb_entry and wait/clear when adding event->rb_entry.
4330                 */
4331                WARN_ON_ONCE(event->rcu_pending);
4332
4333                old_rb = event->rb;
4334                event->rcu_batches = get_state_synchronize_rcu();
4335                event->rcu_pending = 1;
4336
4337                spin_lock_irqsave(&old_rb->event_lock, flags);
4338                list_del_rcu(&event->rb_entry);
4339                spin_unlock_irqrestore(&old_rb->event_lock, flags);
4340        }
4341
4342        if (event->rcu_pending && rb) {
4343                cond_synchronize_rcu(event->rcu_batches);
4344                event->rcu_pending = 0;
4345        }
4346
4347        if (rb) {
4348                spin_lock_irqsave(&rb->event_lock, flags);
4349                list_add_rcu(&event->rb_entry, &rb->event_list);
4350                spin_unlock_irqrestore(&rb->event_lock, flags);
4351        }
4352
4353        rcu_assign_pointer(event->rb, rb);
4354
4355        if (old_rb) {
4356                ring_buffer_put(old_rb);
4357                /*
4358                 * Since we detached before setting the new rb, so that we
4359                 * could attach the new rb, we could have missed a wakeup.
4360                 * Provide it now.
4361                 */
4362                wake_up_all(&event->waitq);
4363        }
4364}
4365
4366static void ring_buffer_wakeup(struct perf_event *event)
4367{
4368        struct ring_buffer *rb;
4369
4370        rcu_read_lock();
4371        rb = rcu_dereference(event->rb);
4372        if (rb) {
4373                list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4374                        wake_up_all(&event->waitq);
4375        }
4376        rcu_read_unlock();
4377}
4378
4379static void rb_free_rcu(struct rcu_head *rcu_head)
4380{
4381        struct ring_buffer *rb;
4382
4383        rb = container_of(rcu_head, struct ring_buffer, rcu_head);
4384        rb_free(rb);
4385}
4386
4387struct ring_buffer *ring_buffer_get(struct perf_event *event)
4388{
4389        struct ring_buffer *rb;
4390
4391        rcu_read_lock();
4392        rb = rcu_dereference(event->rb);
4393        if (rb) {
4394                if (!atomic_inc_not_zero(&rb->refcount))
4395                        rb = NULL;
4396        }
4397        rcu_read_unlock();
4398
4399        return rb;
4400}
4401
4402void ring_buffer_put(struct ring_buffer *rb)
4403{
4404        if (!atomic_dec_and_test(&rb->refcount))
4405                return;
4406
4407        WARN_ON_ONCE(!list_empty(&rb->event_list));
4408
4409        call_rcu(&rb->rcu_head, rb_free_rcu);
4410}
4411
4412static void perf_mmap_open(struct vm_area_struct *vma)
4413{
4414        struct perf_event *event = vma->vm_file->private_data;
4415
4416        atomic_inc(&event->mmap_count);
4417        atomic_inc(&event->rb->mmap_count);
4418
4419        if (vma->vm_pgoff)
4420                atomic_inc(&event->rb->aux_mmap_count);
4421
4422        if (event->pmu->event_mapped)
4423                event->pmu->event_mapped(event);
4424}
4425
4426/*
4427 * A buffer can be mmap()ed multiple times; either directly through the same
4428 * event, or through other events by use of perf_event_set_output().
4429 *
4430 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4431 * the buffer here, where we still have a VM context. This means we need
4432 * to detach all events redirecting to us.
4433 */
4434static void perf_mmap_close(struct vm_area_struct *vma)
4435{
4436        struct perf_event *event = vma->vm_file->private_data;
4437
4438        struct ring_buffer *rb = ring_buffer_get(event);
4439        struct user_struct *mmap_user = rb->mmap_user;
4440        int mmap_locked = rb->mmap_locked;
4441        unsigned long size = perf_data_size(rb);
4442
4443        if (event->pmu->event_unmapped)
4444                event->pmu->event_unmapped(event);
4445
4446        /*
4447         * rb->aux_mmap_count will always drop before rb->mmap_count and
4448         * event->mmap_count, so it is ok to use event->mmap_mutex to
4449         * serialize with perf_mmap here.
4450         */
4451        if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4452            atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4453                atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4454                vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4455
4456                rb_free_aux(rb);
4457                mutex_unlock(&event->mmap_mutex);
4458        }
4459
4460        atomic_dec(&rb->mmap_count);
4461
4462        if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4463                goto out_put;
4464
4465        ring_buffer_attach(event, NULL);
4466        mutex_unlock(&event->mmap_mutex);
4467
4468        /* If there's still other mmap()s of this buffer, we're done. */
4469        if (atomic_read(&rb->mmap_count))
4470                goto out_put;
4471
4472        /*
4473         * No other mmap()s, detach from all other events that might redirect
4474         * into the now unreachable buffer. Somewhat complicated by the
4475         * fact that rb::event_lock otherwise nests inside mmap_mutex.
4476         */
4477again:
4478        rcu_read_lock();
4479        list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4480                if (!atomic_long_inc_not_zero(&event->refcount)) {
4481                        /*
4482                         * This event is en-route to free_event() which will
4483                         * detach it and remove it from the list.
4484                         */
4485                        continue;
4486                }
4487                rcu_read_unlock();
4488
4489                mutex_lock(&event->mmap_mutex);
4490                /*
4491                 * Check we didn't race with perf_event_set_output() which can
4492                 * swizzle the rb from under us while we were waiting to
4493                 * acquire mmap_mutex.
4494                 *
4495                 * If we find a different rb; ignore this event, a next
4496                 * iteration will no longer find it on the list. We have to
4497                 * still restart the iteration to make sure we're not now
4498                 * iterating the wrong list.
4499                 */
4500                if (event->rb == rb)
4501                        ring_buffer_attach(event, NULL);
4502
4503                mutex_unlock(&event->mmap_mutex);
4504                put_event(event);
4505
4506                /*
4507                 * Restart the iteration; either we're on the wrong list or
4508                 * destroyed its integrity by doing a deletion.
4509                 */
4510                goto again;
4511        }
4512        rcu_read_unlock();
4513
4514        /*
4515         * It could be there's still a few 0-ref events on the list; they'll
4516         * get cleaned up by free_event() -- they'll also still have their
4517         * ref on the rb and will free it whenever they are done with it.
4518         *
4519         * Aside from that, this buffer is 'fully' detached and unmapped,
4520         * undo the VM accounting.
4521         */
4522
4523        atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4524        vma->vm_mm->pinned_vm -= mmap_locked;
4525        free_uid(mmap_user);
4526
4527out_put:
4528        ring_buffer_put(rb); /* could be last */
4529}
4530
4531static const struct vm_operations_struct perf_mmap_vmops = {
4532        .open           = perf_mmap_open,
4533        .close          = perf_mmap_close, /* non mergable */
4534        .fault          = perf_mmap_fault,
4535        .page_mkwrite   = perf_mmap_fault,
4536};
4537
4538static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4539{
4540        struct perf_event *event = file->private_data;
4541        unsigned long user_locked, user_lock_limit;
4542        struct user_struct *user = current_user();
4543        unsigned long locked, lock_limit;
4544        struct ring_buffer *rb = NULL;
4545        unsigned long vma_size;
4546        unsigned long nr_pages;
4547        long user_extra = 0, extra = 0;
4548        int ret = 0, flags = 0;
4549
4550        /*
4551         * Don't allow mmap() of inherited per-task counters. This would
4552         * create a performance issue due to all children writing to the
4553         * same rb.
4554         */
4555        if (event->cpu == -1 && event->attr.inherit)
4556                return -EINVAL;
4557
4558        if (!(vma->vm_flags & VM_SHARED))
4559                return -EINVAL;
4560
4561        vma_size = vma->vm_end - vma->vm_start;
4562
4563        if (vma->vm_pgoff == 0) {
4564                nr_pages = (vma_size / PAGE_SIZE) - 1;
4565        } else {
4566                /*
4567                 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4568                 * mapped, all subsequent mappings should have the same size
4569                 * and offset. Must be above the normal perf buffer.
4570                 */
4571                u64 aux_offset, aux_size;
4572
4573                if (!event->rb)
4574                        return -EINVAL;
4575
4576                nr_pages = vma_size / PAGE_SIZE;
4577
4578                mutex_lock(&event->mmap_mutex);
4579                ret = -EINVAL;
4580
4581                rb = event->rb;
4582                if (!rb)
4583                        goto aux_unlock;
4584
4585                aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4586                aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4587
4588                if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4589                        goto aux_unlock;
4590
4591                if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4592                        goto aux_unlock;
4593
4594                /* already mapped with a different offset */
4595                if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4596                        goto aux_unlock;
4597
4598                if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4599                        goto aux_unlock;
4600
4601                /* already mapped with a different size */
4602                if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4603                        goto aux_unlock;
4604
4605                if (!is_power_of_2(nr_pages))
4606                        goto aux_unlock;
4607
4608                if (!atomic_inc_not_zero(&rb->mmap_count))
4609                        goto aux_unlock;
4610
4611                if (rb_has_aux(rb)) {
4612                        atomic_inc(&rb->aux_mmap_count);
4613                        ret = 0;
4614                        goto unlock;
4615                }
4616
4617                atomic_set(&rb->aux_mmap_count, 1);
4618                user_extra = nr_pages;
4619
4620                goto accounting;
4621        }
4622
4623        /*
4624         * If we have rb pages ensure they're a power-of-two number, so we
4625         * can do bitmasks instead of modulo.
4626         */
4627        if (nr_pages != 0 && !is_power_of_2(nr_pages))
4628                return -EINVAL;
4629
4630        if (vma_size != PAGE_SIZE * (1 + nr_pages))
4631                return -EINVAL;
4632
4633        WARN_ON_ONCE(event->ctx->parent_ctx);
4634again:
4635        mutex_lock(&event->mmap_mutex);
4636        if (event->rb) {
4637                if (event->rb->nr_pages != nr_pages) {
4638                        ret = -EINVAL;
4639                        goto unlock;
4640                }
4641
4642                if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4643                        /*
4644                         * Raced against perf_mmap_close() through
4645                         * perf_event_set_output(). Try again, hope for better
4646                         * luck.
4647                         */
4648                        mutex_unlock(&event->mmap_mutex);
4649                        goto again;
4650                }
4651
4652                goto unlock;
4653        }
4654
4655        user_extra = nr_pages + 1;
4656
4657accounting:
4658        user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4659
4660        /*
4661         * Increase the limit linearly with more CPUs:
4662         */
4663        user_lock_limit *= num_online_cpus();
4664
4665        user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4666
4667        if (user_locked > user_lock_limit)
4668                extra = user_locked - user_lock_limit;
4669
4670        lock_limit = rlimit(RLIMIT_MEMLOCK);
4671        lock_limit >>= PAGE_SHIFT;
4672        locked = vma->vm_mm->pinned_vm + extra;
4673
4674        if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4675                !capable(CAP_IPC_LOCK)) {
4676                ret = -EPERM;
4677                goto unlock;
4678        }
4679
4680        WARN_ON(!rb && event->rb);
4681
4682        if (vma->vm_flags & VM_WRITE)
4683                flags |= RING_BUFFER_WRITABLE;
4684
4685        if (!rb) {
4686                rb = rb_alloc(nr_pages,
4687                              event->attr.watermark ? event->attr.wakeup_watermark : 0,
4688                              event->cpu, flags);
4689
4690                if (!rb) {
4691                        ret = -ENOMEM;
4692                        goto unlock;
4693                }
4694
4695                atomic_set(&rb->mmap_count, 1);
4696                rb->mmap_user = get_current_user();
4697                rb->mmap_locked = extra;
4698
4699                ring_buffer_attach(event, rb);
4700
4701                perf_event_init_userpage(event);
4702                perf_event_update_userpage(event);
4703        } else {
4704                ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4705                                   event->attr.aux_watermark, flags);
4706                if (!ret)
4707                        rb->aux_mmap_locked = extra;
4708        }
4709
4710unlock:
4711        if (!ret) {
4712                atomic_long_add(user_extra, &user->locked_vm);
4713                vma->vm_mm->pinned_vm += extra;
4714
4715                atomic_inc(&event->mmap_count);
4716        } else if (rb) {
4717                atomic_dec(&rb->mmap_count);
4718        }
4719aux_unlock:
4720        mutex_unlock(&event->mmap_mutex);
4721
4722        /*
4723         * Since pinned accounting is per vm we cannot allow fork() to copy our
4724         * vma.
4725         */
4726        vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4727        vma->vm_ops = &perf_mmap_vmops;
4728
4729        if (event->pmu->event_mapped)
4730                event->pmu->event_mapped(event);
4731
4732        return ret;
4733}
4734
4735static int perf_fasync(int fd, struct file *filp, int on)
4736{
4737        struct inode *inode = file_inode(filp);
4738        struct perf_event *event = filp->private_data;
4739        int retval;
4740
4741        mutex_lock(&inode->i_mutex);
4742        retval = fasync_helper(fd, filp, on, &event->fasync);
4743        mutex_unlock(&inode->i_mutex);
4744
4745        if (retval < 0)
4746                return retval;
4747
4748        return 0;
4749}
4750
4751static const struct file_operations perf_fops = {
4752        .llseek                 = no_llseek,
4753        .release                = perf_release,
4754        .read                   = perf_read,
4755        .poll                   = perf_poll,
4756        .unlocked_ioctl         = perf_ioctl,
4757        .compat_ioctl           = perf_compat_ioctl,
4758        .mmap                   = perf_mmap,
4759        .fasync                 = perf_fasync,
4760};
4761
4762/*
4763 * Perf event wakeup
4764 *
4765 * If there's data, ensure we set the poll() state and publish everything
4766 * to user-space before waking everybody up.
4767 */
4768
4769void perf_event_wakeup(struct perf_event *event)
4770{
4771        ring_buffer_wakeup(event);
4772
4773        if (event->pending_kill) {
4774                kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4775                event->pending_kill = 0;
4776        }
4777}
4778
4779static void perf_pending_event(struct irq_work *entry)
4780{
4781        struct perf_event *event = container_of(entry,
4782                        struct perf_event, pending);
4783        int rctx;
4784
4785        rctx = perf_swevent_get_recursion_context();
4786        /*
4787         * If we 'fail' here, that's OK, it means recursion is already disabled
4788         * and we won't recurse 'further'.
4789         */
4790
4791        if (event->pending_disable) {
4792                event->pending_disable = 0;
4793                __perf_event_disable(event);
4794        }
4795
4796        if (event->pending_wakeup) {
4797                event->pending_wakeup = 0;
4798                perf_event_wakeup(event);
4799        }
4800
4801        if (rctx >= 0)
4802                perf_swevent_put_recursion_context(rctx);
4803}
4804
4805/*
4806 * We assume there is only KVM supporting the callbacks.
4807 * Later on, we might change it to a list if there is
4808 * another virtualization implementation supporting the callbacks.
4809 */
4810struct perf_guest_info_callbacks *perf_guest_cbs;
4811
4812int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4813{
4814        perf_guest_cbs = cbs;
4815        return 0;
4816}
4817EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4818
4819int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4820{
4821        perf_guest_cbs = NULL;
4822        return 0;
4823}
4824EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4825
4826static void
4827perf_output_sample_regs(struct perf_output_handle *handle,
4828                        struct pt_regs *regs, u64 mask)
4829{
4830        int bit;
4831
4832        for_each_set_bit(bit, (const unsigned long *) &mask,
4833                         sizeof(mask) * BITS_PER_BYTE) {
4834                u64 val;
4835
4836                val = perf_reg_value(regs, bit);
4837                perf_output_put(handle, val);
4838        }
4839}
4840
4841static void perf_sample_regs_user(struct perf_regs *regs_user,
4842                                  struct pt_regs *regs,
4843                                  struct pt_regs *regs_user_copy)
4844{
4845        if (user_mode(regs)) {
4846                regs_user->abi = perf_reg_abi(current);
4847                regs_user->regs = regs;
4848        } else if (current->mm) {
4849                perf_get_regs_user(regs_user, regs, regs_user_copy);
4850        } else {
4851                regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4852                regs_user->regs = NULL;
4853        }
4854}
4855
4856static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4857                                  struct pt_regs *regs)
4858{
4859        regs_intr->regs = regs;
4860        regs_intr->abi  = perf_reg_abi(current);
4861}
4862
4863
4864/*
4865 * Get remaining task size from user stack pointer.
4866 *
4867 * It'd be better to take stack vma map and limit this more
4868 * precisly, but there's no way to get it safely under interrupt,
4869 * so using TASK_SIZE as limit.
4870 */
4871static u64 perf_ustack_task_size(struct pt_regs *regs)
4872{
4873        unsigned long addr = perf_user_stack_pointer(regs);
4874
4875        if (!addr || addr >= TASK_SIZE)
4876                return 0;
4877
4878        return TASK_SIZE - addr;
4879}
4880
4881static u16
4882perf_sample_ustack_size(u16 stack_size, u16 header_size,
4883                        struct pt_regs *regs)
4884{
4885        u64 task_size;
4886
4887        /* No regs, no stack pointer, no dump. */
4888        if (!regs)
4889                return 0;
4890
4891        /*
4892         * Check if we fit in with the requested stack size into the:
4893         * - TASK_SIZE
4894         *   If we don't, we limit the size to the TASK_SIZE.
4895         *
4896         * - remaining sample size
4897         *   If we don't, we customize the stack size to
4898         *   fit in to the remaining sample size.
