linux/kernel/trace/ring_buffer.c
<<
>>
Prefs
   1/*
   2 * Generic ring buffer
   3 *
   4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
   5 */
   6#include <linux/ftrace_event.h>
   7#include <linux/ring_buffer.h>
   8#include <linux/trace_clock.h>
   9#include <linux/trace_seq.h>
  10#include <linux/spinlock.h>
  11#include <linux/irq_work.h>
  12#include <linux/uaccess.h>
  13#include <linux/hardirq.h>
  14#include <linux/kthread.h>      /* for self test */
  15#include <linux/kmemcheck.h>
  16#include <linux/module.h>
  17#include <linux/percpu.h>
  18#include <linux/mutex.h>
  19#include <linux/delay.h>
  20#include <linux/slab.h>
  21#include <linux/init.h>
  22#include <linux/hash.h>
  23#include <linux/list.h>
  24#include <linux/cpu.h>
  25
  26#include <asm/local.h>
  27
  28static void update_pages_handler(struct work_struct *work);
  29
  30/*
  31 * The ring buffer header is special. We must manually up keep it.
  32 */
  33int ring_buffer_print_entry_header(struct trace_seq *s)
  34{
  35        trace_seq_puts(s, "# compressed entry header\n");
  36        trace_seq_puts(s, "\ttype_len    :    5 bits\n");
  37        trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
  38        trace_seq_puts(s, "\tarray       :   32 bits\n");
  39        trace_seq_putc(s, '\n');
  40        trace_seq_printf(s, "\tpadding     : type == %d\n",
  41                         RINGBUF_TYPE_PADDING);
  42        trace_seq_printf(s, "\ttime_extend : type == %d\n",
  43                         RINGBUF_TYPE_TIME_EXTEND);
  44        trace_seq_printf(s, "\tdata max type_len  == %d\n",
  45                         RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  46
  47        return !trace_seq_has_overflowed(s);
  48}
  49
  50/*
  51 * The ring buffer is made up of a list of pages. A separate list of pages is
  52 * allocated for each CPU. A writer may only write to a buffer that is
  53 * associated with the CPU it is currently executing on.  A reader may read
  54 * from any per cpu buffer.
  55 *
  56 * The reader is special. For each per cpu buffer, the reader has its own
  57 * reader page. When a reader has read the entire reader page, this reader
  58 * page is swapped with another page in the ring buffer.
  59 *
  60 * Now, as long as the writer is off the reader page, the reader can do what
  61 * ever it wants with that page. The writer will never write to that page
  62 * again (as long as it is out of the ring buffer).
  63 *
  64 * Here's some silly ASCII art.
  65 *
  66 *   +------+
  67 *   |reader|          RING BUFFER
  68 *   |page  |
  69 *   +------+        +---+   +---+   +---+
  70 *                   |   |-->|   |-->|   |
  71 *                   +---+   +---+   +---+
  72 *                     ^               |
  73 *                     |               |
  74 *                     +---------------+
  75 *
  76 *
  77 *   +------+
  78 *   |reader|          RING BUFFER
  79 *   |page  |------------------v
  80 *   +------+        +---+   +---+   +---+
  81 *                   |   |-->|   |-->|   |
  82 *                   +---+   +---+   +---+
  83 *                     ^               |
  84 *                     |               |
  85 *                     +---------------+
  86 *
  87 *
  88 *   +------+
  89 *   |reader|          RING BUFFER
  90 *   |page  |------------------v
  91 *   +------+        +---+   +---+   +---+
  92 *      ^            |   |-->|   |-->|   |
  93 *      |            +---+   +---+   +---+
  94 *      |                              |
  95 *      |                              |
  96 *      +------------------------------+
  97 *
  98 *
  99 *   +------+
 100 *   |buffer|          RING BUFFER
 101 *   |page  |------------------v
 102 *   +------+        +---+   +---+   +---+
 103 *      ^            |   |   |   |-->|   |
 104 *      |   New      +---+   +---+   +---+
 105 *      |  Reader------^               |
 106 *      |   page                       |
 107 *      +------------------------------+
 108 *
 109 *
 110 * After we make this swap, the reader can hand this page off to the splice
 111 * code and be done with it. It can even allocate a new page if it needs to
 112 * and swap that into the ring buffer.
 113 *
 114 * We will be using cmpxchg soon to make all this lockless.
 115 *
 116 */
 117
 118/*
 119 * A fast way to enable or disable all ring buffers is to
 120 * call tracing_on or tracing_off. Turning off the ring buffers
 121 * prevents all ring buffers from being recorded to.
 122 * Turning this switch on, makes it OK to write to the
 123 * ring buffer, if the ring buffer is enabled itself.
 124 *
 125 * There's three layers that must be on in order to write
 126 * to the ring buffer.
 127 *
 128 * 1) This global flag must be set.
 129 * 2) The ring buffer must be enabled for recording.
 130 * 3) The per cpu buffer must be enabled for recording.
 131 *
 132 * In case of an anomaly, this global flag has a bit set that
 133 * will permantly disable all ring buffers.
 134 */
 135
 136/*
 137 * Global flag to disable all recording to ring buffers
 138 *  This has two bits: ON, DISABLED
 139 *
 140 *  ON   DISABLED
 141 * ---- ----------
 142 *   0      0        : ring buffers are off
 143 *   1      0        : ring buffers are on
 144 *   X      1        : ring buffers are permanently disabled
 145 */
 146
 147enum {
 148        RB_BUFFERS_ON_BIT       = 0,
 149        RB_BUFFERS_DISABLED_BIT = 1,
 150};
 151
 152enum {
 153        RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
 154        RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
 155};
 156
 157static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
 158
 159/* Used for individual buffers (after the counter) */
 160#define RB_BUFFER_OFF           (1 << 20)
 161
 162#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
 163
 164/**
 165 * tracing_off_permanent - permanently disable ring buffers
 166 *
 167 * This function, once called, will disable all ring buffers
 168 * permanently.
 169 */
 170void tracing_off_permanent(void)
 171{
 172        set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
 173}
 174
 175#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
 176#define RB_ALIGNMENT            4U
 177#define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 178#define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
 179
 180#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
 181# define RB_FORCE_8BYTE_ALIGNMENT       0
 182# define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
 183#else
 184# define RB_FORCE_8BYTE_ALIGNMENT       1
 185# define RB_ARCH_ALIGNMENT              8U
 186#endif
 187
 188#define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
 189
 190/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
 191#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
 192
 193enum {
 194        RB_LEN_TIME_EXTEND = 8,
 195        RB_LEN_TIME_STAMP = 16,
 196};
 197
 198#define skip_time_extend(event) \
 199        ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
 200
 201static inline int rb_null_event(struct ring_buffer_event *event)
 202{
 203        return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
 204}
 205
 206static void rb_event_set_padding(struct ring_buffer_event *event)
 207{
 208        /* padding has a NULL time_delta */
 209        event->type_len = RINGBUF_TYPE_PADDING;
 210        event->time_delta = 0;
 211}
 212
 213static unsigned
 214rb_event_data_length(struct ring_buffer_event *event)
 215{
 216        unsigned length;
 217
 218        if (event->type_len)
 219                length = event->type_len * RB_ALIGNMENT;
 220        else
 221                length = event->array[0];
 222        return length + RB_EVNT_HDR_SIZE;
 223}
 224
 225/*
 226 * Return the length of the given event. Will return
 227 * the length of the time extend if the event is a
 228 * time extend.
 229 */
 230static inline unsigned
 231rb_event_length(struct ring_buffer_event *event)
 232{
 233        switch (event->type_len) {
 234        case RINGBUF_TYPE_PADDING:
 235                if (rb_null_event(event))
 236                        /* undefined */
 237                        return -1;
 238                return  event->array[0] + RB_EVNT_HDR_SIZE;
 239
 240        case RINGBUF_TYPE_TIME_EXTEND:
 241                return RB_LEN_TIME_EXTEND;
 242
 243        case RINGBUF_TYPE_TIME_STAMP:
 244                return RB_LEN_TIME_STAMP;
 245
 246        case RINGBUF_TYPE_DATA:
 247                return rb_event_data_length(event);
 248        default:
 249                BUG();
 250        }
 251        /* not hit */
 252        return 0;
 253}
 254
 255/*
 256 * Return total length of time extend and data,
 257 *   or just the event length for all other events.
 258 */
 259static inline unsigned
 260rb_event_ts_length(struct ring_buffer_event *event)
 261{
 262        unsigned len = 0;
 263
 264        if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
 265                /* time extends include the data event after it */
 266                len = RB_LEN_TIME_EXTEND;
 267                event = skip_time_extend(event);
 268        }
 269        return len + rb_event_length(event);
 270}
 271
 272/**
 273 * ring_buffer_event_length - return the length of the event
 274 * @event: the event to get the length of
 275 *
 276 * Returns the size of the data load of a data event.
 277 * If the event is something other than a data event, it
 278 * returns the size of the event itself. With the exception
 279 * of a TIME EXTEND, where it still returns the size of the
 280 * data load of the data event after it.
 281 */
 282unsigned ring_buffer_event_length(struct ring_buffer_event *event)
 283{
 284        unsigned length;
 285
 286        if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
 287                event = skip_time_extend(event);
 288
 289        length = rb_event_length(event);
 290        if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 291                return length;
 292        length -= RB_EVNT_HDR_SIZE;
 293        if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
 294                length -= sizeof(event->array[0]);
 295        return length;
 296}
 297EXPORT_SYMBOL_GPL(ring_buffer_event_length);
 298
 299/* inline for ring buffer fast paths */
 300static void *
 301rb_event_data(struct ring_buffer_event *event)
 302{
 303        if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
 304                event = skip_time_extend(event);
 305        BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
 306        /* If length is in len field, then array[0] has the data */
 307        if (event->type_len)
 308                return (void *)&event->array[0];
 309        /* Otherwise length is in array[0] and array[1] has the data */
 310        return (void *)&event->array[1];
 311}
 312
 313/**
 314 * ring_buffer_event_data - return the data of the event
 315 * @event: the event to get the data from
 316 */
 317void *ring_buffer_event_data(struct ring_buffer_event *event)
 318{
 319        return rb_event_data(event);
 320}
 321EXPORT_SYMBOL_GPL(ring_buffer_event_data);
 322
 323#define for_each_buffer_cpu(buffer, cpu)                \
 324        for_each_cpu(cpu, buffer->cpumask)
 325
 326#define TS_SHIFT        27
 327#define TS_MASK         ((1ULL << TS_SHIFT) - 1)
 328#define TS_DELTA_TEST   (~TS_MASK)
 329
 330/* Flag when events were overwritten */
 331#define RB_MISSED_EVENTS        (1 << 31)
 332/* Missed count stored at end */
 333#define RB_MISSED_STORED        (1 << 30)
 334
 335struct buffer_data_page {
 336        u64              time_stamp;    /* page time stamp */
 337        local_t          commit;        /* write committed index */
 338        unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
 339};
 340
 341/*
 342 * Note, the buffer_page list must be first. The buffer pages
 343 * are allocated in cache lines, which means that each buffer
 344 * page will be at the beginning of a cache line, and thus
 345 * the least significant bits will be zero. We use this to
 346 * add flags in the list struct pointers, to make the ring buffer
 347 * lockless.
 348 */
 349struct buffer_page {
 350        struct list_head list;          /* list of buffer pages */
 351        local_t          write;         /* index for next write */
 352        unsigned         read;          /* index for next read */
 353        local_t          entries;       /* entries on this page */
 354        unsigned long    real_end;      /* real end of data */
 355        struct buffer_data_page *page;  /* Actual data page */
 356};
 357
 358/*
 359 * The buffer page counters, write and entries, must be reset
 360 * atomically when crossing page boundaries. To synchronize this
 361 * update, two counters are inserted into the number. One is
 362 * the actual counter for the write position or count on the page.
 363 *
 364 * The other is a counter of updaters. Before an update happens
 365 * the update partition of the counter is incremented. This will
 366 * allow the updater to update the counter atomically.
 367 *
 368 * The counter is 20 bits, and the state data is 12.
 369 */
 370#define RB_WRITE_MASK           0xfffff
 371#define RB_WRITE_INTCNT         (1 << 20)
 372
 373static void rb_init_page(struct buffer_data_page *bpage)
 374{
 375        local_set(&bpage->commit, 0);
 376}
 377
 378/**
 379 * ring_buffer_page_len - the size of data on the page.
 380 * @page: The page to read
 381 *
 382 * Returns the amount of data on the page, including buffer page header.
 383 */
 384size_t ring_buffer_page_len(void *page)
 385{
 386        return local_read(&((struct buffer_data_page *)page)->commit)
 387                + BUF_PAGE_HDR_SIZE;
 388}
 389
 390/*
 391 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
 392 * this issue out.
 393 */
 394static void free_buffer_page(struct buffer_page *bpage)
 395{
 396        free_page((unsigned long)bpage->page);
 397        kfree(bpage);
 398}
 399
 400/*
 401 * We need to fit the time_stamp delta into 27 bits.
 402 */
 403static inline int test_time_stamp(u64 delta)
 404{
 405        if (delta & TS_DELTA_TEST)
 406                return 1;
 407        return 0;
 408}
 409
 410#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
 411
 412/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
 413#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
 414
 415int ring_buffer_print_page_header(struct trace_seq *s)
 416{
 417        struct buffer_data_page field;
 418
 419        trace_seq_printf(s, "\tfield: u64 timestamp;\t"
 420                         "offset:0;\tsize:%u;\tsigned:%u;\n",
 421                         (unsigned int)sizeof(field.time_stamp),
 422                         (unsigned int)is_signed_type(u64));
 423
 424        trace_seq_printf(s, "\tfield: local_t commit;\t"
 425                         "offset:%u;\tsize:%u;\tsigned:%u;\n",
 426                         (unsigned int)offsetof(typeof(field), commit),
 427                         (unsigned int)sizeof(field.commit),
 428                         (unsigned int)is_signed_type(long));
 429
 430        trace_seq_printf(s, "\tfield: int overwrite;\t"
 431                         "offset:%u;\tsize:%u;\tsigned:%u;\n",
 432                         (unsigned int)offsetof(typeof(field), commit),
 433                         1,
 434                         (unsigned int)is_signed_type(long));
 435
 436        trace_seq_printf(s, "\tfield: char data;\t"
 437                         "offset:%u;\tsize:%u;\tsigned:%u;\n",
 438                         (unsigned int)offsetof(typeof(field), data),
 439                         (unsigned int)BUF_PAGE_SIZE,
 440                         (unsigned int)is_signed_type(char));
 441
 442        return !trace_seq_has_overflowed(s);
 443}
 444
 445struct rb_irq_work {
 446        struct irq_work                 work;
 447        wait_queue_head_t               waiters;
 448        wait_queue_head_t               full_waiters;
 449        bool                            waiters_pending;
 450        bool                            full_waiters_pending;
 451        bool                            wakeup_full;
 452};
 453
 454/*
 455 * head_page == tail_page && head == tail then buffer is empty.
 456 */
 457struct ring_buffer_per_cpu {
 458        int                             cpu;
 459        atomic_t                        record_disabled;
 460        struct ring_buffer              *buffer;
 461        raw_spinlock_t                  reader_lock;    /* serialize readers */
 462        arch_spinlock_t                 lock;
 463        struct lock_class_key           lock_key;
 464        unsigned int                    nr_pages;
 465        struct list_head                *pages;
 466        struct buffer_page              *head_page;     /* read from head */
 467        struct buffer_page              *tail_page;     /* write to tail */
 468        struct buffer_page              *commit_page;   /* committed pages */
 469        struct buffer_page              *reader_page;
 470        unsigned long                   lost_events;
 471        unsigned long                   last_overrun;
 472        local_t                         entries_bytes;
 473        local_t                         entries;
 474        local_t                         overrun;
 475        local_t                         commit_overrun;
 476        local_t                         dropped_events;
 477        local_t                         committing;
 478        local_t                         commits;
 479        unsigned long                   read;
 480        unsigned long                   read_bytes;
 481        u64                             write_stamp;
 482        u64                             read_stamp;
 483        /* ring buffer pages to update, > 0 to add, < 0 to remove */
 484        int                             nr_pages_to_update;
 485        struct list_head                new_pages; /* new pages to add */
 486        struct work_struct              update_pages_work;
 487        struct completion               update_done;
 488
 489        struct rb_irq_work              irq_work;
 490};
 491
 492struct ring_buffer {
 493        unsigned                        flags;
 494        int                             cpus;
 495        atomic_t                        record_disabled;
 496        atomic_t                        resize_disabled;
 497        cpumask_var_t                   cpumask;
 498
 499        struct lock_class_key           *reader_lock_key;
 500
 501        struct mutex                    mutex;
 502
 503        struct ring_buffer_per_cpu      **buffers;
 504
 505#ifdef CONFIG_HOTPLUG_CPU
 506        struct notifier_block           cpu_notify;
 507#endif
 508        u64                             (*clock)(void);
 509
 510        struct rb_irq_work              irq_work;
 511};
 512
 513struct ring_buffer_iter {
 514        struct ring_buffer_per_cpu      *cpu_buffer;
 515        unsigned long                   head;
 516        struct buffer_page              *head_page;
 517        struct buffer_page              *cache_reader_page;
 518        unsigned long                   cache_read;
 519        u64                             read_stamp;
 520};
 521
 522/*
 523 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
 524 *
 525 * Schedules a delayed work to wake up any task that is blocked on the
 526 * ring buffer waiters queue.
 527 */
 528static void rb_wake_up_waiters(struct irq_work *work)
 529{
 530        struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
 531
 532        wake_up_all(&rbwork->waiters);
 533        if (rbwork->wakeup_full) {
 534                rbwork->wakeup_full = false;
 535                wake_up_all(&rbwork->full_waiters);
 536        }
 537}
 538
 539/**
 540 * ring_buffer_wait - wait for input to the ring buffer
 541 * @buffer: buffer to wait on
 542 * @cpu: the cpu buffer to wait on
 543 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
 544 *
 545 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 546 * as data is added to any of the @buffer's cpu buffers. Otherwise
 547 * it will wait for data to be added to a specific cpu buffer.
 548 */
 549int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
 550{
 551        struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
 552        DEFINE_WAIT(wait);
 553        struct rb_irq_work *work;
 554        int ret = 0;
 555
 556        /*
 557         * Depending on what the caller is waiting for, either any
 558         * data in any cpu buffer, or a specific buffer, put the
 559         * caller on the appropriate wait queue.
 560         */
 561        if (cpu == RING_BUFFER_ALL_CPUS) {
 562                work = &buffer->irq_work;
 563                /* Full only makes sense on per cpu reads */
 564                full = false;
 565        } else {
 566                if (!cpumask_test_cpu(cpu, buffer->cpumask))
 567                        return -ENODEV;
 568                cpu_buffer = buffer->buffers[cpu];
 569                work = &cpu_buffer->irq_work;
 570        }
 571
 572
 573        while (true) {
 574                if (full)
 575                        prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
 576                else
 577                        prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
 578
 579                /*
 580                 * The events can happen in critical sections where
 581                 * checking a work queue can cause deadlocks.
 582                 * After adding a task to the queue, this flag is set
 583                 * only to notify events to try to wake up the queue
 584                 * using irq_work.
