linux/lib/scatterlist.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
   3 *
   4 * Scatterlist handling helpers.
   5 *
   6 * This source code is licensed under the GNU General Public License,
   7 * Version 2. See the file COPYING for more details.
   8 */
   9#include <linux/export.h>
  10#include <linux/slab.h>
  11#include <linux/scatterlist.h>
  12#include <linux/highmem.h>
  13#include <linux/kmemleak.h>
  14
  15/**
  16 * sg_next - return the next scatterlist entry in a list
  17 * @sg:         The current sg entry
  18 *
  19 * Description:
  20 *   Usually the next entry will be @sg@ + 1, but if this sg element is part
  21 *   of a chained scatterlist, it could jump to the start of a new
  22 *   scatterlist array.
  23 *
  24 **/
  25struct scatterlist *sg_next(struct scatterlist *sg)
  26{
  27#ifdef CONFIG_DEBUG_SG
  28        BUG_ON(sg->sg_magic != SG_MAGIC);
  29#endif
  30        if (sg_is_last(sg))
  31                return NULL;
  32
  33        sg++;
  34        if (unlikely(sg_is_chain(sg)))
  35                sg = sg_chain_ptr(sg);
  36
  37        return sg;
  38}
  39EXPORT_SYMBOL(sg_next);
  40
  41/**
  42 * sg_nents - return total count of entries in scatterlist
  43 * @sg:         The scatterlist
  44 *
  45 * Description:
  46 * Allows to know how many entries are in sg, taking into acount
  47 * chaining as well
  48 *
  49 **/
  50int sg_nents(struct scatterlist *sg)
  51{
  52        int nents;
  53        for (nents = 0; sg; sg = sg_next(sg))
  54                nents++;
  55        return nents;
  56}
  57EXPORT_SYMBOL(sg_nents);
  58
  59
  60/**
  61 * sg_last - return the last scatterlist entry in a list
  62 * @sgl:        First entry in the scatterlist
  63 * @nents:      Number of entries in the scatterlist
  64 *
  65 * Description:
  66 *   Should only be used casually, it (currently) scans the entire list
  67 *   to get the last entry.
  68 *
  69 *   Note that the @sgl@ pointer passed in need not be the first one,
  70 *   the important bit is that @nents@ denotes the number of entries that
  71 *   exist from @sgl@.
  72 *
  73 **/
  74struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
  75{
  76#ifndef CONFIG_ARCH_HAS_SG_CHAIN
  77        struct scatterlist *ret = &sgl[nents - 1];
  78#else
  79        struct scatterlist *sg, *ret = NULL;
  80        unsigned int i;
  81
  82        for_each_sg(sgl, sg, nents, i)
  83                ret = sg;
  84
  85#endif
  86#ifdef CONFIG_DEBUG_SG
  87        BUG_ON(sgl[0].sg_magic != SG_MAGIC);
  88        BUG_ON(!sg_is_last(ret));
  89#endif
  90        return ret;
  91}
  92EXPORT_SYMBOL(sg_last);
  93
  94/**
  95 * sg_init_table - Initialize SG table
  96 * @sgl:           The SG table
  97 * @nents:         Number of entries in table
  98 *
  99 * Notes:
 100 *   If this is part of a chained sg table, sg_mark_end() should be
 101 *   used only on the last table part.
 102 *
 103 **/
 104void sg_init_table(struct scatterlist *sgl, unsigned int nents)
 105{
 106        memset(sgl, 0, sizeof(*sgl) * nents);
 107#ifdef CONFIG_DEBUG_SG
 108        {
 109                unsigned int i;
 110                for (i = 0; i < nents; i++)
 111                        sgl[i].sg_magic = SG_MAGIC;
 112        }
 113#endif
 114        sg_mark_end(&sgl[nents - 1]);
 115}
 116EXPORT_SYMBOL(sg_init_table);
 117
 118/**
 119 * sg_init_one - Initialize a single entry sg list
 120 * @sg:          SG entry
 121 * @buf:         Virtual address for IO
 122 * @buflen:      IO length
 123 *
 124 **/
 125void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
 126{
 127        sg_init_table(sg, 1);
 128        sg_set_buf(sg, buf, buflen);
 129}
 130EXPORT_SYMBOL(sg_init_one);
 131
 132/*
 133 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
 134 * helpers.
 135 */
 136static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
 137{
 138        if (nents == SG_MAX_SINGLE_ALLOC) {
 139                /*
 140                 * Kmemleak doesn't track page allocations as they are not
 141                 * commonly used (in a raw form) for kernel data structures.