4899         */
4900
4901        task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4902        stack_size = min(stack_size, (u16) task_size);
4903
4904        /* Current header size plus static size and dynamic size. */
4905        header_size += 2 * sizeof(u64);
4906
4907        /* Do we fit in with the current stack dump size? */
4908        if ((u16) (header_size + stack_size) < header_size) {
4909                /*
4910                 * If we overflow the maximum size for the sample,
4911                 * we customize the stack dump size to fit in.
4912                 */
4913                stack_size = USHRT_MAX - header_size - sizeof(u64);
4914                stack_size = round_up(stack_size, sizeof(u64));
4915        }
4916
4917        return stack_size;
4918}
4919
4920static void
4921perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4922                          struct pt_regs *regs)
4923{
4924        /* Case of a kernel thread, nothing to dump */
4925        if (!regs) {
4926                u64 size = 0;
4927                perf_output_put(handle, size);
4928        } else {
4929                unsigned long sp;
4930                unsigned int rem;
4931                u64 dyn_size;
4932
4933                /*
4934                 * We dump:
4935                 * static size
4936                 *   - the size requested by user or the best one we can fit
4937                 *     in to the sample max size
4938                 * data
4939                 *   - user stack dump data
4940                 * dynamic size
4941                 *   - the actual dumped size
4942                 */
4943
4944                /* Static size. */
4945                perf_output_put(handle, dump_size);
4946
4947                /* Data. */
4948                sp = perf_user_stack_pointer(regs);
4949                rem = __output_copy_user(handle, (void *) sp, dump_size);
4950                dyn_size = dump_size - rem;
4951
4952                perf_output_skip(handle, rem);
4953
4954                /* Dynamic size. */
4955                perf_output_put(handle, dyn_size);
4956        }
4957}
4958
4959static void __perf_event_header__init_id(struct perf_event_header *header,
4960                                         struct perf_sample_data *data,
4961                                         struct perf_event *event)
4962{
4963        u64 sample_type = event->attr.sample_type;
4964
4965        data->type = sample_type;
4966        header->size += event->id_header_size;
4967
4968        if (sample_type & PERF_SAMPLE_TID) {
4969                /* namespace issues */
4970                data->tid_entry.pid = perf_event_pid(event, current);
4971                data->tid_entry.tid = perf_event_tid(event, current);
4972        }
4973
4974        if (sample_type & PERF_SAMPLE_TIME)
4975                data->time = perf_event_clock(event);
4976
4977        if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4978                data->id = primary_event_id(event);
4979
4980        if (sample_type & PERF_SAMPLE_STREAM_ID)
4981                data->stream_id = event->id;
4982
4983        if (sample_type & PERF_SAMPLE_CPU) {
4984                data->cpu_entry.cpu      = raw_smp_processor_id();
4985                data->cpu_entry.reserved = 0;
4986        }
4987}
4988
4989void perf_event_header__init_id(struct perf_event_header *header,
4990                                struct perf_sample_data *data,
4991                                struct perf_event *event)
4992{
4993        if (event->attr.sample_id_all)
4994                __perf_event_header__init_id(header, data, event);
4995}
4996
4997static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4998                                           struct perf_sample_data *data)
4999{
5000        u64 sample_type = data->type;
5001
5002        if (sample_type & PERF_SAMPLE_TID)
5003                perf_output_put(handle, data->tid_entry);
5004
5005        if (sample_type & PERF_SAMPLE_TIME)
5006                perf_output_put(handle, data->time);
5007
5008        if (sample_type & PERF_SAMPLE_ID)
5009                perf_output_put(handle, data->id);
5010
5011        if (sample_type & PERF_SAMPLE_STREAM_ID)
5012                perf_output_put(handle, data->stream_id);
5013
5014        if (sample_type & PERF_SAMPLE_CPU)
5015                perf_output_put(handle, data->cpu_entry);
5016
5017        if (sample_type & PERF_SAMPLE_IDENTIFIER)
5018                perf_output_put(handle, data->id);
5019}
5020
5021void perf_event__output_id_sample(struct perf_event *event,
5022                                  struct perf_output_handle *handle,
5023                                  struct perf_sample_data *sample)
5024{
5025        if (event->attr.sample_id_all)
5026                __perf_event__output_id_sample(handle, sample);
5027}
5028
5029static void perf_output_read_one(struct perf_output_handle *handle,
5030                                 struct perf_event *event,
5031                                 u64 enabled, u64 running)
5032{
5033        u64 read_format = event->attr.read_format;
5034        u64 values[4];
5035        int n = 0;
5036
5037        values[n++] = perf_event_count(event);
5038        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5039                values[n++] = enabled +
5040                        atomic64_read(&event->child_total_time_enabled);
5041        }
5042        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5043                values[n++] = running +
5044                        atomic64_read(&event->child_total_time_running);
5045        }
5046        if (read_format & PERF_FORMAT_ID)
5047                values[n++] = primary_event_id(event);
5048
5049        __output_copy(handle, values, n * sizeof(u64));
5050}
5051
5052/*
5053 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5054 */
5055static void perf_output_read_group(struct perf_output_handle *handle,
5056                            struct perf_event *event,
5057                            u64 enabled, u64 running)
5058{
5059        struct perf_event *leader = event->group_leader, *sub;
5060        u64 read_format = event->attr.read_format;
5061        u64 values[5];
5062        int n = 0;
5063
5064        values[n++] = 1 + leader->nr_siblings;
5065
5066        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5067                values[n++] = enabled;
5068
5069        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5070                values[n++] = running;
5071
5072        if (leader != event)
5073                leader->pmu->read(leader);
5074
5075        values[n++] = perf_event_count(leader);
5076        if (read_format & PERF_FORMAT_ID)
5077                values[n++] = primary_event_id(leader);
5078
5079        __output_copy(handle, values, n * sizeof(u64));
5080
5081        list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5082                n = 0;
5083
5084                if ((sub != event) &&
5085                    (sub->state == PERF_EVENT_STATE_ACTIVE))
5086                        sub->pmu->read(sub);
5087
5088                values[n++] = perf_event_count(sub);
5089                if (read_format & PERF_FORMAT_ID)
5090                        values[n++] = primary_event_id(sub);
5091
5092                __output_copy(handle, values, n * sizeof(u64));
5093        }
5094}
5095
5096#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5097                                 PERF_FORMAT_TOTAL_TIME_RUNNING)
5098
5099static void perf_output_read(struct perf_output_handle *handle,
5100                             struct perf_event *event)
5101{
5102        u64 enabled = 0, running = 0, now;
5103        u64 read_format = event->attr.read_format;
5104
5105        /*
5106         * compute total_time_enabled, total_time_running
5107         * based on snapshot values taken when the event
5108         * was last scheduled in.
5109         *
5110         * we cannot simply called update_context_time()
5111         * because of locking issue as we are called in
5112         * NMI context
5113         */
5114        if (read_format & PERF_FORMAT_TOTAL_TIMES)
5115                calc_timer_values(event, &now, &enabled, &running);
5116
5117        if (event->attr.read_format & PERF_FORMAT_GROUP)
5118                perf_output_read_group(handle, event, enabled, running);
5119        else
5120                perf_output_read_one(handle, event, enabled, running);
5121}
5122
5123void perf_output_sample(struct perf_output_handle *handle,
5124                        struct perf_event_header *header,
5125                        struct perf_sample_data *data,
5126                        struct perf_event *event)
5127{
5128        u64 sample_type = data->type;
5129
5130        perf_output_put(handle, *header);
5131
5132        if (sample_type & PERF_SAMPLE_IDENTIFIER)
5133                perf_output_put(handle, data->id);
5134
5135        if (sample_type & PERF_SAMPLE_IP)
5136                perf_output_put(handle, data->ip);
5137
5138        if (sample_type & PERF_SAMPLE_TID)
5139                perf_output_put(handle, data->tid_entry);
5140
5141        if (sample_type & PERF_SAMPLE_TIME)
5142                perf_output_put(handle, data->time);
5143
5144        if (sample_type & PERF_SAMPLE_ADDR)
5145                perf_output_put(handle, data->addr);
5146
5147        if (sample_type & PERF_SAMPLE_ID)
5148                perf_output_put(handle, data->id);
5149
5150        if (sample_type & PERF_SAMPLE_STREAM_ID)
5151                perf_output_put(handle, data->stream_id);
5152
5153        if (sample_type & PERF_SAMPLE_CPU)
5154                perf_output_put(handle, data->cpu_entry);
5155
5156        if (sample_type & PERF_SAMPLE_PERIOD)
5157                perf_output_put(handle, data->period);
5158
5159        if (sample_type & PERF_SAMPLE_READ)
5160                perf_output_read(handle, event);
5161
5162        if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5163                if (data->callchain) {
5164                        int size = 1;
5165
5166                        if (data->callchain)
5167                                size += data->callchain->nr;
5168
5169                        size *= sizeof(u64);
5170
5171                        __output_copy(handle, data->callchain, size);
5172                } else {
5173                        u64 nr = 0;
5174                        perf_output_put(handle, nr);
5175                }
5176        }
5177
5178        if (sample_type & PERF_SAMPLE_RAW) {
5179                if (data->raw) {
5180                        perf_output_put(handle, data->raw->size);
5181                        __output_copy(handle, data->raw->data,
5182                                           data->raw->size);
5183                } else {
5184                        struct {
5185                                u32     size;
5186                                u32     data;
5187                        } raw = {
5188                                .size = sizeof(u32),
5189                                .data = 0,
5190                        };
5191                        perf_output_put(handle, raw);
5192                }
5193        }
5194
5195        if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5196                if (data->br_stack) {
5197                        size_t size;
5198
5199                        size = data->br_stack->nr
5200                             * sizeof(struct perf_branch_entry);
5201
5202                        perf_output_put(handle, data->br_stack->nr);
5203                        perf_output_copy(handle, data->br_stack->entries, size);
5204                } else {
5205                        /*
5206                         * we always store at least the value of nr
5207                         */
5208                        u64 nr = 0;
5209                        perf_output_put(handle, nr);
5210                }
5211        }
5212
5213        if (sample_type & PERF_SAMPLE_REGS_USER) {
5214                u64 abi = data->regs_user.abi;
5215
5216                /*
5217                 * If there are no regs to dump, notice it through
5218                 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5219                 */
5220                perf_output_put(handle, abi);
5221
5222                if (abi) {
5223                        u64 mask = event->attr.sample_regs_user;
5224                        perf_output_sample_regs(handle,
5225                                                data->regs_user.regs,
5226                                                mask);
5227                }
5228        }
5229
5230        if (sample_type & PERF_SAMPLE_STACK_USER) {
5231                perf_output_sample_ustack(handle,
5232                                          data->stack_user_size,
5233                                          data->regs_user.regs);
5234        }
5235
5236        if (sample_type & PERF_SAMPLE_WEIGHT)
5237                perf_output_put(handle, data->weight);
5238
5239        if (sample_type & PERF_SAMPLE_DATA_SRC)
5240                perf_output_put(handle, data->data_src.val);
5241
5242        if (sample_type & PERF_SAMPLE_TRANSACTION)
5243                perf_output_put(handle, data->txn);
5244
5245        if (sample_type & PERF_SAMPLE_REGS_INTR) {
5246                u64 abi = data->regs_intr.abi;
5247                /*
5248                 * If there are no regs to dump, notice it through
5249                 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5250                 */
5251                perf_output_put(handle, abi);
5252
5253                if (abi) {
5254                        u64 mask = event->attr.sample_regs_intr;
5255
5256                        perf_output_sample_regs(handle,
5257                                                data->regs_intr.regs,
5258                                                mask);
5259                }
5260        }
5261
5262        if (!event->attr.watermark) {
5263                int wakeup_events = event->attr.wakeup_events;
5264
5265                if (wakeup_events) {
5266                        struct ring_buffer *rb = handle->rb;
5267                        int events = local_inc_return(&rb->events);
5268
5269                        if (events >= wakeup_events) {
5270                                local_sub(wakeup_events, &rb->events);
5271                                local_inc(&rb->wakeup);
5272                        }
5273                }
5274        }
5275}
5276
5277void perf_prepare_sample(struct perf_event_header *header,
5278                         struct perf_sample_data *data,
5279                         struct perf_event *event,
5280                         struct pt_regs *regs)
5281{
5282        u64 sample_type = event->attr.sample_type;
5283
5284        header->type = PERF_RECORD_SAMPLE;
5285        header->size = sizeof(*header) + event->header_size;
5286
5287        header->misc = 0;
5288        header->misc |= perf_misc_flags(regs);
5289
5290        __perf_event_header__init_id(header, data, event);
5291
5292        if (sample_type & PERF_SAMPLE_IP)
5293                data->ip = perf_instruction_pointer(regs);
5294
5295        if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5296                int size = 1;
5297
5298                data->callchain = perf_callchain(event, regs);
5299
5300                if (data->callchain)
5301                        size += data->callchain->nr;
5302
5303                header->size += size * sizeof(u64);
5304        }
5305
5306        if (sample_type & PERF_SAMPLE_RAW) {
5307                int size = sizeof(u32);
5308
5309                if (data->raw)
5310                        size += data->raw->size;
5311                else
5312                        size += sizeof(u32);
5313
5314                WARN_ON_ONCE(size & (sizeof(u64)-1));
5315                header->size += size;
5316        }
5317
5318        if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5319                int size = sizeof(u64); /* nr */
5320                if (data->br_stack) {
5321                        size += data->br_stack->nr
5322                              * sizeof(struct perf_branch_entry);
5323                }
5324                header->size += size;
5325        }
5326
5327        if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5328                perf_sample_regs_user(&data->regs_user, regs,
5329                                      &data->regs_user_copy);
5330
5331        if (sample_type & PERF_SAMPLE_REGS_USER) {
5332                /* regs dump ABI info */
5333                int size = sizeof(u64);
5334
5335                if (data->regs_user.regs) {
5336                        u64 mask = event->attr.sample_regs_user;
5337                        size += hweight64(mask) * sizeof(u64);
5338                }
5339
5340                header->size += size;
5341        }
5342
5343        if (sample_type & PERF_SAMPLE_STACK_USER) {
5344                /*
5345                 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5346                 * processed as the last one or have additional check added
5347                 * in case new sample type is added, because we could eat
5348                 * up the rest of the sample size.
5349                 */
5350                u16 stack_size = event->attr.sample_stack_user;
5351                u16 size = sizeof(u64);
5352
5353                stack_size = perf_sample_ustack_size(stack_size, header->size,
5354                                                     data->regs_user.regs);
5355
5356                /*
5357                 * If there is something to dump, add space for the dump
5358                 * itself and for the field that tells the dynamic size,
5359                 * which is how many have been actually dumped.