 585                 *
 586                 * We don't clear it even if the buffer is no longer
 587                 * empty. The flag only causes the next event to run
 588                 * irq_work to do the work queue wake up. The worse
 589                 * that can happen if we race with !trace_empty() is that
 590                 * an event will cause an irq_work to try to wake up
 591                 * an empty queue.
 592                 *
 593                 * There's no reason to protect this flag either, as
 594                 * the work queue and irq_work logic will do the necessary
 595                 * synchronization for the wake ups. The only thing
 596                 * that is necessary is that the wake up happens after
 597                 * a task has been queued. It's OK for spurious wake ups.
 598                 */
 599                if (full)
 600                        work->full_waiters_pending = true;
 601                else
 602                        work->waiters_pending = true;
 603
 604                if (signal_pending(current)) {
 605                        ret = -EINTR;
 606                        break;
 607                }
 608
 609                if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
 610                        break;
 611
 612                if (cpu != RING_BUFFER_ALL_CPUS &&
 613                    !ring_buffer_empty_cpu(buffer, cpu)) {
 614                        unsigned long flags;
 615                        bool pagebusy;
 616
 617                        if (!full)
 618                                break;
 619
 620                        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
 621                        pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
 622                        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
 623
 624                        if (!pagebusy)
 625                                break;
 626                }
 627
 628                schedule();
 629        }
 630
 631        if (full)
 632                finish_wait(&work->full_waiters, &wait);
 633        else
 634                finish_wait(&work->waiters, &wait);
 635
 636        return ret;
 637}
 638
 639/**
 640 * ring_buffer_poll_wait - poll on buffer input
 641 * @buffer: buffer to wait on
 642 * @cpu: the cpu buffer to wait on
 643 * @filp: the file descriptor
 644 * @poll_table: The poll descriptor
 645 *
 646 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 647 * as data is added to any of the @buffer's cpu buffers. Otherwise
 648 * it will wait for data to be added to a specific cpu buffer.
 649 *
 650 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
 651 * zero otherwise.
 652 */
 653int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
 654                          struct file *filp, poll_table *poll_table)
 655{
 656        struct ring_buffer_per_cpu *cpu_buffer;
 657        struct rb_irq_work *work;
 658
 659        if (cpu == RING_BUFFER_ALL_CPUS)
 660                work = &buffer->irq_work;
 661        else {
 662                if (!cpumask_test_cpu(cpu, buffer->cpumask))
 663                        return -EINVAL;
 664
 665                cpu_buffer = buffer->buffers[cpu];
 666                work = &cpu_buffer->irq_work;
 667        }
 668
 669        poll_wait(filp, &work->waiters, poll_table);
 670        work->waiters_pending = true;
 671        /*
 672         * There's a tight race between setting the waiters_pending and
 673         * checking if the ring buffer is empty.  Once the waiters_pending bit
 674         * is set, the next event will wake the task up, but we can get stuck
 675         * if there's only a single event in.
 676         *
 677         * FIXME: Ideally, we need a memory barrier on the writer side as well,
 678         * but adding a memory barrier to all events will cause too much of a
 679         * performance hit in the fast path.  We only need a memory barrier when
 680         * the buffer goes from empty to having content.  But as this race is
 681         * extremely small, and it's not a problem if another event comes in, we
 682         * will fix it later.
 683         */
 684        smp_mb();
 685
 686        if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
 687            (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
 688                return POLLIN | POLLRDNORM;
 689        return 0;
 690}
 691
 692/* buffer may be either ring_buffer or ring_buffer_per_cpu */
 693#define RB_WARN_ON(b, cond)                                             \
 694        ({                                                              \
 695                int _____ret = unlikely(cond);                          \
 696                if (_____ret) {                                         \
 697                        if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
 698                                struct ring_buffer_per_cpu *__b =       \
 699                                        (void *)b;                      \
 700                                atomic_inc(&__b->buffer->record_disabled); \
 701                        } else                                          \
 702                                atomic_inc(&b->record_disabled);        \
 703                        WARN_ON(1);                                     \
 704                }                                                       \
 705                _____ret;                                               \
 706        })
 707
 708/* Up this if you want to test the TIME_EXTENTS and normalization */
 709#define DEBUG_SHIFT 0
 710
 711static inline u64 rb_time_stamp(struct ring_buffer *buffer)
 712{
 713        /* shift to debug/test normalization and TIME_EXTENTS */
 714        return buffer->clock() << DEBUG_SHIFT;
 715}
 716
 717u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
 718{
 719        u64 time;
 720
 721        preempt_disable_notrace();
 722        time = rb_time_stamp(buffer);
 723        preempt_enable_no_resched_notrace();
 724
 725        return time;
 726}
 727EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
 728
 729void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
 730                                      int cpu, u64 *ts)
 731{
 732        /* Just stupid testing the normalize function and deltas */
 733        *ts >>= DEBUG_SHIFT;
 734}
 735EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
 736
 737/*
 738 * Making the ring buffer lockless makes things tricky.
 739 * Although writes only happen on the CPU that they are on,
 740 * and they only need to worry about interrupts. Reads can
 741 * happen on any CPU.
 742 *
 743 * The reader page is always off the ring buffer, but when the
 744 * reader finishes with a page, it needs to swap its page with
 745 * a new one from the buffer. The reader needs to take from
 746 * the head (writes go to the tail). But if a writer is in overwrite
 747 * mode and wraps, it must push the head page forward.
 748 *
 749 * Here lies the problem.
 750 *
 751 * The reader must be careful to replace only the head page, and
 752 * not another one. As described at the top of the file in the
 753 * ASCII art, the reader sets its old page to point to the next
 754 * page after head. It then sets the page after head to point to
 755 * the old reader page. But if the writer moves the head page
 756 * during this operation, the reader could end up with the tail.
 757 *
 758 * We use cmpxchg to help prevent this race. We also do something
 759 * special with the page before head. We set the LSB to 1.
 760 *
 761 * When the writer must push the page forward, it will clear the
 762 * bit that points to the head page, move the head, and then set
 763 * the bit that points to the new head page.
 764 *
 765 * We also don't want an interrupt coming in and moving the head
 766 * page on another writer. Thus we use the second LSB to catch
 767 * that too. Thus:
 768 *
 769 * head->list->prev->next        bit 1          bit 0
 770 *                              -------        -------
 771 * Normal page                     0              0
 772 * Points to head page             0              1
 773 * New head page                   1              0
 774 *
 775 * Note we can not trust the prev pointer of the head page, because:
 776 *
 777 * +----+       +-----+        +-----+
 778 * |    |------>|  T  |---X--->|  N  |
 779 * |    |<------|     |        |     |
 780 * +----+       +-----+        +-----+
 781 *   ^                           ^ |
 782 *   |          +-----+          | |
 783 *   +----------|  R  |----------+ |
 784 *              |     |<-----------+
 785 *              +-----+
 786 *
 787 * Key:  ---X-->  HEAD flag set in pointer
 788 *         T      Tail page
 789 *         R      Reader page
 790 *         N      Next page
 791 *
 792 * (see __rb_reserve_next() to see where this happens)
 793 *
 794 *  What the above shows is that the reader just swapped out
 795 *  the reader page with a page in the buffer, but before it
 796 *  could make the new header point back to the new page added
 797 *  it was preempted by a writer. The writer moved forward onto
 798 *  the new page added by the reader and is about to move forward
 799 *  again.
 800 *
 801 *  You can see, it is legitimate for the previous pointer of
 802 *  the head (or any page) not to point back to itself. But only
 803 *  temporarially.
 804 */
 805
 806#define RB_PAGE_NORMAL          0UL
 807#define RB_PAGE_HEAD            1UL
 808#define RB_PAGE_UPDATE          2UL
 809
 810
 811#define RB_FLAG_MASK            3UL
 812
 813/* PAGE_MOVED is not part of the mask */
 814#define RB_PAGE_MOVED           4UL
 815
 816/*
 817 * rb_list_head - remove any bit
 818 */
 819static struct list_head *rb_list_head(struct list_head *list)
 820{
 821        unsigned long val = (unsigned long)list;
 822
 823        return (struct list_head *)(val & ~RB_FLAG_MASK);
 824}
 825
 826/*
 827 * rb_is_head_page - test if the given page is the head page
 828 *
 829 * Because the reader may move the head_page pointer, we can
 830 * not trust what the head page is (it may be pointing to
 831 * the reader page). But if the next page is a header page,
 832 * its flags will be non zero.
 833 */
 834static inline int
 835rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
 836                struct buffer_page *page, struct list_head *list)
 837{
 838        unsigned long val;
 839
 840        val = (unsigned long)list->next;
 841
 842        if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
 843                return RB_PAGE_MOVED;
 844
 845        return val & RB_FLAG_MASK;
 846}
 847
 848/*
 849 * rb_is_reader_page
 850 *
 851 * The unique thing about the reader page, is that, if the
 852 * writer is ever on it, the previous pointer never points
 853 * back to the reader page.
 854 */
 855static int rb_is_reader_page(struct buffer_page *page)
 856{
 857        struct list_head *list = page->list.prev;
 858
 859        return rb_list_head(list->next) != &page->list;
 860}
 861
 862/*
 863 * rb_set_list_to_head - set a list_head to be pointing to head.
 864 */
 865static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
 866                                struct list_head *list)
 867{
 868        unsigned long *ptr;
 869
 870        ptr = (unsigned long *)&list->next;
 871        *ptr |= RB_PAGE_HEAD;
 872        *ptr &= ~RB_PAGE_UPDATE;
 873}
 874
 875/*
 876 * rb_head_page_activate - sets up head page
 877 */
 878static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
 879{
 880        struct buffer_page *head;
 881
 882        head = cpu_buffer->head_page;
 883        if (!head)
 884                return;
 885
 886        /*
 887         * Set the previous list pointer to have the HEAD flag.
 888         */
 889        rb_set_list_to_head(cpu_buffer, head->list.prev);
 890}
 891
 892static void rb_list_head_clear(struct list_head *list)
 893{
 894        unsigned long *ptr = (unsigned long *)&list->next;
 895
 896        *ptr &= ~RB_FLAG_MASK;
 897}
 898
 899/*
 900 * rb_head_page_dactivate - clears head page ptr (for free list)
 901 */
 902static void
 903rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
 904{
 905        struct list_head *hd;
 906
 907        /* Go through the whole list and clear any pointers found. */
 908        rb_list_head_clear(cpu_buffer->pages);
 909
 910        list_for_each(hd, cpu_buffer->pages)
 911                rb_list_head_clear(hd);
 912}
 913
 914static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
 915                            struct buffer_page *head,
 916                            struct buffer_page *prev,
 917                            int old_flag, int new_flag)
 918{
 919        struct list_head *list;
 920        unsigned long val = (unsigned long)&head->list;
 921        unsigned long ret;
 922
 923        list = &prev->list;
 924
 925        val &= ~RB_FLAG_MASK;
 926
 927        ret = cmpxchg((unsigned long *)&list->next,
 928                      val | old_flag, val | new_flag);
 929
 930        /* check if the reader took the page */
 931        if ((ret & ~RB_FLAG_MASK) != val)
 932                return RB_PAGE_MOVED;
 933
 934        return ret & RB_FLAG_MASK;
 935}
 936
 937static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
 938                                   struct buffer_page *head,
 939                                   struct buffer_page *prev,
 940                                   int old_flag)
 941{
 942        return rb_head_page_set(cpu_buffer, head, prev,
 943                                old_flag, RB_PAGE_UPDATE);
 944}
 945
 946static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
 947                                 struct buffer_page *head,
 948                                 struct buffer_page *prev,
 949                                 int old_flag)
 950{
 951        return rb_head_page_set(cpu_buffer, head, prev,
 952                                old_flag, RB_PAGE_HEAD);
 953}
 954
 955static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
 956                                   struct buffer_page *head,
 957                                   struct buffer_page *prev,
 958                                   int old_flag)
 959{
 960        return rb_head_page_set(cpu_buffer, head, prev,
 961                                old_flag, RB_PAGE_NORMAL);
 962}
 963
 964static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
 965                               struct buffer_page **bpage)
 966{
 967        struct list_head *p = rb_list_head((*bpage)->list.next);
 968
 969        *bpage = list_entry(p, struct buffer_page, list);
 970}
 971
 972static struct buffer_page *
 973rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
 974{
 975        struct buffer_page *head;
 976        struct buffer_page *page;
 977        struct list_head *list;
 978        int i;
 979
 980        if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
 981                return NULL;
 982
 983        /* sanity check */
 984        list = cpu_buffer->pages;
 985        if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
 986                return NULL;
 987
 988        page = head = cpu_buffer->head_page;
 989        /*
 990         * It is possible that the writer moves the header behind
 991         * where we started, and we miss in one loop.
 992         * A second loop should grab the header, but we'll do
 993         * three loops just because I'm paranoid.
 994         */
 995        for (i = 0; i < 3; i++) {
 996                do {
 997                        if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
 998                                cpu_buffer->head_page = page;
 999                                return page;
1000                        }
1001                        rb_inc_page(cpu_buffer, &page);
1002                } while (page != head);
1003        }
1004
1005        RB_WARN_ON(cpu_buffer, 1);
1006
1007        return NULL;
1008}
1009
1010static int rb_head_page_replace(struct buffer_page *old,
1011                                struct buffer_page *new)
1012{
1013        unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1014        unsigned long val;
1015        unsigned long ret;
1016
1017        val = *ptr & ~RB_FLAG_MASK;
1018        val |= RB_PAGE_HEAD;
1019
1020        ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1021
1022        return ret == val;
1023}
1024
1025/*
1026 * rb_tail_page_update - move the tail page forward
1027 *
1028 * Returns 1 if moved tail page, 0 if someone else did.
1029 */
1030static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1031                               struct buffer_page *tail_page,
1032                               struct buffer_page *next_page)
1033{
1034        struct buffer_page *old_tail;
1035        unsigned long old_entries;
1036        unsigned long old_write;
1037        int ret = 0;
1038
1039        /*
1040         * The tail page now needs to be moved forward.
1041         *
1042         * We need to reset the tail page, but without messing
1043         * with possible erasing of data brought in by interrupts
1044         * that have moved the tail page and are currently on it.
1045         *
1046         * We add a counter to the write field to denote this.
1047         */
1048        old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1049        old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1050
1051        /*
1052         * Just make sure we have seen our old_write and synchronize
1053         * with any interrupts that come in.
1054         */
1055        barrier();
1056
1057        /*
1058         * If the tail page is still the same as what we think
1059         * it is, then it is up to us to update the tail
1060         * pointer.
1061         */
1062        if (tail_page == cpu_buffer->tail_page) {
1063                /* Zero the write counter */
1064                unsigned long val = old_write & ~RB_WRITE_MASK;
1065                unsigned long eval = old_entries & ~RB_WRITE_MASK;
1066
1067                /*
1068                 * This will only succeed if an interrupt did
1069                 * not come in and change it. In which case, we
1070                 * do not want to modify it.
1071                 *
1072                 * We add (void) to let the compiler know that we do not care
1073                 * about the return value of these functions. We use the
1074                 * cmpxchg to only update if an interrupt did not already
1075                 * do it for us. If the cmpxchg fails, we don't care.
1076                 */
1077                (void)local_cmpxchg(&next_page->write, old_write, val);
1078                (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1079
1080                /*
1081                 * No need to worry about races with clearing out the commit.
1082                 * it only can increment when a commit takes place. But that
1083                 * only happens in the outer most nested commit.
1084                 */
1085                local_set(&next_page->page->commit, 0);
1086
1087                old_tail = cmpxchg(&cpu_buffer->tail_page,
1088                                   tail_page, next_page);
1089
1090                if (old_tail == tail_page)
1091                        ret = 1;
1092        }
1093
1094        return ret;
1095}
1096
1097static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1098                          struct buffer_page *bpage)
1099{
1100        unsigned long val = (unsigned long)bpage;
1101
1102        if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1103                return 1;
1104
1105        return 0;
1106}
1107
1108/**
1109 * rb_check_list - make sure a pointer to a list has the last bits zero
1110 */
1111static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1112                         struct list_head *list)
1113{
1114        if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1115                return 1;
1116        if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1117                return 1;
1118        return 0;
1119}
1120
1121/**
1122 * rb_check_pages - integrity check of buffer pages
1123 * @cpu_buffer: CPU buffer with pages to test
1124 *
1125 * As a safety measure we check to make sure the data pages have not
1126 * been corrupted.
1127 */
1128static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1129{
1130        struct list_head *head = cpu_buffer->pages;
1131        struct buffer_page *bpage, *tmp;
1132
1133        /* Reset the head page if it exists */
1134        if (cpu_buffer->head_page)
1135                rb_set_head_page(cpu_buffer);
1136
1137        rb_head_page_deactivate(cpu_buffer);
1138
1139        if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1140                return -1;
1141        if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1142                return -1;
1143
1144        if (rb_check_list(cpu_buffer, head))
1145                return -1;
1146
1147        list_for_each_entry_safe(bpage, tmp, head, list) {
1148                if (RB_WARN_ON(cpu_buffer,
1149                               bpage->list.next->prev != &bpage->list))
1150                        return -1;
1151                if (RB_WARN_ON(cpu_buffer,
1152                               bpage->list.prev->next != &bpage->list))
1153                        return -1;
1154                if (rb_check_list(cpu_buffer, &bpage->list))
1155                        return -1;
1156        }
1157
1158        rb_head_page_activate(cpu_buffer);
1159
1160        return 0;
1161}
1162
1163static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1164{
1165        int i;
1166        struct buffer_page *bpage, *tmp;
1167
1168        for (i = 0; i < nr_pages; i++) {
1169                struct page *page;
1170                /*
1171                 * __GFP_NORETRY flag makes sure that the allocation fails
1172                 * gracefully without invoking oom-killer and the system is
1173                 * not destabilized.
1174                 */
1175                bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1176                                    GFP_KERNEL | __GFP_NORETRY,
1177                                    cpu_to_node(cpu));
1178                if (!bpage)
1179                        goto free_pages;
1180
1181                list_add(&bpage->list, pages);
1182
1183                page = alloc_pages_node(cpu_to_node(cpu),
1184                                        GFP_KERNEL | __GFP_NORETRY, 0);
1185                if (!page)
1186                        goto free_pages;
1187                bpage->page = page_address(page);
1188                rb_init_page(bpage->page);
1189        }
1190
1191        return 0;
1192
1193free_pages:
1194        list_for_each_entry_safe(bpage, tmp, pages, list) {
1195                list_del_init(&bpage->list);
1196                free_buffer_page(bpage);
1197        }
1198
1199        return -ENOMEM;
1200}
1201
1202static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1203                             unsigned nr_pages)
1204{
1205        LIST_HEAD(pages);
1206
1207        WARN_ON(!nr_pages);
1208
1209        if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1210                return -ENOMEM;
1211
1212        /*
1213         * The ring buffer page list is a circular list that does not
1214         * start and end with a list head. All page list items point to
1215         * other pages.