 142                 * As we chain together a list of pages and then a normal
 143                 * kmalloc (tracked by kmemleak), in order to for that last
 144                 * allocation not to become decoupled (and thus a
 145                 * false-positive) we need to inform kmemleak of all the
 146                 * intermediate allocations.
 147                 */
 148                void *ptr = (void *) __get_free_page(gfp_mask);
 149                kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
 150                return ptr;
 151        } else
 152                return kmalloc(nents * sizeof(struct scatterlist), gfp_mask);
 153}
 154
 155static void sg_kfree(struct scatterlist *sg, unsigned int nents)
 156{
 157        if (nents == SG_MAX_SINGLE_ALLOC) {
 158                kmemleak_free(sg);
 159                free_page((unsigned long) sg);
 160        } else
 161                kfree(sg);
 162}
 163
 164/**
 165 * __sg_free_table - Free a previously mapped sg table
 166 * @table:      The sg table header to use
 167 * @max_ents:   The maximum number of entries per single scatterlist
 168 * @skip_first_chunk: don't free the (preallocated) first scatterlist chunk
 169 * @free_fn:    Free function
 170 *
 171 *  Description:
 172 *    Free an sg table previously allocated and setup with
 173 *    __sg_alloc_table().  The @max_ents value must be identical to
 174 *    that previously used with __sg_alloc_table().
 175 *
 176 **/
 177void __sg_free_table(struct sg_table *table, unsigned int max_ents,
 178                     bool skip_first_chunk, sg_free_fn *free_fn)
 179{
 180        struct scatterlist *sgl, *next;
 181
 182        if (unlikely(!table->sgl))
 183                return;
 184
 185        sgl = table->sgl;
 186        while (table->orig_nents) {
 187                unsigned int alloc_size = table->orig_nents;
 188                unsigned int sg_size;
 189
 190                /*
 191                 * If we have more than max_ents segments left,
 192                 * then assign 'next' to the sg table after the current one.
 193                 * sg_size is then one less than alloc size, since the last
 194                 * element is the chain pointer.
 195                 */
 196                if (alloc_size > max_ents) {
 197                        next = sg_chain_ptr(&sgl[max_ents - 1]);
 198                        alloc_size = max_ents;
 199                        sg_size = alloc_size - 1;
 200                } else {
 201                        sg_size = alloc_size;
 202                        next = NULL;
 203                }
 204
 205                table->orig_nents -= sg_size;
 206                if (skip_first_chunk)
 207                        skip_first_chunk = false;
 208                else
 209                        free_fn(sgl, alloc_size);
 210                sgl = next;
 211        }
 212
 213        table->sgl = NULL;
 214}
 215EXPORT_SYMBOL(__sg_free_table);
 216
 217/**
 218 * sg_free_table - Free a previously allocated sg table
 219 * @table:      The mapped sg table header
 220 *
 221 **/
 222void sg_free_table(struct sg_table *table)
 223{
 224        __sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
 225}
 226EXPORT_SYMBOL(sg_free_table);
 227
 228/**
 229 * __sg_alloc_table - Allocate and initialize an sg table with given allocator
 230 * @table:      The sg table header to use
 231 * @nents:      Number of entries in sg list
 232 * @max_ents:   The maximum number of entries the allocator returns per call
 233 * @gfp_mask:   GFP allocation mask
 234 * @alloc_fn:   Allocator to use
 235 *
 236 * Description:
 237 *   This function returns a @table @nents long. The allocator is
 238 *   defined to return scatterlist chunks of maximum size @max_ents.
 239 *   Thus if @nents is bigger than @max_ents, the scatterlists will be
 240 *   chained in units of @max_ents.
 241 *
 242 * Notes:
 243 *   If this function returns non-0 (eg failure), the caller must call
 244 *   __sg_free_table() to cleanup any leftover allocations.