5360                 */
5361                if (stack_size)
5362                        size += sizeof(u64) + stack_size;
5363
5364                data->stack_user_size = stack_size;
5365                header->size += size;
5366        }
5367
5368        if (sample_type & PERF_SAMPLE_REGS_INTR) {
5369                /* regs dump ABI info */
5370                int size = sizeof(u64);
5371
5372                perf_sample_regs_intr(&data->regs_intr, regs);
5373
5374                if (data->regs_intr.regs) {
5375                        u64 mask = event->attr.sample_regs_intr;
5376
5377                        size += hweight64(mask) * sizeof(u64);
5378                }
5379
5380                header->size += size;
5381        }
5382}
5383
5384static void perf_event_output(struct perf_event *event,
5385                                struct perf_sample_data *data,
5386                                struct pt_regs *regs)
5387{
5388        struct perf_output_handle handle;
5389        struct perf_event_header header;
5390
5391        /* protect the callchain buffers */
5392        rcu_read_lock();
5393
5394        perf_prepare_sample(&header, data, event, regs);
5395
5396        if (perf_output_begin(&handle, event, header.size))
5397                goto exit;
5398
5399        perf_output_sample(&handle, &header, data, event);
5400
5401        perf_output_end(&handle);
5402
5403exit:
5404        rcu_read_unlock();
5405}
5406
5407/*
5408 * read event_id
5409 */
5410
5411struct perf_read_event {
5412        struct perf_event_header        header;
5413
5414        u32                             pid;
5415        u32                             tid;
5416};
5417
5418static void
5419perf_event_read_event(struct perf_event *event,
5420                        struct task_struct *task)
5421{
5422        struct perf_output_handle handle;
5423        struct perf_sample_data sample;
5424        struct perf_read_event read_event = {
5425                .header = {
5426                        .type = PERF_RECORD_READ,
5427                        .misc = 0,
5428                        .size = sizeof(read_event) + event->read_size,
5429                },
5430                .pid = perf_event_pid(event, task),
5431                .tid = perf_event_tid(event, task),
5432        };
5433        int ret;
5434
5435        perf_event_header__init_id(&read_event.header, &sample, event);
5436        ret = perf_output_begin(&handle, event, read_event.header.size);
5437        if (ret)
5438                return;
5439
5440        perf_output_put(&handle, read_event);
5441        perf_output_read(&handle, event);
5442        perf_event__output_id_sample(event, &handle, &sample);
5443
5444        perf_output_end(&handle);
5445}
5446
5447typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5448
5449static void
5450perf_event_aux_ctx(struct perf_event_context *ctx,
5451                   perf_event_aux_output_cb output,
5452                   void *data)
5453{
5454        struct perf_event *event;
5455
5456        list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5457                if (event->state < PERF_EVENT_STATE_INACTIVE)
5458                        continue;
5459                if (!event_filter_match(event))
5460                        continue;
5461                output(event, data);
5462        }
5463}
5464
5465static void
5466perf_event_aux(perf_event_aux_output_cb output, void *data,
5467               struct perf_event_context *task_ctx)
5468{
5469        struct perf_cpu_context *cpuctx;
5470        struct perf_event_context *ctx;
5471        struct pmu *pmu;
5472        int ctxn;
5473
5474        rcu_read_lock();
5475        list_for_each_entry_rcu(pmu, &pmus, entry) {
5476                cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5477                if (cpuctx->unique_pmu != pmu)
5478                        goto next;
5479                perf_event_aux_ctx(&cpuctx->ctx, output, data);
5480                if (task_ctx)
5481                        goto next;
5482                ctxn = pmu->task_ctx_nr;
5483                if (ctxn < 0)
5484                        goto next;
5485                ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5486                if (ctx)
5487                        perf_event_aux_ctx(ctx, output, data);
5488next:
5489                put_cpu_ptr(pmu->pmu_cpu_context);
5490        }
5491
5492        if (task_ctx) {
5493                preempt_disable();
5494                perf_event_aux_ctx(task_ctx, output, data);
5495                preempt_enable();
5496        }
5497        rcu_read_unlock();
5498}
5499
5500/*
5501 * task tracking -- fork/exit
5502 *
5503 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5504 */
5505
5506struct perf_task_event {
5507        struct task_struct              *task;
5508        struct perf_event_context       *task_ctx;
5509
5510        struct {
5511                struct perf_event_header        header;
5512
5513                u32                             pid;
5514                u32                             ppid;
5515                u32                             tid;
5516                u32                             ptid;
5517                u64                             time;
5518        } event_id;
5519};
5520
5521static int perf_event_task_match(struct perf_event *event)
5522{
5523        return event->attr.comm  || event->attr.mmap ||
5524               event->attr.mmap2 || event->attr.mmap_data ||
5525               event->attr.task;
5526}
5527
5528static void perf_event_task_output(struct perf_event *event,
5529                                   void *data)
5530{
5531        struct perf_task_event *task_event = data;
5532        struct perf_output_handle handle;
5533        struct perf_sample_data sample;
5534        struct task_struct *task = task_event->task;
5535        int ret, size = task_event->event_id.header.size;
5536
5537        if (!perf_event_task_match(event))
5538                return;
5539
5540        perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5541
5542        ret = perf_output_begin(&handle, event,
5543                                task_event->event_id.header.size);
5544        if (ret)
5545                goto out;
5546
5547        task_event->event_id.pid = perf_event_pid(event, task);
5548        task_event->event_id.ppid = perf_event_pid(event, current);
5549
5550        task_event->event_id.tid = perf_event_tid(event, task);
5551        task_event->event_id.ptid = perf_event_tid(event, current);
5552
5553        task_event->event_id.time = perf_event_clock(event);
5554
5555        perf_output_put(&handle, task_event->event_id);
5556
5557        perf_event__output_id_sample(event, &handle, &sample);
5558
5559        perf_output_end(&handle);
5560out:
5561        task_event->event_id.header.size = size;
5562}
5563
5564static void perf_event_task(struct task_struct *task,
5565                              struct perf_event_context *task_ctx,
5566                              int new)
5567{
5568        struct perf_task_event task_event;
5569
5570        if (!atomic_read(&nr_comm_events) &&
5571            !atomic_read(&nr_mmap_events) &&
5572            !atomic_read(&nr_task_events))
5573                return;
5574
5575        task_event = (struct perf_task_event){
5576                .task     = task,
5577                .task_ctx = task_ctx,
5578                .event_id    = {
5579                        .header = {
5580                                .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5581                                .misc = 0,
5582                                .size = sizeof(task_event.event_id),
5583                        },
5584                        /* .pid  */
5585                        /* .ppid */
5586                        /* .tid  */
5587                        /* .ptid */
5588                        /* .time */
5589                },
5590        };
5591
5592        perf_event_aux(perf_event_task_output,
5593                       &task_event,
5594                       task_ctx);
5595}
5596
5597void perf_event_fork(struct task_struct *task)
5598{
5599        perf_event_task(task, NULL, 1);
5600}
5601
5602/*
5603 * comm tracking
5604 */
5605
5606struct perf_comm_event {
5607        struct task_struct      *task;
5608        char                    *comm;
5609        int                     comm_size;
5610
5611        struct {
5612                struct perf_event_header        header;
5613
5614                u32                             pid;
5615                u32                             tid;
5616        } event_id;
5617};
5618
5619static int perf_event_comm_match(struct perf_event *event)
5620{
5621        return event->attr.comm;
5622}
5623
5624static void perf_event_comm_output(struct perf_event *event,
5625                                   void *data)
5626{
5627        struct perf_comm_event *comm_event = data;
5628        struct perf_output_handle handle;
5629        struct perf_sample_data sample;
5630        int size = comm_event->event_id.header.size;
5631        int ret;
5632
5633        if (!perf_event_comm_match(event))
5634                return;
5635
5636        perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5637        ret = perf_output_begin(&handle, event,
5638                                comm_event->event_id.header.size);
5639
5640        if (ret)
5641                goto out;
5642
5643        comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5644        comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5645
5646        perf_output_put(&handle, comm_event->event_id);
5647        __output_copy(&handle, comm_event->comm,
5648                                   comm_event->comm_size);
5649
5650        perf_event__output_id_sample(event, &handle, &sample);
5651
5652        perf_output_end(&handle);
5653out:
5654        comm_event->event_id.header.size = size;
5655}
5656
5657static void perf_event_comm_event(struct perf_comm_event *comm_event)
5658{
5659        char comm[TASK_COMM_LEN];
5660        unsigned int size;
5661
5662        memset(comm, 0, sizeof(comm));
5663        strlcpy(comm, comm_event->task->comm, sizeof(comm));
5664        size = ALIGN(strlen(comm)+1, sizeof(u64));
5665
5666        comm_event->comm = comm;
5667        comm_event->comm_size = size;
5668
5669        comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5670
5671        perf_event_aux(perf_event_comm_output,
5672                       comm_event,
5673                       NULL);
5674}
5675
5676void perf_event_comm(struct task_struct *task, bool exec)
5677{
5678        struct perf_comm_event comm_event;
5679
5680        if (!atomic_read(&nr_comm_events))
5681                return;
5682
5683        comm_event = (struct perf_comm_event){
5684                .task   = task,
5685                /* .comm      */
5686                /* .comm_size */
5687                .event_id  = {
5688                        .header = {
5689                                .type = PERF_RECORD_COMM,
5690                                .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5691                                /* .size */
5692                        },
5693                        /* .pid */
5694                        /* .tid */
5695                },
5696        };
5697
5698        perf_event_comm_event(&comm_event);
5699}
5700
5701/*
5702 * mmap tracking
5703 */
5704
5705struct perf_mmap_event {
5706        struct vm_area_struct   *vma;
5707
5708        const char              *file_name;
5709        int                     file_size;
5710        int                     maj, min;
5711        u64                     ino;
5712        u64                     ino_generation;
5713        u32                     prot, flags;
5714
5715        struct {
5716                struct perf_event_header        header;
5717
5718                u32                             pid;
5719                u32                             tid;
5720                u64                             start;
5721                u64                             len;
5722                u64                             pgoff;
5723        } event_id;
5724};
5725
5726static int perf_event_mmap_match(struct perf_event *event,
5727                                 void *data)
5728{
5729        struct perf_mmap_event *mmap_event = data;
5730        struct vm_area_struct *vma = mmap_event->vma;
5731        int executable = vma->vm_flags & VM_EXEC;
5732
5733        return (!executable && event->attr.mmap_data) ||
5734               (executable && (event->attr.mmap || event->attr.mmap2));
5735}
5736
5737static void perf_event_mmap_output(struct perf_event *event,
5738                                   void *data)
5739{
5740        struct perf_mmap_event *mmap_event = data;
5741        struct perf_output_handle handle;
5742        struct perf_sample_data sample;
5743        int size = mmap_event->event_id.header.size;
5744        int ret;
5745
5746        if (!perf_event_mmap_match(event, data))
5747                return;
5748
5749        if (event->attr.mmap2) {
5750                mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5751                mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5752                mmap_event->event_id.header.size += sizeof(mmap_event->min);
5753                mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5754                mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5755                mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5756                mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5757        }
5758
5759        perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5760        ret = perf_output_begin(&handle, event,
5761                                mmap_event->event_id.header.size);
5762        if (ret)
5763                goto out;
5764
5765        mmap_event->event_id.pid = perf_event_pid(event, current);
5766        mmap_event->event_id.tid = perf_event_tid(event, current);
5767
5768        perf_output_put(&handle, mmap_event->event_id);
5769
5770        if (event->attr.mmap2) {
5771                perf_output_put(&handle, mmap_event->maj);
5772                perf_output_put(&handle, mmap_event->min);
5773                perf_output_put(&handle, mmap_event->ino);
5774                perf_output_put(&handle, mmap_event->ino_generation);
5775                perf_output_put(&handle, mmap_event->prot);
5776                perf_output_put(&handle, mmap_event->flags);
5777        }
5778
5779        __output_copy(&handle, mmap_event->file_name,
5780                                   mmap_event->file_size);
5781
5782        perf_event__output_id_sample(event, &handle, &sample);
5783
5784        perf_output_end(&handle);
5785out:
5786        mmap_event->event_id.header.size = size;
5787}
5788
5789static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5790{
5791        struct vm_area_struct *vma = mmap_event->vma;
5792        struct file *file = vma->vm_file;
5793        int maj = 0, min = 0;
5794        u64 ino = 0, gen = 0;
5795        u32 prot = 0, flags = 0;
5796        unsigned int size;
5797        char tmp[16];
5798        char *buf = NULL;
5799        char *name;
5800
5801        if (file) {
5802                struct inode *inode;
5803                dev_t dev;
5804
5805                buf = kmalloc(PATH_MAX, GFP_KERNEL);
5806                if (!buf) {
5807                        name = "//enomem";
5808                        goto cpy_name;
5809                }
5810                /*
5811                 * d_path() works from the end of the rb backwards, so we
5812                 * need to add enough zero bytes after the string to handle
5813                 * the 64bit alignment we do later.
5814                 */
5815                name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5816                if (IS_ERR(name)) {
5817                        name = "//toolong";
5818                        goto cpy_name;
5819                }
5820                inode = file_inode(vma->vm_file);
5821                dev = inode->i_sb->s_dev;
5822                ino = inode->i_ino;
5823                gen = inode->i_generation;
5824                maj = MAJOR(dev);
5825                min = MINOR(dev);
5826
5827                if (vma->vm_flags & VM_READ)
5828                        prot |= PROT_READ;
5829                if (vma->vm_flags & VM_WRITE)
5830                        prot |= PROT_WRITE;
5831                if (vma->vm_flags & VM_EXEC)
5832                        prot |= PROT_EXEC;
5833
5834                if (vma->vm_flags & VM_MAYSHARE)
5835                        flags = MAP_SHARED;
5836                else
5837                        flags = MAP_PRIVATE;
5838
5839                if (vma->vm_flags & VM_DENYWRITE)
5840                        flags |= MAP_DENYWRITE;
5841                if (vma->vm_flags & VM_MAYEXEC)
5842                        flags |= MAP_EXECUTABLE;
5843                if (vma->vm_flags & VM_LOCKED)
5844                        flags |= MAP_LOCKED;
5845                if (vma->vm_flags & VM_HUGETLB)
5846                        flags |= MAP_HUGETLB;
5847
5848                goto got_name;
5849        } else {
5850                if (vma->vm_ops && vma->vm_ops->name) {
5851                        name = (char *) vma->vm_ops->name(vma);
5852                        if (name)
5853                                goto cpy_name;
5854                }
5855
5856                name = (char *)arch_vma_name(vma);
5857                if (name)
5858                        goto cpy_name;
5859
5860                if (vma->vm_start <= vma->vm_mm->start_brk &&
5861                                vma->vm_end >= vma->vm_mm->brk) {
5862                        name = "[heap]";
5863                        goto cpy_name;
5864                }
5865                if (vma->vm_start <= vma->vm_mm->start_stack &&
5866                                vma->vm_end >= vma->vm_mm->start_stack) {
5867                        name = "[stack]";
5868                        goto cpy_name;
5869                }
5870
5871                name = "//anon";
5872                goto cpy_name;
5873        }
5874
5875cpy_name:
5876        strlcpy(tmp, name, sizeof(tmp));
5877        name = tmp;
5878got_name:
5879        /*
5880         * Since our buffer works in 8 byte units we need to align our string
5881         * size to a multiple of 8. However, we must guarantee the tail end is
5882         * zero'd out to avoid leaking random bits to userspace.
5883         */
5884        size = strlen(name)+1;
5885        while (!IS_ALIGNED(size, sizeof(u64)))
5886                name[size++] = '\0';
5887
5888        mmap_event->file_name = name;
5889        mmap_event->file_size = size;
5890        mmap_event->maj = maj;
5891        mmap_event->min = min;
5892        mmap_event->ino = ino;
5893        mmap_event->ino_generation = gen;
5894        mmap_event->prot = prot;
5895        mmap_event->flags = flags;
5896
5897        if (!(vma->vm_flags & VM_EXEC))
5898                mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5899
5900        mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5901
5902        perf_event_aux(perf_event_mmap_output,
5903                       mmap_event,
5904                       NULL);
5905
5906        kfree(buf);
5907}
5908
5909void perf_event_mmap(struct vm_area_struct *vma)
5910{
5911        struct perf_mmap_event mmap_event;
5912
5913        if (!atomic_read(&nr_mmap_events))
5914                return;
5915
5916        mmap_event = (struct perf_mmap_event){
5917                .vma    = vma,
5918                /* .file_name */
5919                /* .file_size */
5920                .event_id  = {
5921                        .header = {
5922                                .type = PERF_RECORD_MMAP,
5923                                .misc = PERF_RECORD_MISC_USER,
5924                                /* .size */
5925                        },
5926                        /* .pid */
5927                        /* .tid */
5928                        .start  = vma->vm_start,
5929                        .len    = vma->vm_end - vma->vm_start,
5930                        .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5931                },
5932                /* .maj (attr_mmap2 only) */
5933                /* .min (attr_mmap2 only) */
5934                /* .ino (attr_mmap2 only) */
5935                /* .ino_generation (attr_mmap2 only) */
5936                /* .prot (attr_mmap2 only) */
5937                /* .flags (attr_mmap2 only) */
5938        };
5939
5940        perf_event_mmap_event(&mmap_event);
5941}
5942
5943void perf_event_aux_event(struct perf_event *event, unsigned long head,
5944                          unsigned long size, u64 flags)
5945{
5946        struct perf_output_handle handle;
5947        struct perf_sample_data sample;
5948        struct perf_aux_event {
5949                struct perf_event_header        header;
5950                u64                             offset;
5951                u64                             size;
5952                u64                             flags;
5953        } rec = {
5954                .header = {
5955                        .type = PERF_RECORD_AUX,
5956                        .misc = 0,
5957                        .size = sizeof(rec),
5958                },
5959                .offset         = head,
5960                .size           = size,
5961                .flags          = flags,
5962        };
5963        int ret;
5964
5965        perf_event_header__init_id(&rec.header, &sample, event);
5966        ret = perf_output_begin(&handle, event, rec.header.size);
5967
5968        if (ret)
5969                return;
5970
5971        perf_output_put(&handle, rec);
5972        perf_event__output_id_sample(event, &handle, &sample);
5973
5974        perf_output_end(&handle);
5975}
5976
5977/*
5978 * IRQ throttle logging
5979 */
5980
5981static void perf_log_throttle(struct perf_event *event, int enable)
5982{
5983        struct perf_output_handle handle;
5984        struct perf_sample_data sample;
5985        int ret;
5986
5987        struct {
5988                struct perf_event_header        header;
5989                u64                             time;
5990                u64                             id;
5991                u64                             stream_id;
5992        } throttle_event = {
5993                .header = {
5994                        .type = PERF_RECORD_THROTTLE,
5995                        .misc = 0,
5996                        .size = sizeof(throttle_event),
5997                },
5998                .time           = perf_event_clock(event),
5999                .id             = primary_event_id(event),
6000                .stream_id      = event->id,
6001        };
6002
6003        if (enable)
6004                throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6005
6006        perf_event_header__init_id(&throttle_event.header, &sample, event);
6007
6008        ret = perf_output_begin(&handle, event,
6009                                throttle_event.header.size);
6010        if (ret)
6011                return;
6012
6013        perf_output_put(&handle, throttle_event);
6014        perf_event__output_id_sample(event, &handle, &sample);
6015        perf_output_end(&handle);
6016}
6017
6018static void perf_log_itrace_start(struct perf_event *event)
6019{
6020        struct perf_output_handle handle;
6021        struct perf_sample_data sample;
6022        struct perf_aux_event {
6023                struct perf_event_header        header;
6024                u32                             pid;
6025                u32                             tid;
6026        } rec;
6027        int ret;
6028
6029        if (event->parent)
6030                event = event->parent;
6031
6032        if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6033            event->hw.itrace_started)
6034                return;
6035
6036        event->hw.itrace_started = 1;
6037
6038        rec.header.type = PERF_RECORD_ITRACE_START;
6039        rec.header.misc = 0;
6040        rec.header.size = sizeof(rec);
6041        rec.pid = perf_event_pid(event, current);
6042        rec.tid = perf_event_tid(event, current);
6043
6044        perf_event_header__init_id(&rec.header, &sample, event);
6045        ret = perf_output_begin(&handle, event, rec.header.size);
6046
6047        if (ret)
6048                return;
6049
6050        perf_output_put(&handle, rec);
6051        perf_event__output_id_sample(event, &handle, &sample);
6052
6053        perf_output_end(&handle);
6054}
6055
6056/*
6057 * Generic event overflow handling, sampling.