1216         */
1217        cpu_buffer->pages = pages.next;
1218        list_del(&pages);
1219
1220        cpu_buffer->nr_pages = nr_pages;
1221
1222        rb_check_pages(cpu_buffer);
1223
1224        return 0;
1225}
1226
1227static struct ring_buffer_per_cpu *
1228rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1229{
1230        struct ring_buffer_per_cpu *cpu_buffer;
1231        struct buffer_page *bpage;
1232        struct page *page;
1233        int ret;
1234
1235        cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1236                                  GFP_KERNEL, cpu_to_node(cpu));
1237        if (!cpu_buffer)
1238                return NULL;
1239
1240        cpu_buffer->cpu = cpu;
1241        cpu_buffer->buffer = buffer;
1242        raw_spin_lock_init(&cpu_buffer->reader_lock);
1243        lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1244        cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1245        INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1246        init_completion(&cpu_buffer->update_done);
1247        init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1248        init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1249        init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1250
1251        bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1252                            GFP_KERNEL, cpu_to_node(cpu));
1253        if (!bpage)
1254                goto fail_free_buffer;
1255
1256        rb_check_bpage(cpu_buffer, bpage);
1257
1258        cpu_buffer->reader_page = bpage;
1259        page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1260        if (!page)
1261                goto fail_free_reader;
1262        bpage->page = page_address(page);
1263        rb_init_page(bpage->page);
1264
1265        INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1266        INIT_LIST_HEAD(&cpu_buffer->new_pages);
1267
1268        ret = rb_allocate_pages(cpu_buffer, nr_pages);
1269        if (ret < 0)
1270                goto fail_free_reader;
1271
1272        cpu_buffer->head_page
1273                = list_entry(cpu_buffer->pages, struct buffer_page, list);
1274        cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1275
1276        rb_head_page_activate(cpu_buffer);
1277
1278        return cpu_buffer;
1279
1280 fail_free_reader:
1281        free_buffer_page(cpu_buffer->reader_page);
1282
1283 fail_free_buffer:
1284        kfree(cpu_buffer);
1285        return NULL;
1286}
1287
1288static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1289{
1290        struct list_head *head = cpu_buffer->pages;
1291        struct buffer_page *bpage, *tmp;
1292
1293        free_buffer_page(cpu_buffer->reader_page);
1294
1295        rb_head_page_deactivate(cpu_buffer);
1296
1297        if (head) {
1298                list_for_each_entry_safe(bpage, tmp, head, list) {
1299                        list_del_init(&bpage->list);
1300                        free_buffer_page(bpage);
1301                }
1302                bpage = list_entry(head, struct buffer_page, list);
1303                free_buffer_page(bpage);
1304        }
1305
1306        kfree(cpu_buffer);
1307}
1308
1309#ifdef CONFIG_HOTPLUG_CPU
1310static int rb_cpu_notify(struct notifier_block *self,
1311                         unsigned long action, void *hcpu);
1312#endif
1313
1314/**
1315 * __ring_buffer_alloc - allocate a new ring_buffer
1316 * @size: the size in bytes per cpu that is needed.
1317 * @flags: attributes to set for the ring buffer.
1318 *
1319 * Currently the only flag that is available is the RB_FL_OVERWRITE
1320 * flag. This flag means that the buffer will overwrite old data
1321 * when the buffer wraps. If this flag is not set, the buffer will
1322 * drop data when the tail hits the head.
1323 */
1324struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1325                                        struct lock_class_key *key)
1326{
1327        struct ring_buffer *buffer;
1328        int bsize;
1329        int cpu, nr_pages;
1330
1331        /* keep it in its own cache line */
1332        buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1333                         GFP_KERNEL);
1334        if (!buffer)
1335                return NULL;
1336
1337        if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1338                goto fail_free_buffer;
1339
1340        nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1341        buffer->flags = flags;
1342        buffer->clock = trace_clock_local;
1343        buffer->reader_lock_key = key;
1344
1345        init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1346        init_waitqueue_head(&buffer->irq_work.waiters);
1347
1348        /* need at least two pages */
1349        if (nr_pages < 2)
1350                nr_pages = 2;
1351
1352        /*
1353         * In case of non-hotplug cpu, if the ring-buffer is allocated
1354         * in early initcall, it will not be notified of secondary cpus.
1355         * In that off case, we need to allocate for all possible cpus.
1356         */
1357#ifdef CONFIG_HOTPLUG_CPU
1358        cpu_notifier_register_begin();
1359        cpumask_copy(buffer->cpumask, cpu_online_mask);
1360#else
1361        cpumask_copy(buffer->cpumask, cpu_possible_mask);
1362#endif
1363        buffer->cpus = nr_cpu_ids;
1364
1365        bsize = sizeof(void *) * nr_cpu_ids;
1366        buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1367                                  GFP_KERNEL);
1368        if (!buffer->buffers)
1369                goto fail_free_cpumask;
1370
1371        for_each_buffer_cpu(buffer, cpu) {
1372                buffer->buffers[cpu] =
1373                        rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1374                if (!buffer->buffers[cpu])
1375                        goto fail_free_buffers;
1376        }
1377
1378#ifdef CONFIG_HOTPLUG_CPU
1379        buffer->cpu_notify.notifier_call = rb_cpu_notify;
1380        buffer->cpu_notify.priority = 0;
1381        __register_cpu_notifier(&buffer->cpu_notify);
1382        cpu_notifier_register_done();
1383#endif
1384
1385        mutex_init(&buffer->mutex);
1386
1387        return buffer;
1388
1389 fail_free_buffers:
1390        for_each_buffer_cpu(buffer, cpu) {
1391                if (buffer->buffers[cpu])
1392                        rb_free_cpu_buffer(buffer->buffers[cpu]);
1393        }
1394        kfree(buffer->buffers);
1395
1396 fail_free_cpumask:
1397        free_cpumask_var(buffer->cpumask);
1398#ifdef CONFIG_HOTPLUG_CPU
1399        cpu_notifier_register_done();
1400#endif
1401
1402 fail_free_buffer:
1403        kfree(buffer);
1404        return NULL;
1405}
1406EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1407
1408/**
1409 * ring_buffer_free - free a ring buffer.
1410 * @buffer: the buffer to free.
1411 */
1412void
1413ring_buffer_free(struct ring_buffer *buffer)
1414{
1415        int cpu;
1416
1417#ifdef CONFIG_HOTPLUG_CPU
1418        cpu_notifier_register_begin();
1419        __unregister_cpu_notifier(&buffer->cpu_notify);
1420#endif
1421
1422        for_each_buffer_cpu(buffer, cpu)
1423                rb_free_cpu_buffer(buffer->buffers[cpu]);
1424
1425#ifdef CONFIG_HOTPLUG_CPU
1426        cpu_notifier_register_done();
1427#endif
1428
1429        kfree(buffer->buffers);
1430        free_cpumask_var(buffer->cpumask);
1431
1432        kfree(buffer);
1433}
1434EXPORT_SYMBOL_GPL(ring_buffer_free);
1435
1436void ring_buffer_set_clock(struct ring_buffer *buffer,
1437                           u64 (*clock)(void))
1438{
1439        buffer->clock = clock;
1440}
1441
1442static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1443
1444static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1445{
1446        return local_read(&bpage->entries) & RB_WRITE_MASK;
1447}
1448
1449static inline unsigned long rb_page_write(struct buffer_page *bpage)
1450{
1451        return local_read(&bpage->write) & RB_WRITE_MASK;
1452}
1453
1454static int
1455rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1456{
1457        struct list_head *tail_page, *to_remove, *next_page;
1458        struct buffer_page *to_remove_page, *tmp_iter_page;
1459        struct buffer_page *last_page, *first_page;
1460        unsigned int nr_removed;
1461        unsigned long head_bit;
1462        int page_entries;
1463
1464        head_bit = 0;
1465
1466        raw_spin_lock_irq(&cpu_buffer->reader_lock);
1467        atomic_inc(&cpu_buffer->record_disabled);
1468        /*
1469         * We don't race with the readers since we have acquired the reader
1470         * lock. We also don't race with writers after disabling recording.
1471         * This makes it easy to figure out the first and the last page to be
1472         * removed from the list. We unlink all the pages in between including
1473         * the first and last pages. This is done in a busy loop so that we
1474         * lose the least number of traces.
1475         * The pages are freed after we restart recording and unlock readers.
1476         */
1477        tail_page = &cpu_buffer->tail_page->list;
1478
1479        /*
1480         * tail page might be on reader page, we remove the next page
1481         * from the ring buffer
1482         */
1483        if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1484                tail_page = rb_list_head(tail_page->next);
1485        to_remove = tail_page;
1486
1487        /* start of pages to remove */
1488        first_page = list_entry(rb_list_head(to_remove->next),
1489                                struct buffer_page, list);
1490
1491        for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1492                to_remove = rb_list_head(to_remove)->next;
1493                head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1494        }
1495
1496        next_page = rb_list_head(to_remove)->next;
1497
1498        /*
1499         * Now we remove all pages between tail_page and next_page.
1500         * Make sure that we have head_bit value preserved for the
1501         * next page
1502         */
1503        tail_page->next = (struct list_head *)((unsigned long)next_page |
1504                                                head_bit);
1505        next_page = rb_list_head(next_page);
1506        next_page->prev = tail_page;
1507
1508        /* make sure pages points to a valid page in the ring buffer */
1509        cpu_buffer->pages = next_page;
1510
1511        /* update head page */
1512        if (head_bit)
1513                cpu_buffer->head_page = list_entry(next_page,
1514                                                struct buffer_page, list);
1515
1516        /*
1517         * change read pointer to make sure any read iterators reset
1518         * themselves
1519         */
1520        cpu_buffer->read = 0;
1521
1522        /* pages are removed, resume tracing and then free the pages */
1523        atomic_dec(&cpu_buffer->record_disabled);
1524        raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1525
1526        RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1527
1528        /* last buffer page to remove */
1529        last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1530                                list);
1531        tmp_iter_page = first_page;
1532
1533        do {
1534                to_remove_page = tmp_iter_page;
1535                rb_inc_page(cpu_buffer, &tmp_iter_page);
1536
1537                /* update the counters */
1538                page_entries = rb_page_entries(to_remove_page);
1539                if (page_entries) {
1540                        /*
1541                         * If something was added to this page, it was full
1542                         * since it is not the tail page. So we deduct the
1543                         * bytes consumed in ring buffer from here.
1544                         * Increment overrun to account for the lost events.
1545                         */
1546                        local_add(page_entries, &cpu_buffer->overrun);
1547                        local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1548                }
1549
1550                /*
1551                 * We have already removed references to this list item, just
1552                 * free up the buffer_page and its page
1553                 */
1554                free_buffer_page(to_remove_page);
1555                nr_removed--;
1556
1557        } while (to_remove_page != last_page);
1558
1559        RB_WARN_ON(cpu_buffer, nr_removed);
1560
1561        return nr_removed == 0;
1562}
1563
1564static int
1565rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1566{
1567        struct list_head *pages = &cpu_buffer->new_pages;
1568        int retries, success;
1569
1570        raw_spin_lock_irq(&cpu_buffer->reader_lock);
1571        /*
1572         * We are holding the reader lock, so the reader page won't be swapped
1573         * in the ring buffer. Now we are racing with the writer trying to
1574         * move head page and the tail page.
1575         * We are going to adapt the reader page update process where:
1576         * 1. We first splice the start and end of list of new pages between
1577         *    the head page and its previous page.
1578         * 2. We cmpxchg the prev_page->next to point from head page to the
1579         *    start of new pages list.
1580         * 3. Finally, we update the head->prev to the end of new list.
1581         *
1582         * We will try this process 10 times, to make sure that we don't keep
1583         * spinning.
1584         */
1585        retries = 10;
1586        success = 0;
1587        while (retries--) {
1588                struct list_head *head_page, *prev_page, *r;
1589                struct list_head *last_page, *first_page;
1590                struct list_head *head_page_with_bit;
1591
1592                head_page = &rb_set_head_page(cpu_buffer)->list;
1593                if (!head_page)
1594                        break;
1595                prev_page = head_page->prev;
1596
1597                first_page = pages->next;
1598                last_page  = pages->prev;
1599
1600                head_page_with_bit = (struct list_head *)
1601                                     ((unsigned long)head_page | RB_PAGE_HEAD);
1602
1603                last_page->next = head_page_with_bit;
1604                first_page->prev = prev_page;
1605
1606                r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1607
1608                if (r == head_page_with_bit) {
1609                        /*
1610                         * yay, we replaced the page pointer to our new list,
1611                         * now, we just have to update to head page's prev
1612                         * pointer to point to end of list
1613                         */
1614                        head_page->prev = last_page;
1615                        success = 1;
1616                        break;
1617                }
1618        }
1619
1620        if (success)
1621                INIT_LIST_HEAD(pages);
1622        /*
1623         * If we weren't successful in adding in new pages, warn and stop
1624         * tracing
1625         */
1626        RB_WARN_ON(cpu_buffer, !success);
1627        raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1628
1629        /* free pages if they weren't inserted */
1630        if (!success) {
1631                struct buffer_page *bpage, *tmp;
1632                list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1633                                         list) {
1634                        list_del_init(&bpage->list);
1635                        free_buffer_page(bpage);
1636                }
1637        }
1638        return success;
1639}
1640
1641static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1642{
1643        int success;
1644
1645        if (cpu_buffer->nr_pages_to_update > 0)
1646                success = rb_insert_pages(cpu_buffer);
1647        else
1648                success = rb_remove_pages(cpu_buffer,
1649                                        -cpu_buffer->nr_pages_to_update);
1650
1651        if (success)
1652                cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1653}
1654
1655static void update_pages_handler(struct work_struct *work)
1656{
1657        struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1658                        struct ring_buffer_per_cpu, update_pages_work);
1659        rb_update_pages(cpu_buffer);
1660        complete(&cpu_buffer->update_done);
1661}
1662
1663/**
1664 * ring_buffer_resize - resize the ring buffer
1665 * @buffer: the buffer to resize.
1666 * @size: the new size.
1667 * @cpu_id: the cpu buffer to resize
1668 *
1669 * Minimum size is 2 * BUF_PAGE_SIZE.
1670 *
1671 * Returns 0 on success and < 0 on failure.
1672 */
1673int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1674                        int cpu_id)
1675{
1676        struct ring_buffer_per_cpu *cpu_buffer;
1677        unsigned nr_pages;
1678        int cpu, err = 0;
1679
1680        /*
1681         * Always succeed at resizing a non-existent buffer:
1682         */
1683        if (!buffer)
1684                return size;
1685
1686        /* Make sure the requested buffer exists */
1687        if (cpu_id != RING_BUFFER_ALL_CPUS &&
1688            !cpumask_test_cpu(cpu_id, buffer->cpumask))
1689                return size;
1690
1691        size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1692        size *= BUF_PAGE_SIZE;
1693
1694        /* we need a minimum of two pages */
1695        if (size < BUF_PAGE_SIZE * 2)
1696                size = BUF_PAGE_SIZE * 2;
1697
1698        nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1699
1700        /*
1701         * Don't succeed if resizing is disabled, as a reader might be
1702         * manipulating the ring buffer and is expecting a sane state while
1703         * this is true.
1704         */
1705        if (atomic_read(&buffer->resize_disabled))
1706                return -EBUSY;
1707
1708        /* prevent another thread from changing buffer sizes */
1709        mutex_lock(&buffer->mutex);
1710
1711        if (cpu_id == RING_BUFFER_ALL_CPUS) {
1712                /* calculate the pages to update */
1713                for_each_buffer_cpu(buffer, cpu) {
1714                        cpu_buffer = buffer->buffers[cpu];
1715
1716                        cpu_buffer->nr_pages_to_update = nr_pages -
1717                                                        cpu_buffer->nr_pages;
1718                        /*
1719                         * nothing more to do for removing pages or no update
1720                         */
1721                        if (cpu_buffer->nr_pages_to_update <= 0)
1722                                continue;
1723                        /*
1724                         * to add pages, make sure all new pages can be
1725                         * allocated without receiving ENOMEM
1726                         */
1727                        INIT_LIST_HEAD(&cpu_buffer->new_pages);
1728                        if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1729                                                &cpu_buffer->new_pages, cpu)) {
1730                                /* not enough memory for new pages */
1731                                err = -ENOMEM;
1732                                goto out_err;
1733                        }
1734                }
1735
1736                get_online_cpus();
1737                /*
1738                 * Fire off all the required work handlers
1739                 * We can't schedule on offline CPUs, but it's not necessary
1740                 * since we can change their buffer sizes without any race.
1741                 */
1742                for_each_buffer_cpu(buffer, cpu) {
1743                        cpu_buffer = buffer->buffers[cpu];
1744                        if (!cpu_buffer->nr_pages_to_update)
1745                                continue;
1746
1747                        /* Can't run something on an offline CPU. */
1748                        if (!cpu_online(cpu)) {
1749                                rb_update_pages(cpu_buffer);
1750                                cpu_buffer->nr_pages_to_update = 0;
1751                        } else {
1752                                schedule_work_on(cpu,
1753                                                &cpu_buffer->update_pages_work);
1754                        }
1755                }
1756
1757                /* wait for all the updates to complete */
1758                for_each_buffer_cpu(buffer, cpu) {
1759                        cpu_buffer = buffer->buffers[cpu];
1760                        if (!cpu_buffer->nr_pages_to_update)
1761                                continue;
1762
1763                        if (cpu_online(cpu))
1764                                wait_for_completion(&cpu_buffer->update_done);
1765                        cpu_buffer->nr_pages_to_update = 0;
1766                }
1767
1768                put_online_cpus();
1769        } else {
1770                /* Make sure this CPU has been intitialized */
1771                if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1772                        goto out;
1773
1774                cpu_buffer = buffer->buffers[cpu_id];
1775
1776                if (nr_pages == cpu_buffer->nr_pages)
1777                        goto out;
1778
1779                cpu_buffer->nr_pages_to_update = nr_pages -
1780                                                cpu_buffer->nr_pages;
1781
1782                INIT_LIST_HEAD(&cpu_buffer->new_pages);
1783                if (cpu_buffer->nr_pages_to_update > 0 &&
1784                        __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1785                                            &cpu_buffer->new_pages, cpu_id)) {
1786                        err = -ENOMEM;
1787                        goto out_err;
1788                }
1789
1790                get_online_cpus();
1791
1792                /* Can't run something on an offline CPU. */
1793                if (!cpu_online(cpu_id))
1794                        rb_update_pages(cpu_buffer);
1795                else {
1796                        schedule_work_on(cpu_id,
1797                                         &cpu_buffer->update_pages_work);
1798                        wait_for_completion(&cpu_buffer->update_done);
1799                }
1800
1801                cpu_buffer->nr_pages_to_update = 0;
1802                put_online_cpus();
1803        }
1804
1805 out:
1806        /*
1807         * The ring buffer resize can happen with the ring buffer
1808         * enabled, so that the update disturbs the tracing as little
1809         * as possible. But if the buffer is disabled, we do not need
1810         * to worry about that, and we can take the time to verify
1811         * that the buffer is not corrupt.
1812         */
1813        if (atomic_read(&buffer->record_disabled)) {
1814                atomic_inc(&buffer->record_disabled);
1815                /*
1816                 * Even though the buffer was disabled, we must make sure
1817                 * that it is truly disabled before calling rb_check_pages.
1818                 * There could have been a race between checking
1819                 * record_disable and incrementing it.
