linux/kernel/smpboot.c
<<
>>
Prefs
   1/*
   2 * Common SMP CPU bringup/teardown functions
   3 */
   4#include <linux/cpu.h>
   5#include <linux/err.h>
   6#include <linux/smp.h>
   7#include <linux/delay.h>
   8#include <linux/init.h>
   9#include <linux/list.h>
  10#include <linux/slab.h>
  11#include <linux/sched.h>
  12#include <linux/export.h>
  13#include <linux/percpu.h>
  14#include <linux/kthread.h>
  15#include <linux/smpboot.h>
  16
  17#include "smpboot.h"
  18
  19#ifdef CONFIG_SMP
  20
  21#ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
  22/*
  23 * For the hotplug case we keep the task structs around and reuse
  24 * them.
  25 */
  26static DEFINE_PER_CPU(struct task_struct *, idle_threads);
  27
  28struct task_struct *idle_thread_get(unsigned int cpu)
  29{
  30        struct task_struct *tsk = per_cpu(idle_threads, cpu);
  31
  32        if (!tsk)
  33                return ERR_PTR(-ENOMEM);
  34        init_idle(tsk, cpu);
  35        return tsk;
  36}
  37
  38void __init idle_thread_set_boot_cpu(void)
  39{
  40        per_cpu(idle_threads, smp_processor_id()) = current;
  41}
  42
  43/**
  44 * idle_init - Initialize the idle thread for a cpu
  45 * @cpu:        The cpu for which the idle thread should be initialized
  46 *
  47 * Creates the thread if it does not exist.
  48 */
  49static inline void idle_init(unsigned int cpu)
  50{
  51        struct task_struct *tsk = per_cpu(idle_threads, cpu);
  52
  53        if (!tsk) {
  54                tsk = fork_idle(cpu);
  55                if (IS_ERR(tsk))
  56                        pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
  57                else
  58                        per_cpu(idle_threads, cpu) = tsk;
  59        }
  60}
  61
  62/**
  63 * idle_threads_init - Initialize idle threads for all cpus
  64 */
  65void __init idle_threads_init(void)
  66{
  67        unsigned int cpu, boot_cpu;
  68
  69        boot_cpu = smp_processor_id();
  70
  71        for_each_possible_cpu(cpu) {
  72                if (cpu != boot_cpu)
  73                        idle_init(cpu);
  74        }
  75}
  76#endif
  77
  78#endif /* #ifdef CONFIG_SMP */
  79
  80static LIST_HEAD(hotplug_threads);
  81static DEFINE_MUTEX(smpboot_threads_lock);
  82
  83struct smpboot_thread_data {
  84        unsigned int                    cpu;
  85        unsigned int                    status;
  86        struct smp_hotplug_thread       *ht;
  87};
  88
  89enum {
  90        HP_THREAD_NONE = 0,
  91        HP_THREAD_ACTIVE,
  92        HP_THREAD_PARKED,
  93};
  94
  95/**
  96 * smpboot_thread_fn - percpu hotplug thread loop function
  97 * @data:       thread data pointer
  98 *
  99 * Checks for thread stop and park conditions. Calls the necessary
 100 * setup, cleanup, park and unpark functions for the registered
 101 * thread.
 102 *
 103 * Returns 1 when the thread should exit, 0 otherwise.
 104 */
 105static int smpboot_thread_fn(void *data)
 106{
 107        struct smpboot_thread_data *td = data;
 108        struct smp_hotplug_thread *ht = td->ht;
 109
 110        while (1) {
 111                set_current_state(TASK_INTERRUPTIBLE);
 112                preempt_disable();
 113                if (kthread_should_stop()) {
 114                        __set_current_state(TASK_RUNNING);
 115                        preempt_enable();
 116                        if (ht->cleanup)
 117                                ht->cleanup(td->cpu, cpu_online(td->cpu));
 118                        kfree(td);
 119                        return 0;
 120                }
 121
 122                if (kthread_should_park()) {
 123                        __set_current_state(TASK_RUNNING);
 124                        preempt_enable();
 125                        if (ht->park && td->status == HP_THREAD_ACTIVE) {
 126                                BUG_ON(td->cpu != smp_processor_id());
 127                                ht->park(td->cpu);
 128                                td->status = HP_THREAD_PARKED;
 129                        }
 130                        kthread_parkme();
 131                        /* We might have been woken for stop */
 132                        continue;
 133                }
 134
 135                BUG_ON(td->cpu != smp_processor_id());
 136
 137                /* Check for state change setup */
 138                switch (td->status) {
 139                case HP_THREAD_NONE:
 140                        __set_current_state(TASK_RUNNING);
 141                        preempt_enable();
 142                        if (ht->setup)
 143                                ht->setup(td->cpu);
 144                        td->status = HP_THREAD_ACTIVE;
 145                        continue;
 146
 147                case HP_THREAD_PARKED:
 148                        __set_current_state(TASK_RUNNING);
 149                        preempt_enable();
 150                        if (ht->unpark)
 151                                ht->unpark(td->cpu);
 152                        td->status = HP_THREAD_ACTIVE;
 153                        continue;
 154                }
 155
 156                if (!ht->thread_should_run(td->cpu)) {
 157                        preempt_enable_no_resched();
 158                        schedule();
 159                } else {
 160                        __set_current_state(TASK_RUNNING);
 161                        preempt_enable();
 162                        ht->thread_fn(td->cpu);
 163                }
 164        }
 165}
 166
 167static int
 168__smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
 169{
 170        struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
 171        struct smpboot_thread_data *td;
 172
 173        if (tsk)
 174                return 0;
 175
 176        td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
 177        if (!td)
 178                return -ENOMEM;
 179        td->cpu = cpu;
 180        td->ht = ht;
 181
 182        tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
 183                                    ht->thread_comm);
 184        if (IS_ERR(tsk)) {
 185                kfree(td);
 186                return PTR_ERR(tsk);
 187        }
 188        get_task_struct(tsk);
 189        *per_cpu_ptr(ht->store, cpu) = tsk;
 190        if (ht->create) {
 191                /*
 192                 * Make sure that the task has actually scheduled out
 193                 * into park position, before calling the create
 194                 * callback. At least the migration thread callback
 195                 * requires that the task is off the runqueue.