6058 */
6059
6060static int __perf_event_overflow(struct perf_event *event,
6061                                   int throttle, struct perf_sample_data *data,
6062                                   struct pt_regs *regs)
6063{
6064        int events = atomic_read(&event->event_limit);
6065        struct hw_perf_event *hwc = &event->hw;
6066        u64 seq;
6067        int ret = 0;
6068
6069        /*
6070         * Non-sampling counters might still use the PMI to fold short
6071         * hardware counters, ignore those.
6072         */
6073        if (unlikely(!is_sampling_event(event)))
6074                return 0;
6075
6076        seq = __this_cpu_read(perf_throttled_seq);
6077        if (seq != hwc->interrupts_seq) {
6078                hwc->interrupts_seq = seq;
6079                hwc->interrupts = 1;
6080        } else {
6081                hwc->interrupts++;
6082                if (unlikely(throttle
6083                             && hwc->interrupts >= max_samples_per_tick)) {
6084                        __this_cpu_inc(perf_throttled_count);
6085                        hwc->interrupts = MAX_INTERRUPTS;
6086                        perf_log_throttle(event, 0);
6087                        tick_nohz_full_kick();
6088                        ret = 1;
6089                }
6090        }
6091
6092        if (event->attr.freq) {
6093                u64 now = perf_clock();
6094                s64 delta = now - hwc->freq_time_stamp;
6095
6096                hwc->freq_time_stamp = now;
6097
6098                if (delta > 0 && delta < 2*TICK_NSEC)
6099                        perf_adjust_period(event, delta, hwc->last_period, true);
6100        }
6101
6102        /*
6103         * XXX event_limit might not quite work as expected on inherited
6104         * events
6105         */
6106
6107        event->pending_kill = POLL_IN;
6108        if (events && atomic_dec_and_test(&event->event_limit)) {
6109                ret = 1;
6110                event->pending_kill = POLL_HUP;
6111                event->pending_disable = 1;
6112                irq_work_queue(&event->pending);
6113        }
6114
6115        if (event->overflow_handler)
6116                event->overflow_handler(event, data, regs);
6117        else
6118                perf_event_output(event, data, regs);
6119
6120        if (event->fasync && event->pending_kill) {
6121                event->pending_wakeup = 1;
6122                irq_work_queue(&event->pending);
6123        }
6124
6125        return ret;
6126}
6127
6128int perf_event_overflow(struct perf_event *event,
6129                          struct perf_sample_data *data,
6130                          struct pt_regs *regs)
6131{
6132        return __perf_event_overflow(event, 1, data, regs);
6133}
6134
6135/*
6136 * Generic software event infrastructure
6137 */
6138
6139struct swevent_htable {
6140        struct swevent_hlist            *swevent_hlist;
6141        struct mutex                    hlist_mutex;
6142        int                             hlist_refcount;
6143
6144        /* Recursion avoidance in each contexts */
6145        int                             recursion[PERF_NR_CONTEXTS];
6146
6147        /* Keeps track of cpu being initialized/exited */
6148        bool                            online;
6149};
6150
6151static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6152
6153/*
6154 * We directly increment event->count and keep a second value in
6155 * event->hw.period_left to count intervals. This period event
6156 * is kept in the range [-sample_period, 0] so that we can use the
6157 * sign as trigger.
6158 */
6159
6160u64 perf_swevent_set_period(struct perf_event *event)
6161{
6162        struct hw_perf_event *hwc = &event->hw;
6163        u64 period = hwc->last_period;
6164        u64 nr, offset;
6165        s64 old, val;
6166
6167        hwc->last_period = hwc->sample_period;
6168
6169again:
6170        old = val = local64_read(&hwc->period_left);
6171        if (val < 0)
6172                return 0;
6173
6174        nr = div64_u64(period + val, period);
6175        offset = nr * period;
6176        val -= offset;
6177        if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6178                goto again;
6179
6180        return nr;
6181}
6182
6183static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6184                                    struct perf_sample_data *data,
6185                                    struct pt_regs *regs)
6186{
6187        struct hw_perf_event *hwc = &event->hw;
6188        int throttle = 0;
6189
6190        if (!overflow)
6191                overflow = perf_swevent_set_period(event);
6192
6193        if (hwc->interrupts == MAX_INTERRUPTS)
6194                return;
6195
6196        for (; overflow; overflow--) {
6197                if (__perf_event_overflow(event, throttle,
6198                                            data, regs)) {
6199                        /*
6200                         * We inhibit the overflow from happening when
6201                         * hwc->interrupts == MAX_INTERRUPTS.
6202                         */
6203                        break;
6204                }
6205                throttle = 1;
6206        }
6207}
6208
6209static void perf_swevent_event(struct perf_event *event, u64 nr,
6210                               struct perf_sample_data *data,
6211                               struct pt_regs *regs)
6212{
6213        struct hw_perf_event *hwc = &event->hw;
6214
6215        local64_add(nr, &event->count);
6216
6217        if (!regs)
6218                return;
6219
6220        if (!is_sampling_event(event))
6221                return;
6222
6223        if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6224                data->period = nr;
6225                return perf_swevent_overflow(event, 1, data, regs);
6226        } else
6227                data->period = event->hw.last_period;
6228
6229        if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6230                return perf_swevent_overflow(event, 1, data, regs);
6231
6232        if (local64_add_negative(nr, &hwc->period_left))
6233                return;
6234
6235        perf_swevent_overflow(event, 0, data, regs);
6236}
6237
6238static int perf_exclude_event(struct perf_event *event,
6239                              struct pt_regs *regs)
6240{
6241        if (event->hw.state & PERF_HES_STOPPED)
6242                return 1;
6243
6244        if (regs) {
6245                if (event->attr.exclude_user && user_mode(regs))
6246                        return 1;
6247
6248                if (event->attr.exclude_kernel && !user_mode(regs))
6249                        return 1;
6250        }
6251
6252        return 0;
6253}
6254
6255static int perf_swevent_match(struct perf_event *event,
6256                                enum perf_type_id type,
6257                                u32 event_id,
6258                                struct perf_sample_data *data,
6259                                struct pt_regs *regs)
6260{
6261        if (event->attr.type != type)
6262                return 0;
6263
6264        if (event->attr.config != event_id)
6265                return 0;
6266
6267        if (perf_exclude_event(event, regs))
6268                return 0;
6269
6270        return 1;
6271}
6272
6273static inline u64 swevent_hash(u64 type, u32 event_id)
6274{
6275        u64 val = event_id | (type << 32);
6276
6277        return hash_64(val, SWEVENT_HLIST_BITS);
6278}
6279
6280static inline struct hlist_head *
6281__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6282{
6283        u64 hash = swevent_hash(type, event_id);
6284
6285        return &hlist->heads[hash];
6286}
6287
6288/* For the read side: events when they trigger */
6289static inline struct hlist_head *
6290find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6291{
6292        struct swevent_hlist *hlist;
6293
6294        hlist = rcu_dereference(swhash->swevent_hlist);
6295        if (!hlist)
6296                return NULL;
6297
6298        return __find_swevent_head(hlist, type, event_id);
6299}
6300
6301/* For the event head insertion and removal in the hlist */
6302static inline struct hlist_head *
6303find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6304{
6305        struct swevent_hlist *hlist;
6306        u32 event_id = event->attr.config;
6307        u64 type = event->attr.type;
6308
6309        /*
6310         * Event scheduling is always serialized against hlist allocation
6311         * and release. Which makes the protected version suitable here.
6312         * The context lock guarantees that.
6313         */
6314        hlist = rcu_dereference_protected(swhash->swevent_hlist,
6315                                          lockdep_is_held(&event->ctx->lock));
6316        if (!hlist)
6317                return NULL;
6318
6319        return __find_swevent_head(hlist, type, event_id);
6320}
6321
6322static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6323                                    u64 nr,
6324                                    struct perf_sample_data *data,
6325                                    struct pt_regs *regs)
6326{
6327        struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6328        struct perf_event *event;
6329        struct hlist_head *head;
6330
6331        rcu_read_lock();
6332        head = find_swevent_head_rcu(swhash, type, event_id);
6333        if (!head)
6334                goto end;
6335
6336        hlist_for_each_entry_rcu(event, head, hlist_entry) {
6337                if (perf_swevent_match(event, type, event_id, data, regs))
6338                        perf_swevent_event(event, nr, data, regs);
6339        }
6340end:
6341        rcu_read_unlock();
6342}
6343
6344DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6345
6346int perf_swevent_get_recursion_context(void)
6347{
6348        struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6349
6350        return get_recursion_context(swhash->recursion);
6351}
6352EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6353
6354inline void perf_swevent_put_recursion_context(int rctx)
6355{
6356        struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6357
6358        put_recursion_context(swhash->recursion, rctx);
6359}
6360
6361void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6362{
6363        struct perf_sample_data data;
6364
6365        if (WARN_ON_ONCE(!regs))
6366                return;
6367
6368        perf_sample_data_init(&data, addr, 0);
6369        do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6370}
6371
6372void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6373{
6374        int rctx;
6375
6376        preempt_disable_notrace();
6377        rctx = perf_swevent_get_recursion_context();
6378        if (unlikely(rctx < 0))
6379                goto fail;
6380
6381        ___perf_sw_event(event_id, nr, regs, addr);
6382
6383        perf_swevent_put_recursion_context(rctx);
6384fail:
6385        preempt_enable_notrace();
6386}
6387
6388static void perf_swevent_read(struct perf_event *event)
6389{
6390}
6391
6392static int perf_swevent_add(struct perf_event *event, int flags)
6393{
6394        struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6395        struct hw_perf_event *hwc = &event->hw;
6396        struct hlist_head *head;
6397
6398        if (is_sampling_event(event)) {
6399                hwc->last_period = hwc->sample_period;
6400                perf_swevent_set_period(event);
6401        }
6402
6403        hwc->state = !(flags & PERF_EF_START);
6404
6405        head = find_swevent_head(swhash, event);
6406        if (!head) {
6407                /*
6408                 * We can race with cpu hotplug code. Do not
6409                 * WARN if the cpu just got unplugged.
6410                 */
6411                WARN_ON_ONCE(swhash->online);
6412                return -EINVAL;
6413        }
6414
6415        hlist_add_head_rcu(&event->hlist_entry, head);
6416        perf_event_update_userpage(event);
6417
6418        return 0;
6419}
6420
6421static void perf_swevent_del(struct perf_event *event, int flags)
6422{
6423        hlist_del_rcu(&event->hlist_entry);
6424}
6425
6426static void perf_swevent_start(struct perf_event *event, int flags)
6427{
6428        event->hw.state = 0;
6429}
6430
6431static void perf_swevent_stop(struct perf_event *event, int flags)
6432{
6433        event->hw.state = PERF_HES_STOPPED;
6434}
6435
6436/* Deref the hlist from the update side */
6437static inline struct swevent_hlist *
6438swevent_hlist_deref(struct swevent_htable *swhash)
6439{
6440        return rcu_dereference_protected(swhash->swevent_hlist,
6441                                         lockdep_is_held(&swhash->hlist_mutex));
6442}
6443
6444static void swevent_hlist_release(struct swevent_htable *swhash)
6445{
6446        struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6447
6448        if (!hlist)
6449                return;
6450
6451        RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6452        kfree_rcu(hlist, rcu_head);
6453}
6454
6455static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6456{
6457        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6458
6459        mutex_lock(&swhash->hlist_mutex);
6460
6461        if (!--swhash->hlist_refcount)
6462                swevent_hlist_release(swhash);
6463
6464        mutex_unlock(&swhash->hlist_mutex);
6465}
6466
6467static void swevent_hlist_put(struct perf_event *event)
6468{
6469        int cpu;
6470
6471        for_each_possible_cpu(cpu)
6472                swevent_hlist_put_cpu(event, cpu);
6473}
6474
6475static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6476{
6477        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6478        int err = 0;
6479
6480        mutex_lock(&swhash->hlist_mutex);
6481
6482        if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6483                struct swevent_hlist *hlist;
6484
6485                hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6486                if (!hlist) {
6487                        err = -ENOMEM;
6488                        goto exit;
6489                }
6490                rcu_assign_pointer(swhash->swevent_hlist, hlist);
6491        }
6492        swhash->hlist_refcount++;
6493exit:
6494        mutex_unlock(&swhash->hlist_mutex);
6495
6496        return err;
6497}
6498
6499static int swevent_hlist_get(struct perf_event *event)
6500{
6501        int err;
6502        int cpu, failed_cpu;
6503
6504        get_online_cpus();
6505        for_each_possible_cpu(cpu) {
6506                err = swevent_hlist_get_cpu(event, cpu);
6507                if (err) {
6508                        failed_cpu = cpu;
6509                        goto fail;
6510                }
6511        }
6512        put_online_cpus();
6513
6514        return 0;
6515fail:
6516        for_each_possible_cpu(cpu) {
6517                if (cpu == failed_cpu)
6518                        break;
6519                swevent_hlist_put_cpu(event, cpu);
6520        }
6521
6522        put_online_cpus();
6523        return err;
6524}
6525
6526struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6527
6528static void sw_perf_event_destroy(struct perf_event *event)
6529{
6530        u64 event_id = event->attr.config;
6531
6532        WARN_ON(event->parent);
6533
6534        static_key_slow_dec(&perf_swevent_enabled[event_id]);
6535        swevent_hlist_put(event);
6536}
6537
6538static int perf_swevent_init(struct perf_event *event)
6539{
6540        u64 event_id = event->attr.config;
6541
6542        if (event->attr.type != PERF_TYPE_SOFTWARE)
6543                return -ENOENT;
6544
6545        /*
6546         * no branch sampling for software events
6547         */
6548        if (has_branch_stack(event))
6549                return -EOPNOTSUPP;
6550
6551        switch (event_id) {
6552        case PERF_COUNT_SW_CPU_CLOCK:
6553        case PERF_COUNT_SW_TASK_CLOCK:
6554                return -ENOENT;
6555
6556        default:
6557                break;
6558        }
6559
6560        if (event_id >= PERF_COUNT_SW_MAX)
6561                return -ENOENT;
6562
6563        if (!event->parent) {
6564                int err;
6565
6566                err = swevent_hlist_get(event);
6567                if (err)
6568                        return err;
6569
6570                static_key_slow_inc(&perf_swevent_enabled[event_id]);
6571                event->destroy = sw_perf_event_destroy;
6572        }
6573
6574        return 0;
6575}
6576
6577static struct pmu perf_swevent = {
6578        .task_ctx_nr    = perf_sw_context,
6579
6580        .capabilities   = PERF_PMU_CAP_NO_NMI,
6581
6582        .event_init     = perf_swevent_init,
6583        .add            = perf_swevent_add,
6584        .del            = perf_swevent_del,
6585        .start          = perf_swevent_start,
6586        .stop           = perf_swevent_stop,
6587        .read           = perf_swevent_read,
6588};
6589
6590#ifdef CONFIG_EVENT_TRACING
6591
6592static int perf_tp_filter_match(struct perf_event *event,
6593                                struct perf_sample_data *data)
6594{
6595        void *record = data->raw->data;
6596
6597        if (likely(!event->filter) || filter_match_preds(event->filter, record))
6598                return 1;
6599        return 0;
6600}
6601
6602static int perf_tp_event_match(struct perf_event *event,
6603                                struct perf_sample_data *data,
6604                                struct pt_regs *regs)
6605{
6606        if (event->hw.state & PERF_HES_STOPPED)
6607                return 0;
6608        /*
6609         * All tracepoints are from kernel-space.
6610         */
6611        if (event->attr.exclude_kernel)
6612                return 0;
6613
6614        if (!perf_tp_filter_match(event, data))
6615                return 0;
6616
6617        return 1;
6618}
6619
6620void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6621                   struct pt_regs *regs, struct hlist_head *head, int rctx,
6622                   struct task_struct *task)
6623{
6624        struct perf_sample_data data;
6625        struct perf_event *event;
6626
6627        struct perf_raw_record raw = {
6628                .size = entry_size,
6629                .data = record,
6630        };
6631
6632        perf_sample_data_init(&data, addr, 0);
6633        data.raw = &raw;
6634
6635        hlist_for_each_entry_rcu(event, head, hlist_entry) {
6636                if (perf_tp_event_match(event, &data, regs))
6637                        perf_swevent_event(event, count, &data, regs);
6638        }
6639
6640        /*
6641         * If we got specified a target task, also iterate its context and
6642         * deliver this event there too.