1820                 */
1821                synchronize_sched();
1822                for_each_buffer_cpu(buffer, cpu) {
1823                        cpu_buffer = buffer->buffers[cpu];
1824                        rb_check_pages(cpu_buffer);
1825                }
1826                atomic_dec(&buffer->record_disabled);
1827        }
1828
1829        mutex_unlock(&buffer->mutex);
1830        return size;
1831
1832 out_err:
1833        for_each_buffer_cpu(buffer, cpu) {
1834                struct buffer_page *bpage, *tmp;
1835
1836                cpu_buffer = buffer->buffers[cpu];
1837                cpu_buffer->nr_pages_to_update = 0;
1838
1839                if (list_empty(&cpu_buffer->new_pages))
1840                        continue;
1841
1842                list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1843                                        list) {
1844                        list_del_init(&bpage->list);
1845                        free_buffer_page(bpage);
1846                }
1847        }
1848        mutex_unlock(&buffer->mutex);
1849        return err;
1850}
1851EXPORT_SYMBOL_GPL(ring_buffer_resize);
1852
1853void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1854{
1855        mutex_lock(&buffer->mutex);
1856        if (val)
1857                buffer->flags |= RB_FL_OVERWRITE;
1858        else
1859                buffer->flags &= ~RB_FL_OVERWRITE;
1860        mutex_unlock(&buffer->mutex);
1861}
1862EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1863
1864static inline void *
1865__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1866{
1867        return bpage->data + index;
1868}
1869
1870static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1871{
1872        return bpage->page->data + index;
1873}
1874
1875static inline struct ring_buffer_event *
1876rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1877{
1878        return __rb_page_index(cpu_buffer->reader_page,
1879                               cpu_buffer->reader_page->read);
1880}
1881
1882static inline struct ring_buffer_event *
1883rb_iter_head_event(struct ring_buffer_iter *iter)
1884{
1885        return __rb_page_index(iter->head_page, iter->head);
1886}
1887
1888static inline unsigned rb_page_commit(struct buffer_page *bpage)
1889{
1890        return local_read(&bpage->page->commit);
1891}
1892
1893/* Size is determined by what has been committed */
1894static inline unsigned rb_page_size(struct buffer_page *bpage)
1895{
1896        return rb_page_commit(bpage);
1897}
1898
1899static inline unsigned
1900rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1901{
1902        return rb_page_commit(cpu_buffer->commit_page);
1903}
1904
1905static inline unsigned
1906rb_event_index(struct ring_buffer_event *event)
1907{
1908        unsigned long addr = (unsigned long)event;
1909
1910        return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1911}
1912
1913static inline int
1914rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1915                   struct ring_buffer_event *event)
1916{
1917        unsigned long addr = (unsigned long)event;
1918        unsigned long index;
1919
1920        index = rb_event_index(event);
1921        addr &= PAGE_MASK;
1922
1923        return cpu_buffer->commit_page->page == (void *)addr &&
1924                rb_commit_index(cpu_buffer) == index;
1925}
1926
1927static void
1928rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1929{
1930        unsigned long max_count;
1931
1932        /*
1933         * We only race with interrupts and NMIs on this CPU.
1934         * If we own the commit event, then we can commit
1935         * all others that interrupted us, since the interruptions
1936         * are in stack format (they finish before they come
1937         * back to us). This allows us to do a simple loop to
1938         * assign the commit to the tail.
1939         */
1940 again:
1941        max_count = cpu_buffer->nr_pages * 100;
1942
1943        while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1944                if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1945                        return;
1946                if (RB_WARN_ON(cpu_buffer,
1947                               rb_is_reader_page(cpu_buffer->tail_page)))
1948                        return;
1949                local_set(&cpu_buffer->commit_page->page->commit,
1950                          rb_page_write(cpu_buffer->commit_page));
1951                rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1952                cpu_buffer->write_stamp =
1953                        cpu_buffer->commit_page->page->time_stamp;
1954                /* add barrier to keep gcc from optimizing too much */
1955                barrier();
1956        }
1957        while (rb_commit_index(cpu_buffer) !=
1958               rb_page_write(cpu_buffer->commit_page)) {
1959
1960                local_set(&cpu_buffer->commit_page->page->commit,
1961                          rb_page_write(cpu_buffer->commit_page));
1962                RB_WARN_ON(cpu_buffer,
1963                           local_read(&cpu_buffer->commit_page->page->commit) &
1964                           ~RB_WRITE_MASK);
1965                barrier();
1966        }
1967
1968        /* again, keep gcc from optimizing */
1969        barrier();
1970
1971        /*
1972         * If an interrupt came in just after the first while loop
1973         * and pushed the tail page forward, we will be left with
1974         * a dangling commit that will never go forward.
1975         */
1976        if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1977                goto again;
1978}
1979
1980static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1981{
1982        cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1983        cpu_buffer->reader_page->read = 0;
1984}
1985
1986static void rb_inc_iter(struct ring_buffer_iter *iter)
1987{
1988        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1989
1990        /*
1991         * The iterator could be on the reader page (it starts there).
1992         * But the head could have moved, since the reader was
1993         * found. Check for this case and assign the iterator
1994         * to the head page instead of next.
1995         */
1996        if (iter->head_page == cpu_buffer->reader_page)
1997                iter->head_page = rb_set_head_page(cpu_buffer);
1998        else
1999                rb_inc_page(cpu_buffer, &iter->head_page);
2000
2001        iter->read_stamp = iter->head_page->page->time_stamp;
2002        iter->head = 0;
2003}
2004
2005/* Slow path, do not inline */
2006static noinline struct ring_buffer_event *
2007rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2008{
2009        event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2010
2011        /* Not the first event on the page? */
2012        if (rb_event_index(event)) {
2013                event->time_delta = delta & TS_MASK;
2014                event->array[0] = delta >> TS_SHIFT;
2015        } else {
2016                /* nope, just zero it */
2017                event->time_delta = 0;
2018                event->array[0] = 0;
2019        }
2020
2021        return skip_time_extend(event);
2022}
2023
2024/**
2025 * rb_update_event - update event type and data
2026 * @event: the event to update
2027 * @type: the type of event
2028 * @length: the size of the event field in the ring buffer
2029 *
2030 * Update the type and data fields of the event. The length
2031 * is the actual size that is written to the ring buffer,
2032 * and with this, we can determine what to place into the
2033 * data field.
2034 */
2035static void
2036rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2037                struct ring_buffer_event *event, unsigned length,
2038                int add_timestamp, u64 delta)
2039{
2040        /* Only a commit updates the timestamp */
2041        if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2042                delta = 0;
2043
2044        /*
2045         * If we need to add a timestamp, then we
2046         * add it to the start of the resevered space.
2047         */
2048        if (unlikely(add_timestamp)) {
2049                event = rb_add_time_stamp(event, delta);
2050                length -= RB_LEN_TIME_EXTEND;
2051                delta = 0;
2052        }
2053
2054        event->time_delta = delta;
2055        length -= RB_EVNT_HDR_SIZE;
2056        if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2057                event->type_len = 0;
2058                event->array[0] = length;
2059        } else
2060                event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2061}
2062
2063/*
2064 * rb_handle_head_page - writer hit the head page
2065 *
2066 * Returns: +1 to retry page
2067 *           0 to continue
2068 *          -1 on error
2069 */
2070static int
2071rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2072                    struct buffer_page *tail_page,
2073                    struct buffer_page *next_page)
2074{
2075        struct buffer_page *new_head;
2076        int entries;
2077        int type;
2078        int ret;
2079
2080        entries = rb_page_entries(next_page);
2081
2082        /*
2083         * The hard part is here. We need to move the head
2084         * forward, and protect against both readers on
2085         * other CPUs and writers coming in via interrupts.
2086         */
2087        type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2088                                       RB_PAGE_HEAD);
2089
2090        /*
2091         * type can be one of four:
2092         *  NORMAL - an interrupt already moved it for us
2093         *  HEAD   - we are the first to get here.
2094         *  UPDATE - we are the interrupt interrupting
2095         *           a current move.
2096         *  MOVED  - a reader on another CPU moved the next
2097         *           pointer to its reader page. Give up
2098         *           and try again.
2099         */
2100
2101        switch (type) {
2102        case RB_PAGE_HEAD:
2103                /*
2104                 * We changed the head to UPDATE, thus
2105                 * it is our responsibility to update
2106                 * the counters.
2107                 */
2108                local_add(entries, &cpu_buffer->overrun);
2109                local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2110
2111                /*
2112                 * The entries will be zeroed out when we move the
2113                 * tail page.
2114                 */
2115
2116                /* still more to do */
2117                break;
2118
2119        case RB_PAGE_UPDATE:
2120                /*
2121                 * This is an interrupt that interrupt the
2122                 * previous update. Still more to do.
2123                 */
2124                break;
2125        case RB_PAGE_NORMAL:
2126                /*
2127                 * An interrupt came in before the update
2128                 * and processed this for us.
2129                 * Nothing left to do.
2130                 */
2131                return 1;
2132        case RB_PAGE_MOVED:
2133                /*
2134                 * The reader is on another CPU and just did
2135                 * a swap with our next_page.
2136                 * Try again.
2137                 */
2138                return 1;
2139        default:
2140                RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2141                return -1;
2142        }
2143
2144        /*
2145         * Now that we are here, the old head pointer is
2146         * set to UPDATE. This will keep the reader from
2147         * swapping the head page with the reader page.
2148         * The reader (on another CPU) will spin till
2149         * we are finished.
2150         *
2151         * We just need to protect against interrupts
2152         * doing the job. We will set the next pointer
2153         * to HEAD. After that, we set the old pointer
2154         * to NORMAL, but only if it was HEAD before.
2155         * otherwise we are an interrupt, and only
2156         * want the outer most commit to reset it.
2157         */
2158        new_head = next_page;
2159        rb_inc_page(cpu_buffer, &new_head);
2160
2161        ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2162                                    RB_PAGE_NORMAL);
2163
2164        /*
2165         * Valid returns are:
2166         *  HEAD   - an interrupt came in and already set it.
2167         *  NORMAL - One of two things:
2168         *            1) We really set it.
2169         *            2) A bunch of interrupts came in and moved
2170         *               the page forward again.
2171         */
2172        switch (ret) {
2173        case RB_PAGE_HEAD:
2174        case RB_PAGE_NORMAL:
2175                /* OK */
2176                break;
2177        default:
2178                RB_WARN_ON(cpu_buffer, 1);
2179                return -1;
2180        }
2181
2182        /*
2183         * It is possible that an interrupt came in,
2184         * set the head up, then more interrupts came in
2185         * and moved it again. When we get back here,
2186         * the page would have been set to NORMAL but we
2187         * just set it back to HEAD.
2188         *
2189         * How do you detect this? Well, if that happened
2190         * the tail page would have moved.
2191         */
2192        if (ret == RB_PAGE_NORMAL) {
2193                /*
2194                 * If the tail had moved passed next, then we need
2195                 * to reset the pointer.
2196                 */
2197                if (cpu_buffer->tail_page != tail_page &&
2198                    cpu_buffer->tail_page != next_page)
2199                        rb_head_page_set_normal(cpu_buffer, new_head,
2200                                                next_page,
2201                                                RB_PAGE_HEAD);
2202        }
2203
2204        /*
2205         * If this was the outer most commit (the one that
2206         * changed the original pointer from HEAD to UPDATE),
2207         * then it is up to us to reset it to NORMAL.
2208         */
2209        if (type == RB_PAGE_HEAD) {
2210                ret = rb_head_page_set_normal(cpu_buffer, next_page,
2211                                              tail_page,
2212                                              RB_PAGE_UPDATE);
2213                if (RB_WARN_ON(cpu_buffer,
2214                               ret != RB_PAGE_UPDATE))
2215                        return -1;
2216        }
2217
2218        return 0;
2219}
2220
2221static unsigned rb_calculate_event_length(unsigned length)
2222{
2223        struct ring_buffer_event event; /* Used only for sizeof array */
2224
2225        /* zero length can cause confusions */
2226        if (!length)
2227                length = 1;
2228
2229        if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2230                length += sizeof(event.array[0]);
2231
2232        length += RB_EVNT_HDR_SIZE;
2233        length = ALIGN(length, RB_ARCH_ALIGNMENT);
2234
2235        return length;
2236}
2237
2238static inline void
2239rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2240              struct buffer_page *tail_page,
2241              unsigned long tail, unsigned long length)
2242{
2243        struct ring_buffer_event *event;
2244
2245        /*
2246         * Only the event that crossed the page boundary
2247         * must fill the old tail_page with padding.
2248         */
2249        if (tail >= BUF_PAGE_SIZE) {
2250                /*
2251                 * If the page was filled, then we still need
2252                 * to update the real_end. Reset it to zero
2253                 * and the reader will ignore it.
2254                 */
2255                if (tail == BUF_PAGE_SIZE)
2256                        tail_page->real_end = 0;
2257
2258                local_sub(length, &tail_page->write);
2259                return;
2260        }
2261
2262        event = __rb_page_index(tail_page, tail);
2263        kmemcheck_annotate_bitfield(event, bitfield);
2264
2265        /* account for padding bytes */
2266        local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2267
2268        /*
2269         * Save the original length to the meta data.
2270         * This will be used by the reader to add lost event
2271         * counter.
2272         */
2273        tail_page->real_end = tail;
2274
2275        /*
2276         * If this event is bigger than the minimum size, then
2277         * we need to be careful that we don't subtract the
2278         * write counter enough to allow another writer to slip
2279         * in on this page.
2280         * We put in a discarded commit instead, to make sure
2281         * that this space is not used again.
2282         *
2283         * If we are less than the minimum size, we don't need to
2284         * worry about it.
2285         */
2286        if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2287                /* No room for any events */
2288
2289                /* Mark the rest of the page with padding */
2290                rb_event_set_padding(event);
2291
2292                /* Set the write back to the previous setting */
2293                local_sub(length, &tail_page->write);
2294                return;
2295        }
2296
2297        /* Put in a discarded event */
2298        event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2299        event->type_len = RINGBUF_TYPE_PADDING;
2300        /* time delta must be non zero */
2301        event->time_delta = 1;
2302
2303        /* Set write to end of buffer */
2304        length = (tail + length) - BUF_PAGE_SIZE;
2305        local_sub(length, &tail_page->write);
2306}
2307
2308/*
2309 * This is the slow path, force gcc not to inline it.
2310 */
2311static noinline struct ring_buffer_event *
2312rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2313             unsigned long length, unsigned long tail,
2314             struct buffer_page *tail_page, u64 ts)
2315{
2316        struct buffer_page *commit_page = cpu_buffer->commit_page;
2317        struct ring_buffer *buffer = cpu_buffer->buffer;
2318        struct buffer_page *next_page;
2319        int ret;
2320
2321        next_page = tail_page;
2322
2323        rb_inc_page(cpu_buffer, &next_page);
2324
2325        /*
2326         * If for some reason, we had an interrupt storm that made
2327         * it all the way around the buffer, bail, and warn
2328         * about it.
2329         */
2330        if (unlikely(next_page == commit_page)) {
2331                local_inc(&cpu_buffer->commit_overrun);
2332                goto out_reset;
2333        }
2334
2335        /*
2336         * This is where the fun begins!
2337         *
2338         * We are fighting against races between a reader that
2339         * could be on another CPU trying to swap its reader
2340         * page with the buffer head.
2341         *
2342         * We are also fighting against interrupts coming in and
2343         * moving the head or tail on us as well.
2344         *
2345         * If the next page is the head page then we have filled
2346         * the buffer, unless the commit page is still on the
2347         * reader page.
2348         */
2349        if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2350
2351                /*
2352                 * If the commit is not on the reader page, then
2353                 * move the header page.
2354                 */
2355                if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2356                        /*
2357                         * If we are not in overwrite mode,
2358                         * this is easy, just stop here.
2359                         */
2360                        if (!(buffer->flags & RB_FL_OVERWRITE)) {
2361                                local_inc(&cpu_buffer->dropped_events);
2362                                goto out_reset;
2363                        }
2364
2365                        ret = rb_handle_head_page(cpu_buffer,
2366                                                  tail_page,
2367                                                  next_page);
2368                        if (ret < 0)
2369                                goto out_reset;
2370                        if (ret)
2371                                goto out_again;
2372                } else {
2373                        /*
2374                         * We need to be careful here too. The
2375                         * commit page could still be on the reader
2376                         * page. We could have a small buffer, and
2377                         * have filled up the buffer with events
2378                         * from interrupts and such, and wrapped.
2379                         *
2380                         * Note, if the tail page is also the on the
2381                         * reader_page, we let it move out.
2382                         */
2383                        if (unlikely((cpu_buffer->commit_page !=
2384                                      cpu_buffer->tail_page) &&
2385                                     (cpu_buffer->commit_page ==
2386                                      cpu_buffer->reader_page))) {
2387                                local_inc(&cpu_buffer->commit_overrun);
2388                                goto out_reset;
2389                        }
2390                }
2391        }
2392
2393        ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2394        if (ret) {
2395                /*
2396                 * Nested commits always have zero deltas, so
2397                 * just reread the time stamp
2398                 */
2399                ts = rb_time_stamp(buffer);
2400                next_page->page->time_stamp = ts;
2401        }
2402
2403 out_again:
2404
2405        rb_reset_tail(cpu_buffer, tail_page, tail, length);
2406
2407        /* fail and let the caller try again */
2408        return ERR_PTR(-EAGAIN);
2409
2410 out_reset:
2411        /* reset write */
2412        rb_reset_tail(cpu_buffer, tail_page, tail, length);
2413
2414        return NULL;
2415}
2416
2417static struct ring_buffer_event *
2418__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2419                  unsigned long length, u64 ts,
2420                  u64 delta, int add_timestamp)
2421{
2422        struct buffer_page *tail_page;
2423        struct ring_buffer_event *event;
2424        unsigned long tail, write;
2425
2426        /*
2427         * If the time delta since the last event is too big to
2428         * hold in the time field of the event, then we append a
2429         * TIME EXTEND event ahead of the data event.
2430         */
2431        if (unlikely(add_timestamp))
2432                length += RB_LEN_TIME_EXTEND;
2433
2434        tail_page = cpu_buffer->tail_page;
2435        write = local_add_return(length, &tail_page->write);
2436
2437        /* set write to only the index of the write */
2438        write &= RB_WRITE_MASK;
2439        tail = write - length;
2440
2441        /*
2442         * If this is the first commit on the page, then it has the same
2443         * timestamp as the page itself.
2444         */
2445        if (!tail)
2446                delta = 0;
2447
2448        /* See if we shot pass the end of this buffer page */
2449        if (unlikely(write > BUF_PAGE_SIZE))
2450                return rb_move_tail(cpu_buffer, length, tail,
2451                                    tail_page, ts);
2452
2453        /* We reserved something on the buffer */
2454
2455        event = __rb_page_index(tail_page, tail);
2456        kmemcheck_annotate_bitfield(event, bitfield);
2457        rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2458
2459        local_inc(&tail_page->entries);
2460
2461        /*
2462         * If this is the first commit on the page, then update
2463         * its timestamp.
