linux/kernel/time/posix-timers.c
<<
>>
Prefs
   1/*
   2 * linux/kernel/posix-timers.c
   3 *
   4 *
   5 * 2002-10-15  Posix Clocks & timers
   6 *                           by George Anzinger george@mvista.com
   7 *
   8 *                           Copyright (C) 2002 2003 by MontaVista Software.
   9 *
  10 * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
  11 *                           Copyright (C) 2004 Boris Hu
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License as published by
  15 * the Free Software Foundation; either version 2 of the License, or (at
  16 * your option) any later version.
  17 *
  18 * This program is distributed in the hope that it will be useful, but
  19 * WITHOUT ANY WARRANTY; without even the implied warranty of
  20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  21 * General Public License for more details.
  22
  23 * You should have received a copy of the GNU General Public License
  24 * along with this program; if not, write to the Free Software
  25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  26 *
  27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
  28 */
  29
  30/* These are all the functions necessary to implement
  31 * POSIX clocks & timers
  32 */
  33#include <linux/mm.h>
  34#include <linux/interrupt.h>
  35#include <linux/slab.h>
  36#include <linux/time.h>
  37#include <linux/mutex.h>
  38
  39#include <asm/uaccess.h>
  40#include <linux/list.h>
  41#include <linux/init.h>
  42#include <linux/compiler.h>
  43#include <linux/hash.h>
  44#include <linux/posix-clock.h>
  45#include <linux/posix-timers.h>
  46#include <linux/syscalls.h>
  47#include <linux/wait.h>
  48#include <linux/workqueue.h>
  49#include <linux/export.h>
  50#include <linux/hashtable.h>
  51
  52#include "timekeeping.h"
  53
  54/*
  55 * Management arrays for POSIX timers. Timers are now kept in static hash table
  56 * with 512 entries.
  57 * Timer ids are allocated by local routine, which selects proper hash head by
  58 * key, constructed from current->signal address and per signal struct counter.
  59 * This keeps timer ids unique per process, but now they can intersect between
  60 * processes.
  61 */
  62
  63/*
  64 * Lets keep our timers in a slab cache :-)
  65 */
  66static struct kmem_cache *posix_timers_cache;
  67
  68static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
  69static DEFINE_SPINLOCK(hash_lock);
  70
  71/*
  72 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
  73 * SIGEV values.  Here we put out an error if this assumption fails.
  74 */
  75#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
  76                       ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
  77#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
  78#endif
  79
  80/*
  81 * parisc wants ENOTSUP instead of EOPNOTSUPP
  82 */
  83#ifndef ENOTSUP
  84# define ENANOSLEEP_NOTSUP EOPNOTSUPP
  85#else
  86# define ENANOSLEEP_NOTSUP ENOTSUP
  87#endif
  88
  89/*
  90 * The timer ID is turned into a timer address by idr_find().
  91 * Verifying a valid ID consists of:
  92 *
  93 * a) checking that idr_find() returns other than -1.
  94 * b) checking that the timer id matches the one in the timer itself.
  95 * c) that the timer owner is in the callers thread group.
  96 */
  97
  98/*
  99 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
 100 *          to implement others.  This structure defines the various
 101 *          clocks.
 102 *
 103 * RESOLUTION: Clock resolution is used to round up timer and interval
 104 *          times, NOT to report clock times, which are reported with as
 105 *          much resolution as the system can muster.  In some cases this
 106 *          resolution may depend on the underlying clock hardware and
 107 *          may not be quantifiable until run time, and only then is the
 108 *          necessary code is written.  The standard says we should say
 109 *          something about this issue in the documentation...
 110 *
 111 * FUNCTIONS: The CLOCKs structure defines possible functions to
 112 *          handle various clock functions.
 113 *
 114 *          The standard POSIX timer management code assumes the
 115 *          following: 1.) The k_itimer struct (sched.h) is used for
 116 *          the timer.  2.) The list, it_lock, it_clock, it_id and
 117 *          it_pid fields are not modified by timer code.
 118 *
 119 * Permissions: It is assumed that the clock_settime() function defined
 120 *          for each clock will take care of permission checks.  Some
 121 *          clocks may be set able by any user (i.e. local process
 122 *          clocks) others not.  Currently the only set able clock we
 123 *          have is CLOCK_REALTIME and its high res counter part, both of
 124 *          which we beg off on and pass to do_sys_settimeofday().
 125 */
 126
 127static struct k_clock posix_clocks[MAX_CLOCKS];
 128
 129/*
 130 * These ones are defined below.