6643         */
6644        if (task && task != current) {
6645                struct perf_event_context *ctx;
6646                struct trace_entry *entry = record;
6647
6648                rcu_read_lock();
6649                ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6650                if (!ctx)
6651                        goto unlock;
6652
6653                list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6654                        if (event->attr.type != PERF_TYPE_TRACEPOINT)
6655                                continue;
6656                        if (event->attr.config != entry->type)
6657                                continue;
6658                        if (perf_tp_event_match(event, &data, regs))
6659                                perf_swevent_event(event, count, &data, regs);
6660                }
6661unlock:
6662                rcu_read_unlock();
6663        }
6664
6665        perf_swevent_put_recursion_context(rctx);
6666}
6667EXPORT_SYMBOL_GPL(perf_tp_event);
6668
6669static void tp_perf_event_destroy(struct perf_event *event)
6670{
6671        perf_trace_destroy(event);
6672}
6673
6674static int perf_tp_event_init(struct perf_event *event)
6675{
6676        int err;
6677
6678        if (event->attr.type != PERF_TYPE_TRACEPOINT)
6679                return -ENOENT;
6680
6681        /*
6682         * no branch sampling for tracepoint events
6683         */
6684        if (has_branch_stack(event))
6685                return -EOPNOTSUPP;
6686
6687        err = perf_trace_init(event);
6688        if (err)
6689                return err;
6690
6691        event->destroy = tp_perf_event_destroy;
6692
6693        return 0;
6694}
6695
6696static struct pmu perf_tracepoint = {
6697        .task_ctx_nr    = perf_sw_context,
6698
6699        .event_init     = perf_tp_event_init,
6700        .add            = perf_trace_add,
6701        .del            = perf_trace_del,
6702        .start          = perf_swevent_start,
6703        .stop           = perf_swevent_stop,
6704        .read           = perf_swevent_read,
6705};
6706
6707static inline void perf_tp_register(void)
6708{
6709        perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6710}
6711
6712static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6713{
6714        char *filter_str;
6715        int ret;
6716
6717        if (event->attr.type != PERF_TYPE_TRACEPOINT)
6718                return -EINVAL;
6719
6720        filter_str = strndup_user(arg, PAGE_SIZE);
6721        if (IS_ERR(filter_str))
6722                return PTR_ERR(filter_str);
6723
6724        ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6725
6726        kfree(filter_str);
6727        return ret;
6728}
6729
6730static void perf_event_free_filter(struct perf_event *event)
6731{
6732        ftrace_profile_free_filter(event);
6733}
6734
6735static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6736{
6737        struct bpf_prog *prog;
6738
6739        if (event->attr.type != PERF_TYPE_TRACEPOINT)
6740                return -EINVAL;
6741
6742        if (event->tp_event->prog)
6743                return -EEXIST;
6744
6745        if (!(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
6746                /* bpf programs can only be attached to kprobes */
6747                return -EINVAL;
6748
6749        prog = bpf_prog_get(prog_fd);
6750        if (IS_ERR(prog))
6751                return PTR_ERR(prog);
6752
6753        if (prog->type != BPF_PROG_TYPE_KPROBE) {
6754                /* valid fd, but invalid bpf program type */
6755                bpf_prog_put(prog);
6756                return -EINVAL;
6757        }
6758
6759        event->tp_event->prog = prog;
6760
6761        return 0;
6762}
6763
6764static void perf_event_free_bpf_prog(struct perf_event *event)
6765{
6766        struct bpf_prog *prog;
6767
6768        if (!event->tp_event)
6769                return;
6770
6771        prog = event->tp_event->prog;
6772        if (prog) {
6773                event->tp_event->prog = NULL;
6774                bpf_prog_put(prog);
6775        }
6776}
6777
6778#else
6779
6780static inline void perf_tp_register(void)
6781{
6782}
6783
6784static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6785{
6786        return -ENOENT;
6787}
6788
6789static void perf_event_free_filter(struct perf_event *event)
6790{
6791}
6792
6793static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6794{
6795        return -ENOENT;
6796}
6797
6798static void perf_event_free_bpf_prog(struct perf_event *event)
6799{
6800}
6801#endif /* CONFIG_EVENT_TRACING */
6802
6803#ifdef CONFIG_HAVE_HW_BREAKPOINT
6804void perf_bp_event(struct perf_event *bp, void *data)
6805{
6806        struct perf_sample_data sample;
6807        struct pt_regs *regs = data;
6808
6809        perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6810
6811        if (!bp->hw.state && !perf_exclude_event(bp, regs))
6812                perf_swevent_event(bp, 1, &sample, regs);
6813}
6814#endif
6815
6816/*
6817 * hrtimer based swevent callback
6818 */
6819
6820static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6821{
6822        enum hrtimer_restart ret = HRTIMER_RESTART;
6823        struct perf_sample_data data;
6824        struct pt_regs *regs;
6825        struct perf_event *event;
6826        u64 period;
6827
6828        event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6829
6830        if (event->state != PERF_EVENT_STATE_ACTIVE)
6831                return HRTIMER_NORESTART;
6832
6833        event->pmu->read(event);
6834
6835        perf_sample_data_init(&data, 0, event->hw.last_period);
6836        regs = get_irq_regs();
6837
6838        if (regs && !perf_exclude_event(event, regs)) {
6839                if (!(event->attr.exclude_idle && is_idle_task(current)))
6840                        if (__perf_event_overflow(event, 1, &data, regs))
6841                                ret = HRTIMER_NORESTART;
6842        }
6843
6844        period = max_t(u64, 10000, event->hw.sample_period);
6845        hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6846
6847        return ret;
6848}
6849
6850static void perf_swevent_start_hrtimer(struct perf_event *event)
6851{
6852        struct hw_perf_event *hwc = &event->hw;
6853        s64 period;
6854
6855        if (!is_sampling_event(event))
6856                return;
6857
6858        period = local64_read(&hwc->period_left);
6859        if (period) {
6860                if (period < 0)
6861                        period = 10000;
6862
6863                local64_set(&hwc->period_left, 0);
6864        } else {
6865                period = max_t(u64, 10000, hwc->sample_period);
6866        }
6867        __hrtimer_start_range_ns(&hwc->hrtimer,
6868                                ns_to_ktime(period), 0,
6869                                HRTIMER_MODE_REL_PINNED, 0);
6870}
6871
6872static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6873{
6874        struct hw_perf_event *hwc = &event->hw;
6875
6876        if (is_sampling_event(event)) {
6877                ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6878                local64_set(&hwc->period_left, ktime_to_ns(remaining));
6879
6880                hrtimer_cancel(&hwc->hrtimer);
6881        }
6882}
6883
6884static void perf_swevent_init_hrtimer(struct perf_event *event)
6885{
6886        struct hw_perf_event *hwc = &event->hw;
6887
6888        if (!is_sampling_event(event))
6889                return;
6890
6891        hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6892        hwc->hrtimer.function = perf_swevent_hrtimer;
6893
6894        /*
6895         * Since hrtimers have a fixed rate, we can do a static freq->period
6896         * mapping and avoid the whole period adjust feedback stuff.
6897         */
6898        if (event->attr.freq) {
6899                long freq = event->attr.sample_freq;
6900
6901                event->attr.sample_period = NSEC_PER_SEC / freq;
6902                hwc->sample_period = event->attr.sample_period;
6903                local64_set(&hwc->period_left, hwc->sample_period);
6904                hwc->last_period = hwc->sample_period;
6905                event->attr.freq = 0;
6906        }
6907}
6908
6909/*
6910 * Software event: cpu wall time clock
6911 */
6912
6913static void cpu_clock_event_update(struct perf_event *event)
6914{
6915        s64 prev;
6916        u64 now;
6917
6918        now = local_clock();
6919        prev = local64_xchg(&event->hw.prev_count, now);
6920        local64_add(now - prev, &event->count);
6921}
6922
6923static void cpu_clock_event_start(struct perf_event *event, int flags)
6924{
6925        local64_set(&event->hw.prev_count, local_clock());
6926        perf_swevent_start_hrtimer(event);
6927}
6928
6929static void cpu_clock_event_stop(struct perf_event *event, int flags)
6930{
6931        perf_swevent_cancel_hrtimer(event);
6932        cpu_clock_event_update(event);
6933}
6934
6935static int cpu_clock_event_add(struct perf_event *event, int flags)
6936{
6937        if (flags & PERF_EF_START)
6938                cpu_clock_event_start(event, flags);
6939        perf_event_update_userpage(event);
6940
6941        return 0;
6942}
6943
6944static void cpu_clock_event_del(struct perf_event *event, int flags)
6945{
6946        cpu_clock_event_stop(event, flags);
6947}
6948
6949static void cpu_clock_event_read(struct perf_event *event)
6950{
6951        cpu_clock_event_update(event);
6952}
6953
6954static int cpu_clock_event_init(struct perf_event *event)
6955{
6956        if (event->attr.type != PERF_TYPE_SOFTWARE)
6957                return -ENOENT;
6958
6959        if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6960                return -ENOENT;
6961
6962        /*
6963         * no branch sampling for software events
6964         */
6965        if (has_branch_stack(event))
6966                return -EOPNOTSUPP;
6967
6968        perf_swevent_init_hrtimer(event);
6969
6970        return 0;
6971}
6972
6973static struct pmu perf_cpu_clock = {
6974        .task_ctx_nr    = perf_sw_context,
6975
6976        .capabilities   = PERF_PMU_CAP_NO_NMI,
6977
6978        .event_init     = cpu_clock_event_init,
6979        .add            = cpu_clock_event_add,
6980        .del            = cpu_clock_event_del,
6981        .start          = cpu_clock_event_start,
6982        .stop           = cpu_clock_event_stop,
6983        .read           = cpu_clock_event_read,
6984};
6985
6986/*
6987 * Software event: task time clock
6988 */
6989
6990static void task_clock_event_update(struct perf_event *event, u64 now)
6991{
6992        u64 prev;
6993        s64 delta;
6994
6995        prev = local64_xchg(&event->hw.prev_count, now);
6996        delta = now - prev;
6997        local64_add(delta, &event->count);
6998}
6999
7000static void task_clock_event_start(struct perf_event *event, int flags)
7001{
7002        local64_set(&event->hw.prev_count, event->ctx->time);
7003        perf_swevent_start_hrtimer(event);
7004}
7005
7006static void task_clock_event_stop(struct perf_event *event, int flags)
7007{
7008        perf_swevent_cancel_hrtimer(event);
7009        task_clock_event_update(event, event->ctx->time);
7010}
7011
7012static int task_clock_event_add(struct perf_event *event, int flags)
7013{
7014        if (flags & PERF_EF_START)
7015                task_clock_event_start(event, flags);
7016        perf_event_update_userpage(event);
7017
7018        return 0;
7019}
7020
7021static void task_clock_event_del(struct perf_event *event, int flags)
7022{
7023        task_clock_event_stop(event, PERF_EF_UPDATE);
7024}
7025
7026static void task_clock_event_read(struct perf_event *event)
7027{
7028        u64 now = perf_clock();
7029        u64 delta = now - event->ctx->timestamp;
7030        u64 time = event->ctx->time + delta;
7031
7032        task_clock_event_update(event, time);
7033}
7034
7035static int task_clock_event_init(struct perf_event *event)
7036{
7037        if (event->attr.type != PERF_TYPE_SOFTWARE)
7038                return -ENOENT;
7039
7040        if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7041                return -ENOENT;
7042
7043        /*
7044         * no branch sampling for software events
7045         */
7046        if (has_branch_stack(event))
7047                return -EOPNOTSUPP;
7048
7049        perf_swevent_init_hrtimer(event);
7050
7051        return 0;
7052}
7053
7054static struct pmu perf_task_clock = {
7055        .task_ctx_nr    = perf_sw_context,
7056
7057        .capabilities   = PERF_PMU_CAP_NO_NMI,
7058
7059        .event_init     = task_clock_event_init,
7060        .add            = task_clock_event_add,
7061        .del            = task_clock_event_del,
7062        .start          = task_clock_event_start,
7063        .stop           = task_clock_event_stop,
7064        .read           = task_clock_event_read,
7065};
7066
7067static void perf_pmu_nop_void(struct pmu *pmu)
7068{
7069}
7070
7071static int perf_pmu_nop_int(struct pmu *pmu)
7072{
7073        return 0;
7074}
7075
7076static void perf_pmu_start_txn(struct pmu *pmu)
7077{
7078        perf_pmu_disable(pmu);
7079}
7080
7081static int perf_pmu_commit_txn(struct pmu *pmu)
7082{
7083        perf_pmu_enable(pmu);
7084        return 0;
7085}
7086
7087static void perf_pmu_cancel_txn(struct pmu *pmu)
7088{
7089        perf_pmu_enable(pmu);
7090}
7091
7092static int perf_event_idx_default(struct perf_event *event)
7093{
7094        return 0;
7095}
7096
7097/*
7098 * Ensures all contexts with the same task_ctx_nr have the same
7099 * pmu_cpu_context too.
7100 */
7101static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7102{
7103        struct pmu *pmu;
7104
7105        if (ctxn < 0)
7106                return NULL;
7107
7108        list_for_each_entry(pmu, &pmus, entry) {
7109                if (pmu->task_ctx_nr == ctxn)
7110                        return pmu->pmu_cpu_context;
7111        }
7112
7113        return NULL;
7114}
7115
7116static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7117{
7118        int cpu;
7119
7120        for_each_possible_cpu(cpu) {
7121                struct perf_cpu_context *cpuctx;
7122
7123                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7124
7125                if (cpuctx->unique_pmu == old_pmu)
7126                        cpuctx->unique_pmu = pmu;
7127        }
7128}
7129
7130static void free_pmu_context(struct pmu *pmu)
7131{
7132        struct pmu *i;
7133
7134        mutex_lock(&pmus_lock);
7135        /*
7136         * Like a real lame refcount.
7137         */
7138        list_for_each_entry(i, &pmus, entry) {
7139                if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7140                        update_pmu_context(i, pmu);
7141                        goto out;
7142                }
7143        }
7144
7145        free_percpu(pmu->pmu_cpu_context);
7146out:
7147        mutex_unlock(&pmus_lock);
7148}
7149static struct idr pmu_idr;
7150
7151static ssize_t
7152type_show(struct device *dev, struct device_attribute *attr, char *page)
7153{
7154        struct pmu *pmu = dev_get_drvdata(dev);
7155
7156        return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7157}
7158static DEVICE_ATTR_RO(type);
7159
7160static ssize_t
7161perf_event_mux_interval_ms_show(struct device *dev,
7162                                struct device_attribute *attr,
7163                                char *page)
7164{
7165        struct pmu *pmu = dev_get_drvdata(dev);
7166
7167        return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7168}
7169
7170static ssize_t
7171perf_event_mux_interval_ms_store(struct device *dev,
7172                                 struct device_attribute *attr,
7173                                 const char *buf, size_t count)
7174{
7175        struct pmu *pmu = dev_get_drvdata(dev);
7176        int timer, cpu, ret;
7177
7178        ret = kstrtoint(buf, 0, &timer);
7179        if (ret)
7180                return ret;
7181
7182        if (timer < 1)
7183                return -EINVAL;
7184
7185        /* same value, noting to do */
7186        if (timer == pmu->hrtimer_interval_ms)
7187                return count;
7188
7189        pmu->hrtimer_interval_ms = timer;
7190
7191        /* update all cpuctx for this PMU */
7192        for_each_possible_cpu(cpu) {
7193                struct perf_cpu_context *cpuctx;
7194                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7195                cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7196
7197                if (hrtimer_active(&cpuctx->hrtimer))
7198                        hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
7199        }
7200
7201        return count;
7202}
7203static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7204
7205static struct attribute *pmu_dev_attrs[] = {
7206        &dev_attr_type.attr,
7207        &dev_attr_perf_event_mux_interval_ms.attr,
7208        NULL,
7209};
7210ATTRIBUTE_GROUPS(pmu_dev);
7211
7212static int pmu_bus_running;
7213static struct bus_type pmu_bus = {
7214        .name           = "event_source",
7215        .dev_groups     = pmu_dev_groups,
7216};
7217
7218static void pmu_dev_release(struct device *dev)
7219{
7220        kfree(dev);
7221}
7222
7223static int pmu_dev_alloc(struct pmu *pmu)
7224{
7225        int ret = -ENOMEM;
7226
7227        pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7228        if (!pmu->dev)
7229                goto out;
7230
7231        pmu->dev->groups = pmu->attr_groups;
7232        device_initialize(pmu->dev);
7233        ret = dev_set_name(pmu->dev, "%s", pmu->name);
7234        if (ret)
7235                goto free_dev;
7236
7237        dev_set_drvdata(pmu->dev, pmu);
7238        pmu->dev->bus = &pmu_bus;
7239        pmu->dev->release = pmu_dev_release;
7240        ret = device_add(pmu->dev);
7241        if (ret)
7242                goto free_dev;
7243
7244out:
7245        return ret;
7246
7247free_dev:
7248        put_device(pmu->dev);
7249        goto out;
7250}
7251
7252static struct lock_class_key cpuctx_mutex;
7253static struct lock_class_key cpuctx_lock;
7254
7255int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7256{
7257        int cpu, ret;
7258
7259        mutex_lock(&pmus_lock);
7260        ret = -ENOMEM;
7261        pmu->pmu_disable_count = alloc_percpu(int);
7262        if (!pmu->pmu_disable_count)
7263                goto unlock;
7264
7265        pmu->type = -1;
7266        if (!name)
7267                goto skip_type;
7268        pmu->name = name;
7269
7270        if (type < 0) {
7271                type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7272                if (type < 0) {
7273                        ret = type;
7274                        goto free_pdc;
7275                }
7276        }
7277        pmu->type = type;
7278
7279        if (pmu_bus_running) {
7280                ret = pmu_dev_alloc(pmu);
7281                if (ret)
7282                        goto free_idr;
7283        }
7284
7285skip_type:
7286        pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7287        if (pmu->pmu_cpu_context)
7288                goto got_cpu_context;
7289
7290        ret = -ENOMEM;
7291        pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7292        if (!pmu->pmu_cpu_context)
7293                goto free_dev;
7294
7295        for_each_possible_cpu(cpu) {
7296                struct perf_cpu_context *cpuctx;
7297
7298                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7299                __perf_event_init_context(&cpuctx->ctx);
7300                lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7301                lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7302                cpuctx->ctx.pmu = pmu;
7303
7304                __perf_cpu_hrtimer_init(cpuctx, cpu);
7305
7306                cpuctx->unique_pmu = pmu;
7307        }
7308
7309got_cpu_context:
7310        if (!pmu->start_txn) {
7311                if (pmu->pmu_enable) {
7312                        /*
7313                         * If we have pmu_enable/pmu_disable calls, install
7314                         * transaction stubs that use that to try and batch
7315                         * hardware accesses.