2464         */
2465        if (!tail)
2466                tail_page->page->time_stamp = ts;
2467
2468        /* account for these added bytes */
2469        local_add(length, &cpu_buffer->entries_bytes);
2470
2471        return event;
2472}
2473
2474static inline int
2475rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2476                  struct ring_buffer_event *event)
2477{
2478        unsigned long new_index, old_index;
2479        struct buffer_page *bpage;
2480        unsigned long index;
2481        unsigned long addr;
2482
2483        new_index = rb_event_index(event);
2484        old_index = new_index + rb_event_ts_length(event);
2485        addr = (unsigned long)event;
2486        addr &= PAGE_MASK;
2487
2488        bpage = cpu_buffer->tail_page;
2489
2490        if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2491                unsigned long write_mask =
2492                        local_read(&bpage->write) & ~RB_WRITE_MASK;
2493                unsigned long event_length = rb_event_length(event);
2494                /*
2495                 * This is on the tail page. It is possible that
2496                 * a write could come in and move the tail page
2497                 * and write to the next page. That is fine
2498                 * because we just shorten what is on this page.
2499                 */
2500                old_index += write_mask;
2501                new_index += write_mask;
2502                index = local_cmpxchg(&bpage->write, old_index, new_index);
2503                if (index == old_index) {
2504                        /* update counters */
2505                        local_sub(event_length, &cpu_buffer->entries_bytes);
2506                        return 1;
2507                }
2508        }
2509
2510        /* could not discard */
2511        return 0;
2512}
2513
2514static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2515{
2516        local_inc(&cpu_buffer->committing);
2517        local_inc(&cpu_buffer->commits);
2518}
2519
2520static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2521{
2522        unsigned long commits;
2523
2524        if (RB_WARN_ON(cpu_buffer,
2525                       !local_read(&cpu_buffer->committing)))
2526                return;
2527
2528 again:
2529        commits = local_read(&cpu_buffer->commits);
2530        /* synchronize with interrupts */
2531        barrier();
2532        if (local_read(&cpu_buffer->committing) == 1)
2533                rb_set_commit_to_write(cpu_buffer);
2534
2535        local_dec(&cpu_buffer->committing);
2536
2537        /* synchronize with interrupts */
2538        barrier();
2539
2540        /*
2541         * Need to account for interrupts coming in between the
2542         * updating of the commit page and the clearing of the
2543         * committing counter.
2544         */
2545        if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2546            !local_read(&cpu_buffer->committing)) {
2547                local_inc(&cpu_buffer->committing);
2548                goto again;
2549        }
2550}
2551
2552static struct ring_buffer_event *
2553rb_reserve_next_event(struct ring_buffer *buffer,
2554                      struct ring_buffer_per_cpu *cpu_buffer,
2555                      unsigned long length)
2556{
2557        struct ring_buffer_event *event;
2558        u64 ts, delta;
2559        int nr_loops = 0;
2560        int add_timestamp;
2561        u64 diff;
2562
2563        rb_start_commit(cpu_buffer);
2564
2565#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2566        /*
2567         * Due to the ability to swap a cpu buffer from a buffer
2568         * it is possible it was swapped before we committed.
2569         * (committing stops a swap). We check for it here and
2570         * if it happened, we have to fail the write.
2571         */
2572        barrier();
2573        if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2574                local_dec(&cpu_buffer->committing);
2575                local_dec(&cpu_buffer->commits);
2576                return NULL;
2577        }
2578#endif
2579
2580        length = rb_calculate_event_length(length);
2581 again:
2582        add_timestamp = 0;
2583        delta = 0;
2584
2585        /*
2586         * We allow for interrupts to reenter here and do a trace.
2587         * If one does, it will cause this original code to loop
2588         * back here. Even with heavy interrupts happening, this
2589         * should only happen a few times in a row. If this happens
2590         * 1000 times in a row, there must be either an interrupt
2591         * storm or we have something buggy.
2592         * Bail!
2593         */
2594        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2595                goto out_fail;
2596
2597        ts = rb_time_stamp(cpu_buffer->buffer);
2598        diff = ts - cpu_buffer->write_stamp;
2599
2600        /* make sure this diff is calculated here */
2601        barrier();
2602
2603        /* Did the write stamp get updated already? */
2604        if (likely(ts >= cpu_buffer->write_stamp)) {
2605                delta = diff;
2606                if (unlikely(test_time_stamp(delta))) {
2607                        int local_clock_stable = 1;
2608#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2609                        local_clock_stable = sched_clock_stable();
2610#endif
2611                        WARN_ONCE(delta > (1ULL << 59),
2612                                  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2613                                  (unsigned long long)delta,
2614                                  (unsigned long long)ts,
2615                                  (unsigned long long)cpu_buffer->write_stamp,
2616                                  local_clock_stable ? "" :
2617                                  "If you just came from a suspend/resume,\n"
2618                                  "please switch to the trace global clock:\n"
2619                                  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2620                        add_timestamp = 1;
2621                }
2622        }
2623
2624        event = __rb_reserve_next(cpu_buffer, length, ts,
2625                                  delta, add_timestamp);
2626        if (unlikely(PTR_ERR(event) == -EAGAIN))
2627                goto again;
2628
2629        if (!event)
2630                goto out_fail;
2631
2632        return event;
2633
2634 out_fail:
2635        rb_end_commit(cpu_buffer);
2636        return NULL;
2637}
2638
2639#ifdef CONFIG_TRACING
2640
2641/*
2642 * The lock and unlock are done within a preempt disable section.
2643 * The current_context per_cpu variable can only be modified
2644 * by the current task between lock and unlock. But it can
2645 * be modified more than once via an interrupt. To pass this
2646 * information from the lock to the unlock without having to
2647 * access the 'in_interrupt()' functions again (which do show
2648 * a bit of overhead in something as critical as function tracing,
2649 * we use a bitmask trick.
2650 *
2651 *  bit 0 =  NMI context
2652 *  bit 1 =  IRQ context
2653 *  bit 2 =  SoftIRQ context
2654 *  bit 3 =  normal context.
2655 *
2656 * This works because this is the order of contexts that can
2657 * preempt other contexts. A SoftIRQ never preempts an IRQ
2658 * context.
2659 *
2660 * When the context is determined, the corresponding bit is
2661 * checked and set (if it was set, then a recursion of that context
2662 * happened).
2663 *
2664 * On unlock, we need to clear this bit. To do so, just subtract
2665 * 1 from the current_context and AND it to itself.
2666 *
2667 * (binary)
2668 *  101 - 1 = 100
2669 *  101 & 100 = 100 (clearing bit zero)
2670 *
2671 *  1010 - 1 = 1001
2672 *  1010 & 1001 = 1000 (clearing bit 1)
2673 *
2674 * The least significant bit can be cleared this way, and it
2675 * just so happens that it is the same bit corresponding to
2676 * the current context.
2677 */
2678static DEFINE_PER_CPU(unsigned int, current_context);
2679
2680static __always_inline int trace_recursive_lock(void)
2681{
2682        unsigned int val = __this_cpu_read(current_context);
2683        int bit;
2684
2685        if (in_interrupt()) {
2686                if (in_nmi())
2687                        bit = 0;
2688                else if (in_irq())
2689                        bit = 1;
2690                else
2691                        bit = 2;
2692        } else
2693                bit = 3;
2694
2695        if (unlikely(val & (1 << bit)))
2696                return 1;
2697
2698        val |= (1 << bit);
2699        __this_cpu_write(current_context, val);
2700
2701        return 0;
2702}
2703
2704static __always_inline void trace_recursive_unlock(void)
2705{
2706        __this_cpu_and(current_context, __this_cpu_read(current_context) - 1);
2707}
2708
2709#else
2710
2711#define trace_recursive_lock()          (0)
2712#define trace_recursive_unlock()        do { } while (0)
2713
2714#endif
2715
2716/**
2717 * ring_buffer_lock_reserve - reserve a part of the buffer
2718 * @buffer: the ring buffer to reserve from
2719 * @length: the length of the data to reserve (excluding event header)
2720 *
2721 * Returns a reseverd event on the ring buffer to copy directly to.
2722 * The user of this interface will need to get the body to write into
2723 * and can use the ring_buffer_event_data() interface.
2724 *
2725 * The length is the length of the data needed, not the event length
2726 * which also includes the event header.
2727 *
2728 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2729 * If NULL is returned, then nothing has been allocated or locked.
2730 */
2731struct ring_buffer_event *
2732ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2733{
2734        struct ring_buffer_per_cpu *cpu_buffer;
2735        struct ring_buffer_event *event;
2736        int cpu;
2737
2738        if (ring_buffer_flags != RB_BUFFERS_ON)
2739                return NULL;
2740
2741        /* If we are tracing schedule, we don't want to recurse */
2742        preempt_disable_notrace();
2743
2744        if (atomic_read(&buffer->record_disabled))
2745                goto out_nocheck;
2746
2747        if (trace_recursive_lock())
2748                goto out_nocheck;
2749
2750        cpu = raw_smp_processor_id();
2751
2752        if (!cpumask_test_cpu(cpu, buffer->cpumask))
2753                goto out;
2754
2755        cpu_buffer = buffer->buffers[cpu];
2756
2757        if (atomic_read(&cpu_buffer->record_disabled))
2758                goto out;
2759
2760        if (length > BUF_MAX_DATA_SIZE)
2761                goto out;
2762
2763        event = rb_reserve_next_event(buffer, cpu_buffer, length);
2764        if (!event)
2765                goto out;
2766
2767        return event;
2768
2769 out:
2770        trace_recursive_unlock();
2771
2772 out_nocheck:
2773        preempt_enable_notrace();
2774        return NULL;
2775}
2776EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2777
2778static void
2779rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2780                      struct ring_buffer_event *event)
2781{
2782        u64 delta;
2783
2784        /*
2785         * The event first in the commit queue updates the
2786         * time stamp.
2787         */
2788        if (rb_event_is_commit(cpu_buffer, event)) {
2789                /*
2790                 * A commit event that is first on a page
2791                 * updates the write timestamp with the page stamp
2792                 */
2793                if (!rb_event_index(event))
2794                        cpu_buffer->write_stamp =
2795                                cpu_buffer->commit_page->page->time_stamp;
2796                else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2797                        delta = event->array[0];
2798                        delta <<= TS_SHIFT;
2799                        delta += event->time_delta;
2800                        cpu_buffer->write_stamp += delta;
2801                } else
2802                        cpu_buffer->write_stamp += event->time_delta;
2803        }
2804}
2805
2806static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2807                      struct ring_buffer_event *event)
2808{
2809        local_inc(&cpu_buffer->entries);
2810        rb_update_write_stamp(cpu_buffer, event);
2811        rb_end_commit(cpu_buffer);
2812}
2813
2814static __always_inline void
2815rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2816{
2817        bool pagebusy;
2818
2819        if (buffer->irq_work.waiters_pending) {
2820                buffer->irq_work.waiters_pending = false;
2821                /* irq_work_queue() supplies it's own memory barriers */
2822                irq_work_queue(&buffer->irq_work.work);
2823        }
2824
2825        if (cpu_buffer->irq_work.waiters_pending) {
2826                cpu_buffer->irq_work.waiters_pending = false;
2827                /* irq_work_queue() supplies it's own memory barriers */
2828                irq_work_queue(&cpu_buffer->irq_work.work);
2829        }
2830
2831        pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2832
2833        if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2834                cpu_buffer->irq_work.wakeup_full = true;
2835                cpu_buffer->irq_work.full_waiters_pending = false;
2836                /* irq_work_queue() supplies it's own memory barriers */
2837                irq_work_queue(&cpu_buffer->irq_work.work);
2838        }
2839}
2840
2841/**
2842 * ring_buffer_unlock_commit - commit a reserved
2843 * @buffer: The buffer to commit to
2844 * @event: The event pointer to commit.
2845 *
2846 * This commits the data to the ring buffer, and releases any locks held.
2847 *
2848 * Must be paired with ring_buffer_lock_reserve.
2849 */
2850int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2851                              struct ring_buffer_event *event)
2852{
2853        struct ring_buffer_per_cpu *cpu_buffer;
2854        int cpu = raw_smp_processor_id();
2855
2856        cpu_buffer = buffer->buffers[cpu];
2857
2858        rb_commit(cpu_buffer, event);
2859
2860        rb_wakeups(buffer, cpu_buffer);
2861
2862        trace_recursive_unlock();
2863
2864        preempt_enable_notrace();
2865
2866        return 0;
2867}
2868EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2869
2870static inline void rb_event_discard(struct ring_buffer_event *event)
2871{
2872        if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2873                event = skip_time_extend(event);
2874
2875        /* array[0] holds the actual length for the discarded event */
2876        event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2877        event->type_len = RINGBUF_TYPE_PADDING;
2878        /* time delta must be non zero */
2879        if (!event->time_delta)
2880                event->time_delta = 1;
2881}
2882
2883/*
2884 * Decrement the entries to the page that an event is on.
2885 * The event does not even need to exist, only the pointer
2886 * to the page it is on. This may only be called before the commit
2887 * takes place.
2888 */
2889static inline void
2890rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2891                   struct ring_buffer_event *event)
2892{
2893        unsigned long addr = (unsigned long)event;
2894        struct buffer_page *bpage = cpu_buffer->commit_page;
2895        struct buffer_page *start;
2896
2897        addr &= PAGE_MASK;
2898
2899        /* Do the likely case first */
2900        if (likely(bpage->page == (void *)addr)) {
2901                local_dec(&bpage->entries);
2902                return;
2903        }
2904
2905        /*
2906         * Because the commit page may be on the reader page we
2907         * start with the next page and check the end loop there.
2908         */
2909        rb_inc_page(cpu_buffer, &bpage);
2910        start = bpage;
2911        do {
2912                if (bpage->page == (void *)addr) {
2913                        local_dec(&bpage->entries);
2914                        return;
2915                }
2916                rb_inc_page(cpu_buffer, &bpage);
2917        } while (bpage != start);
2918
2919        /* commit not part of this buffer?? */
2920        RB_WARN_ON(cpu_buffer, 1);
2921}
2922
2923/**
2924 * ring_buffer_commit_discard - discard an event that has not been committed
2925 * @buffer: the ring buffer
2926 * @event: non committed event to discard
2927 *
2928 * Sometimes an event that is in the ring buffer needs to be ignored.
2929 * This function lets the user discard an event in the ring buffer
2930 * and then that event will not be read later.
2931 *
2932 * This function only works if it is called before the the item has been
2933 * committed. It will try to free the event from the ring buffer
2934 * if another event has not been added behind it.
2935 *
2936 * If another event has been added behind it, it will set the event
2937 * up as discarded, and perform the commit.
2938 *
2939 * If this function is called, do not call ring_buffer_unlock_commit on
2940 * the event.
2941 */
2942void ring_buffer_discard_commit(struct ring_buffer *buffer,
2943                                struct ring_buffer_event *event)
2944{
2945        struct ring_buffer_per_cpu *cpu_buffer;
2946        int cpu;
2947
2948        /* The event is discarded regardless */
2949        rb_event_discard(event);
2950
2951        cpu = smp_processor_id();
2952        cpu_buffer = buffer->buffers[cpu];
2953
2954        /*
2955         * This must only be called if the event has not been
2956         * committed yet. Thus we can assume that preemption
2957         * is still disabled.
2958         */
2959        RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2960
2961        rb_decrement_entry(cpu_buffer, event);
2962        if (rb_try_to_discard(cpu_buffer, event))
2963                goto out;
2964
2965        /*
2966         * The commit is still visible by the reader, so we
2967         * must still update the timestamp.
2968         */
2969        rb_update_write_stamp(cpu_buffer, event);
2970 out:
2971        rb_end_commit(cpu_buffer);
2972
2973        trace_recursive_unlock();
2974
2975        preempt_enable_notrace();
2976
2977}
2978EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2979
2980/**
2981 * ring_buffer_write - write data to the buffer without reserving
2982 * @buffer: The ring buffer to write to.
2983 * @length: The length of the data being written (excluding the event header)
2984 * @data: The data to write to the buffer.
2985 *
2986 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2987 * one function. If you already have the data to write to the buffer, it
2988 * may be easier to simply call this function.
2989 *
2990 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2991 * and not the length of the event which would hold the header.
2992 */
2993int ring_buffer_write(struct ring_buffer *buffer,
2994                      unsigned long length,
2995                      void *data)
2996{
2997        struct ring_buffer_per_cpu *cpu_buffer;
2998        struct ring_buffer_event *event;
2999        void *body;
3000        int ret = -EBUSY;
3001        int cpu;
3002
3003        if (ring_buffer_flags != RB_BUFFERS_ON)
3004                return -EBUSY;
3005
3006        preempt_disable_notrace();
3007
3008        if (atomic_read(&buffer->record_disabled))
3009                goto out;
3010
3011        cpu = raw_smp_processor_id();
3012
3013        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3014                goto out;
3015
3016        cpu_buffer = buffer->buffers[cpu];
3017
3018        if (atomic_read(&cpu_buffer->record_disabled))
3019                goto out;
3020
3021        if (length > BUF_MAX_DATA_SIZE)
3022                goto out;
3023
3024        event = rb_reserve_next_event(buffer, cpu_buffer, length);
3025        if (!event)
3026                goto out;
3027
3028        body = rb_event_data(event);
3029
3030        memcpy(body, data, length);
3031
3032        rb_commit(cpu_buffer, event);
3033
3034        rb_wakeups(buffer, cpu_buffer);
3035
3036        ret = 0;
3037 out:
3038        preempt_enable_notrace();
3039
3040        return ret;
3041}
3042EXPORT_SYMBOL_GPL(ring_buffer_write);
3043
3044static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3045{
3046        struct buffer_page *reader = cpu_buffer->reader_page;
3047        struct buffer_page *head = rb_set_head_page(cpu_buffer);
3048        struct buffer_page *commit = cpu_buffer->commit_page;
3049
3050        /* In case of error, head will be NULL */
3051        if (unlikely(!head))
3052                return 1;
3053
3054        return reader->read == rb_page_commit(reader) &&
3055                (commit == reader ||
3056                 (commit == head &&
3057                  head->read == rb_page_commit(commit)));
3058}
3059
3060/**
3061 * ring_buffer_record_disable - stop all writes into the buffer
3062 * @buffer: The ring buffer to stop writes to.
3063 *
3064 * This prevents all writes to the buffer. Any attempt to write
3065 * to the buffer after this will fail and return NULL.
3066 *
3067 * The caller should call synchronize_sched() after this.
3068 */
3069void ring_buffer_record_disable(struct ring_buffer *buffer)
3070{
3071        atomic_inc(&buffer->record_disabled);
3072}
3073EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3074
3075/**
3076 * ring_buffer_record_enable - enable writes to the buffer
3077 * @buffer: The ring buffer to enable writes
3078 *
3079 * Note, multiple disables will need the same number of enables
3080 * to truly enable the writing (much like preempt_disable).
3081 */
3082void ring_buffer_record_enable(struct ring_buffer *buffer)
3083{
3084        atomic_dec(&buffer->record_disabled);
3085}
3086EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3087
3088/**
3089 * ring_buffer_record_off - stop all writes into the buffer
3090 * @buffer: The ring buffer to stop writes to.
3091 *
3092 * This prevents all writes to the buffer. Any attempt to write
3093 * to the buffer after this will fail and return NULL.
3094 *
3095 * This is different than ring_buffer_record_disable() as
3096 * it works like an on/off switch, where as the disable() version
3097 * must be paired with a enable().
