linux/lib/genalloc.c
<<
>>
Prefs
   1/*
   2 * Basic general purpose allocator for managing special purpose
   3 * memory, for example, memory that is not managed by the regular
   4 * kmalloc/kfree interface.  Uses for this includes on-device special
   5 * memory, uncached memory etc.
   6 *
   7 * It is safe to use the allocator in NMI handlers and other special
   8 * unblockable contexts that could otherwise deadlock on locks.  This
   9 * is implemented by using atomic operations and retries on any
  10 * conflicts.  The disadvantage is that there may be livelocks in
  11 * extreme cases.  For better scalability, one allocator can be used
  12 * for each CPU.
  13 *
  14 * The lockless operation only works if there is enough memory
  15 * available.  If new memory is added to the pool a lock has to be
  16 * still taken.  So any user relying on locklessness has to ensure
  17 * that sufficient memory is preallocated.
  18 *
  19 * The basic atomic operation of this allocator is cmpxchg on long.
  20 * On architectures that don't have NMI-safe cmpxchg implementation,
  21 * the allocator can NOT be used in NMI handler.  So code uses the
  22 * allocator in NMI handler should depend on
  23 * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
  24 *
  25 * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
  26 *
  27 * This source code is licensed under the GNU General Public License,
  28 * Version 2.  See the file COPYING for more details.
  29 */
  30
  31#include <linux/slab.h>
  32#include <linux/export.h>
  33#include <linux/bitmap.h>
  34#include <linux/rculist.h>
  35#include <linux/interrupt.h>
  36#include <linux/genalloc.h>
  37#include <linux/of_device.h>
  38
  39static inline size_t chunk_size(const struct gen_pool_chunk *chunk)
  40{
  41        return chunk->end_addr - chunk->start_addr + 1;
  42}
  43
  44static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
  45{
  46        unsigned long val, nval;
  47
  48        nval = *addr;
  49        do {
  50                val = nval;
  51                if (val & mask_to_set)
  52                        return -EBUSY;
  53                cpu_relax();
  54        } while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
  55
  56        return 0;
  57}
  58
  59static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
  60{
  61        unsigned long val, nval;
  62
  63        nval = *addr;
  64        do {
  65                val = nval;
  66                if ((val & mask_to_clear) != mask_to_clear)
  67                        return -EBUSY;
  68                cpu_relax();
  69        } while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
  70
  71        return 0;
  72}
  73
  74/*
  75 * bitmap_set_ll - set the specified number of bits at the specified position
  76 * @map: pointer to a bitmap
  77 * @start: a bit position in @map
  78 * @nr: number of bits to set
  79 *
  80 * Set @nr bits start from @start in @map lock-lessly. Several users
  81 * can set/clear the same bitmap simultaneously without lock. If two
  82 * users set the same bit, one user will return remain bits, otherwise
  83 * return 0.
  84 */
  85static int bitmap_set_ll(unsigned long *map, int start, int nr)
  86{
  87        unsigned long *p = map + BIT_WORD(start);
  88        const int size = start + nr;
  89        int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
  90        unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
  91
  92        while (nr - bits_to_set >= 0) {
  93                if (set_bits_ll(p, mask_to_set))
  94                        return nr;
  95                nr -= bits_to_set;
  96                bits_to_set = BITS_PER_LONG;
  97                mask_to_set = ~0UL;
  98                p++;
  99        }
 100        if (nr) {
 101                mask_to_set &= BITMAP_LAST_WORD_MASK(size);
 102                if (set_bits_ll(p, mask_to_set))
 103                        return nr;
 104        }
 105
 106        return 0;
 107}
 108
 109/*
 110 * bitmap_clear_ll - clear the specified number of bits at the specified position
 111 * @map: pointer to a bitmap
 112 * @start: a bit position in @map
 113 * @nr: number of bits to set
 114 *
 115 * Clear @nr bits start from @start in @map lock-lessly. Several users
 116 * can set/clear the same bitmap simultaneously without lock. If two
 117 * users clear the same bit, one user will return remain bits,
 118 * otherwise return 0.