 196                 */
 197                if (!wait_task_inactive(tsk, TASK_PARKED))
 198                        WARN_ON(1);
 199                else
 200                        ht->create(cpu);
 201        }
 202        return 0;
 203}
 204
 205int smpboot_create_threads(unsigned int cpu)
 206{
 207        struct smp_hotplug_thread *cur;
 208        int ret = 0;
 209
 210        mutex_lock(&smpboot_threads_lock);
 211        list_for_each_entry(cur, &hotplug_threads, list) {
 212                ret = __smpboot_create_thread(cur, cpu);
 213                if (ret)
 214                        break;
 215        }
 216        mutex_unlock(&smpboot_threads_lock);
 217        return ret;
 218}
 219
 220static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
 221{
 222        struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
 223
 224        if (ht->pre_unpark)
 225                ht->pre_unpark(cpu);
 226        kthread_unpark(tsk);
 227}
 228
 229void smpboot_unpark_threads(unsigned int cpu)
 230{
 231        struct smp_hotplug_thread *cur;
 232
 233        mutex_lock(&smpboot_threads_lock);
 234        list_for_each_entry(cur, &hotplug_threads, list)
 235                smpboot_unpark_thread(cur, cpu);
 236        mutex_unlock(&smpboot_threads_lock);
 237}
 238
 239static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
 240{
 241        struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
 242
 243        if (tsk && !ht->selfparking)
 244                kthread_park(tsk);
 245}
 246
 247void smpboot_park_threads(unsigned int cpu)
 248{
 249        struct smp_hotplug_thread *cur;
 250
 251        mutex_lock(&smpboot_threads_lock);
 252        list_for_each_entry_reverse(cur, &hotplug_threads, list)
 253                smpboot_park_thread(cur, cpu);
 254        mutex_unlock(&smpboot_threads_lock);
 255}
 256
 257static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
 258{
 259        unsigned int cpu;
 260
 261        /* We need to destroy also the parked threads of offline cpus */
 262        for_each_possible_cpu(cpu) {
 263                struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
 264
 265                if (tsk) {
 266                        kthread_stop(tsk);
 267                        put_task_struct(tsk);
 268                        *per_cpu_ptr(ht->store, cpu) = NULL;
 269                }
 270        }
 271}
 272
 273/**
 274 * smpboot_register_percpu_thread - Register a per_cpu thread related to hotplug
 275 * @plug_thread:        Hotplug thread descriptor
 276 *
 277 * Creates and starts the threads on all online cpus.
 278 */
 279int smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread)
 280{
 281        unsigned int cpu;
 282        int ret = 0;
 283
 284        get_online_cpus();
 285        mutex_lock(&smpboot_threads_lock);
 286        for_each_online_cpu(cpu) {
 287                ret = __smpboot_create_thread(plug_thread, cpu);
 288                if (ret) {
 289                        smpboot_destroy_threads(plug_thread);
 290                        goto out;
 291                }
 292                smpboot_unpark_thread(plug_thread, cpu);
 293        }
 294        list_add(&plug_thread->list, &hotplug_threads);
 295out:
 296        mutex_unlock(&smpboot_threads_lock);
 297        put_online_cpus();
 298        return ret;
 299}
 300EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread);
 301
 302/**
 303 * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
 304 * @plug_thread:        Hotplug thread descriptor
 305 *
 306 * Stops all threads on all possible cpus.
 307 */
 308void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
 309{
 310        get_online_cpus();
 311        mutex_lock(&smpboot_threads_lock);
 312        list_del(&plug_thread->list);
 313        smpboot_destroy_threads(plug_thread);
 314        mutex_unlock(&smpboot_threads_lock);
 315        put_online_cpus();
 316}
 317EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
 318
 319static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
 320
 321/*
 322 * Called to poll specified CPU's state, for example, when waiting for
 323 * a CPU to come online.