3098 */
3099void ring_buffer_record_off(struct ring_buffer *buffer)
3100{
3101        unsigned int rd;
3102        unsigned int new_rd;
3103
3104        do {
3105                rd = atomic_read(&buffer->record_disabled);
3106                new_rd = rd | RB_BUFFER_OFF;
3107        } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3108}
3109EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3110
3111/**
3112 * ring_buffer_record_on - restart writes into the buffer
3113 * @buffer: The ring buffer to start writes to.
3114 *
3115 * This enables all writes to the buffer that was disabled by
3116 * ring_buffer_record_off().
3117 *
3118 * This is different than ring_buffer_record_enable() as
3119 * it works like an on/off switch, where as the enable() version
3120 * must be paired with a disable().
3121 */
3122void ring_buffer_record_on(struct ring_buffer *buffer)
3123{
3124        unsigned int rd;
3125        unsigned int new_rd;
3126
3127        do {
3128                rd = atomic_read(&buffer->record_disabled);
3129                new_rd = rd & ~RB_BUFFER_OFF;
3130        } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3131}
3132EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3133
3134/**
3135 * ring_buffer_record_is_on - return true if the ring buffer can write
3136 * @buffer: The ring buffer to see if write is enabled
3137 *
3138 * Returns true if the ring buffer is in a state that it accepts writes.
3139 */
3140int ring_buffer_record_is_on(struct ring_buffer *buffer)
3141{
3142        return !atomic_read(&buffer->record_disabled);
3143}
3144
3145/**
3146 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3147 * @buffer: The ring buffer to stop writes to.
3148 * @cpu: The CPU buffer to stop
3149 *
3150 * This prevents all writes to the buffer. Any attempt to write
3151 * to the buffer after this will fail and return NULL.
3152 *
3153 * The caller should call synchronize_sched() after this.
3154 */
3155void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3156{
3157        struct ring_buffer_per_cpu *cpu_buffer;
3158
3159        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3160                return;
3161
3162        cpu_buffer = buffer->buffers[cpu];
3163        atomic_inc(&cpu_buffer->record_disabled);
3164}
3165EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3166
3167/**
3168 * ring_buffer_record_enable_cpu - enable writes to the buffer
3169 * @buffer: The ring buffer to enable writes
3170 * @cpu: The CPU to enable.
3171 *
3172 * Note, multiple disables will need the same number of enables
3173 * to truly enable the writing (much like preempt_disable).
3174 */
3175void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3176{
3177        struct ring_buffer_per_cpu *cpu_buffer;
3178
3179        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3180                return;
3181
3182        cpu_buffer = buffer->buffers[cpu];
3183        atomic_dec(&cpu_buffer->record_disabled);
3184}
3185EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3186
3187/*
3188 * The total entries in the ring buffer is the running counter
3189 * of entries entered into the ring buffer, minus the sum of
3190 * the entries read from the ring buffer and the number of
3191 * entries that were overwritten.
3192 */
3193static inline unsigned long
3194rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3195{
3196        return local_read(&cpu_buffer->entries) -
3197                (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3198}
3199
3200/**
3201 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3202 * @buffer: The ring buffer
3203 * @cpu: The per CPU buffer to read from.
3204 */
3205u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3206{
3207        unsigned long flags;
3208        struct ring_buffer_per_cpu *cpu_buffer;
3209        struct buffer_page *bpage;
3210        u64 ret = 0;
3211
3212        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3213                return 0;
3214
3215        cpu_buffer = buffer->buffers[cpu];
3216        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3217        /*
3218         * if the tail is on reader_page, oldest time stamp is on the reader
3219         * page
3220         */
3221        if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3222                bpage = cpu_buffer->reader_page;
3223        else
3224                bpage = rb_set_head_page(cpu_buffer);
3225        if (bpage)
3226                ret = bpage->page->time_stamp;
3227        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3228
3229        return ret;
3230}
3231EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3232
3233/**
3234 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3235 * @buffer: The ring buffer
3236 * @cpu: The per CPU buffer to read from.
3237 */
3238unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3239{
3240        struct ring_buffer_per_cpu *cpu_buffer;
3241        unsigned long ret;
3242
3243        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3244                return 0;
3245
3246        cpu_buffer = buffer->buffers[cpu];
3247        ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3248
3249        return ret;
3250}
3251EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3252
3253/**
3254 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3255 * @buffer: The ring buffer
3256 * @cpu: The per CPU buffer to get the entries from.
3257 */
3258unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3259{
3260        struct ring_buffer_per_cpu *cpu_buffer;
3261
3262        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3263                return 0;
3264
3265        cpu_buffer = buffer->buffers[cpu];
3266
3267        return rb_num_of_entries(cpu_buffer);
3268}
3269EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3270
3271/**
3272 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3273 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3274 * @buffer: The ring buffer
3275 * @cpu: The per CPU buffer to get the number of overruns from
3276 */
3277unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3278{
3279        struct ring_buffer_per_cpu *cpu_buffer;
3280        unsigned long ret;
3281
3282        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3283                return 0;
3284
3285        cpu_buffer = buffer->buffers[cpu];
3286        ret = local_read(&cpu_buffer->overrun);
3287
3288        return ret;
3289}
3290EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3291
3292/**
3293 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3294 * commits failing due to the buffer wrapping around while there are uncommitted
3295 * events, such as during an interrupt storm.
3296 * @buffer: The ring buffer
3297 * @cpu: The per CPU buffer to get the number of overruns from
3298 */
3299unsigned long
3300ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3301{
3302        struct ring_buffer_per_cpu *cpu_buffer;
3303        unsigned long ret;
3304
3305        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3306                return 0;
3307
3308        cpu_buffer = buffer->buffers[cpu];
3309        ret = local_read(&cpu_buffer->commit_overrun);
3310
3311        return ret;
3312}
3313EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3314
3315/**
3316 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3317 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3318 * @buffer: The ring buffer
3319 * @cpu: The per CPU buffer to get the number of overruns from
3320 */
3321unsigned long
3322ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3323{
3324        struct ring_buffer_per_cpu *cpu_buffer;
3325        unsigned long ret;
3326
3327        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3328                return 0;
3329
3330        cpu_buffer = buffer->buffers[cpu];
3331        ret = local_read(&cpu_buffer->dropped_events);
3332
3333        return ret;
3334}
3335EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3336
3337/**
3338 * ring_buffer_read_events_cpu - get the number of events successfully read
3339 * @buffer: The ring buffer
3340 * @cpu: The per CPU buffer to get the number of events read
3341 */
3342unsigned long
3343ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3344{
3345        struct ring_buffer_per_cpu *cpu_buffer;
3346
3347        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3348                return 0;
3349
3350        cpu_buffer = buffer->buffers[cpu];
3351        return cpu_buffer->read;
3352}
3353EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3354
3355/**
3356 * ring_buffer_entries - get the number of entries in a buffer
3357 * @buffer: The ring buffer
3358 *
3359 * Returns the total number of entries in the ring buffer
3360 * (all CPU entries)
3361 */
3362unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3363{
3364        struct ring_buffer_per_cpu *cpu_buffer;
3365        unsigned long entries = 0;
3366        int cpu;
3367
3368        /* if you care about this being correct, lock the buffer */
3369        for_each_buffer_cpu(buffer, cpu) {
3370                cpu_buffer = buffer->buffers[cpu];
3371                entries += rb_num_of_entries(cpu_buffer);
3372        }
3373
3374        return entries;
3375}
3376EXPORT_SYMBOL_GPL(ring_buffer_entries);
3377
3378/**
3379 * ring_buffer_overruns - get the number of overruns in buffer
3380 * @buffer: The ring buffer
3381 *
3382 * Returns the total number of overruns in the ring buffer
3383 * (all CPU entries)
3384 */
3385unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3386{
3387        struct ring_buffer_per_cpu *cpu_buffer;
3388        unsigned long overruns = 0;
3389        int cpu;
3390
3391        /* if you care about this being correct, lock the buffer */
3392        for_each_buffer_cpu(buffer, cpu) {
3393                cpu_buffer = buffer->buffers[cpu];
3394                overruns += local_read(&cpu_buffer->overrun);
3395        }
3396
3397        return overruns;
3398}
3399EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3400
3401static void rb_iter_reset(struct ring_buffer_iter *iter)
3402{
3403        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3404
3405        /* Iterator usage is expected to have record disabled */
3406        iter->head_page = cpu_buffer->reader_page;
3407        iter->head = cpu_buffer->reader_page->read;
3408
3409        iter->cache_reader_page = iter->head_page;
3410        iter->cache_read = cpu_buffer->read;
3411
3412        if (iter->head)
3413                iter->read_stamp = cpu_buffer->read_stamp;
3414        else
3415                iter->read_stamp = iter->head_page->page->time_stamp;
3416}
3417
3418/**
3419 * ring_buffer_iter_reset - reset an iterator
3420 * @iter: The iterator to reset
3421 *
3422 * Resets the iterator, so that it will start from the beginning
3423 * again.
3424 */
3425void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3426{
3427        struct ring_buffer_per_cpu *cpu_buffer;
3428        unsigned long flags;
3429
3430        if (!iter)
3431                return;
3432
3433        cpu_buffer = iter->cpu_buffer;
3434
3435        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3436        rb_iter_reset(iter);
3437        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3438}
3439EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3440
3441/**
3442 * ring_buffer_iter_empty - check if an iterator has no more to read
3443 * @iter: The iterator to check
3444 */
3445int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3446{
3447        struct ring_buffer_per_cpu *cpu_buffer;
3448
3449        cpu_buffer = iter->cpu_buffer;
3450
3451        return iter->head_page == cpu_buffer->commit_page &&
3452                iter->head == rb_commit_index(cpu_buffer);
3453}
3454EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3455
3456static void
3457rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3458                     struct ring_buffer_event *event)
3459{
3460        u64 delta;
3461
3462        switch (event->type_len) {
3463        case RINGBUF_TYPE_PADDING:
3464                return;
3465
3466        case RINGBUF_TYPE_TIME_EXTEND:
3467                delta = event->array[0];
3468                delta <<= TS_SHIFT;
3469                delta += event->time_delta;
3470                cpu_buffer->read_stamp += delta;
3471                return;
3472
3473        case RINGBUF_TYPE_TIME_STAMP:
3474                /* FIXME: not implemented */
3475                return;
3476
3477        case RINGBUF_TYPE_DATA:
3478                cpu_buffer->read_stamp += event->time_delta;
3479                return;
3480
3481        default:
3482                BUG();
3483        }
3484        return;
3485}
3486
3487static void
3488rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3489                          struct ring_buffer_event *event)
3490{
3491        u64 delta;
3492
3493        switch (event->type_len) {
3494        case RINGBUF_TYPE_PADDING:
3495                return;
3496
3497        case RINGBUF_TYPE_TIME_EXTEND:
3498                delta = event->array[0];
3499                delta <<= TS_SHIFT;
3500                delta += event->time_delta;
3501                iter->read_stamp += delta;
3502                return;
3503
3504        case RINGBUF_TYPE_TIME_STAMP:
3505                /* FIXME: not implemented */
3506                return;
3507
3508        case RINGBUF_TYPE_DATA:
3509                iter->read_stamp += event->time_delta;
3510                return;
3511
3512        default:
3513                BUG();
3514        }
3515        return;
3516}
3517
3518static struct buffer_page *
3519rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3520{
3521        struct buffer_page *reader = NULL;
3522        unsigned long overwrite;
3523        unsigned long flags;
3524        int nr_loops = 0;
3525        int ret;
3526
3527        local_irq_save(flags);
3528        arch_spin_lock(&cpu_buffer->lock);
3529
3530 again:
3531        /*
3532         * This should normally only loop twice. But because the
3533         * start of the reader inserts an empty page, it causes
3534         * a case where we will loop three times. There should be no
3535         * reason to loop four times (that I know of).
3536         */
3537        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3538                reader = NULL;
3539                goto out;
3540        }
3541
3542        reader = cpu_buffer->reader_page;
3543
3544        /* If there's more to read, return this page */
3545        if (cpu_buffer->reader_page->read < rb_page_size(reader))
3546                goto out;
3547
3548        /* Never should we have an index greater than the size */
3549        if (RB_WARN_ON(cpu_buffer,
3550                       cpu_buffer->reader_page->read > rb_page_size(reader)))
3551                goto out;
3552
3553        /* check if we caught up to the tail */
3554        reader = NULL;
3555        if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3556                goto out;
3557
3558        /* Don't bother swapping if the ring buffer is empty */
3559        if (rb_num_of_entries(cpu_buffer) == 0)
3560                goto out;
3561
3562        /*
3563         * Reset the reader page to size zero.
3564         */
3565        local_set(&cpu_buffer->reader_page->write, 0);
3566        local_set(&cpu_buffer->reader_page->entries, 0);
3567        local_set(&cpu_buffer->reader_page->page->commit, 0);
3568        cpu_buffer->reader_page->real_end = 0;
3569
3570 spin:
3571        /*
3572         * Splice the empty reader page into the list around the head.
3573         */
3574        reader = rb_set_head_page(cpu_buffer);
3575        if (!reader)
3576                goto out;
3577        cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3578        cpu_buffer->reader_page->list.prev = reader->list.prev;
3579
3580        /*
3581         * cpu_buffer->pages just needs to point to the buffer, it
3582         *  has no specific buffer page to point to. Lets move it out
3583         *  of our way so we don't accidentally swap it.
3584         */
3585        cpu_buffer->pages = reader->list.prev;
3586
3587        /* The reader page will be pointing to the new head */
3588        rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3589
3590        /*
3591         * We want to make sure we read the overruns after we set up our
3592         * pointers to the next object. The writer side does a
3593         * cmpxchg to cross pages which acts as the mb on the writer
3594         * side. Note, the reader will constantly fail the swap
3595         * while the writer is updating the pointers, so this
3596         * guarantees that the overwrite recorded here is the one we
3597         * want to compare with the last_overrun.
3598         */
3599        smp_mb();
3600        overwrite = local_read(&(cpu_buffer->overrun));
3601
3602        /*
3603         * Here's the tricky part.
3604         *
3605         * We need to move the pointer past the header page.
3606         * But we can only do that if a writer is not currently
3607         * moving it. The page before the header page has the
3608         * flag bit '1' set if it is pointing to the page we want.
3609         * but if the writer is in the process of moving it
3610         * than it will be '2' or already moved '0'.
3611         */
3612
3613        ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3614
3615        /*
3616         * If we did not convert it, then we must try again.
3617         */
3618        if (!ret)
3619                goto spin;
3620
3621        /*
3622         * Yeah! We succeeded in replacing the page.
3623         *
3624         * Now make the new head point back to the reader page.
3625         */
3626        rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3627        rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3628
3629        /* Finally update the reader page to the new head */
3630        cpu_buffer->reader_page = reader;
3631        rb_reset_reader_page(cpu_buffer);
3632
3633        if (overwrite != cpu_buffer->last_overrun) {
3634                cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3635                cpu_buffer->last_overrun = overwrite;
3636        }
3637
3638        goto again;
3639
3640 out:
3641        arch_spin_unlock(&cpu_buffer->lock);
3642        local_irq_restore(flags);
3643
3644        return reader;
3645}
3646
3647static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3648{
3649        struct ring_buffer_event *event;
3650        struct buffer_page *reader;
3651        unsigned length;
3652
3653        reader = rb_get_reader_page(cpu_buffer);
3654
3655        /* This function should not be called when buffer is empty */
3656        if (RB_WARN_ON(cpu_buffer, !reader))
3657                return;
3658
3659        event = rb_reader_event(cpu_buffer);
3660
3661        if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3662                cpu_buffer->read++;
3663
3664        rb_update_read_stamp(cpu_buffer, event);
3665
3666        length = rb_event_length(event);
3667        cpu_buffer->reader_page->read += length;
3668}
3669
3670static void rb_advance_iter(struct ring_buffer_iter *iter)
3671{
3672        struct ring_buffer_per_cpu *cpu_buffer;
3673        struct ring_buffer_event *event;
3674        unsigned length;
3675
3676        cpu_buffer = iter->cpu_buffer;
3677
3678        /*
3679         * Check if we are at the end of the buffer.
3680         */
3681        if (iter->head >= rb_page_size(iter->head_page)) {
3682                /* discarded commits can make the page empty */
3683                if (iter->head_page == cpu_buffer->commit_page)
3684                        return;
3685                rb_inc_iter(iter);
3686                return;
3687        }
3688
3689        event = rb_iter_head_event(iter);
3690
3691        length = rb_event_length(event);
3692
3693        /*
3694         * This should not be called to advance the header if we are
3695         * at the tail of the buffer.
3696         */
3697        if (RB_WARN_ON(cpu_buffer,
3698                       (iter->head_page == cpu_buffer->commit_page) &&
3699                       (iter->head + length > rb_commit_index(cpu_buffer))))
3700                return;
3701
3702        rb_update_iter_read_stamp(iter, event);
3703
3704        iter->head += length;
3705
3706        /* check for end of page padding */
3707        if ((iter->head >= rb_page_size(iter->head_page)) &&
3708            (iter->head_page != cpu_buffer->commit_page))
3709                rb_inc_iter(iter);
3710}
3711
3712static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3713{
3714        return cpu_buffer->lost_events;
3715}
3716
3717static struct ring_buffer_event *
3718rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3719               unsigned long *lost_events)
3720{
3721        struct ring_buffer_event *event;
3722        struct buffer_page *reader;
3723        int nr_loops = 0;
3724
3725 again:
3726        /*
3727         * We repeat when a time extend is encountered.
3728         * Since the time extend is always attached to a data event,
3729         * we should never loop more than once.
3730         * (We never hit the following condition more than twice).
3731         */
3732        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3733                return NULL;
3734
3735        reader = rb_get_reader_page(cpu_buffer);
3736        if (!reader)
3737                return NULL;
3738
3739        event = rb_reader_event(cpu_buffer);
3740
3741        switch (event->type_len) {
3742        case RINGBUF_TYPE_PADDING:
3743                if (rb_null_event(event))
3744                        RB_WARN_ON(cpu_buffer, 1);
3745                /*
3746                 * Because the writer could be discarding every
3747                 * event it creates (which would probably be bad)
3748                 * if we were to go back to "again" then we may never
3749                 * catch up, and will trigger the warn on, or lock
3750                 * the box. Return the padding, and we will release
3751                 * the current locks, and try again.
3752                 */
3753                return event;
3754
3755        case RINGBUF_TYPE_TIME_EXTEND:
3756                /* Internal data, OK to advance */
3757                rb_advance_reader(cpu_buffer);
3758                goto again;
3759
3760        case RINGBUF_TYPE_TIME_STAMP:
3761                /* FIXME: not implemented */
3762                rb_advance_reader(cpu_buffer);
3763                goto again;
3764
3765        case RINGBUF_TYPE_DATA:
3766                if (ts) {
3767                        *ts = cpu_buffer->read_stamp + event->time_delta;
3768                        ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3769                                                         cpu_buffer->cpu, ts);
3770                }
3771                if (lost_events)
3772                        *lost_events = rb_lost_events(cpu_buffer);
3773                return event;
3774
3775        default:
3776                BUG();
3777        }
3778
3779        return NULL;
3780}
3781EXPORT_SYMBOL_GPL(ring_buffer_peek);
3782
3783static struct ring_buffer_event *
3784rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3785{
3786        struct ring_buffer *buffer;
3787        struct ring_buffer_per_cpu *cpu_buffer;
3788        struct ring_buffer_event *event;
3789        int nr_loops = 0;
3790
3791        cpu_buffer = iter->cpu_buffer;
3792        buffer = cpu_buffer->buffer;
3793
3794        /*
3795         * Check if someone performed a consuming read to
3796         * the buffer. A consuming read invalidates the iterator
3797         * and we need to reset the iterator in this case.