 131 */
 132static int common_nsleep(const clockid_t, int flags, struct timespec *t,
 133                         struct timespec __user *rmtp);
 134static int common_timer_create(struct k_itimer *new_timer);
 135static void common_timer_get(struct k_itimer *, struct itimerspec *);
 136static int common_timer_set(struct k_itimer *, int,
 137                            struct itimerspec *, struct itimerspec *);
 138static int common_timer_del(struct k_itimer *timer);
 139
 140static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
 141
 142static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
 143
 144#define lock_timer(tid, flags)                                             \
 145({      struct k_itimer *__timr;                                           \
 146        __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
 147        __timr;                                                            \
 148})
 149
 150static int hash(struct signal_struct *sig, unsigned int nr)
 151{
 152        return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
 153}
 154
 155static struct k_itimer *__posix_timers_find(struct hlist_head *head,
 156                                            struct signal_struct *sig,
 157                                            timer_t id)
 158{
 159        struct k_itimer *timer;
 160
 161        hlist_for_each_entry_rcu(timer, head, t_hash) {
 162                if ((timer->it_signal == sig) && (timer->it_id == id))
 163                        return timer;
 164        }
 165        return NULL;
 166}
 167
 168static struct k_itimer *posix_timer_by_id(timer_t id)
 169{
 170        struct signal_struct *sig = current->signal;
 171        struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
 172
 173        return __posix_timers_find(head, sig, id);
 174}
 175
 176static int posix_timer_add(struct k_itimer *timer)
 177{
 178        struct signal_struct *sig = current->signal;
 179        int first_free_id = sig->posix_timer_id;
 180        struct hlist_head *head;
 181        int ret = -ENOENT;
 182
 183        do {
 184                spin_lock(&hash_lock);
 185                head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
 186                if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
 187                        hlist_add_head_rcu(&timer->t_hash, head);
 188                        ret = sig->posix_timer_id;
 189                }
 190                if (++sig->posix_timer_id < 0)
 191                        sig->posix_timer_id = 0;
 192                if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
 193                        /* Loop over all possible ids completed */
 194                        ret = -EAGAIN;
 195                spin_unlock(&hash_lock);
 196        } while (ret == -ENOENT);
 197        return ret;
 198}
 199
 200static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
 201{
 202        spin_unlock_irqrestore(&timr->it_lock, flags);
 203}
 204
 205/* Get clock_realtime */
 206static int posix_clock_realtime_get(clockid_t which_clock, struct timespec *tp)
 207{
 208        ktime_get_real_ts(tp);
 209        return 0;
 210}
 211
 212/* Set clock_realtime */
 213static int posix_clock_realtime_set(const clockid_t which_clock,
 214                                    const struct timespec *tp)
 215{
 216        return do_sys_settimeofday(tp, NULL);
 217}
 218
 219static int posix_clock_realtime_adj(const clockid_t which_clock,
 220                                    struct timex *t)
 221{
 222        return do_adjtimex(t);
 223}
 224
 225/*
 226 * Get monotonic time for posix timers
 227 */
 228static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
 229{
 230        ktime_get_ts(tp);
 231        return 0;
 232}
 233
 234/*
 235 * Get monotonic-raw time for posix timers
 236 */
 237static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
 238{
 239        getrawmonotonic(tp);
 240        return 0;
 241}
 242
 243
 244static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp)
 245{
 246        *tp = current_kernel_time();
 247        return 0;
 248}
 249
 250static int posix_get_monotonic_coarse(clockid_t which_clock,
 251                                                struct timespec *tp)
 252{
 253        *tp = get_monotonic_coarse();
 254        return 0;
 255}
 256
 257static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
 258{
 259        *tp = ktime_to_timespec(KTIME_LOW_RES);
 260        return 0;
 261}
 262
 263static int posix_get_boottime(const clockid_t which_clock, struct timespec *tp)
 264{
 265        get_monotonic_boottime(tp);
 266        return 0;
 267}
 268
 269static int posix_get_tai(clockid_t which_clock, struct timespec *tp)
 270{
 271        timekeeping_clocktai(tp);
 272        return 0;
 273}
 274
 275/*
 276 * Initialize everything, well, just everything in Posix clocks/timers ;)
 277 */
 278static __init int init_posix_timers(void)
 279{
 280        struct k_clock clock_realtime = {
 281                .clock_getres   = hrtimer_get_res,
 282                .clock_get      = posix_clock_realtime_get,
 283                .clock_set      = posix_clock_realtime_set,
 284                .clock_adj      = posix_clock_realtime_adj,
 285                .nsleep         = common_nsleep,