 324 */
 325int cpu_report_state(int cpu)
 326{
 327        return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
 328}
 329
 330/*
 331 * If CPU has died properly, set its state to CPU_UP_PREPARE and
 332 * return success.  Otherwise, return -EBUSY if the CPU died after
 333 * cpu_wait_death() timed out.  And yet otherwise again, return -EAGAIN
 334 * if cpu_wait_death() timed out and the CPU still hasn't gotten around
 335 * to dying.  In the latter two cases, the CPU might not be set up
 336 * properly, but it is up to the arch-specific code to decide.
 337 * Finally, -EIO indicates an unanticipated problem.
 338 *
 339 * Note that it is permissible to omit this call entirely, as is
 340 * done in architectures that do no CPU-hotplug error checking.
 341 */
 342int cpu_check_up_prepare(int cpu)
 343{
 344        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
 345                atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
 346                return 0;
 347        }
 348
 349        switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
 350
 351        case CPU_POST_DEAD:
 352
 353                /* The CPU died properly, so just start it up again. */
 354                atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
 355                return 0;
 356
 357        case CPU_DEAD_FROZEN:
 358
 359                /*
 360                 * Timeout during CPU death, so let caller know.
 361                 * The outgoing CPU completed its processing, but after
 362                 * cpu_wait_death() timed out and reported the error. The
 363                 * caller is free to proceed, in which case the state
 364                 * will be reset properly by cpu_set_state_online().
 365                 * Proceeding despite this -EBUSY return makes sense
 366                 * for systems where the outgoing CPUs take themselves
 367                 * offline, with no post-death manipulation required from
 368                 * a surviving CPU.
 369                 */
 370                return -EBUSY;
 371
 372        case CPU_BROKEN:
 373
 374                /*
 375                 * The most likely reason we got here is that there was
 376                 * a timeout during CPU death, and the outgoing CPU never
 377                 * did complete its processing.  This could happen on
 378                 * a virtualized system if the outgoing VCPU gets preempted
 379                 * for more than five seconds, and the user attempts to
 380                 * immediately online that same CPU.  Trying again later
 381                 * might return -EBUSY above, hence -EAGAIN.
 382                 */
 383                return -EAGAIN;
 384
 385        default:
 386
 387                /* Should not happen.  Famous last words. */
 388                return -EIO;
 389        }
 390}
 391
 392/*
 393 * Mark the specified CPU online.
 394 *
 395 * Note that it is permissible to omit this call entirely, as is
 396 * done in architectures that do no CPU-hotplug error checking.
 397 */
 398void cpu_set_state_online(int cpu)
 399{
 400        (void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
 401}
 402
 403#ifdef CONFIG_HOTPLUG_CPU
 404
 405/*
 406 * Wait for the specified CPU to exit the idle loop and die.
 407 */
 408bool cpu_wait_death(unsigned int cpu, int seconds)
 409{
 410        int jf_left = seconds * HZ;
 411        int oldstate;
 412        bool ret = true;
 413        int sleep_jf = 1;
 414
 415        might_sleep();
 416
 417        /* The outgoing CPU will normally get done quite quickly. */
 418        if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
 419                goto update_state;
 420        udelay(5);
 421
 422        /* But if the outgoing CPU dawdles, wait increasingly long times. */
 423        while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
 424                schedule_timeout_uninterruptible(sleep_jf);
 425                jf_left -= sleep_jf;
 426                if (jf_left <= 0)
 427                        break;
 428                sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
 429        }
 430update_state:
 431        oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
 432        if (oldstate == CPU_DEAD) {
 433                /* Outgoing CPU died normally, update state. */
 434                smp_mb(); /* atomic_read() before update. */
 435                atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
 436        } else {
 437                /* Outgoing CPU still hasn't died, set state accordingly. */
 438                if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
 439                                   oldstate, CPU_BROKEN) != oldstate)
 440                        goto update_state;
 441                ret = false;
 442        }
 443        return ret;
 444}
 445
 446/*
 447 * Called by the outgoing CPU to report its successful death.  Return
 448 * false if this report follows the surviving CPU's timing out.
 449 *
 450 * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
 451 * timed out.  This approach allows architectures to omit calls to
 452 * cpu_check_up_prepare() and cpu_set_state_online() without defeating
 453 * the next cpu_wait_death()'s polling loop.
 454 */
 455bool cpu_report_death(void)
 456{
 457        int oldstate;
 458        int newstate;
 459        int cpu = smp_processor_id();
 460
 461        do {
 462                oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
 463                if (oldstate != CPU_BROKEN)
 464                        newstate = CPU_DEAD;
 465                else
 466                        newstate = CPU_DEAD_FROZEN;
 467        } while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
 468                                oldstate, newstate) != oldstate);
 469        return newstate == CPU_DEAD;
 470}
 471
 472#endif /* #ifdef CONFIG_HOTPLUG_CPU */
 473