3798         */
3799        if (unlikely(iter->cache_read != cpu_buffer->read ||
3800                     iter->cache_reader_page != cpu_buffer->reader_page))
3801                rb_iter_reset(iter);
3802
3803 again:
3804        if (ring_buffer_iter_empty(iter))
3805                return NULL;
3806
3807        /*
3808         * We repeat when a time extend is encountered or we hit
3809         * the end of the page. Since the time extend is always attached
3810         * to a data event, we should never loop more than three times.
3811         * Once for going to next page, once on time extend, and
3812         * finally once to get the event.
3813         * (We never hit the following condition more than thrice).
3814         */
3815        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3816                return NULL;
3817
3818        if (rb_per_cpu_empty(cpu_buffer))
3819                return NULL;
3820
3821        if (iter->head >= rb_page_size(iter->head_page)) {
3822                rb_inc_iter(iter);
3823                goto again;
3824        }
3825
3826        event = rb_iter_head_event(iter);
3827
3828        switch (event->type_len) {
3829        case RINGBUF_TYPE_PADDING:
3830                if (rb_null_event(event)) {
3831                        rb_inc_iter(iter);
3832                        goto again;
3833                }
3834                rb_advance_iter(iter);
3835                return event;
3836
3837        case RINGBUF_TYPE_TIME_EXTEND:
3838                /* Internal data, OK to advance */
3839                rb_advance_iter(iter);
3840                goto again;
3841
3842        case RINGBUF_TYPE_TIME_STAMP:
3843                /* FIXME: not implemented */
3844                rb_advance_iter(iter);
3845                goto again;
3846
3847        case RINGBUF_TYPE_DATA:
3848                if (ts) {
3849                        *ts = iter->read_stamp + event->time_delta;
3850                        ring_buffer_normalize_time_stamp(buffer,
3851                                                         cpu_buffer->cpu, ts);
3852                }
3853                return event;
3854
3855        default:
3856                BUG();
3857        }
3858
3859        return NULL;
3860}
3861EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3862
3863static inline int rb_ok_to_lock(void)
3864{
3865        /*
3866         * If an NMI die dumps out the content of the ring buffer
3867         * do not grab locks. We also permanently disable the ring
3868         * buffer too. A one time deal is all you get from reading
3869         * the ring buffer from an NMI.
3870         */
3871        if (likely(!in_nmi()))
3872                return 1;
3873
3874        tracing_off_permanent();
3875        return 0;
3876}
3877
3878/**
3879 * ring_buffer_peek - peek at the next event to be read
3880 * @buffer: The ring buffer to read
3881 * @cpu: The cpu to peak at
3882 * @ts: The timestamp counter of this event.
3883 * @lost_events: a variable to store if events were lost (may be NULL)
3884 *
3885 * This will return the event that will be read next, but does
3886 * not consume the data.
3887 */
3888struct ring_buffer_event *
3889ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3890                 unsigned long *lost_events)
3891{
3892        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3893        struct ring_buffer_event *event;
3894        unsigned long flags;
3895        int dolock;
3896
3897        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3898                return NULL;
3899
3900        dolock = rb_ok_to_lock();
3901 again:
3902        local_irq_save(flags);
3903        if (dolock)
3904                raw_spin_lock(&cpu_buffer->reader_lock);
3905        event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3906        if (event && event->type_len == RINGBUF_TYPE_PADDING)
3907                rb_advance_reader(cpu_buffer);
3908        if (dolock)
3909                raw_spin_unlock(&cpu_buffer->reader_lock);
3910        local_irq_restore(flags);
3911
3912        if (event && event->type_len == RINGBUF_TYPE_PADDING)
3913                goto again;
3914
3915        return event;
3916}
3917
3918/**
3919 * ring_buffer_iter_peek - peek at the next event to be read
3920 * @iter: The ring buffer iterator
3921 * @ts: The timestamp counter of this event.
3922 *
3923 * This will return the event that will be read next, but does
3924 * not increment the iterator.
3925 */
3926struct ring_buffer_event *
3927ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3928{
3929        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3930        struct ring_buffer_event *event;
3931        unsigned long flags;
3932
3933 again:
3934        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3935        event = rb_iter_peek(iter, ts);
3936        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3937
3938        if (event && event->type_len == RINGBUF_TYPE_PADDING)
3939                goto again;
3940
3941        return event;
3942}
3943
3944/**
3945 * ring_buffer_consume - return an event and consume it
3946 * @buffer: The ring buffer to get the next event from
3947 * @cpu: the cpu to read the buffer from
3948 * @ts: a variable to store the timestamp (may be NULL)
3949 * @lost_events: a variable to store if events were lost (may be NULL)
3950 *
3951 * Returns the next event in the ring buffer, and that event is consumed.
3952 * Meaning, that sequential reads will keep returning a different event,
3953 * and eventually empty the ring buffer if the producer is slower.
3954 */
3955struct ring_buffer_event *
3956ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3957                    unsigned long *lost_events)
3958{
3959        struct ring_buffer_per_cpu *cpu_buffer;
3960        struct ring_buffer_event *event = NULL;
3961        unsigned long flags;
3962        int dolock;
3963
3964        dolock = rb_ok_to_lock();
3965
3966 again:
3967        /* might be called in atomic */
3968        preempt_disable();
3969
3970        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3971                goto out;
3972
3973        cpu_buffer = buffer->buffers[cpu];
3974        local_irq_save(flags);
3975        if (dolock)
3976                raw_spin_lock(&cpu_buffer->reader_lock);
3977
3978        event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3979        if (event) {
3980                cpu_buffer->lost_events = 0;
3981                rb_advance_reader(cpu_buffer);
3982        }
3983
3984        if (dolock)
3985                raw_spin_unlock(&cpu_buffer->reader_lock);
3986        local_irq_restore(flags);
3987
3988 out:
3989        preempt_enable();
3990
3991        if (event && event->type_len == RINGBUF_TYPE_PADDING)
3992                goto again;
3993
3994        return event;
3995}
3996EXPORT_SYMBOL_GPL(ring_buffer_consume);
3997
3998/**
3999 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4000 * @buffer: The ring buffer to read from
4001 * @cpu: The cpu buffer to iterate over
4002 *
4003 * This performs the initial preparations necessary to iterate
4004 * through the buffer.  Memory is allocated, buffer recording
4005 * is disabled, and the iterator pointer is returned to the caller.
4006 *
4007 * Disabling buffer recordng prevents the reading from being
4008 * corrupted. This is not a consuming read, so a producer is not
4009 * expected.
4010 *
4011 * After a sequence of ring_buffer_read_prepare calls, the user is
4012 * expected to make at least one call to ring_buffer_read_prepare_sync.
4013 * Afterwards, ring_buffer_read_start is invoked to get things going
4014 * for real.
4015 *
4016 * This overall must be paired with ring_buffer_read_finish.
4017 */
4018struct ring_buffer_iter *
4019ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4020{
4021        struct ring_buffer_per_cpu *cpu_buffer;
4022        struct ring_buffer_iter *iter;
4023
4024        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4025                return NULL;
4026
4027        iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4028        if (!iter)
4029                return NULL;
4030
4031        cpu_buffer = buffer->buffers[cpu];
4032
4033        iter->cpu_buffer = cpu_buffer;
4034
4035        atomic_inc(&buffer->resize_disabled);
4036        atomic_inc(&cpu_buffer->record_disabled);
4037
4038        return iter;
4039}
4040EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4041
4042/**
4043 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4044 *
4045 * All previously invoked ring_buffer_read_prepare calls to prepare
4046 * iterators will be synchronized.  Afterwards, read_buffer_read_start
4047 * calls on those iterators are allowed.
4048 */
4049void
4050ring_buffer_read_prepare_sync(void)
4051{
4052        synchronize_sched();
4053}
4054EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4055
4056/**
4057 * ring_buffer_read_start - start a non consuming read of the buffer
4058 * @iter: The iterator returned by ring_buffer_read_prepare
4059 *
4060 * This finalizes the startup of an iteration through the buffer.
4061 * The iterator comes from a call to ring_buffer_read_prepare and
4062 * an intervening ring_buffer_read_prepare_sync must have been
4063 * performed.
4064 *
4065 * Must be paired with ring_buffer_read_finish.
4066 */
4067void
4068ring_buffer_read_start(struct ring_buffer_iter *iter)
4069{
4070        struct ring_buffer_per_cpu *cpu_buffer;
4071        unsigned long flags;
4072
4073        if (!iter)
4074                return;
4075
4076        cpu_buffer = iter->cpu_buffer;
4077
4078        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4079        arch_spin_lock(&cpu_buffer->lock);
4080        rb_iter_reset(iter);
4081        arch_spin_unlock(&cpu_buffer->lock);
4082        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4083}
4084EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4085
4086/**
4087 * ring_buffer_read_finish - finish reading the iterator of the buffer
4088 * @iter: The iterator retrieved by ring_buffer_start
4089 *
4090 * This re-enables the recording to the buffer, and frees the
4091 * iterator.
4092 */
4093void
4094ring_buffer_read_finish(struct ring_buffer_iter *iter)
4095{
4096        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4097        unsigned long flags;
4098
4099        /*
4100         * Ring buffer is disabled from recording, here's a good place
4101         * to check the integrity of the ring buffer.
4102         * Must prevent readers from trying to read, as the check
4103         * clears the HEAD page and readers require it.
4104         */
4105        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4106        rb_check_pages(cpu_buffer);
4107        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4108
4109        atomic_dec(&cpu_buffer->record_disabled);
4110        atomic_dec(&cpu_buffer->buffer->resize_disabled);
4111        kfree(iter);
4112}
4113EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4114
4115/**
4116 * ring_buffer_read - read the next item in the ring buffer by the iterator
4117 * @iter: The ring buffer iterator
4118 * @ts: The time stamp of the event read.
4119 *
4120 * This reads the next event in the ring buffer and increments the iterator.
4121 */
4122struct ring_buffer_event *
4123ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4124{
4125        struct ring_buffer_event *event;
4126        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4127        unsigned long flags;
4128
4129        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4130 again:
4131        event = rb_iter_peek(iter, ts);
4132        if (!event)
4133                goto out;
4134
4135        if (event->type_len == RINGBUF_TYPE_PADDING)
4136                goto again;
4137
4138        rb_advance_iter(iter);
4139 out:
4140        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4141
4142        return event;
4143}
4144EXPORT_SYMBOL_GPL(ring_buffer_read);
4145
4146/**
4147 * ring_buffer_size - return the size of the ring buffer (in bytes)
4148 * @buffer: The ring buffer.
4149 */
4150unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4151{
4152        /*
4153         * Earlier, this method returned
4154         *      BUF_PAGE_SIZE * buffer->nr_pages
4155         * Since the nr_pages field is now removed, we have converted this to
4156         * return the per cpu buffer value.
4157         */
4158        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4159                return 0;
4160
4161        return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4162}
4163EXPORT_SYMBOL_GPL(ring_buffer_size);
4164
4165static void
4166rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4167{
4168        rb_head_page_deactivate(cpu_buffer);
4169
4170        cpu_buffer->head_page
4171                = list_entry(cpu_buffer->pages, struct buffer_page, list);
4172        local_set(&cpu_buffer->head_page->write, 0);
4173        local_set(&cpu_buffer->head_page->entries, 0);
4174        local_set(&cpu_buffer->head_page->page->commit, 0);
4175
4176        cpu_buffer->head_page->read = 0;
4177
4178        cpu_buffer->tail_page = cpu_buffer->head_page;
4179        cpu_buffer->commit_page = cpu_buffer->head_page;
4180
4181        INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4182        INIT_LIST_HEAD(&cpu_buffer->new_pages);
4183        local_set(&cpu_buffer->reader_page->write, 0);
4184        local_set(&cpu_buffer->reader_page->entries, 0);
4185        local_set(&cpu_buffer->reader_page->page->commit, 0);
4186        cpu_buffer->reader_page->read = 0;
4187
4188        local_set(&cpu_buffer->entries_bytes, 0);
4189        local_set(&cpu_buffer->overrun, 0);
4190        local_set(&cpu_buffer->commit_overrun, 0);
4191        local_set(&cpu_buffer->dropped_events, 0);
4192        local_set(&cpu_buffer->entries, 0);
4193        local_set(&cpu_buffer->committing, 0);
4194        local_set(&cpu_buffer->commits, 0);
4195        cpu_buffer->read = 0;
4196        cpu_buffer->read_bytes = 0;
4197
4198        cpu_buffer->write_stamp = 0;
4199        cpu_buffer->read_stamp = 0;
4200
4201        cpu_buffer->lost_events = 0;
4202        cpu_buffer->last_overrun = 0;
4203
4204        rb_head_page_activate(cpu_buffer);
4205}
4206
4207/**
4208 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4209 * @buffer: The ring buffer to reset a per cpu buffer of
4210 * @cpu: The CPU buffer to be reset
4211 */
4212void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4213{
4214        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4215        unsigned long flags;
4216
4217        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4218                return;
4219
4220        atomic_inc(&buffer->resize_disabled);
4221        atomic_inc(&cpu_buffer->record_disabled);
4222
4223        /* Make sure all commits have finished */
4224        synchronize_sched();
4225
4226        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4227
4228        if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4229                goto out;
4230
4231        arch_spin_lock(&cpu_buffer->lock);
4232
4233        rb_reset_cpu(cpu_buffer);
4234
4235        arch_spin_unlock(&cpu_buffer->lock);
4236
4237 out:
4238        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4239
4240        atomic_dec(&cpu_buffer->record_disabled);
4241        atomic_dec(&buffer->resize_disabled);
4242}
4243EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4244
4245/**
4246 * ring_buffer_reset - reset a ring buffer
4247 * @buffer: The ring buffer to reset all cpu buffers
4248 */
4249void ring_buffer_reset(struct ring_buffer *buffer)
4250{
4251        int cpu;
4252
4253        for_each_buffer_cpu(buffer, cpu)
4254                ring_buffer_reset_cpu(buffer, cpu);
4255}
4256EXPORT_SYMBOL_GPL(ring_buffer_reset);
4257
4258/**
4259 * rind_buffer_empty - is the ring buffer empty?
4260 * @buffer: The ring buffer to test
4261 */
4262int ring_buffer_empty(struct ring_buffer *buffer)
4263{
4264        struct ring_buffer_per_cpu *cpu_buffer;
4265        unsigned long flags;
4266        int dolock;
4267        int cpu;
4268        int ret;
4269
4270        dolock = rb_ok_to_lock();
4271
4272        /* yes this is racy, but if you don't like the race, lock the buffer */
4273        for_each_buffer_cpu(buffer, cpu) {
4274                cpu_buffer = buffer->buffers[cpu];
4275                local_irq_save(flags);
4276                if (dolock)
4277                        raw_spin_lock(&cpu_buffer->reader_lock);
4278                ret = rb_per_cpu_empty(cpu_buffer);
4279                if (dolock)
4280                        raw_spin_unlock(&cpu_buffer->reader_lock);
4281                local_irq_restore(flags);
4282
4283                if (!ret)
4284                        return 0;
4285        }
4286
4287        return 1;
4288}
4289EXPORT_SYMBOL_GPL(ring_buffer_empty);
4290
4291/**
4292 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4293 * @buffer: The ring buffer
4294 * @cpu: The CPU buffer to test
4295 */
4296int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4297{
4298        struct ring_buffer_per_cpu *cpu_buffer;
4299        unsigned long flags;
4300        int dolock;
4301        int ret;
4302
4303        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4304                return 1;
4305
4306        dolock = rb_ok_to_lock();
4307
4308        cpu_buffer = buffer->buffers[cpu];
4309        local_irq_save(flags);
4310        if (dolock)
4311                raw_spin_lock(&cpu_buffer->reader_lock);
4312        ret = rb_per_cpu_empty(cpu_buffer);
4313        if (dolock)
4314                raw_spin_unlock(&cpu_buffer->reader_lock);
4315        local_irq_restore(flags);
4316
4317        return ret;
4318}
4319EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4320
4321#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4322/**
4323 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4324 * @buffer_a: One buffer to swap with
4325 * @buffer_b: The other buffer to swap with
4326 *
4327 * This function is useful for tracers that want to take a "snapshot"
4328 * of a CPU buffer and has another back up buffer lying around.
4329 * it is expected that the tracer handles the cpu buffer not being
4330 * used at the moment.
4331 */
4332int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4333                         struct ring_buffer *buffer_b, int cpu)
4334{
4335        struct ring_buffer_per_cpu *cpu_buffer_a;
4336        struct ring_buffer_per_cpu *cpu_buffer_b;
4337        int ret = -EINVAL;
4338
4339        if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4340            !cpumask_test_cpu(cpu, buffer_b->cpumask))
4341                goto out;
4342
4343        cpu_buffer_a = buffer_a->buffers[cpu];
4344        cpu_buffer_b = buffer_b->buffers[cpu];
4345
4346        /* At least make sure the two buffers are somewhat the same */
4347        if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4348                goto out;
4349
4350        ret = -EAGAIN;
4351
4352        if (ring_buffer_flags != RB_BUFFERS_ON)
4353                goto out;
4354
4355        if (atomic_read(&buffer_a->record_disabled))
4356                goto out;
4357
4358        if (atomic_read(&buffer_b->record_disabled))
4359                goto out;
4360
4361        if (atomic_read(&cpu_buffer_a->record_disabled))
4362                goto out;
4363
4364        if (atomic_read(&cpu_buffer_b->record_disabled))
4365                goto out;
4366
4367        /*
4368         * We can't do a synchronize_sched here because this
4369         * function can be called in atomic context.
4370         * Normally this will be called from the same CPU as cpu.
4371         * If not it's up to the caller to protect this.
4372         */
4373        atomic_inc(&cpu_buffer_a->record_disabled);
4374        atomic_inc(&cpu_buffer_b->record_disabled);
4375
4376        ret = -EBUSY;
4377        if (local_read(&cpu_buffer_a->committing))
4378                goto out_dec;
4379        if (local_read(&cpu_buffer_b->committing))
4380                goto out_dec;
4381
4382        buffer_a->buffers[cpu] = cpu_buffer_b;
4383        buffer_b->buffers[cpu] = cpu_buffer_a;
4384
4385        cpu_buffer_b->buffer = buffer_a;
4386        cpu_buffer_a->buffer = buffer_b;
4387
4388        ret = 0;
4389
4390out_dec:
4391        atomic_dec(&cpu_buffer_a->record_disabled);
4392        atomic_dec(&cpu_buffer_b->record_disabled);
4393out:
4394        return ret;
4395}
4396EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4397#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4398
4399/**
4400 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4401 * @buffer: the buffer to allocate for.
4402 * @cpu: the cpu buffer to allocate.
4403 *
4404 * This function is used in conjunction with ring_buffer_read_page.