 286                .nsleep_restart = hrtimer_nanosleep_restart,
 287                .timer_create   = common_timer_create,
 288                .timer_set      = common_timer_set,
 289                .timer_get      = common_timer_get,
 290                .timer_del      = common_timer_del,
 291        };
 292        struct k_clock clock_monotonic = {
 293                .clock_getres   = hrtimer_get_res,
 294                .clock_get      = posix_ktime_get_ts,
 295                .nsleep         = common_nsleep,
 296                .nsleep_restart = hrtimer_nanosleep_restart,
 297                .timer_create   = common_timer_create,
 298                .timer_set      = common_timer_set,
 299                .timer_get      = common_timer_get,
 300                .timer_del      = common_timer_del,
 301        };
 302        struct k_clock clock_monotonic_raw = {
 303                .clock_getres   = hrtimer_get_res,
 304                .clock_get      = posix_get_monotonic_raw,
 305        };
 306        struct k_clock clock_realtime_coarse = {
 307                .clock_getres   = posix_get_coarse_res,
 308                .clock_get      = posix_get_realtime_coarse,
 309        };
 310        struct k_clock clock_monotonic_coarse = {
 311                .clock_getres   = posix_get_coarse_res,
 312                .clock_get      = posix_get_monotonic_coarse,
 313        };
 314        struct k_clock clock_tai = {
 315                .clock_getres   = hrtimer_get_res,
 316                .clock_get      = posix_get_tai,
 317                .nsleep         = common_nsleep,
 318                .nsleep_restart = hrtimer_nanosleep_restart,
 319                .timer_create   = common_timer_create,
 320                .timer_set      = common_timer_set,
 321                .timer_get      = common_timer_get,
 322                .timer_del      = common_timer_del,
 323        };
 324        struct k_clock clock_boottime = {
 325                .clock_getres   = hrtimer_get_res,
 326                .clock_get      = posix_get_boottime,
 327                .nsleep         = common_nsleep,
 328                .nsleep_restart = hrtimer_nanosleep_restart,
 329                .timer_create   = common_timer_create,
 330                .timer_set      = common_timer_set,
 331                .timer_get      = common_timer_get,
 332                .timer_del      = common_timer_del,
 333        };
 334
 335        posix_timers_register_clock(CLOCK_REALTIME, &clock_realtime);
 336        posix_timers_register_clock(CLOCK_MONOTONIC, &clock_monotonic);
 337        posix_timers_register_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
 338        posix_timers_register_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
 339        posix_timers_register_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
 340        posix_timers_register_clock(CLOCK_BOOTTIME, &clock_boottime);
 341        posix_timers_register_clock(CLOCK_TAI, &clock_tai);
 342
 343        posix_timers_cache = kmem_cache_create("posix_timers_cache",
 344                                        sizeof (struct k_itimer), 0, SLAB_PANIC,
 345                                        NULL);
 346        return 0;
 347}
 348
 349__initcall(init_posix_timers);
 350
 351static void schedule_next_timer(struct k_itimer *timr)
 352{
 353        struct hrtimer *timer = &timr->it.real.timer;
 354
 355        if (timr->it.real.interval.tv64 == 0)
 356                return;
 357
 358        timr->it_overrun += (unsigned int) hrtimer_forward(timer,
 359                                                timer->base->get_time(),
 360                                                timr->it.real.interval);
 361
 362        timr->it_overrun_last = timr->it_overrun;
 363        timr->it_overrun = -1;
 364        ++timr->it_requeue_pending;
 365        hrtimer_restart(timer);
 366}
 367
 368/*
 369 * This function is exported for use by the signal deliver code.  It is
 370 * called just prior to the info block being released and passes that
 371 * block to us.  It's function is to update the overrun entry AND to
 372 * restart the timer.  It should only be called if the timer is to be
 373 * restarted (i.e. we have flagged this in the sys_private entry of the
 374 * info block).
 375 *
 376 * To protect against the timer going away while the interrupt is queued,
 377 * we require that the it_requeue_pending flag be set.
 378 */
 379void do_schedule_next_timer(struct siginfo *info)
 380{
 381        struct k_itimer *timr;
 382        unsigned long flags;
 383
 384        timr = lock_timer(info->si_tid, &flags);
 385
 386        if (timr && timr->it_requeue_pending == info->si_sys_private) {
 387                if (timr->it_clock < 0)
 388                        posix_cpu_timer_schedule(timr);
 389                else
 390                        schedule_next_timer(timr);
 391
 392                info->si_overrun += timr->it_overrun_last;
 393        }
 394
 395        if (timr)
 396                unlock_timer(timr, flags);
 397}
 398
 399int posix_timer_event(struct k_itimer *timr, int si_private)
 400{
 401        struct task_struct *task;
 402        int shared, ret = -1;
 403        /*
 404         * FIXME: if ->sigq is queued we can race with
 405         * dequeue_signal()->do_schedule_next_timer().