 119 */
 120static int bitmap_clear_ll(unsigned long *map, int start, int nr)
 121{
 122        unsigned long *p = map + BIT_WORD(start);
 123        const int size = start + nr;
 124        int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
 125        unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
 126
 127        while (nr - bits_to_clear >= 0) {
 128                if (clear_bits_ll(p, mask_to_clear))
 129                        return nr;
 130                nr -= bits_to_clear;
 131                bits_to_clear = BITS_PER_LONG;
 132                mask_to_clear = ~0UL;
 133                p++;
 134        }
 135        if (nr) {
 136                mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
 137                if (clear_bits_ll(p, mask_to_clear))
 138                        return nr;
 139        }
 140
 141        return 0;
 142}
 143
 144/**
 145 * gen_pool_create - create a new special memory pool
 146 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
 147 * @nid: node id of the node the pool structure should be allocated on, or -1
 148 *
 149 * Create a new special memory pool that can be used to manage special purpose
 150 * memory not managed by the regular kmalloc/kfree interface.
 151 */
 152struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
 153{
 154        struct gen_pool *pool;
 155
 156        pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
 157        if (pool != NULL) {
 158                spin_lock_init(&pool->lock);
 159                INIT_LIST_HEAD(&pool->chunks);
 160                pool->min_alloc_order = min_alloc_order;
 161                pool->algo = gen_pool_first_fit;
 162                pool->data = NULL;
 163        }
 164        return pool;
 165}
 166EXPORT_SYMBOL(gen_pool_create);
 167
 168/**
 169 * gen_pool_add_virt - add a new chunk of special memory to the pool
 170 * @pool: pool to add new memory chunk to
 171 * @virt: virtual starting address of memory chunk to add to pool
 172 * @phys: physical starting address of memory chunk to add to pool
 173 * @size: size in bytes of the memory chunk to add to pool
 174 * @nid: node id of the node the chunk structure and bitmap should be
 175 *       allocated on, or -1
 176 *
 177 * Add a new chunk of special memory to the specified pool.
 178 *
 179 * Returns 0 on success or a -ve errno on failure.
 180 */
 181int gen_pool_add_virt(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
 182                 size_t size, int nid)
 183{
 184        struct gen_pool_chunk *chunk;
 185        int nbits = size >> pool->min_alloc_order;
 186        int nbytes = sizeof(struct gen_pool_chunk) +
 187                                BITS_TO_LONGS(nbits) * sizeof(long);
 188
 189        chunk = kzalloc_node(nbytes, GFP_KERNEL, nid);
 190        if (unlikely(chunk == NULL))
 191                return -ENOMEM;
 192
 193        chunk->phys_addr = phys;
 194        chunk->start_addr = virt;
 195        chunk->end_addr = virt + size - 1;
 196        atomic_set(&chunk->avail, size);
 197
 198        spin_lock(&pool->lock);
 199        list_add_rcu(&chunk->next_chunk, &pool->chunks);
 200        spin_unlock(&pool->lock);
 201
 202        return 0;
 203}
 204EXPORT_SYMBOL(gen_pool_add_virt);
 205
 206/**
 207 * gen_pool_virt_to_phys - return the physical address of memory
 208 * @pool: pool to allocate from
 209 * @addr: starting address of memory
 210 *
 211 * Returns the physical address on success, or -1 on error.
 212 */
 213phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
 214{
 215        struct gen_pool_chunk *chunk;
 216        phys_addr_t paddr = -1;
 217
 218        rcu_read_lock();
 219        list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
 220                if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
 221                        paddr = chunk->phys_addr + (addr - chunk->start_addr);
 222                        break;
 223                }
 224        }
 225        rcu_read_unlock();
 226
 227        return paddr;
 228}
 229EXPORT_SYMBOL(gen_pool_virt_to_phys);
 230
 231/**
 232 * gen_pool_destroy - destroy a special memory pool
 233 * @pool: pool to destroy
 234 *
 235 * Destroy the specified special memory pool. Verifies that there are no
 236 * outstanding allocations.
 237 */
 238void gen_pool_destroy(struct gen_pool *pool)
 239{
 240        struct list_head *_chunk, *_next_chunk;
 241        struct gen_pool_chunk *chunk;
 242        int order = pool->min_alloc_order;
 243        int bit, end_bit;
 244
 245        list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
 246                chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
 247                list_del(&chunk->next_chunk);
 248
 249                end_bit = chunk_size(chunk) >> order;
 250                bit = find_next_bit(chunk->bits, end_bit, 0);
 251                BUG_ON(bit < end_bit);
 252
 253                kfree(chunk);
 254        }
 255        kfree(pool);
 256        return;
 257}
 258EXPORT_SYMBOL(gen_pool_destroy);
 259
 260/**
 261 * gen_pool_alloc - allocate special memory from the pool
 262 * @pool: pool to allocate from
 263 * @size: number of bytes to allocate from the pool
 264 *
 265 * Allocate the requested number of bytes from the specified pool.