7316                         */
7317                        pmu->start_txn  = perf_pmu_start_txn;
7318                        pmu->commit_txn = perf_pmu_commit_txn;
7319                        pmu->cancel_txn = perf_pmu_cancel_txn;
7320                } else {
7321                        pmu->start_txn  = perf_pmu_nop_void;
7322                        pmu->commit_txn = perf_pmu_nop_int;
7323                        pmu->cancel_txn = perf_pmu_nop_void;
7324                }
7325        }
7326
7327        if (!pmu->pmu_enable) {
7328                pmu->pmu_enable  = perf_pmu_nop_void;
7329                pmu->pmu_disable = perf_pmu_nop_void;
7330        }
7331
7332        if (!pmu->event_idx)
7333                pmu->event_idx = perf_event_idx_default;
7334
7335        list_add_rcu(&pmu->entry, &pmus);
7336        atomic_set(&pmu->exclusive_cnt, 0);
7337        ret = 0;
7338unlock:
7339        mutex_unlock(&pmus_lock);
7340
7341        return ret;
7342
7343free_dev:
7344        device_del(pmu->dev);
7345        put_device(pmu->dev);
7346
7347free_idr:
7348        if (pmu->type >= PERF_TYPE_MAX)
7349                idr_remove(&pmu_idr, pmu->type);
7350
7351free_pdc:
7352        free_percpu(pmu->pmu_disable_count);
7353        goto unlock;
7354}
7355EXPORT_SYMBOL_GPL(perf_pmu_register);
7356
7357void perf_pmu_unregister(struct pmu *pmu)
7358{
7359        mutex_lock(&pmus_lock);
7360        list_del_rcu(&pmu->entry);
7361        mutex_unlock(&pmus_lock);
7362
7363        /*
7364         * We dereference the pmu list under both SRCU and regular RCU, so
7365         * synchronize against both of those.
7366         */
7367        synchronize_srcu(&pmus_srcu);
7368        synchronize_rcu();
7369
7370        free_percpu(pmu->pmu_disable_count);
7371        if (pmu->type >= PERF_TYPE_MAX)
7372                idr_remove(&pmu_idr, pmu->type);
7373        device_del(pmu->dev);
7374        put_device(pmu->dev);
7375        free_pmu_context(pmu);
7376}
7377EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7378
7379static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7380{
7381        struct perf_event_context *ctx = NULL;
7382        int ret;
7383
7384        if (!try_module_get(pmu->module))
7385                return -ENODEV;
7386
7387        if (event->group_leader != event) {
7388                /*
7389                 * This ctx->mutex can nest when we're called through
7390                 * inheritance. See the perf_event_ctx_lock_nested() comment.
7391                 */
7392                ctx = perf_event_ctx_lock_nested(event->group_leader,
7393                                                 SINGLE_DEPTH_NESTING);
7394                BUG_ON(!ctx);
7395        }
7396
7397        event->pmu = pmu;
7398        ret = pmu->event_init(event);
7399
7400        if (ctx)
7401                perf_event_ctx_unlock(event->group_leader, ctx);
7402
7403        if (ret)
7404                module_put(pmu->module);
7405
7406        return ret;
7407}
7408
7409struct pmu *perf_init_event(struct perf_event *event)
7410{
7411        struct pmu *pmu = NULL;
7412        int idx;
7413        int ret;
7414
7415        idx = srcu_read_lock(&pmus_srcu);
7416
7417        rcu_read_lock();
7418        pmu = idr_find(&pmu_idr, event->attr.type);
7419        rcu_read_unlock();
7420        if (pmu) {
7421                ret = perf_try_init_event(pmu, event);
7422                if (ret)
7423                        pmu = ERR_PTR(ret);
7424                goto unlock;
7425        }
7426
7427        list_for_each_entry_rcu(pmu, &pmus, entry) {
7428                ret = perf_try_init_event(pmu, event);
7429                if (!ret)
7430                        goto unlock;
7431
7432                if (ret != -ENOENT) {
7433                        pmu = ERR_PTR(ret);
7434                        goto unlock;
7435                }
7436        }
7437        pmu = ERR_PTR(-ENOENT);
7438unlock:
7439        srcu_read_unlock(&pmus_srcu, idx);
7440
7441        return pmu;
7442}
7443
7444static void account_event_cpu(struct perf_event *event, int cpu)
7445{
7446        if (event->parent)
7447                return;
7448
7449        if (is_cgroup_event(event))
7450                atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7451}
7452
7453static void account_event(struct perf_event *event)
7454{
7455        if (event->parent)
7456                return;
7457
7458        if (event->attach_state & PERF_ATTACH_TASK)
7459                static_key_slow_inc(&perf_sched_events.key);
7460        if (event->attr.mmap || event->attr.mmap_data)
7461                atomic_inc(&nr_mmap_events);
7462        if (event->attr.comm)
7463                atomic_inc(&nr_comm_events);
7464        if (event->attr.task)
7465                atomic_inc(&nr_task_events);
7466        if (event->attr.freq) {
7467                if (atomic_inc_return(&nr_freq_events) == 1)
7468                        tick_nohz_full_kick_all();
7469        }
7470        if (has_branch_stack(event))
7471                static_key_slow_inc(&perf_sched_events.key);
7472        if (is_cgroup_event(event))
7473                static_key_slow_inc(&perf_sched_events.key);
7474
7475        account_event_cpu(event, event->cpu);
7476}
7477
7478/*
7479 * Allocate and initialize a event structure
7480 */
7481static struct perf_event *
7482perf_event_alloc(struct perf_event_attr *attr, int cpu,
7483                 struct task_struct *task,
7484                 struct perf_event *group_leader,
7485                 struct perf_event *parent_event,
7486                 perf_overflow_handler_t overflow_handler,
7487                 void *context, int cgroup_fd)
7488{
7489        struct pmu *pmu;
7490        struct perf_event *event;
7491        struct hw_perf_event *hwc;
7492        long err = -EINVAL;
7493
7494        if ((unsigned)cpu >= nr_cpu_ids) {
7495                if (!task || cpu != -1)
7496                        return ERR_PTR(-EINVAL);
7497        }
7498
7499        event = kzalloc(sizeof(*event), GFP_KERNEL);
7500        if (!event)
7501                return ERR_PTR(-ENOMEM);
7502
7503        /*
7504         * Single events are their own group leaders, with an
7505         * empty sibling list:
7506         */
7507        if (!group_leader)
7508                group_leader = event;
7509
7510        mutex_init(&event->child_mutex);
7511        INIT_LIST_HEAD(&event->child_list);
7512
7513        INIT_LIST_HEAD(&event->group_entry);
7514        INIT_LIST_HEAD(&event->event_entry);
7515        INIT_LIST_HEAD(&event->sibling_list);
7516        INIT_LIST_HEAD(&event->rb_entry);
7517        INIT_LIST_HEAD(&event->active_entry);
7518        INIT_HLIST_NODE(&event->hlist_entry);
7519
7520
7521        init_waitqueue_head(&event->waitq);
7522        init_irq_work(&event->pending, perf_pending_event);
7523
7524        mutex_init(&event->mmap_mutex);
7525
7526        atomic_long_set(&event->refcount, 1);
7527        event->cpu              = cpu;
7528        event->attr             = *attr;
7529        event->group_leader     = group_leader;
7530        event->pmu              = NULL;
7531        event->oncpu            = -1;
7532
7533        event->parent           = parent_event;
7534
7535        event->ns               = get_pid_ns(task_active_pid_ns(current));
7536        event->id               = atomic64_inc_return(&perf_event_id);
7537
7538        event->state            = PERF_EVENT_STATE_INACTIVE;
7539
7540        if (task) {
7541                event->attach_state = PERF_ATTACH_TASK;
7542                /*
7543                 * XXX pmu::event_init needs to know what task to account to
7544                 * and we cannot use the ctx information because we need the
7545                 * pmu before we get a ctx.
7546                 */
7547                event->hw.target = task;
7548        }
7549
7550        event->clock = &local_clock;
7551        if (parent_event)
7552                event->clock = parent_event->clock;
7553
7554        if (!overflow_handler && parent_event) {
7555                overflow_handler = parent_event->overflow_handler;
7556                context = parent_event->overflow_handler_context;
7557        }
7558
7559        event->overflow_handler = overflow_handler;
7560        event->overflow_handler_context = context;
7561
7562        perf_event__state_init(event);
7563
7564        pmu = NULL;
7565
7566        hwc = &event->hw;
7567        hwc->sample_period = attr->sample_period;
7568        if (attr->freq && attr->sample_freq)
7569                hwc->sample_period = 1;
7570        hwc->last_period = hwc->sample_period;
7571
7572        local64_set(&hwc->period_left, hwc->sample_period);
7573
7574        /*
7575         * we currently do not support PERF_FORMAT_GROUP on inherited events
7576         */
7577        if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7578                goto err_ns;
7579
7580        if (!has_branch_stack(event))
7581                event->attr.branch_sample_type = 0;
7582
7583        if (cgroup_fd != -1) {
7584                err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7585                if (err)
7586                        goto err_ns;
7587        }
7588
7589        pmu = perf_init_event(event);
7590        if (!pmu)
7591                goto err_ns;
7592        else if (IS_ERR(pmu)) {
7593                err = PTR_ERR(pmu);
7594                goto err_ns;
7595        }
7596
7597        err = exclusive_event_init(event);
7598        if (err)
7599                goto err_pmu;
7600
7601        if (!event->parent) {
7602                if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7603                        err = get_callchain_buffers();
7604                        if (err)
7605                                goto err_per_task;
7606                }
7607        }
7608
7609        return event;
7610
7611err_per_task:
7612        exclusive_event_destroy(event);
7613
7614err_pmu:
7615        if (event->destroy)
7616                event->destroy(event);
7617        module_put(pmu->module);
7618err_ns:
7619        if (is_cgroup_event(event))
7620                perf_detach_cgroup(event);
7621        if (event->ns)
7622                put_pid_ns(event->ns);
7623        kfree(event);
7624
7625        return ERR_PTR(err);
7626}
7627
7628static int perf_copy_attr(struct perf_event_attr __user *uattr,
7629                          struct perf_event_attr *attr)
7630{
7631        u32 size;
7632        int ret;
7633
7634        if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7635                return -EFAULT;
7636
7637        /*
7638         * zero the full structure, so that a short copy will be nice.
7639         */
7640        memset(attr, 0, sizeof(*attr));
7641
7642        ret = get_user(size, &uattr->size);
7643        if (ret)
7644                return ret;
7645
7646        if (size > PAGE_SIZE)   /* silly large */
7647                goto err_size;
7648
7649        if (!size)              /* abi compat */
7650                size = PERF_ATTR_SIZE_VER0;
7651
7652        if (size < PERF_ATTR_SIZE_VER0)
7653                goto err_size;
7654
7655        /*
7656         * If we're handed a bigger struct than we know of,
7657         * ensure all the unknown bits are 0 - i.e. new
7658         * user-space does not rely on any kernel feature
7659         * extensions we dont know about yet.
7660         */
7661        if (size > sizeof(*attr)) {
7662                unsigned char __user *addr;
7663                unsigned char __user *end;
7664                unsigned char val;
7665
7666                addr = (void __user *)uattr + sizeof(*attr);
7667                end  = (void __user *)uattr + size;
7668
7669                for (; addr < end; addr++) {
7670                        ret = get_user(val, addr);
7671                        if (ret)
7672                                return ret;
7673                        if (val)
7674                                goto err_size;
7675                }
7676                size = sizeof(*attr);
7677        }
7678
7679        ret = copy_from_user(attr, uattr, size);
7680        if (ret)
7681                return -EFAULT;
7682
7683        if (attr->__reserved_1)
7684                return -EINVAL;
7685
7686        if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7687                return -EINVAL;
7688
7689        if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7690                return -EINVAL;
7691
7692        if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7693                u64 mask = attr->branch_sample_type;
7694
7695                /* only using defined bits */
7696                if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7697                        return -EINVAL;
7698
7699                /* at least one branch bit must be set */
7700                if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7701                        return -EINVAL;
7702
7703                /* propagate priv level, when not set for branch */
7704                if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7705
7706                        /* exclude_kernel checked on syscall entry */
7707                        if (!attr->exclude_kernel)
7708                                mask |= PERF_SAMPLE_BRANCH_KERNEL;
7709
7710                        if (!attr->exclude_user)
7711                                mask |= PERF_SAMPLE_BRANCH_USER;
7712
7713                        if (!attr->exclude_hv)
7714                                mask |= PERF_SAMPLE_BRANCH_HV;
7715                        /*
7716                         * adjust user setting (for HW filter setup)
7717                         */
7718                        attr->branch_sample_type = mask;
7719                }
7720                /* privileged levels capture (kernel, hv): check permissions */
7721                if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7722                    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7723                        return -EACCES;
7724        }
7725
7726        if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7727                ret = perf_reg_validate(attr->sample_regs_user);
7728                if (ret)
7729                        return ret;
7730        }
7731
7732        if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7733                if (!arch_perf_have_user_stack_dump())
7734                        return -ENOSYS;
7735
7736                /*
7737                 * We have __u32 type for the size, but so far
7738                 * we can only use __u16 as maximum due to the
7739                 * __u16 sample size limit.
7740                 */
7741                if (attr->sample_stack_user >= USHRT_MAX)
7742                        ret = -EINVAL;
7743                else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7744                        ret = -EINVAL;
7745        }
7746
7747        if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7748                ret = perf_reg_validate(attr->sample_regs_intr);
7749out:
7750        return ret;
7751
7752err_size:
7753        put_user(sizeof(*attr), &uattr->size);
7754        ret = -E2BIG;
7755        goto out;
7756}
7757
7758static int
7759perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7760{
7761        struct ring_buffer *rb = NULL;
7762        int ret = -EINVAL;
7763
7764        if (!output_event)
7765                goto set;
7766
7767        /* don't allow circular references */
7768        if (event == output_event)
7769                goto out;
7770
7771        /*
7772         * Don't allow cross-cpu buffers
7773         */
7774        if (output_event->cpu != event->cpu)
7775                goto out;
7776
7777        /*
7778         * If its not a per-cpu rb, it must be the same task.
7779         */
7780        if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7781                goto out;
7782
7783        /*
7784         * Mixing clocks in the same buffer is trouble you don't need.
7785         */
7786        if (output_event->clock != event->clock)
7787                goto out;
7788
7789        /*
7790         * If both events generate aux data, they must be on the same PMU
7791         */
7792        if (has_aux(event) && has_aux(output_event) &&
7793            event->pmu != output_event->pmu)
7794                goto out;
7795
7796set:
7797        mutex_lock(&event->mmap_mutex);
7798        /* Can't redirect output if we've got an active mmap() */
7799        if (atomic_read(&event->mmap_count))
7800                goto unlock;
7801
7802        if (output_event) {
7803                /* get the rb we want to redirect to */
7804                rb = ring_buffer_get(output_event);
7805                if (!rb)
7806                        goto unlock;
7807        }
7808
7809        ring_buffer_attach(event, rb);
7810
7811        ret = 0;
7812unlock:
7813        mutex_unlock(&event->mmap_mutex);
7814
7815out:
7816        return ret;
7817}
7818
7819static void mutex_lock_double(struct mutex *a, struct mutex *b)
7820{
7821        if (b < a)
7822                swap(a, b);
7823
7824        mutex_lock(a);
7825        mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
7826}
7827
7828static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
7829{
7830        bool nmi_safe = false;
7831
7832        switch (clk_id) {
7833        case CLOCK_MONOTONIC:
7834                event->clock = &ktime_get_mono_fast_ns;
7835                nmi_safe = true;
7836                break;
7837
7838        case CLOCK_MONOTONIC_RAW:
7839                event->clock = &ktime_get_raw_fast_ns;
7840                nmi_safe = true;
7841                break;
7842
7843        case CLOCK_REALTIME:
7844                event->clock = &ktime_get_real_ns;
7845                break;
7846
7847        case CLOCK_BOOTTIME:
7848                event->clock = &ktime_get_boot_ns;
7849                break;
7850
7851        case CLOCK_TAI:
7852                event->clock = &ktime_get_tai_ns;
7853                break;
7854
7855        default:
7856                return -EINVAL;
7857        }
7858
7859        if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
7860                return -EINVAL;
7861
7862        return 0;
7863}
7864
7865/**
7866 * sys_perf_event_open - open a performance event, associate it to a task/cpu
7867 *
7868 * @attr_uptr:  event_id type attributes for monitoring/sampling
7869 * @pid:                target pid
7870 * @cpu:                target cpu
7871 * @group_fd:           group leader event fd
7872 */
7873SYSCALL_DEFINE5(perf_event_open,
7874                struct perf_event_attr __user *, attr_uptr,
7875                pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
7876{
7877        struct perf_event *group_leader = NULL, *output_event = NULL;
7878        struct perf_event *event, *sibling;
7879        struct perf_event_attr attr;
7880        struct perf_event_context *ctx, *uninitialized_var(gctx);
7881        struct file *event_file = NULL;
7882        struct fd group = {NULL, 0};
7883        struct task_struct *task = NULL;
7884        struct pmu *pmu;
7885        int event_fd;
7886        int move_group = 0;
7887        int err;
7888        int f_flags = O_RDWR;
7889        int cgroup_fd = -1;
7890
7891        /* for future expandability... */
7892        if (flags & ~PERF_FLAG_ALL)
7893                return -EINVAL;
7894
7895        err = perf_copy_attr(attr_uptr, &attr);
7896        if (err)
7897                return err;
7898
7899        if (!attr.exclude_kernel) {
7900                if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7901                        return -EACCES;
7902        }
7903
7904        if (attr.freq) {
7905                if (attr.sample_freq > sysctl_perf_event_sample_rate)
7906                        return -EINVAL;
7907        } else {
7908                if (attr.sample_period & (1ULL << 63))
7909                        return -EINVAL;
7910        }
7911
7912        /*
7913         * In cgroup mode, the pid argument is used to pass the fd
7914         * opened to the cgroup directory in cgroupfs. The cpu argument
7915         * designates the cpu on which to monitor threads from that
7916         * cgroup.