 245 *
 246 **/
 247int __sg_alloc_table(struct sg_table *table, unsigned int nents,
 248                     unsigned int max_ents, struct scatterlist *first_chunk,
 249                     gfp_t gfp_mask, sg_alloc_fn *alloc_fn)
 250{
 251        struct scatterlist *sg, *prv;
 252        unsigned int left;
 253
 254        memset(table, 0, sizeof(*table));
 255
 256        if (nents == 0)
 257                return -EINVAL;
 258#ifndef CONFIG_ARCH_HAS_SG_CHAIN
 259        if (WARN_ON_ONCE(nents > max_ents))
 260                return -EINVAL;
 261#endif
 262
 263        left = nents;
 264        prv = NULL;
 265        do {
 266                unsigned int sg_size, alloc_size = left;
 267
 268                if (alloc_size > max_ents) {
 269                        alloc_size = max_ents;
 270                        sg_size = alloc_size - 1;
 271                } else
 272                        sg_size = alloc_size;
 273
 274                left -= sg_size;
 275
 276                if (first_chunk) {
 277                        sg = first_chunk;
 278                        first_chunk = NULL;
 279                } else {
 280                        sg = alloc_fn(alloc_size, gfp_mask);
 281                }
 282                if (unlikely(!sg)) {
 283                        /*
 284                         * Adjust entry count to reflect that the last
 285                         * entry of the previous table won't be used for
 286                         * linkage.  Without this, sg_kfree() may get
 287                         * confused.
 288                         */
 289                        if (prv)
 290                                table->nents = ++table->orig_nents;
 291
 292                        return -ENOMEM;
 293                }
 294
 295                sg_init_table(sg, alloc_size);
 296                table->nents = table->orig_nents += sg_size;
 297
 298                /*
 299                 * If this is the first mapping, assign the sg table header.
 300                 * If this is not the first mapping, chain previous part.
 301                 */
 302                if (prv)
 303                        sg_chain(prv, max_ents, sg);
 304                else
 305                        table->sgl = sg;
 306
 307                /*
 308                 * If no more entries after this one, mark the end
 309                 */
 310                if (!left)
 311                        sg_mark_end(&sg[sg_size - 1]);
 312
 313                prv = sg;
 314        } while (left);
 315
 316        return 0;
 317}
 318EXPORT_SYMBOL(__sg_alloc_table);
 319
 320/**
 321 * sg_alloc_table - Allocate and initialize an sg table
 322 * @table:      The sg table header to use
 323 * @nents:      Number of entries in sg list
 324 * @gfp_mask:   GFP allocation mask
 325 *
 326 *  Description:
 327 *    Allocate and initialize an sg table. If @nents@ is larger than
 328 *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
 329 *
 330 **/
 331int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
 332{
 333        int ret;
 334
 335        ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
 336                               NULL, gfp_mask, sg_kmalloc);
 337        if (unlikely(ret))
 338                __sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
 339
 340        return ret;
 341}
 342EXPORT_SYMBOL(sg_alloc_table);
 343
 344/**
 345 * sg_alloc_table_from_pages - Allocate and initialize an sg table from
 346 *                             an array of pages
 347 * @sgt:        The sg table header to use
 348 * @pages:      Pointer to an array of page pointers
 349 * @n_pages:    Number of pages in the pages array
 350 * @offset:     Offset from start of the first page to the start of a buffer
 351 * @size:       Number of valid bytes in the buffer (after offset)
 352 * @gfp_mask:   GFP allocation mask
 353 *
 354 *  Description:
 355 *    Allocate and initialize an sg table from a list of pages. Contiguous
 356 *    ranges of the pages are squashed into a single scatterlist node. A user
 357 *    may provide an offset at a start and a size of valid data in a buffer
 358 *    specified by the page array. The returned sg table is released by
 359 *    sg_free_table.