 266 * Uses the pool allocation function (with first-fit algorithm by default).
 267 * Can not be used in NMI handler on architectures without
 268 * NMI-safe cmpxchg implementation.
 269 */
 270unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size)
 271{
 272        struct gen_pool_chunk *chunk;
 273        unsigned long addr = 0;
 274        int order = pool->min_alloc_order;
 275        int nbits, start_bit = 0, end_bit, remain;
 276
 277#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
 278        BUG_ON(in_nmi());
 279#endif
 280
 281        if (size == 0)
 282                return 0;
 283
 284        nbits = (size + (1UL << order) - 1) >> order;
 285        rcu_read_lock();
 286        list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
 287                if (size > atomic_read(&chunk->avail))
 288                        continue;
 289
 290                end_bit = chunk_size(chunk) >> order;
 291retry:
 292                start_bit = pool->algo(chunk->bits, end_bit, start_bit, nbits,
 293                                pool->data);
 294                if (start_bit >= end_bit)
 295                        continue;
 296                remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
 297                if (remain) {
 298                        remain = bitmap_clear_ll(chunk->bits, start_bit,
 299                                                 nbits - remain);
 300                        BUG_ON(remain);
 301                        goto retry;
 302                }
 303
 304                addr = chunk->start_addr + ((unsigned long)start_bit << order);
 305                size = nbits << order;
 306                atomic_sub(size, &chunk->avail);
 307                break;
 308        }
 309        rcu_read_unlock();
 310        return addr;
 311}
 312EXPORT_SYMBOL(gen_pool_alloc);
 313
 314/**
 315 * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage
 316 * @pool: pool to allocate from
 317 * @size: number of bytes to allocate from the pool
 318 * @dma: dma-view physical address return value.  Use NULL if unneeded.
 319 *
 320 * Allocate the requested number of bytes from the specified pool.
 321 * Uses the pool allocation function (with first-fit algorithm by default).
 322 * Can not be used in NMI handler on architectures without
 323 * NMI-safe cmpxchg implementation.
 324 */
 325void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
 326{
 327        unsigned long vaddr;
 328
 329        if (!pool)
 330                return NULL;
 331
 332        vaddr = gen_pool_alloc(pool, size);
 333        if (!vaddr)
 334                return NULL;
 335
 336        if (dma)
 337                *dma = gen_pool_virt_to_phys(pool, vaddr);
 338
 339        return (void *)vaddr;
 340}
 341EXPORT_SYMBOL(gen_pool_dma_alloc);
 342
 343/**
 344 * gen_pool_free - free allocated special memory back to the pool
 345 * @pool: pool to free to
 346 * @addr: starting address of memory to free back to pool
 347 * @size: size in bytes of memory to free
 348 *
 349 * Free previously allocated special memory back to the specified
 350 * pool.  Can not be used in NMI handler on architectures without
 351 * NMI-safe cmpxchg implementation.
 352 */
 353void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size)
 354{
 355        struct gen_pool_chunk *chunk;
 356        int order = pool->min_alloc_order;
 357        int start_bit, nbits, remain;
 358
 359#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
 360        BUG_ON(in_nmi());
 361#endif
 362
 363        nbits = (size + (1UL << order) - 1) >> order;
 364        rcu_read_lock();
 365        list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
 366                if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
 367                        BUG_ON(addr + size - 1 > chunk->end_addr);
 368                        start_bit = (addr - chunk->start_addr) >> order;
 369                        remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
 370                        BUG_ON(remain);
 371                        size = nbits << order;
 372                        atomic_add(size, &chunk->avail);
 373                        rcu_read_unlock();
 374                        return;
 375                }
 376        }
 377        rcu_read_unlock();
 378        BUG();
 379}
 380EXPORT_SYMBOL(gen_pool_free);
 381
 382/**
 383 * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
 384 * @pool:       the generic memory pool
 385 * @func:       func to call
 386 * @data:       additional data used by @func
 387 *
 388 * Call @func for every chunk of generic memory pool.  The @func is
 389 * called with rcu_read_lock held.