7917         */
7918        if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7919                return -EINVAL;
7920
7921        if (flags & PERF_FLAG_FD_CLOEXEC)
7922                f_flags |= O_CLOEXEC;
7923
7924        event_fd = get_unused_fd_flags(f_flags);
7925        if (event_fd < 0)
7926                return event_fd;
7927
7928        if (group_fd != -1) {
7929                err = perf_fget_light(group_fd, &group);
7930                if (err)
7931                        goto err_fd;
7932                group_leader = group.file->private_data;
7933                if (flags & PERF_FLAG_FD_OUTPUT)
7934                        output_event = group_leader;
7935                if (flags & PERF_FLAG_FD_NO_GROUP)
7936                        group_leader = NULL;
7937        }
7938
7939        if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7940                task = find_lively_task_by_vpid(pid);
7941                if (IS_ERR(task)) {
7942                        err = PTR_ERR(task);
7943                        goto err_group_fd;
7944                }
7945        }
7946
7947        if (task && group_leader &&
7948            group_leader->attr.inherit != attr.inherit) {
7949                err = -EINVAL;
7950                goto err_task;
7951        }
7952
7953        get_online_cpus();
7954
7955        if (flags & PERF_FLAG_PID_CGROUP)
7956                cgroup_fd = pid;
7957
7958        event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7959                                 NULL, NULL, cgroup_fd);
7960        if (IS_ERR(event)) {
7961                err = PTR_ERR(event);
7962                goto err_cpus;
7963        }
7964
7965        if (is_sampling_event(event)) {
7966                if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7967                        err = -ENOTSUPP;
7968                        goto err_alloc;
7969                }
7970        }
7971
7972        account_event(event);
7973
7974        /*
7975         * Special case software events and allow them to be part of
7976         * any hardware group.
7977         */
7978        pmu = event->pmu;
7979
7980        if (attr.use_clockid) {
7981                err = perf_event_set_clock(event, attr.clockid);
7982                if (err)
7983                        goto err_alloc;
7984        }
7985
7986        if (group_leader &&
7987            (is_software_event(event) != is_software_event(group_leader))) {
7988                if (is_software_event(event)) {
7989                        /*
7990                         * If event and group_leader are not both a software
7991                         * event, and event is, then group leader is not.
7992                         *
7993                         * Allow the addition of software events to !software
7994                         * groups, this is safe because software events never
7995                         * fail to schedule.
7996                         */
7997                        pmu = group_leader->pmu;
7998                } else if (is_software_event(group_leader) &&
7999                           (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8000                        /*
8001                         * In case the group is a pure software group, and we
8002                         * try to add a hardware event, move the whole group to
8003                         * the hardware context.
8004                         */
8005                        move_group = 1;
8006                }
8007        }
8008
8009        /*
8010         * Get the target context (task or percpu):
8011         */
8012        ctx = find_get_context(pmu, task, event);
8013        if (IS_ERR(ctx)) {
8014                err = PTR_ERR(ctx);
8015                goto err_alloc;
8016        }
8017
8018        if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8019                err = -EBUSY;
8020                goto err_context;
8021        }
8022
8023        if (task) {
8024                put_task_struct(task);
8025                task = NULL;
8026        }
8027
8028        /*
8029         * Look up the group leader (we will attach this event to it):
8030         */
8031        if (group_leader) {
8032                err = -EINVAL;
8033
8034                /*
8035                 * Do not allow a recursive hierarchy (this new sibling
8036                 * becoming part of another group-sibling):
8037                 */
8038                if (group_leader->group_leader != group_leader)
8039                        goto err_context;
8040
8041                /* All events in a group should have the same clock */
8042                if (group_leader->clock != event->clock)
8043                        goto err_context;
8044
8045                /*
8046                 * Do not allow to attach to a group in a different
8047                 * task or CPU context:
8048                 */
8049                if (move_group) {
8050                        /*
8051                         * Make sure we're both on the same task, or both
8052                         * per-cpu events.
8053                         */
8054                        if (group_leader->ctx->task != ctx->task)
8055                                goto err_context;
8056
8057                        /*
8058                         * Make sure we're both events for the same CPU;
8059                         * grouping events for different CPUs is broken; since
8060                         * you can never concurrently schedule them anyhow.
8061                         */
8062                        if (group_leader->cpu != event->cpu)
8063                                goto err_context;
8064                } else {
8065                        if (group_leader->ctx != ctx)
8066                                goto err_context;
8067                }
8068
8069                /*
8070                 * Only a group leader can be exclusive or pinned
8071                 */
8072                if (attr.exclusive || attr.pinned)
8073                        goto err_context;
8074        }
8075
8076        if (output_event) {
8077                err = perf_event_set_output(event, output_event);
8078                if (err)
8079                        goto err_context;
8080        }
8081
8082        event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8083                                        f_flags);
8084        if (IS_ERR(event_file)) {
8085                err = PTR_ERR(event_file);
8086                goto err_context;
8087        }
8088
8089        if (move_group) {
8090                gctx = group_leader->ctx;
8091
8092                /*
8093                 * See perf_event_ctx_lock() for comments on the details
8094                 * of swizzling perf_event::ctx.
8095                 */
8096                mutex_lock_double(&gctx->mutex, &ctx->mutex);
8097
8098                perf_remove_from_context(group_leader, false);
8099
8100                list_for_each_entry(sibling, &group_leader->sibling_list,
8101                                    group_entry) {
8102                        perf_remove_from_context(sibling, false);
8103                        put_ctx(gctx);
8104                }
8105        } else {
8106                mutex_lock(&ctx->mutex);
8107        }
8108
8109        WARN_ON_ONCE(ctx->parent_ctx);
8110
8111        if (move_group) {
8112                /*
8113                 * Wait for everybody to stop referencing the events through
8114                 * the old lists, before installing it on new lists.
8115                 */
8116                synchronize_rcu();
8117
8118                /*
8119                 * Install the group siblings before the group leader.
8120                 *
8121                 * Because a group leader will try and install the entire group
8122                 * (through the sibling list, which is still in-tact), we can
8123                 * end up with siblings installed in the wrong context.
8124                 *
8125                 * By installing siblings first we NO-OP because they're not
8126                 * reachable through the group lists.
8127                 */
8128                list_for_each_entry(sibling, &group_leader->sibling_list,
8129                                    group_entry) {
8130                        perf_event__state_init(sibling);
8131                        perf_install_in_context(ctx, sibling, sibling->cpu);
8132                        get_ctx(ctx);
8133                }
8134
8135                /*
8136                 * Removing from the context ends up with disabled
8137                 * event. What we want here is event in the initial
8138                 * startup state, ready to be add into new context.
8139                 */
8140                perf_event__state_init(group_leader);
8141                perf_install_in_context(ctx, group_leader, group_leader->cpu);
8142                get_ctx(ctx);
8143        }
8144
8145        if (!exclusive_event_installable(event, ctx)) {
8146                err = -EBUSY;
8147                mutex_unlock(&ctx->mutex);
8148                fput(event_file);
8149                goto err_context;
8150        }
8151
8152        perf_install_in_context(ctx, event, event->cpu);
8153        perf_unpin_context(ctx);
8154
8155        if (move_group) {
8156                mutex_unlock(&gctx->mutex);
8157                put_ctx(gctx);
8158        }
8159        mutex_unlock(&ctx->mutex);
8160
8161        put_online_cpus();
8162
8163        event->owner = current;
8164
8165        mutex_lock(&current->perf_event_mutex);
8166        list_add_tail(&event->owner_entry, &current->perf_event_list);
8167        mutex_unlock(&current->perf_event_mutex);
8168
8169        /*
8170         * Precalculate sample_data sizes
8171         */
8172        perf_event__header_size(event);
8173        perf_event__id_header_size(event);
8174
8175        /*
8176         * Drop the reference on the group_event after placing the
8177         * new event on the sibling_list. This ensures destruction
8178         * of the group leader will find the pointer to itself in
8179         * perf_group_detach().
8180         */
8181        fdput(group);
8182        fd_install(event_fd, event_file);
8183        return event_fd;
8184
8185err_context:
8186        perf_unpin_context(ctx);
8187        put_ctx(ctx);
8188err_alloc:
8189        free_event(event);
8190err_cpus:
8191        put_online_cpus();
8192err_task:
8193        if (task)
8194                put_task_struct(task);
8195err_group_fd:
8196        fdput(group);
8197err_fd:
8198        put_unused_fd(event_fd);
8199        return err;
8200}
8201
8202/**
8203 * perf_event_create_kernel_counter
8204 *
8205 * @attr: attributes of the counter to create
8206 * @cpu: cpu in which the counter is bound
8207 * @task: task to profile (NULL for percpu)
8208 */
8209struct perf_event *
8210perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8211                                 struct task_struct *task,
8212                                 perf_overflow_handler_t overflow_handler,
8213                                 void *context)
8214{
8215        struct perf_event_context *ctx;
8216        struct perf_event *event;
8217        int err;
8218
8219        /*
8220         * Get the target context (task or percpu):
8221         */
8222
8223        event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8224                                 overflow_handler, context, -1);
8225        if (IS_ERR(event)) {
8226                err = PTR_ERR(event);
8227                goto err;
8228        }
8229
8230        /* Mark owner so we could distinguish it from user events. */
8231        event->owner = EVENT_OWNER_KERNEL;
8232
8233        account_event(event);
8234
8235        ctx = find_get_context(event->pmu, task, event);
8236        if (IS_ERR(ctx)) {
8237                err = PTR_ERR(ctx);
8238                goto err_free;
8239        }
8240
8241        WARN_ON_ONCE(ctx->parent_ctx);
8242        mutex_lock(&ctx->mutex);
8243        if (!exclusive_event_installable(event, ctx)) {
8244                mutex_unlock(&ctx->mutex);
8245                perf_unpin_context(ctx);
8246                put_ctx(ctx);
8247                err = -EBUSY;
8248                goto err_free;
8249        }
8250
8251        perf_install_in_context(ctx, event, cpu);
8252        perf_unpin_context(ctx);
8253        mutex_unlock(&ctx->mutex);
8254
8255        return event;
8256
8257err_free:
8258        free_event(event);
8259err:
8260        return ERR_PTR(err);
8261}
8262EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8263
8264void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8265{
8266        struct perf_event_context *src_ctx;
8267        struct perf_event_context *dst_ctx;
8268        struct perf_event *event, *tmp;
8269        LIST_HEAD(events);
8270
8271        src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8272        dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8273
8274        /*
8275         * See perf_event_ctx_lock() for comments on the details
8276         * of swizzling perf_event::ctx.
8277         */
8278        mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8279        list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8280                                 event_entry) {
8281                perf_remove_from_context(event, false);
8282                unaccount_event_cpu(event, src_cpu);
8283                put_ctx(src_ctx);
8284                list_add(&event->migrate_entry, &events);
8285        }
8286
8287        /*
8288         * Wait for the events to quiesce before re-instating them.
8289         */
8290        synchronize_rcu();
8291
8292        /*
8293         * Re-instate events in 2 passes.
8294         *
8295         * Skip over group leaders and only install siblings on this first
8296         * pass, siblings will not get enabled without a leader, however a
8297         * leader will enable its siblings, even if those are still on the old
8298         * context.
8299         */
8300        list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8301                if (event->group_leader == event)
8302                        continue;
8303
8304                list_del(&event->migrate_entry);
8305                if (event->state >= PERF_EVENT_STATE_OFF)
8306                        event->state = PERF_EVENT_STATE_INACTIVE;
8307                account_event_cpu(event, dst_cpu);
8308                perf_install_in_context(dst_ctx, event, dst_cpu);
8309                get_ctx(dst_ctx);
8310        }
8311
8312        /*
8313         * Once all the siblings are setup properly, install the group leaders
8314         * to make it go.
8315         */
8316        list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8317                list_del(&event->migrate_entry);
8318                if (event->state >= PERF_EVENT_STATE_OFF)
8319                        event->state = PERF_EVENT_STATE_INACTIVE;
8320                account_event_cpu(event, dst_cpu);
8321                perf_install_in_context(dst_ctx, event, dst_cpu);
8322                get_ctx(dst_ctx);
8323        }
8324        mutex_unlock(&dst_ctx->mutex);
8325        mutex_unlock(&src_ctx->mutex);
8326}
8327EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8328
8329static void sync_child_event(struct perf_event *child_event,
8330                               struct task_struct *child)
8331{
8332        struct perf_event *parent_event = child_event->parent;
8333        u64 child_val;
8334
8335        if (child_event->attr.inherit_stat)
8336                perf_event_read_event(child_event, child);
8337
8338        child_val = perf_event_count(child_event);
8339
8340        /*
8341         * Add back the child's count to the parent's count:
8342         */
8343        atomic64_add(child_val, &parent_event->child_count);
8344        atomic64_add(child_event->total_time_enabled,
8345                     &parent_event->child_total_time_enabled);
8346        atomic64_add(child_event->total_time_running,
8347                     &parent_event->child_total_time_running);
8348
8349        /*
8350         * Remove this event from the parent's list
8351         */
8352        WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8353        mutex_lock(&parent_event->child_mutex);
8354        list_del_init(&child_event->child_list);
8355        mutex_unlock(&parent_event->child_mutex);
8356
8357        /*
8358         * Make sure user/parent get notified, that we just
8359         * lost one event.
8360         */
8361        perf_event_wakeup(parent_event);
8362
8363        /*
8364         * Release the parent event, if this was the last
8365         * reference to it.
8366         */
8367        put_event(parent_event);
8368}
8369
8370static void
8371__perf_event_exit_task(struct perf_event *child_event,
8372                         struct perf_event_context *child_ctx,
8373                         struct task_struct *child)
8374{
8375        /*
8376         * Do not destroy the 'original' grouping; because of the context
8377         * switch optimization the original events could've ended up in a
8378         * random child task.
8379         *
8380         * If we were to destroy the original group, all group related
8381         * operations would cease to function properly after this random
8382         * child dies.
8383         *
8384         * Do destroy all inherited groups, we don't care about those
8385         * and being thorough is better.
8386         */
8387        perf_remove_from_context(child_event, !!child_event->parent);
8388
8389        /*
8390         * It can happen that the parent exits first, and has events
8391         * that are still around due to the child reference. These
8392         * events need to be zapped.
8393         */
8394        if (child_event->parent) {
8395                sync_child_event(child_event, child);
8396                free_event(child_event);
8397        } else {
8398                child_event->state = PERF_EVENT_STATE_EXIT;
8399                perf_event_wakeup(child_event);
8400        }
8401}
8402
8403static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8404{
8405        struct perf_event *child_event, *next;
8406        struct perf_event_context *child_ctx, *clone_ctx = NULL;
8407        unsigned long flags;
8408
8409        if (likely(!child->perf_event_ctxp[ctxn])) {
8410                perf_event_task(child, NULL, 0);
8411                return;
8412        }
8413
8414        local_irq_save(flags);
8415        /*
8416         * We can't reschedule here because interrupts are disabled,
8417         * and either child is current or it is a task that can't be
8418         * scheduled, so we are now safe from rescheduling changing
8419         * our context.
8420         */
8421        child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8422
8423        /*
8424         * Take the context lock here so that if find_get_context is
8425         * reading child->perf_event_ctxp, we wait until it has
8426         * incremented the context's refcount before we do put_ctx below.
8427         */
8428        raw_spin_lock(&child_ctx->lock);
8429        task_ctx_sched_out(child_ctx);
8430        child->perf_event_ctxp[ctxn] = NULL;
8431
8432        /*
8433         * If this context is a clone; unclone it so it can't get
8434         * swapped to another process while we're removing all
8435         * the events from it.
8436         */
8437        clone_ctx = unclone_ctx(child_ctx);
8438        update_context_time(child_ctx);
8439        raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8440
8441        if (clone_ctx)
8442                put_ctx(clone_ctx);
8443
8444        /*
8445         * Report the task dead after unscheduling the events so that we
8446         * won't get any samples after PERF_RECORD_EXIT. We can however still
8447         * get a few PERF_RECORD_READ events.
8448         */
8449        perf_event_task(child, child_ctx, 0);
8450
8451        /*
8452         * We can recurse on the same lock type through:
8453         *
8454         *   __perf_event_exit_task()
8455         *     sync_child_event()
8456         *       put_event()
8457         *         mutex_lock(&ctx->mutex)
8458         *
8459         * But since its the parent context it won't be the same instance.
8460         */
8461        mutex_lock(&child_ctx->mutex);
8462
8463        list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8464                __perf_event_exit_task(child_event, child_ctx, child);
8465
8466        mutex_unlock(&child_ctx->mutex);
8467
8468        put_ctx(child_ctx);
8469}
8470
8471/*
8472 * When a child task exits, feed back event values to parent events.
8473 */
8474void perf_event_exit_task(struct task_struct *child)
8475{
8476        struct perf_event *event, *tmp;
8477        int ctxn;
8478
8479        mutex_lock(&child->perf_event_mutex);
8480        list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8481                                 owner_entry) {
8482                list_del_init(&event->owner_entry);
8483
8484                /*
8485                 * Ensure the list deletion is visible before we clear
8486                 * the owner, closes a race against perf_release() where
8487                 * we need to serialize on the owner->perf_event_mutex.