 406         *
 407         * If dequeue_signal() sees the "right" value of
 408         * si_sys_private it calls do_schedule_next_timer().
 409         * We re-queue ->sigq and drop ->it_lock().
 410         * do_schedule_next_timer() locks the timer
 411         * and re-schedules it while ->sigq is pending.
 412         * Not really bad, but not that we want.
 413         */
 414        timr->sigq->info.si_sys_private = si_private;
 415
 416        rcu_read_lock();
 417        task = pid_task(timr->it_pid, PIDTYPE_PID);
 418        if (task) {
 419                shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
 420                ret = send_sigqueue(timr->sigq, task, shared);
 421        }
 422        rcu_read_unlock();
 423        /* If we failed to send the signal the timer stops. */
 424        return ret > 0;
 425}
 426EXPORT_SYMBOL_GPL(posix_timer_event);
 427
 428/*
 429 * This function gets called when a POSIX.1b interval timer expires.  It
 430 * is used as a callback from the kernel internal timer.  The
 431 * run_timer_list code ALWAYS calls with interrupts on.
 432
 433 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
 434 */
 435static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
 436{
 437        struct k_itimer *timr;
 438        unsigned long flags;
 439        int si_private = 0;
 440        enum hrtimer_restart ret = HRTIMER_NORESTART;
 441
 442        timr = container_of(timer, struct k_itimer, it.real.timer);
 443        spin_lock_irqsave(&timr->it_lock, flags);
 444
 445        if (timr->it.real.interval.tv64 != 0)
 446                si_private = ++timr->it_requeue_pending;
 447
 448        if (posix_timer_event(timr, si_private)) {
 449                /*
 450                 * signal was not sent because of sig_ignor
 451                 * we will not get a call back to restart it AND
 452                 * it should be restarted.
 453                 */
 454                if (timr->it.real.interval.tv64 != 0) {
 455                        ktime_t now = hrtimer_cb_get_time(timer);
 456
 457                        /*
 458                         * FIXME: What we really want, is to stop this
 459                         * timer completely and restart it in case the
 460                         * SIG_IGN is removed. This is a non trivial
 461                         * change which involves sighand locking
 462                         * (sigh !), which we don't want to do late in
 463                         * the release cycle.
 464                         *
 465                         * For now we just let timers with an interval
 466                         * less than a jiffie expire every jiffie to
 467                         * avoid softirq starvation in case of SIG_IGN
 468                         * and a very small interval, which would put
 469                         * the timer right back on the softirq pending
 470                         * list. By moving now ahead of time we trick
 471                         * hrtimer_forward() to expire the timer
 472                         * later, while we still maintain the overrun
 473                         * accuracy, but have some inconsistency in
 474                         * the timer_gettime() case. This is at least
 475                         * better than a starved softirq. A more
 476                         * complex fix which solves also another related
 477                         * inconsistency is already in the pipeline.
 478                         */
 479#ifdef CONFIG_HIGH_RES_TIMERS
 480                        {
 481                                ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
 482
 483                                if (timr->it.real.interval.tv64 < kj.tv64)
 484                                        now = ktime_add(now, kj);
 485                        }
 486#endif
 487                        timr->it_overrun += (unsigned int)
 488                                hrtimer_forward(timer, now,
 489                                                timr->it.real.interval);
 490                        ret = HRTIMER_RESTART;
 491                        ++timr->it_requeue_pending;
 492                }
 493        }
 494
 495        unlock_timer(timr, flags);
 496        return ret;
 497}
 498
 499static struct pid *good_sigevent(sigevent_t * event)
 500{
 501        struct task_struct *rtn = current->group_leader;
 502
 503        if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
 504                (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
 505                 !same_thread_group(rtn, current) ||
 506                 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
 507                return NULL;
 508
 509        if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
 510            ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
 511                return NULL;
 512
 513        return task_pid(rtn);
 514}
 515
 516void posix_timers_register_clock(const clockid_t clock_id,
 517                                 struct k_clock *new_clock)
 518{
 519        if ((unsigned) clock_id >= MAX_CLOCKS) {
 520                printk(KERN_WARNING "POSIX clock register failed for clock_id %d\n",
 521                       clock_id);
 522                return;
 523        }
 524
 525        if (!new_clock->clock_get) {
 526                printk(KERN_WARNING "POSIX clock id %d lacks clock_get()\n",
 527                       clock_id);
 528                return;
 529        }
 530        if (!new_clock->clock_getres) {
 531                printk(KERN_WARNING "POSIX clock id %d lacks clock_getres()\n",
 532                       clock_id);
 533                return;
 534        }
 535
 536        posix_clocks[clock_id] = *new_clock;
 537}
 538EXPORT_SYMBOL_GPL(posix_timers_register_clock);
 539
 540static struct k_itimer * alloc_posix_timer(void)
 541{
 542        struct k_itimer *tmr;
 543        tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
 544        if (!tmr)
 545                return tmr;
 546        if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
 547                kmem_cache_free(posix_timers_cache, tmr);
 548                return NULL;
 549        }
 550        memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
 551        return tmr;
 552}
 553
 554static void k_itimer_rcu_free(struct rcu_head *head)
 555{
 556        struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
 557
 558        kmem_cache_free(posix_timers_cache, tmr);
 559}
 560
 561#define IT_ID_SET       1
 562#define IT_ID_NOT_SET   0
 563static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
 564{
 565        if (it_id_set) {
 566                unsigned long flags;
 567                spin_lock_irqsave(&hash_lock, flags);
 568                hlist_del_rcu(&tmr->t_hash);
 569                spin_unlock_irqrestore(&hash_lock, flags);
 570        }
 571        put_pid(tmr->it_pid);
 572        sigqueue_free(tmr->sigq);
 573        call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
 574}
 575
 576static struct k_clock *clockid_to_kclock(const clockid_t id)
 577{
 578        if (id < 0)
 579                return (id & CLOCKFD_MASK) == CLOCKFD ?