 390 */
 391void gen_pool_for_each_chunk(struct gen_pool *pool,
 392        void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
 393        void *data)
 394{
 395        struct gen_pool_chunk *chunk;
 396
 397        rcu_read_lock();
 398        list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
 399                func(pool, chunk, data);
 400        rcu_read_unlock();
 401}
 402EXPORT_SYMBOL(gen_pool_for_each_chunk);
 403
 404/**
 405 * addr_in_gen_pool - checks if an address falls within the range of a pool
 406 * @pool:       the generic memory pool
 407 * @start:      start address
 408 * @size:       size of the region
 409 *
 410 * Check if the range of addresses falls within the specified pool. Returns
 411 * true if the entire range is contained in the pool and false otherwise.
 412 */
 413bool addr_in_gen_pool(struct gen_pool *pool, unsigned long start,
 414                        size_t size)
 415{
 416        bool found = false;
 417        unsigned long end = start + size - 1;
 418        struct gen_pool_chunk *chunk;
 419
 420        rcu_read_lock();
 421        list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) {
 422                if (start >= chunk->start_addr && start <= chunk->end_addr) {
 423                        if (end <= chunk->end_addr) {
 424                                found = true;
 425                                break;
 426                        }
 427                }
 428        }
 429        rcu_read_unlock();
 430        return found;
 431}
 432
 433/**
 434 * gen_pool_avail - get available free space of the pool
 435 * @pool: pool to get available free space
 436 *
 437 * Return available free space of the specified pool.
 438 */
 439size_t gen_pool_avail(struct gen_pool *pool)
 440{
 441        struct gen_pool_chunk *chunk;
 442        size_t avail = 0;
 443
 444        rcu_read_lock();
 445        list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
 446                avail += atomic_read(&chunk->avail);
 447        rcu_read_unlock();
 448        return avail;
 449}
 450EXPORT_SYMBOL_GPL(gen_pool_avail);
 451
 452/**
 453 * gen_pool_size - get size in bytes of memory managed by the pool
 454 * @pool: pool to get size
 455 *
 456 * Return size in bytes of memory managed by the pool.
 457 */
 458size_t gen_pool_size(struct gen_pool *pool)
 459{
 460        struct gen_pool_chunk *chunk;
 461        size_t size = 0;
 462
 463        rcu_read_lock();
 464        list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
 465                size += chunk_size(chunk);
 466        rcu_read_unlock();
 467        return size;
 468}
 469EXPORT_SYMBOL_GPL(gen_pool_size);
 470
 471/**
 472 * gen_pool_set_algo - set the allocation algorithm
 473 * @pool: pool to change allocation algorithm
 474 * @algo: custom algorithm function
 475 * @data: additional data used by @algo
 476 *
 477 * Call @algo for each memory allocation in the pool.
 478 * If @algo is NULL use gen_pool_first_fit as default
 479 * memory allocation function.
 480 */
 481void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data)
 482{
 483        rcu_read_lock();
 484
 485        pool->algo = algo;
 486        if (!pool->algo)
 487                pool->algo = gen_pool_first_fit;
 488
 489        pool->data = data;
 490
 491        rcu_read_unlock();
 492}
 493EXPORT_SYMBOL(gen_pool_set_algo);
 494
 495/**
 496 * gen_pool_first_fit - find the first available region
 497 * of memory matching the size requirement (no alignment constraint)
 498 * @map: The address to base the search on
 499 * @size: The bitmap size in bits
 500 * @start: The bitnumber to start searching at
 501 * @nr: The number of zeroed bits we're looking for
 502 * @data: additional data - unused
 503 */
 504unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
 505                unsigned long start, unsigned int nr, void *data)
 506{
 507        return bitmap_find_next_zero_area(map, size, start, nr, 0);
 508}
 509EXPORT_SYMBOL(gen_pool_first_fit);
 510
 511/**
 512 * gen_pool_first_fit_order_align - find the first available region
 513 * of memory matching the size requirement. The region will be aligned
 514 * to the order of the size specified.