 360 *
 361 * Returns:
 362 *   0 on success, negative error on failure
 363 */
 364int sg_alloc_table_from_pages(struct sg_table *sgt,
 365        struct page **pages, unsigned int n_pages,
 366        unsigned long offset, unsigned long size,
 367        gfp_t gfp_mask)
 368{
 369        unsigned int chunks;
 370        unsigned int i;
 371        unsigned int cur_page;
 372        int ret;
 373        struct scatterlist *s;
 374
 375        /* compute number of contiguous chunks */
 376        chunks = 1;
 377        for (i = 1; i < n_pages; ++i)
 378                if (page_to_pfn(pages[i]) != page_to_pfn(pages[i - 1]) + 1)
 379                        ++chunks;
 380
 381        ret = sg_alloc_table(sgt, chunks, gfp_mask);
 382        if (unlikely(ret))
 383                return ret;
 384
 385        /* merging chunks and putting them into the scatterlist */
 386        cur_page = 0;
 387        for_each_sg(sgt->sgl, s, sgt->orig_nents, i) {
 388                unsigned long chunk_size;
 389                unsigned int j;
 390
 391                /* look for the end of the current chunk */
 392                for (j = cur_page + 1; j < n_pages; ++j)
 393                        if (page_to_pfn(pages[j]) !=
 394                            page_to_pfn(pages[j - 1]) + 1)
 395                                break;
 396
 397                chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
 398                sg_set_page(s, pages[cur_page], min(size, chunk_size), offset);
 399                size -= chunk_size;
 400                offset = 0;
 401                cur_page = j;
 402        }
 403
 404        return 0;
 405}
 406EXPORT_SYMBOL(sg_alloc_table_from_pages);
 407
 408void __sg_page_iter_start(struct sg_page_iter *piter,
 409                          struct scatterlist *sglist, unsigned int nents,
 410                          unsigned long pgoffset)
 411{
 412        piter->__pg_advance = 0;
 413        piter->__nents = nents;
 414
 415        piter->sg = sglist;
 416        piter->sg_pgoffset = pgoffset;
 417}
 418EXPORT_SYMBOL(__sg_page_iter_start);
 419
 420static int sg_page_count(struct scatterlist *sg)
 421{
 422        return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
 423}
 424
 425bool __sg_page_iter_next(struct sg_page_iter *piter)
 426{
 427        if (!piter->__nents || !piter->sg)
 428                return false;
 429
 430        piter->sg_pgoffset += piter->__pg_advance;
 431        piter->__pg_advance = 1;
 432
 433        while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
 434                piter->sg_pgoffset -= sg_page_count(piter->sg);
 435                piter->sg = sg_next(piter->sg);
 436                if (!--piter->__nents || !piter->sg)
 437                        return false;
 438        }
 439
 440        return true;
 441}
 442EXPORT_SYMBOL(__sg_page_iter_next);
 443
 444/**
 445 * sg_miter_start - start mapping iteration over a sg list
 446 * @miter: sg mapping iter to be started
 447 * @sgl: sg list to iterate over
 448 * @nents: number of sg entries
 449 *
 450 * Description:
 451 *   Starts mapping iterator @miter.
 452 *
 453 * Context:
 454 *   Don't care.
 455 */
 456void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
 457                    unsigned int nents, unsigned int flags)
 458{
 459        memset(miter, 0, sizeof(struct sg_mapping_iter));
 460
 461        __sg_page_iter_start(&miter->piter, sgl, nents, 0);
 462        WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
 463        miter->__flags = flags;
 464}
 465EXPORT_SYMBOL(sg_miter_start);
 466
 467static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
 468{
 469        if (!miter->__remaining) {
 470                struct scatterlist *sg;
 471                unsigned long pgoffset;
 472
 473                if (!__sg_page_iter_next(&miter->piter))
 474                        return false;
 475
 476                sg = miter->piter.sg;
 477                pgoffset = miter->piter.sg_pgoffset;
 478
 479                miter->__offset = pgoffset ? 0 : sg->offset;
 480                miter->__remaining = sg->offset + sg->length -
 481                                (pgoffset << PAGE_SHIFT) - miter->__offset;
 482                miter->__remaining = min_t(unsigned long, miter->__remaining,
 483                                           PAGE_SIZE - miter->__offset);
 484        }
 485
 486        return true;
 487}
 488
 489/**
 490 * sg_miter_skip - reposition mapping iterator
 491 * @miter: sg mapping iter to be skipped
 492 * @offset: number of bytes to plus the current location
 493 *
 494 * Description:
 495 *   Sets the offset of @miter to its current location plus @offset bytes.
 496 *   If mapping iterator @miter has been proceeded by sg_miter_next(), this
 497 *   stops @miter.
 498 *
 499 * Context:
 500 *   Don't care if @miter is stopped, or not proceeded yet.
 501 *   Otherwise, preemption disabled if the SG_MITER_ATOMIC is set.
 502 *
 503 * Returns:
 504 *   true if @miter contains the valid mapping.  false if end of sg
 505 *   list is reached.
 506 */
 507bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
 508{
 509        sg_miter_stop(miter);
 510
 511        while (offset) {
 512                off_t consumed;
 513
 514                if (!sg_miter_get_next_page(miter))
 515                        return false;
 516
 517                consumed = min_t(off_t, offset, miter->__remaining);
 518                miter->__offset += consumed;
 519                miter->__remaining -= consumed;
 520                offset -= consumed;
 521        }
 522
 523        return true;
 524}
 525EXPORT_SYMBOL(sg_miter_skip);
 526
 527/**
 528 * sg_miter_next - proceed mapping iterator to the next mapping
 529 * @miter: sg mapping iter to proceed
 530 *
 531 * Description:
 532 *   Proceeds @miter to the next mapping.  @miter should have been started
 533 *   using sg_miter_start().  On successful return, @miter->page,
 534 *   @miter->addr and @miter->length point to the current mapping.