 580                        &clock_posix_dynamic : &clock_posix_cpu;
 581
 582        if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres)
 583                return NULL;
 584        return &posix_clocks[id];
 585}
 586
 587static int common_timer_create(struct k_itimer *new_timer)
 588{
 589        hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
 590        return 0;
 591}
 592
 593/* Create a POSIX.1b interval timer. */
 594
 595SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
 596                struct sigevent __user *, timer_event_spec,
 597                timer_t __user *, created_timer_id)
 598{
 599        struct k_clock *kc = clockid_to_kclock(which_clock);
 600        struct k_itimer *new_timer;
 601        int error, new_timer_id;
 602        sigevent_t event;
 603        int it_id_set = IT_ID_NOT_SET;
 604
 605        if (!kc)
 606                return -EINVAL;
 607        if (!kc->timer_create)
 608                return -EOPNOTSUPP;
 609
 610        new_timer = alloc_posix_timer();
 611        if (unlikely(!new_timer))
 612                return -EAGAIN;
 613
 614        spin_lock_init(&new_timer->it_lock);
 615        new_timer_id = posix_timer_add(new_timer);
 616        if (new_timer_id < 0) {
 617                error = new_timer_id;
 618                goto out;
 619        }
 620
 621        it_id_set = IT_ID_SET;
 622        new_timer->it_id = (timer_t) new_timer_id;
 623        new_timer->it_clock = which_clock;
 624        new_timer->it_overrun = -1;
 625
 626        if (timer_event_spec) {
 627                if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
 628                        error = -EFAULT;
 629                        goto out;
 630                }
 631                rcu_read_lock();
 632                new_timer->it_pid = get_pid(good_sigevent(&event));
 633                rcu_read_unlock();
 634                if (!new_timer->it_pid) {
 635                        error = -EINVAL;
 636                        goto out;
 637                }
 638        } else {
 639                memset(&event.sigev_value, 0, sizeof(event.sigev_value));
 640                event.sigev_notify = SIGEV_SIGNAL;
 641                event.sigev_signo = SIGALRM;
 642                event.sigev_value.sival_int = new_timer->it_id;
 643                new_timer->it_pid = get_pid(task_tgid(current));
 644        }
 645
 646        new_timer->it_sigev_notify     = event.sigev_notify;
 647        new_timer->sigq->info.si_signo = event.sigev_signo;
 648        new_timer->sigq->info.si_value = event.sigev_value;
 649        new_timer->sigq->info.si_tid   = new_timer->it_id;
 650        new_timer->sigq->info.si_code  = SI_TIMER;
 651
 652        if (copy_to_user(created_timer_id,
 653                         &new_timer_id, sizeof (new_timer_id))) {
 654                error = -EFAULT;
 655                goto out;
 656        }
 657
 658        error = kc->timer_create(new_timer);
 659        if (error)
 660                goto out;
 661
 662        spin_lock_irq(&current->sighand->siglock);
 663        new_timer->it_signal = current->signal;
 664        list_add(&new_timer->list, &current->signal->posix_timers);
 665        spin_unlock_irq(&current->sighand->siglock);
 666
 667        return 0;
 668        /*
 669         * In the case of the timer belonging to another task, after
 670         * the task is unlocked, the timer is owned by the other task
 671         * and may cease to exist at any time.  Don't use or modify
 672         * new_timer after the unlock call.