 515 * @map: The address to base the search on
 516 * @size: The bitmap size in bits
 517 * @start: The bitnumber to start searching at
 518 * @nr: The number of zeroed bits we're looking for
 519 * @data: additional data - unused
 520 */
 521unsigned long gen_pool_first_fit_order_align(unsigned long *map,
 522                unsigned long size, unsigned long start,
 523                unsigned int nr, void *data)
 524{
 525        unsigned long align_mask = roundup_pow_of_two(nr) - 1;
 526
 527        return bitmap_find_next_zero_area(map, size, start, nr, align_mask);
 528}
 529EXPORT_SYMBOL(gen_pool_first_fit_order_align);
 530
 531/**
 532 * gen_pool_best_fit - find the best fitting region of memory
 533 * macthing the size requirement (no alignment constraint)
 534 * @map: The address to base the search on
 535 * @size: The bitmap size in bits
 536 * @start: The bitnumber to start searching at
 537 * @nr: The number of zeroed bits we're looking for
 538 * @data: additional data - unused
 539 *
 540 * Iterate over the bitmap to find the smallest free region
 541 * which we can allocate the memory.
 542 */
 543unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
 544                unsigned long start, unsigned int nr, void *data)
 545{
 546        unsigned long start_bit = size;
 547        unsigned long len = size + 1;
 548        unsigned long index;
 549
 550        index = bitmap_find_next_zero_area(map, size, start, nr, 0);
 551
 552        while (index < size) {
 553                int next_bit = find_next_bit(map, size, index + nr);
 554                if ((next_bit - index) < len) {
 555                        len = next_bit - index;
 556                        start_bit = index;
 557                        if (len == nr)
 558                                return start_bit;
 559                }
 560                index = bitmap_find_next_zero_area(map, size,
 561                                                   next_bit + 1, nr, 0);
 562        }
 563
 564        return start_bit;
 565}
 566EXPORT_SYMBOL(gen_pool_best_fit);
 567
 568static void devm_gen_pool_release(struct device *dev, void *res)
 569{
 570        gen_pool_destroy(*(struct gen_pool **)res);
 571}
 572
 573/**
 574 * devm_gen_pool_create - managed gen_pool_create
 575 * @dev: device that provides the gen_pool
 576 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
 577 * @nid: node id of the node the pool structure should be allocated on, or -1
 578 *
 579 * Create a new special memory pool that can be used to manage special purpose
 580 * memory not managed by the regular kmalloc/kfree interface. The pool will be
 581 * automatically destroyed by the device management code.
 582 */
 583struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order,
 584                int nid)
 585{
 586        struct gen_pool **ptr, *pool;
 587
 588        ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL);
 589        if (!ptr)
 590                return NULL;
 591
 592        pool = gen_pool_create(min_alloc_order, nid);
 593        if (pool) {
 594                *ptr = pool;
 595                devres_add(dev, ptr);
 596        } else {
 597                devres_free(ptr);
 598        }
 599
 600        return pool;
 601}
 602EXPORT_SYMBOL(devm_gen_pool_create);
 603
 604/**
 605 * dev_get_gen_pool - Obtain the gen_pool (if any) for a device
 606 * @dev: device to retrieve the gen_pool from
 607 *
 608 * Returns the gen_pool for the device if one is present, or NULL.
 609 */
 610struct gen_pool *dev_get_gen_pool(struct device *dev)
 611{
 612        struct gen_pool **p = devres_find(dev, devm_gen_pool_release, NULL,
 613                                        NULL);
 614
 615        if (!p)
 616                return NULL;
 617        return *p;
 618}
 619EXPORT_SYMBOL_GPL(dev_get_gen_pool);
 620
 621#ifdef CONFIG_OF
 622/**
 623 * of_get_named_gen_pool - find a pool by phandle property
 624 * @np: device node
 625 * @propname: property name containing phandle(s)
 626 * @index: index into the phandle array
 627 *
 628 * Returns the pool that contains the chunk starting at the physical
 629 * address of the device tree node pointed at by the phandle property,
 630 * or NULL if not found.
 631 */
 632struct gen_pool *of_get_named_gen_pool(struct device_node *np,
 633        const char *propname, int index)
 634{
 635        struct platform_device *pdev;
 636        struct device_node *np_pool;
 637
 638        np_pool = of_parse_phandle(np, propname, index);
 639        if (!np_pool)
 640                return NULL;
 641        pdev = of_find_device_by_node(np_pool);
 642        of_node_put(np_pool);
 643        if (!pdev)
 644                return NULL;
 645        return dev_get_gen_pool(&pdev->dev);
 646}
 647EXPORT_SYMBOL_GPL(of_get_named_gen_pool);
 648#endif /* CONFIG_OF */
 649