8488                 */
8489                smp_wmb();
8490                event->owner = NULL;
8491        }
8492        mutex_unlock(&child->perf_event_mutex);
8493
8494        for_each_task_context_nr(ctxn)
8495                perf_event_exit_task_context(child, ctxn);
8496}
8497
8498static void perf_free_event(struct perf_event *event,
8499                            struct perf_event_context *ctx)
8500{
8501        struct perf_event *parent = event->parent;
8502
8503        if (WARN_ON_ONCE(!parent))
8504                return;
8505
8506        mutex_lock(&parent->child_mutex);
8507        list_del_init(&event->child_list);
8508        mutex_unlock(&parent->child_mutex);
8509
8510        put_event(parent);
8511
8512        raw_spin_lock_irq(&ctx->lock);
8513        perf_group_detach(event);
8514        list_del_event(event, ctx);
8515        raw_spin_unlock_irq(&ctx->lock);
8516        free_event(event);
8517}
8518
8519/*
8520 * Free an unexposed, unused context as created by inheritance by
8521 * perf_event_init_task below, used by fork() in case of fail.
8522 *
8523 * Not all locks are strictly required, but take them anyway to be nice and
8524 * help out with the lockdep assertions.
8525 */
8526void perf_event_free_task(struct task_struct *task)
8527{
8528        struct perf_event_context *ctx;
8529        struct perf_event *event, *tmp;
8530        int ctxn;
8531
8532        for_each_task_context_nr(ctxn) {
8533                ctx = task->perf_event_ctxp[ctxn];
8534                if (!ctx)
8535                        continue;
8536
8537                mutex_lock(&ctx->mutex);
8538again:
8539                list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8540                                group_entry)
8541                        perf_free_event(event, ctx);
8542
8543                list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8544                                group_entry)
8545                        perf_free_event(event, ctx);
8546
8547                if (!list_empty(&ctx->pinned_groups) ||
8548                                !list_empty(&ctx->flexible_groups))
8549                        goto again;
8550
8551                mutex_unlock(&ctx->mutex);
8552
8553                put_ctx(ctx);
8554        }
8555}
8556
8557void perf_event_delayed_put(struct task_struct *task)
8558{
8559        int ctxn;
8560
8561        for_each_task_context_nr(ctxn)
8562                WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8563}
8564
8565/*
8566 * inherit a event from parent task to child task:
8567 */
8568static struct perf_event *
8569inherit_event(struct perf_event *parent_event,
8570              struct task_struct *parent,
8571              struct perf_event_context *parent_ctx,
8572              struct task_struct *child,
8573              struct perf_event *group_leader,
8574              struct perf_event_context *child_ctx)
8575{
8576        enum perf_event_active_state parent_state = parent_event->state;
8577        struct perf_event *child_event;
8578        unsigned long flags;
8579
8580        /*
8581         * Instead of creating recursive hierarchies of events,
8582         * we link inherited events back to the original parent,
8583         * which has a filp for sure, which we use as the reference
8584         * count:
8585         */
8586        if (parent_event->parent)
8587                parent_event = parent_event->parent;
8588
8589        child_event = perf_event_alloc(&parent_event->attr,
8590                                           parent_event->cpu,
8591                                           child,
8592                                           group_leader, parent_event,
8593                                           NULL, NULL, -1);
8594        if (IS_ERR(child_event))
8595                return child_event;
8596
8597        if (is_orphaned_event(parent_event) ||
8598            !atomic_long_inc_not_zero(&parent_event->refcount)) {
8599                free_event(child_event);
8600                return NULL;
8601        }
8602
8603        get_ctx(child_ctx);
8604
8605        /*
8606         * Make the child state follow the state of the parent event,
8607         * not its attr.disabled bit.  We hold the parent's mutex,
8608         * so we won't race with perf_event_{en, dis}able_family.
8609         */
8610        if (parent_state >= PERF_EVENT_STATE_INACTIVE)
8611                child_event->state = PERF_EVENT_STATE_INACTIVE;
8612        else
8613                child_event->state = PERF_EVENT_STATE_OFF;
8614
8615        if (parent_event->attr.freq) {
8616                u64 sample_period = parent_event->hw.sample_period;
8617                struct hw_perf_event *hwc = &child_event->hw;
8618
8619                hwc->sample_period = sample_period;
8620                hwc->last_period   = sample_period;
8621
8622                local64_set(&hwc->period_left, sample_period);
8623        }
8624
8625        child_event->ctx = child_ctx;
8626        child_event->overflow_handler = parent_event->overflow_handler;
8627        child_event->overflow_handler_context
8628                = parent_event->overflow_handler_context;
8629
8630        /*
8631         * Precalculate sample_data sizes
8632         */
8633        perf_event__header_size(child_event);
8634        perf_event__id_header_size(child_event);
8635
8636        /*
8637         * Link it up in the child's context:
8638         */
8639        raw_spin_lock_irqsave(&child_ctx->lock, flags);
8640        add_event_to_ctx(child_event, child_ctx);
8641        raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8642
8643        /*
8644         * Link this into the parent event's child list
8645         */
8646        WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8647        mutex_lock(&parent_event->child_mutex);
8648        list_add_tail(&child_event->child_list, &parent_event->child_list);
8649        mutex_unlock(&parent_event->child_mutex);
8650
8651        return child_event;
8652}
8653
8654static int inherit_group(struct perf_event *parent_event,
8655              struct task_struct *parent,
8656              struct perf_event_context *parent_ctx,
8657              struct task_struct *child,
8658              struct perf_event_context *child_ctx)
8659{
8660        struct perf_event *leader;
8661        struct perf_event *sub;
8662        struct perf_event *child_ctr;
8663
8664        leader = inherit_event(parent_event, parent, parent_ctx,
8665                                 child, NULL, child_ctx);
8666        if (IS_ERR(leader))
8667                return PTR_ERR(leader);
8668        list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8669                child_ctr = inherit_event(sub, parent, parent_ctx,
8670                                            child, leader, child_ctx);
8671                if (IS_ERR(child_ctr))
8672                        return PTR_ERR(child_ctr);
8673        }
8674        return 0;
8675}
8676
8677static int
8678inherit_task_group(struct perf_event *event, struct task_struct *parent,
8679                   struct perf_event_context *parent_ctx,
8680                   struct task_struct *child, int ctxn,
8681                   int *inherited_all)
8682{
8683        int ret;
8684        struct perf_event_context *child_ctx;
8685
8686        if (!event->attr.inherit) {
8687                *inherited_all = 0;
8688                return 0;
8689        }
8690
8691        child_ctx = child->perf_event_ctxp[ctxn];
8692        if (!child_ctx) {
8693                /*
8694                 * This is executed from the parent task context, so
8695                 * inherit events that have been marked for cloning.
8696                 * First allocate and initialize a context for the
8697                 * child.
8698                 */
8699
8700                child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8701                if (!child_ctx)
8702                        return -ENOMEM;
8703
8704                child->perf_event_ctxp[ctxn] = child_ctx;
8705        }
8706
8707        ret = inherit_group(event, parent, parent_ctx,
8708                            child, child_ctx);
8709
8710        if (ret)
8711                *inherited_all = 0;
8712
8713        return ret;
8714}
8715
8716/*
8717 * Initialize the perf_event context in task_struct
8718 */
8719static int perf_event_init_context(struct task_struct *child, int ctxn)
8720{
8721        struct perf_event_context *child_ctx, *parent_ctx;
8722        struct perf_event_context *cloned_ctx;
8723        struct perf_event *event;
8724        struct task_struct *parent = current;
8725        int inherited_all = 1;
8726        unsigned long flags;
8727        int ret = 0;
8728
8729        if (likely(!parent->perf_event_ctxp[ctxn]))
8730                return 0;
8731
8732        /*
8733         * If the parent's context is a clone, pin it so it won't get
8734         * swapped under us.
8735         */
8736        parent_ctx = perf_pin_task_context(parent, ctxn);
8737        if (!parent_ctx)
8738                return 0;
8739
8740        /*
8741         * No need to check if parent_ctx != NULL here; since we saw
8742         * it non-NULL earlier, the only reason for it to become NULL
8743         * is if we exit, and since we're currently in the middle of
8744         * a fork we can't be exiting at the same time.
8745         */
8746
8747        /*
8748         * Lock the parent list. No need to lock the child - not PID
8749         * hashed yet and not running, so nobody can access it.
8750         */
8751        mutex_lock(&parent_ctx->mutex);
8752
8753        /*
8754         * We dont have to disable NMIs - we are only looking at
8755         * the list, not manipulating it:
8756         */
8757        list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8758                ret = inherit_task_group(event, parent, parent_ctx,
8759                                         child, ctxn, &inherited_all);
8760                if (ret)
8761                        break;
8762        }
8763
8764        /*
8765         * We can't hold ctx->lock when iterating the ->flexible_group list due
8766         * to allocations, but we need to prevent rotation because
8767         * rotate_ctx() will change the list from interrupt context.
8768         */
8769        raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8770        parent_ctx->rotate_disable = 1;
8771        raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8772
8773        list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8774                ret = inherit_task_group(event, parent, parent_ctx,
8775                                         child, ctxn, &inherited_all);
8776                if (ret)
8777                        break;
8778        }
8779
8780        raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8781        parent_ctx->rotate_disable = 0;
8782
8783        child_ctx = child->perf_event_ctxp[ctxn];
8784
8785        if (child_ctx && inherited_all) {
8786                /*
8787                 * Mark the child context as a clone of the parent
8788                 * context, or of whatever the parent is a clone of.
8789                 *
8790                 * Note that if the parent is a clone, the holding of
8791                 * parent_ctx->lock avoids it from being uncloned.
8792                 */
8793                cloned_ctx = parent_ctx->parent_ctx;
8794                if (cloned_ctx) {
8795                        child_ctx->parent_ctx = cloned_ctx;
8796                        child_ctx->parent_gen = parent_ctx->parent_gen;
8797                } else {
8798                        child_ctx->parent_ctx = parent_ctx;
8799                        child_ctx->parent_gen = parent_ctx->generation;
8800                }
8801                get_ctx(child_ctx->parent_ctx);
8802        }
8803
8804        raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8805        mutex_unlock(&parent_ctx->mutex);
8806
8807        perf_unpin_context(parent_ctx);
8808        put_ctx(parent_ctx);
8809
8810        return ret;
8811}
8812
8813/*
8814 * Initialize the perf_event context in task_struct
8815 */
8816int perf_event_init_task(struct task_struct *child)
8817{
8818        int ctxn, ret;
8819
8820        memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8821        mutex_init(&child->perf_event_mutex);
8822        INIT_LIST_HEAD(&child->perf_event_list);
8823
8824        for_each_task_context_nr(ctxn) {
8825                ret = perf_event_init_context(child, ctxn);
8826                if (ret) {
8827                        perf_event_free_task(child);
8828                        return ret;
8829                }
8830        }
8831
8832        return 0;
8833}
8834
8835static void __init perf_event_init_all_cpus(void)
8836{
8837        struct swevent_htable *swhash;
8838        int cpu;
8839
8840        for_each_possible_cpu(cpu) {
8841                swhash = &per_cpu(swevent_htable, cpu);
8842                mutex_init(&swhash->hlist_mutex);
8843                INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
8844        }
8845}
8846
8847static void perf_event_init_cpu(int cpu)
8848{
8849        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8850
8851        mutex_lock(&swhash->hlist_mutex);
8852        swhash->online = true;
8853        if (swhash->hlist_refcount > 0) {
8854                struct swevent_hlist *hlist;
8855
8856                hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8857                WARN_ON(!hlist);
8858                rcu_assign_pointer(swhash->swevent_hlist, hlist);
8859        }
8860        mutex_unlock(&swhash->hlist_mutex);
8861}
8862
8863#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
8864static void __perf_event_exit_context(void *__info)
8865{
8866        struct remove_event re = { .detach_group = true };
8867        struct perf_event_context *ctx = __info;
8868
8869        rcu_read_lock();
8870        list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8871                __perf_remove_from_context(&re);
8872        rcu_read_unlock();
8873}
8874
8875static void perf_event_exit_cpu_context(int cpu)
8876{
8877        struct perf_event_context *ctx;
8878        struct pmu *pmu;
8879        int idx;
8880
8881        idx = srcu_read_lock(&pmus_srcu);
8882        list_for_each_entry_rcu(pmu, &pmus, entry) {
8883                ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
8884
8885                mutex_lock(&ctx->mutex);
8886                smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8887                mutex_unlock(&ctx->mutex);
8888        }
8889        srcu_read_unlock(&pmus_srcu, idx);
8890}
8891
8892static void perf_event_exit_cpu(int cpu)
8893{
8894        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8895
8896        perf_event_exit_cpu_context(cpu);
8897
8898        mutex_lock(&swhash->hlist_mutex);
8899        swhash->online = false;
8900        swevent_hlist_release(swhash);
8901        mutex_unlock(&swhash->hlist_mutex);
8902}
8903#else
8904static inline void perf_event_exit_cpu(int cpu) { }
8905#endif
8906
8907static int
8908perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8909{
8910        int cpu;
8911
8912        for_each_online_cpu(cpu)
8913                perf_event_exit_cpu(cpu);
8914
8915        return NOTIFY_OK;
8916}
8917
8918/*
8919 * Run the perf reboot notifier at the very last possible moment so that
8920 * the generic watchdog code runs as long as possible.
8921 */
8922static struct notifier_block perf_reboot_notifier = {
8923        .notifier_call = perf_reboot,
8924        .priority = INT_MIN,
8925};
8926
8927static int
8928perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8929{
8930        unsigned int cpu = (long)hcpu;
8931
8932        switch (action & ~CPU_TASKS_FROZEN) {
8933
8934        case CPU_UP_PREPARE:
8935        case CPU_DOWN_FAILED:
8936                perf_event_init_cpu(cpu);
8937                break;
8938
8939        case CPU_UP_CANCELED:
8940        case CPU_DOWN_PREPARE:
8941                perf_event_exit_cpu(cpu);
8942                break;
8943        default:
8944                break;
8945        }
8946
8947        return NOTIFY_OK;
8948}
8949
8950void __init perf_event_init(void)
8951{
8952        int ret;
8953
8954        idr_init(&pmu_idr);
8955
8956        perf_event_init_all_cpus();
8957        init_srcu_struct(&pmus_srcu);
8958        perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8959        perf_pmu_register(&perf_cpu_clock, NULL, -1);
8960        perf_pmu_register(&perf_task_clock, NULL, -1);
8961        perf_tp_register();
8962        perf_cpu_notifier(perf_cpu_notify);
8963        register_reboot_notifier(&perf_reboot_notifier);
8964
8965        ret = init_hw_breakpoint();
8966        WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8967
8968        /* do not patch jump label more than once per second */
8969        jump_label_rate_limit(&perf_sched_events, HZ);
8970
8971        /*
8972         * Build time assertion that we keep the data_head at the intended
8973         * location.  IOW, validation we got the __reserved[] size right.
8974         */
8975        BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8976                     != 1024);
8977}
8978
8979ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
8980                              char *page)
8981{
8982        struct perf_pmu_events_attr *pmu_attr =
8983                container_of(attr, struct perf_pmu_events_attr, attr);
8984
8985        if (pmu_attr->event_str)
8986                return sprintf(page, "%s\n", pmu_attr->event_str);
8987
8988        return 0;
8989}
8990
8991static int __init perf_event_sysfs_init(void)
8992{
8993        struct pmu *pmu;
8994        int ret;
8995
8996        mutex_lock(&pmus_lock);
8997
8998        ret = bus_register(&pmu_bus);
8999        if (ret)
9000                goto unlock;
9001
9002        list_for_each_entry(pmu, &pmus, entry) {
9003                if (!pmu->name || pmu->type < 0)
9004                        continue;
9005
9006                ret = pmu_dev_alloc(pmu);
9007                WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9008        }
9009        pmu_bus_running = 1;
9010        ret = 0;
9011
9012unlock:
9013        mutex_unlock(&pmus_lock);
9014
9015        return ret;
9016}
9017device_initcall(perf_event_sysfs_init);
9018
9019#ifdef CONFIG_CGROUP_PERF
9020static struct cgroup_subsys_state *
9021perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9022{
9023        struct perf_cgroup *jc;
9024
9025        jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9026        if (!jc)
9027                return ERR_PTR(-ENOMEM);
9028
9029        jc->info = alloc_percpu(struct perf_cgroup_info);
9030        if (!jc->info) {
9031                kfree(jc);
9032                return ERR_PTR(-ENOMEM);
9033        }
9034
9035        return &jc->css;
9036}
9037
9038static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9039{
9040        struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9041
9042        free_percpu(jc->info);
9043        kfree(jc);
9044}
9045
9046static int __perf_cgroup_move(void *info)
9047{
9048        struct task_struct *task = info;
9049        perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9050        return 0;
9051}
9052
9053static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9054                               struct cgroup_taskset *tset)
9055{
9056        struct task_struct *task;
9057
9058        cgroup_taskset_for_each(task, tset)
9059                task_function_call(task, __perf_cgroup_move, task);
9060}
9061
9062static void perf_cgroup_exit(struct cgroup_subsys_state *css,
9063                             struct cgroup_subsys_state *old_css,
9064                             struct task_struct *task)
9065{
9066        /*
9067         * cgroup_exit() is called in the copy_process() failure path.
9068         * Ignore this case since the task hasn't ran yet, this avoids
9069         * trying to poke a half freed task state from generic code.
9070         */
9071        if (!(task->flags & PF_EXITING))
9072                return;
9073
9074        task_function_call(task, __perf_cgroup_move, task);
9075}
9076
9077struct cgroup_subsys perf_event_cgrp_subsys = {
9078        .css_alloc      = perf_cgroup_css_alloc,
9079        .css_free       = perf_cgroup_css_free,
9080        .exit           = perf_cgroup_exit,
9081        .attach         = perf_cgroup_attach,
9082};
9083#endif /* CONFIG_CGROUP_PERF */
9084