 673         */
 674out:
 675        release_posix_timer(new_timer, it_id_set);
 676        return error;
 677}
 678
 679/*
 680 * Locking issues: We need to protect the result of the id look up until
 681 * we get the timer locked down so it is not deleted under us.  The
 682 * removal is done under the idr spinlock so we use that here to bridge
 683 * the find to the timer lock.  To avoid a dead lock, the timer id MUST
 684 * be release with out holding the timer lock.
 685 */
 686static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
 687{
 688        struct k_itimer *timr;
 689
 690        /*
 691         * timer_t could be any type >= int and we want to make sure any
 692         * @timer_id outside positive int range fails lookup.
 693         */
 694        if ((unsigned long long)timer_id > INT_MAX)
 695                return NULL;
 696
 697        rcu_read_lock();
 698        timr = posix_timer_by_id(timer_id);
 699        if (timr) {
 700                spin_lock_irqsave(&timr->it_lock, *flags);
 701                if (timr->it_signal == current->signal) {
 702                        rcu_read_unlock();
 703                        return timr;
 704                }
 705                spin_unlock_irqrestore(&timr->it_lock, *flags);
 706        }
 707        rcu_read_unlock();
 708
 709        return NULL;
 710}
 711
 712/*
 713 * Get the time remaining on a POSIX.1b interval timer.  This function
 714 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
 715 * mess with irq.
 716 *
 717 * We have a couple of messes to clean up here.  First there is the case
 718 * of a timer that has a requeue pending.  These timers should appear to
 719 * be in the timer list with an expiry as if we were to requeue them
 720 * now.
 721 *
 722 * The second issue is the SIGEV_NONE timer which may be active but is
 723 * not really ever put in the timer list (to save system resources).
 724 * This timer may be expired, and if so, we will do it here.  Otherwise
 725 * it is the same as a requeue pending timer WRT to what we should
 726 * report.
 727 */
 728static void
 729common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
 730{
 731        ktime_t now, remaining, iv;
 732        struct hrtimer *timer = &timr->it.real.timer;
 733
 734        memset(cur_setting, 0, sizeof(struct itimerspec));
 735
 736        iv = timr->it.real.interval;
 737
 738        /* interval timer ? */
 739        if (iv.tv64)
 740                cur_setting->it_interval = ktime_to_timespec(iv);
 741        else if (!hrtimer_active(timer) &&
 742                 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
 743                return;
 744
 745        now = timer->base->get_time();
 746
 747        /*
 748         * When a requeue is pending or this is a SIGEV_NONE
 749         * timer move the expiry time forward by intervals, so
 750         * expiry is > now.
 751         */
 752        if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
 753            (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
 754                timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
 755
 756        remaining = ktime_sub(hrtimer_get_expires(timer), now);
 757        /* Return 0 only, when the timer is expired and not pending */
 758        if (remaining.tv64 <= 0) {
 759                /*
 760                 * A single shot SIGEV_NONE timer must return 0, when
 761                 * it is expired !
 762                 */
 763                if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
 764                        cur_setting->it_value.tv_nsec = 1;
 765        } else
 766                cur_setting->it_value = ktime_to_timespec(remaining);
 767}
 768
 769/* Get the time remaining on a POSIX.1b interval timer. */
 770SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
 771                struct itimerspec __user *, setting)
 772{
 773        struct itimerspec cur_setting;
 774        struct k_itimer *timr;
 775        struct k_clock *kc;
 776        unsigned long flags;
 777        int ret = 0;
 778
 779        timr = lock_timer(timer_id, &flags);
 780        if (!timr)
 781                return -EINVAL;
 782
 783        kc = clockid_to_kclock(timr->it_clock);
 784        if (WARN_ON_ONCE(!kc || !kc->timer_get))
 785                ret = -EINVAL;
 786        else
 787                kc->timer_get(timr, &cur_setting);
 788
 789        unlock_timer(timr, flags);
 790
 791        if (!ret && copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
 792                return -EFAULT;
 793
 794        return ret;
 795}
 796
 797/*
 798 * Get the number of overruns of a POSIX.1b interval timer.  This is to
 799 * be the overrun of the timer last delivered.  At the same time we are
 800 * accumulating overruns on the next timer.  The overrun is frozen when
 801 * the signal is delivered, either at the notify time (if the info block
 802 * is not queued) or at the actual delivery time (as we are informed by
 803 * the call back to do_schedule_next_timer().  So all we need to do is
 804 * to pick up the frozen overrun.