4405 * When reading a full page from the ring buffer, these functions
4406 * can be used to speed up the process. The calling function should
4407 * allocate a few pages first with this function. Then when it
4408 * needs to get pages from the ring buffer, it passes the result
4409 * of this function into ring_buffer_read_page, which will swap
4410 * the page that was allocated, with the read page of the buffer.
4411 *
4412 * Returns:
4413 *  The page allocated, or NULL on error.
4414 */
4415void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4416{
4417        struct buffer_data_page *bpage;
4418        struct page *page;
4419
4420        page = alloc_pages_node(cpu_to_node(cpu),
4421                                GFP_KERNEL | __GFP_NORETRY, 0);
4422        if (!page)
4423                return NULL;
4424
4425        bpage = page_address(page);
4426
4427        rb_init_page(bpage);
4428
4429        return bpage;
4430}
4431EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4432
4433/**
4434 * ring_buffer_free_read_page - free an allocated read page
4435 * @buffer: the buffer the page was allocate for
4436 * @data: the page to free
4437 *
4438 * Free a page allocated from ring_buffer_alloc_read_page.
4439 */
4440void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4441{
4442        free_page((unsigned long)data);
4443}
4444EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4445
4446/**
4447 * ring_buffer_read_page - extract a page from the ring buffer
4448 * @buffer: buffer to extract from
4449 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4450 * @len: amount to extract
4451 * @cpu: the cpu of the buffer to extract
4452 * @full: should the extraction only happen when the page is full.
4453 *
4454 * This function will pull out a page from the ring buffer and consume it.
4455 * @data_page must be the address of the variable that was returned
4456 * from ring_buffer_alloc_read_page. This is because the page might be used
4457 * to swap with a page in the ring buffer.
4458 *
4459 * for example:
4460 *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4461 *      if (!rpage)
4462 *              return error;
4463 *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4464 *      if (ret >= 0)
4465 *              process_page(rpage, ret);
4466 *
4467 * When @full is set, the function will not return true unless
4468 * the writer is off the reader page.
4469 *
4470 * Note: it is up to the calling functions to handle sleeps and wakeups.
4471 *  The ring buffer can be used anywhere in the kernel and can not
4472 *  blindly call wake_up. The layer that uses the ring buffer must be
4473 *  responsible for that.
4474 *
4475 * Returns:
4476 *  >=0 if data has been transferred, returns the offset of consumed data.
4477 *  <0 if no data has been transferred.
4478 */
4479int ring_buffer_read_page(struct ring_buffer *buffer,
4480                          void **data_page, size_t len, int cpu, int full)
4481{
4482        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4483        struct ring_buffer_event *event;
4484        struct buffer_data_page *bpage;
4485        struct buffer_page *reader;
4486        unsigned long missed_events;
4487        unsigned long flags;
4488        unsigned int commit;
4489        unsigned int read;
4490        u64 save_timestamp;
4491        int ret = -1;
4492
4493        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4494                goto out;
4495
4496        /*
4497         * If len is not big enough to hold the page header, then
4498         * we can not copy anything.
4499         */
4500        if (len <= BUF_PAGE_HDR_SIZE)
4501                goto out;
4502
4503        len -= BUF_PAGE_HDR_SIZE;
4504
4505        if (!data_page)
4506                goto out;
4507
4508        bpage = *data_page;
4509        if (!bpage)
4510                goto out;
4511
4512        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4513
4514        reader = rb_get_reader_page(cpu_buffer);
4515        if (!reader)
4516                goto out_unlock;
4517
4518        event = rb_reader_event(cpu_buffer);
4519
4520        read = reader->read;
4521        commit = rb_page_commit(reader);
4522
4523        /* Check if any events were dropped */
4524        missed_events = cpu_buffer->lost_events;
4525
4526        /*
4527         * If this page has been partially read or
4528         * if len is not big enough to read the rest of the page or
4529         * a writer is still on the page, then
4530         * we must copy the data from the page to the buffer.
4531         * Otherwise, we can simply swap the page with the one passed in.
4532         */
4533        if (read || (len < (commit - read)) ||
4534            cpu_buffer->reader_page == cpu_buffer->commit_page) {
4535                struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4536                unsigned int rpos = read;
4537                unsigned int pos = 0;
4538                unsigned int size;
4539
4540                if (full)
4541                        goto out_unlock;
4542
4543                if (len > (commit - read))
4544                        len = (commit - read);
4545
4546                /* Always keep the time extend and data together */
4547                size = rb_event_ts_length(event);
4548
4549                if (len < size)
4550                        goto out_unlock;
4551
4552                /* save the current timestamp, since the user will need it */
4553                save_timestamp = cpu_buffer->read_stamp;
4554
4555                /* Need to copy one event at a time */
4556                do {
4557                        /* We need the size of one event, because
4558                         * rb_advance_reader only advances by one event,
4559                         * whereas rb_event_ts_length may include the size of
4560                         * one or two events.
4561                         * We have already ensured there's enough space if this
4562                         * is a time extend. */
4563                        size = rb_event_length(event);
4564                        memcpy(bpage->data + pos, rpage->data + rpos, size);
4565
4566                        len -= size;
4567
4568                        rb_advance_reader(cpu_buffer);
4569                        rpos = reader->read;
4570                        pos += size;
4571
4572                        if (rpos >= commit)
4573                                break;
4574
4575                        event = rb_reader_event(cpu_buffer);
4576                        /* Always keep the time extend and data together */
4577                        size = rb_event_ts_length(event);
4578                } while (len >= size);
4579
4580                /* update bpage */
4581                local_set(&bpage->commit, pos);
4582                bpage->time_stamp = save_timestamp;
4583
4584                /* we copied everything to the beginning */
4585                read = 0;
4586        } else {
4587                /* update the entry counter */
4588                cpu_buffer->read += rb_page_entries(reader);
4589                cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4590
4591                /* swap the pages */
4592                rb_init_page(bpage);
4593                bpage = reader->page;
4594                reader->page = *data_page;
4595                local_set(&reader->write, 0);
4596                local_set(&reader->entries, 0);
4597                reader->read = 0;
4598                *data_page = bpage;
4599
4600                /*
4601                 * Use the real_end for the data size,
4602                 * This gives us a chance to store the lost events
4603                 * on the page.
4604                 */
4605                if (reader->real_end)
4606                        local_set(&bpage->commit, reader->real_end);
4607        }
4608        ret = read;
4609
4610        cpu_buffer->lost_events = 0;
4611
4612        commit = local_read(&bpage->commit);
4613        /*
4614         * Set a flag in the commit field if we lost events
4615         */
4616        if (missed_events) {
4617                /* If there is room at the end of the page to save the
4618                 * missed events, then record it there.
4619                 */
4620                if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4621                        memcpy(&bpage->data[commit], &missed_events,
4622                               sizeof(missed_events));
4623                        local_add(RB_MISSED_STORED, &bpage->commit);
4624                        commit += sizeof(missed_events);
4625                }
4626                local_add(RB_MISSED_EVENTS, &bpage->commit);
4627        }
4628
4629        /*
4630         * This page may be off to user land. Zero it out here.
4631         */
4632        if (commit < BUF_PAGE_SIZE)
4633                memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4634
4635 out_unlock:
4636        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4637
4638 out:
4639        return ret;
4640}
4641EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4642
4643#ifdef CONFIG_HOTPLUG_CPU
4644static int rb_cpu_notify(struct notifier_block *self,
4645                         unsigned long action, void *hcpu)
4646{
4647        struct ring_buffer *buffer =
4648                container_of(self, struct ring_buffer, cpu_notify);
4649        long cpu = (long)hcpu;
4650        int cpu_i, nr_pages_same;
4651        unsigned int nr_pages;
4652
4653        switch (action) {
4654        case CPU_UP_PREPARE:
4655        case CPU_UP_PREPARE_FROZEN:
4656                if (cpumask_test_cpu(cpu, buffer->cpumask))
4657                        return NOTIFY_OK;
4658
4659                nr_pages = 0;
4660                nr_pages_same = 1;
4661                /* check if all cpu sizes are same */
4662                for_each_buffer_cpu(buffer, cpu_i) {
4663                        /* fill in the size from first enabled cpu */
4664                        if (nr_pages == 0)
4665                                nr_pages = buffer->buffers[cpu_i]->nr_pages;
4666                        if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4667                                nr_pages_same = 0;
4668                                break;
4669                        }
4670                }
4671                /* allocate minimum pages, user can later expand it */
4672                if (!nr_pages_same)
4673                        nr_pages = 2;
4674                buffer->buffers[cpu] =
4675                        rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4676                if (!buffer->buffers[cpu]) {
4677                        WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4678                             cpu);
4679                        return NOTIFY_OK;
4680                }
4681                smp_wmb();
4682                cpumask_set_cpu(cpu, buffer->cpumask);
4683                break;
4684        case CPU_DOWN_PREPARE:
4685        case CPU_DOWN_PREPARE_FROZEN:
4686                /*
4687                 * Do nothing.
4688                 *  If we were to free the buffer, then the user would
4689                 *  lose any trace that was in the buffer.
4690                 */
4691                break;
4692        default:
4693                break;
4694        }
4695        return NOTIFY_OK;
4696}
4697#endif
4698
4699#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4700/*
4701 * This is a basic integrity check of the ring buffer.
4702 * Late in the boot cycle this test will run when configured in.
4703 * It will kick off a thread per CPU that will go into a loop
4704 * writing to the per cpu ring buffer various sizes of data.
4705 * Some of the data will be large items, some small.
4706 *
4707 * Another thread is created that goes into a spin, sending out
4708 * IPIs to the other CPUs to also write into the ring buffer.
4709 * this is to test the nesting ability of the buffer.
4710 *
4711 * Basic stats are recorded and reported. If something in the
4712 * ring buffer should happen that's not expected, a big warning
4713 * is displayed and all ring buffers are disabled.
4714 */
4715static struct task_struct *rb_threads[NR_CPUS] __initdata;
4716
4717struct rb_test_data {
4718        struct ring_buffer      *buffer;
4719        unsigned long           events;
4720        unsigned long           bytes_written;
4721        unsigned long           bytes_alloc;
4722        unsigned long           bytes_dropped;
4723        unsigned long           events_nested;
4724        unsigned long           bytes_written_nested;
4725        unsigned long           bytes_alloc_nested;
4726        unsigned long           bytes_dropped_nested;
4727        int                     min_size_nested;
4728        int                     max_size_nested;
4729        int                     max_size;
4730        int                     min_size;
4731        int                     cpu;
4732        int                     cnt;
4733};
4734
4735static struct rb_test_data rb_data[NR_CPUS] __initdata;
4736
4737/* 1 meg per cpu */
4738#define RB_TEST_BUFFER_SIZE     1048576
4739
4740static char rb_string[] __initdata =
4741        "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4742        "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4743        "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4744
4745static bool rb_test_started __initdata;
4746
4747struct rb_item {
4748        int size;
4749        char str[];
4750};
4751
4752static __init int rb_write_something(struct rb_test_data *data, bool nested)
4753{
4754        struct ring_buffer_event *event;
4755        struct rb_item *item;
4756        bool started;
4757        int event_len;
4758        int size;
4759        int len;
4760        int cnt;
4761
4762        /* Have nested writes different that what is written */
4763        cnt = data->cnt + (nested ? 27 : 0);
4764
4765        /* Multiply cnt by ~e, to make some unique increment */
4766        size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4767
4768        len = size + sizeof(struct rb_item);
4769
4770        started = rb_test_started;
4771        /* read rb_test_started before checking buffer enabled */
4772        smp_rmb();
4773
4774        event = ring_buffer_lock_reserve(data->buffer, len);
4775        if (!event) {
4776                /* Ignore dropped events before test starts. */
4777                if (started) {
4778                        if (nested)
4779                                data->bytes_dropped += len;
4780                        else
4781                                data->bytes_dropped_nested += len;
4782                }
4783                return len;
4784        }
4785
4786        event_len = ring_buffer_event_length(event);
4787
4788        if (RB_WARN_ON(data->buffer, event_len < len))
4789                goto out;
4790
4791        item = ring_buffer_event_data(event);
4792        item->size = size;
4793        memcpy(item->str, rb_string, size);
4794
4795        if (nested) {
4796                data->bytes_alloc_nested += event_len;
4797                data->bytes_written_nested += len;
4798                data->events_nested++;
4799                if (!data->min_size_nested || len < data->min_size_nested)
4800                        data->min_size_nested = len;
4801                if (len > data->max_size_nested)
4802                        data->max_size_nested = len;
4803        } else {
4804                data->bytes_alloc += event_len;
4805                data->bytes_written += len;
4806                data->events++;
4807                if (!data->min_size || len < data->min_size)
4808                        data->max_size = len;
4809                if (len > data->max_size)
4810                        data->max_size = len;
4811        }
4812
4813 out:
4814        ring_buffer_unlock_commit(data->buffer, event);
4815
4816        return 0;
4817}
4818
4819static __init int rb_test(void *arg)
4820{
4821        struct rb_test_data *data = arg;
4822
4823        while (!kthread_should_stop()) {
4824                rb_write_something(data, false);
4825                data->cnt++;
4826
4827                set_current_state(TASK_INTERRUPTIBLE);
4828                /* Now sleep between a min of 100-300us and a max of 1ms */
4829                usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4830        }
4831
4832        return 0;
4833}
4834
4835static __init void rb_ipi(void *ignore)
4836{
4837        struct rb_test_data *data;
4838        int cpu = smp_processor_id();
4839
4840        data = &rb_data[cpu];
4841        rb_write_something(data, true);
4842}
4843
4844static __init int rb_hammer_test(void *arg)
4845{
4846        while (!kthread_should_stop()) {
4847
4848                /* Send an IPI to all cpus to write data! */
4849                smp_call_function(rb_ipi, NULL, 1);
4850                /* No sleep, but for non preempt, let others run */
4851                schedule();
4852        }
4853
4854        return 0;
4855}
4856
4857static __init int test_ringbuffer(void)
4858{
4859        struct task_struct *rb_hammer;
4860        struct ring_buffer *buffer;
4861        int cpu;
4862        int ret = 0;
4863
4864        pr_info("Running ring buffer tests...\n");
4865
4866        buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4867        if (WARN_ON(!buffer))
4868                return 0;
4869
4870        /* Disable buffer so that threads can't write to it yet */
4871        ring_buffer_record_off(buffer);
4872
4873        for_each_online_cpu(cpu) {
4874                rb_data[cpu].buffer = buffer;
4875                rb_data[cpu].cpu = cpu;
4876                rb_data[cpu].cnt = cpu;
4877                rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4878                                                 "rbtester/%d", cpu);
4879                if (WARN_ON(!rb_threads[cpu])) {
4880                        pr_cont("FAILED\n");
4881                        ret = -1;
4882                        goto out_free;
4883                }
4884
4885                kthread_bind(rb_threads[cpu], cpu);
4886                wake_up_process(rb_threads[cpu]);
4887        }
4888
4889        /* Now create the rb hammer! */
4890        rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4891        if (WARN_ON(!rb_hammer)) {
4892                pr_cont("FAILED\n");
4893                ret = -1;
4894                goto out_free;
4895        }
4896
4897        ring_buffer_record_on(buffer);
4898        /*
4899         * Show buffer is enabled before setting rb_test_started.
4900         * Yes there's a small race window where events could be
4901         * dropped and the thread wont catch it. But when a ring
4902         * buffer gets enabled, there will always be some kind of
4903         * delay before other CPUs see it. Thus, we don't care about
4904         * those dropped events. We care about events dropped after
4905         * the threads see that the buffer is active.
4906         */
4907        smp_wmb();
4908        rb_test_started = true;
4909
4910        set_current_state(TASK_INTERRUPTIBLE);
4911        /* Just run for 10 seconds */;
4912        schedule_timeout(10 * HZ);
4913
4914        kthread_stop(rb_hammer);
4915
4916 out_free:
4917        for_each_online_cpu(cpu) {
4918                if (!rb_threads[cpu])
4919                        break;
4920                kthread_stop(rb_threads[cpu]);
4921        }
4922        if (ret) {
4923                ring_buffer_free(buffer);
4924                return ret;
4925        }
4926
4927        /* Report! */
4928        pr_info("finished\n");
4929        for_each_online_cpu(cpu) {
4930                struct ring_buffer_event *event;
4931                struct rb_test_data *data = &rb_data[cpu];
4932                struct rb_item *item;
4933                unsigned long total_events;
4934                unsigned long total_dropped;
4935                unsigned long total_written;
4936                unsigned long total_alloc;
4937                unsigned long total_read = 0;
4938                unsigned long total_size = 0;
4939                unsigned long total_len = 0;
4940                unsigned long total_lost = 0;
4941                unsigned long lost;
4942                int big_event_size;
4943                int small_event_size;
4944
4945                ret = -1;
4946
4947                total_events = data->events + data->events_nested;
4948                total_written = data->bytes_written + data->bytes_written_nested;
4949                total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4950                total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4951
4952                big_event_size = data->max_size + data->max_size_nested;
4953                small_event_size = data->min_size + data->min_size_nested;
4954
4955                pr_info("CPU %d:\n", cpu);
4956                pr_info("              events:    %ld\n", total_events);
4957                pr_info("       dropped bytes:    %ld\n", total_dropped);
4958                pr_info("       alloced bytes:    %ld\n", total_alloc);
4959                pr_info("       written bytes:    %ld\n", total_written);
4960                pr_info("       biggest event:    %d\n", big_event_size);
4961                pr_info("      smallest event:    %d\n", small_event_size);
4962
4963                if (RB_WARN_ON(buffer, total_dropped))
4964                        break;
4965
4966                ret = 0;
4967
4968                while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4969                        total_lost += lost;
4970                        item = ring_buffer_event_data(event);
4971                        total_len += ring_buffer_event_length(event);
4972                        total_size += item->size + sizeof(struct rb_item);
4973                        if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4974                                pr_info("FAILED!\n");
4975                                pr_info("buffer had: %.*s\n", item->size, item->str);
4976                                pr_info("expected:   %.*s\n", item->size, rb_string);
4977                                RB_WARN_ON(buffer, 1);
4978                                ret = -1;
4979                                break;
4980                        }
4981                        total_read++;
4982                }
4983                if (ret)
4984                        break;
4985
4986                ret = -1;
4987
4988                pr_info("         read events:   %ld\n", total_read);
4989                pr_info("         lost events:   %ld\n", total_lost);
4990                pr_info("        total events:   %ld\n", total_lost + total_read);
4991                pr_info("  recorded len bytes:   %ld\n", total_len);
4992                pr_info(" recorded size bytes:   %ld\n", total_size);
4993                if (total_lost)
4994                        pr_info(" With dropped events, record len and size may not match\n"
4995                                " alloced and written from above\n");
4996                if (!total_lost) {
4997                        if (RB_WARN_ON(buffer, total_len != total_alloc ||
4998                                       total_size != total_written))
4999                                break;
5000                }
5001                if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5002                        break;
5003
5004                ret = 0;
5005        }
5006        if (!ret)
5007                pr_info("Ring buffer PASSED!\n");
5008
5009        ring_buffer_free(buffer);
5010        return 0;
5011}
5012
5013late_initcall(test_ringbuffer);
5014#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5015