 805 */
 806SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
 807{
 808        struct k_itimer *timr;
 809        int overrun;
 810        unsigned long flags;
 811
 812        timr = lock_timer(timer_id, &flags);
 813        if (!timr)
 814                return -EINVAL;
 815
 816        overrun = timr->it_overrun_last;
 817        unlock_timer(timr, flags);
 818
 819        return overrun;
 820}
 821
 822/* Set a POSIX.1b interval timer. */
 823/* timr->it_lock is taken. */
 824static int
 825common_timer_set(struct k_itimer *timr, int flags,
 826                 struct itimerspec *new_setting, struct itimerspec *old_setting)
 827{
 828        struct hrtimer *timer = &timr->it.real.timer;
 829        enum hrtimer_mode mode;
 830
 831        if (old_setting)
 832                common_timer_get(timr, old_setting);
 833
 834        /* disable the timer */
 835        timr->it.real.interval.tv64 = 0;
 836        /*
 837         * careful here.  If smp we could be in the "fire" routine which will
 838         * be spinning as we hold the lock.  But this is ONLY an SMP issue.
 839         */
 840        if (hrtimer_try_to_cancel(timer) < 0)
 841                return TIMER_RETRY;
 842
 843        timr->it_requeue_pending = (timr->it_requeue_pending + 2) & 
 844                ~REQUEUE_PENDING;
 845        timr->it_overrun_last = 0;
 846
 847        /* switch off the timer when it_value is zero */
 848        if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
 849                return 0;
 850
 851        mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
 852        hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
 853        timr->it.real.timer.function = posix_timer_fn;
 854
 855        hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
 856
 857        /* Convert interval */
 858        timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
 859
 860        /* SIGEV_NONE timers are not queued ! See common_timer_get */
 861        if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
 862                /* Setup correct expiry time for relative timers */
 863                if (mode == HRTIMER_MODE_REL) {
 864                        hrtimer_add_expires(timer, timer->base->get_time());
 865                }
 866                return 0;
 867        }
 868
 869        hrtimer_start_expires(timer, mode);
 870        return 0;
 871}
 872
 873/* Set a POSIX.1b interval timer */
 874SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
 875                const struct itimerspec __user *, new_setting,
 876                struct itimerspec __user *, old_setting)
 877{
 878        struct k_itimer *timr;
 879        struct itimerspec new_spec, old_spec;
 880        int error = 0;
 881        unsigned long flag;
 882        struct itimerspec *rtn = old_setting ? &old_spec : NULL;
 883        struct k_clock *kc;
 884
 885        if (!new_setting)
 886                return -EINVAL;
 887
 888        if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
 889                return -EFAULT;
 890
 891        if (!timespec_valid(&new_spec.it_interval) ||
 892            !timespec_valid(&new_spec.it_value))
 893                return -EINVAL;
 894retry:
 895        timr = lock_timer(timer_id, &flag);
 896        if (!timr)
 897                return -EINVAL;
 898
 899        kc = clockid_to_kclock(timr->it_clock);
 900        if (WARN_ON_ONCE(!kc || !kc->timer_set))
 901                error = -EINVAL;
 902        else
 903                error = kc->timer_set(timr, flags, &new_spec, rtn);
 904
 905        unlock_timer(timr, flag);
 906        if (error == TIMER_RETRY) {
 907                rtn = NULL;     // We already got the old time...
 908                goto retry;
 909        }
 910
 911        if (old_setting && !error &&
 912            copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
 913                error = -EFAULT;
 914
 915        return error;
 916}
 917
 918static int common_timer_del(struct k_itimer *timer)
 919{
 920        timer->it.real.interval.tv64 = 0;
 921
 922        if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
 923                return TIMER_RETRY;
 924        return 0;
 925}
 926
 927static inline int timer_delete_hook(struct k_itimer *timer)
 928{
 929        struct k_clock *kc = clockid_to_kclock(timer->it_clock);
 930
 931        if (WARN_ON_ONCE(!kc || !kc->timer_del))
 932                return -EINVAL;
 933        return kc->timer_del(timer);
 934}
 935
 936/* Delete a POSIX.1b interval timer. */
 937SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
 938{
 939        struct k_itimer *timer;
 940        unsigned long flags;
 941
 942retry_delete:
 943        timer = lock_timer(timer_id, &flags);
 944        if (!timer)
 945                return -EINVAL;
 946
 947        if (timer_delete_hook(timer) == TIMER_RETRY) {
 948                unlock_timer(timer, flags);
 949                goto retry_delete;
 950        }
 951
 952        spin_lock(&current->sighand->siglock);
 953        list_del(&timer->list);
 954        spin_unlock(&current->sighand->siglock);
 955        /*
 956         * This keeps any tasks waiting on the spin lock from thinking
 957         * they got something (see the lock code above).
 958         */
 959        timer->it_signal = NULL;
 960
 961        unlock_timer(timer, flags);
 962        release_posix_timer(timer, IT_ID_SET);
 963        return 0;
 964}
 965
 966/*
 967 * return timer owned by the process, used by exit_itimers
 968 */
 969static void itimer_delete(struct k_itimer *timer)
 970{
 971        unsigned long flags;
 972
 973retry_delete:
 974        spin_lock_irqsave(&timer->it_lock, flags);
 975
 976        if (timer_delete_hook(timer) == TIMER_RETRY) {
 977                unlock_timer(timer, flags);
 978                goto retry_delete;
 979        }
 980        list_del(&timer->list);
 981        /*
 982         * This keeps any tasks waiting on the spin lock from thinking
 983         * they got something (see the lock code above).
 984         */
 985        timer->it_signal = NULL;
 986
 987        unlock_timer(timer, flags);
 988        release_posix_timer(timer, IT_ID_SET);
 989}
 990
 991/*
 992 * This is called by do_exit or de_thread, only when there are no more
 993 * references to the shared signal_struct.
 994 */
 995void exit_itimers(struct signal_struct *sig)
 996{
 997        struct k_itimer *tmr;
 998
 999        while (!list_empty(&sig->posix_timers)) {
1000                tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1001                itimer_delete(tmr);
1002        }
1003}
1004
1005SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1006                const struct timespec __user *, tp)
1007{
1008        struct k_clock *kc = clockid_to_kclock(which_clock);
1009        struct timespec new_tp;
1010
1011        if (!kc || !kc->clock_set)
1012                return -EINVAL;
1013
1014        if (copy_from_user(&new_tp, tp, sizeof (*tp)))
1015                return -EFAULT;
1016
1017        return kc->clock_set(which_clock, &new_tp);
1018}
1019
1020SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1021                struct timespec __user *,tp)
1022{
1023        struct k_clock *kc = clockid_to_kclock(which_clock);
1024        struct timespec kernel_tp;
1025        int error;
1026
1027        if (!kc)
1028                return -EINVAL;
1029
1030        error = kc->clock_get(which_clock, &kernel_tp);
1031
1032        if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
1033                error = -EFAULT;
1034
1035        return error;
1036}
1037
1038SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1039                struct timex __user *, utx)
1040{
1041        struct k_clock *kc = clockid_to_kclock(which_clock);
1042        struct timex ktx;
1043        int err;
1044
1045        if (!kc)
1046                return -EINVAL;
1047        if (!kc->clock_adj)
1048                return -EOPNOTSUPP;
1049
1050        if (copy_from_user(&ktx, utx, sizeof(ktx)))
1051                return -EFAULT;
1052
1053        err = kc->clock_adj(which_clock, &ktx);
1054
1055        if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1056                return -EFAULT;
1057
1058        return err;
1059}
1060
1061SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1062                struct timespec __user *, tp)
1063{
1064        struct k_clock *kc = clockid_to_kclock(which_clock);
1065        struct timespec rtn_tp;
1066        int error;
1067
1068        if (!kc)
1069                return -EINVAL;
1070
1071        error = kc->clock_getres(which_clock, &rtn_tp);
1072
1073        if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
1074                error = -EFAULT;
1075
1076        return error;
1077}
1078
1079/*
1080 * nanosleep for monotonic and realtime clocks
1081 */
1082static int common_nsleep(const clockid_t which_clock, int flags,
1083                         struct timespec *tsave, struct timespec __user *rmtp)
1084{
1085        return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
1086                                 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1087                                 which_clock);
1088}
1089
1090SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1091                const struct timespec __user *, rqtp,
1092                struct timespec __user *, rmtp)
1093{
1094        struct k_clock *kc = clockid_to_kclock(which_clock);
1095        struct timespec t;
1096
1097        if (!kc)
1098                return -EINVAL;
1099        if (!kc->nsleep)
1100                return -ENANOSLEEP_NOTSUP;
1101
1102        if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1103                return -EFAULT;
1104
1105        if (!timespec_valid(&t))
1106                return -EINVAL;
1107
1108        return kc->nsleep(which_clock, flags, &t, rmtp);
1109}
1110
1111/*
1112 * This will restart clock_nanosleep. This is required only by
1113 * compat_clock_nanosleep_restart for now.
1114 */
1115long clock_nanosleep_restart(struct restart_block *restart_block)
1116{
1117        clockid_t which_clock = restart_block->nanosleep.clockid;
1118        struct k_clock *kc = clockid_to_kclock(which_clock);
1119
1120        if (WARN_ON_ONCE(!kc || !kc->nsleep_restart))
1121                return -EINVAL;
1122
1123        return kc->nsleep_restart(restart_block);
1124}
1125