 535 *
 536 * Context:
 537 *   Preemption disabled if SG_MITER_ATOMIC.  Preemption must stay disabled
 538 *   till @miter is stopped.  May sleep if !SG_MITER_ATOMIC.
 539 *
 540 * Returns:
 541 *   true if @miter contains the next mapping.  false if end of sg
 542 *   list is reached.
 543 */
 544bool sg_miter_next(struct sg_mapping_iter *miter)
 545{
 546        sg_miter_stop(miter);
 547
 548        /*
 549         * Get to the next page if necessary.
 550         * __remaining, __offset is adjusted by sg_miter_stop
 551         */
 552        if (!sg_miter_get_next_page(miter))
 553                return false;
 554
 555        miter->page = sg_page_iter_page(&miter->piter);
 556        miter->consumed = miter->length = miter->__remaining;
 557
 558        if (miter->__flags & SG_MITER_ATOMIC)
 559                miter->addr = kmap_atomic(miter->page) + miter->__offset;
 560        else
 561                miter->addr = kmap(miter->page) + miter->__offset;
 562
 563        return true;
 564}
 565EXPORT_SYMBOL(sg_miter_next);
 566
 567/**
 568 * sg_miter_stop - stop mapping iteration
 569 * @miter: sg mapping iter to be stopped
 570 *
 571 * Description:
 572 *   Stops mapping iterator @miter.  @miter should have been started
 573 *   started using sg_miter_start().  A stopped iteration can be
 574 *   resumed by calling sg_miter_next() on it.  This is useful when
 575 *   resources (kmap) need to be released during iteration.
 576 *
 577 * Context:
 578 *   Preemption disabled if the SG_MITER_ATOMIC is set.  Don't care
 579 *   otherwise.
 580 */
 581void sg_miter_stop(struct sg_mapping_iter *miter)
 582{
 583        WARN_ON(miter->consumed > miter->length);
 584
 585        /* drop resources from the last iteration */
 586        if (miter->addr) {
 587                miter->__offset += miter->consumed;
 588                miter->__remaining -= miter->consumed;
 589
 590                if ((miter->__flags & SG_MITER_TO_SG) &&
 591                    !PageSlab(miter->page))
 592                        flush_kernel_dcache_page(miter->page);
 593
 594                if (miter->__flags & SG_MITER_ATOMIC) {
 595                        WARN_ON_ONCE(preemptible());
 596                        kunmap_atomic(miter->addr);
 597                } else
 598                        kunmap(miter->page);
 599
 600                miter->page = NULL;
 601                miter->addr = NULL;
 602                miter->length = 0;
 603                miter->consumed = 0;
 604        }
 605}
 606EXPORT_SYMBOL(sg_miter_stop);
 607
 608/**
 609 * sg_copy_buffer - Copy data between a linear buffer and an SG list
 610 * @sgl:                 The SG list
 611 * @nents:               Number of SG entries
 612 * @buf:                 Where to copy from
 613 * @buflen:              The number of bytes to copy
 614 * @skip:                Number of bytes to skip before copying
 615 * @to_buffer:           transfer direction (true == from an sg list to a
 616 *                       buffer, false == from a buffer to an sg list
 617 *
 618 * Returns the number of copied bytes.
 619 *
 620 **/
 621static size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents,
 622                             void *buf, size_t buflen, off_t skip,
 623                             bool to_buffer)
 624{
 625        unsigned int offset = 0;
 626        struct sg_mapping_iter miter;
 627        unsigned long flags;
 628        unsigned int sg_flags = SG_MITER_ATOMIC;
 629
 630        if (to_buffer)
 631                sg_flags |= SG_MITER_FROM_SG;
 632        else
 633                sg_flags |= SG_MITER_TO_SG;
 634
 635        sg_miter_start(&miter, sgl, nents, sg_flags);
 636
 637        if (!sg_miter_skip(&miter, skip))
 638                return false;
 639
 640        local_irq_save(flags);
 641
 642        while (sg_miter_next(&miter) && offset < buflen) {
 643                unsigned int len;
 644
 645                len = min(miter.length, buflen - offset);
 646
 647                if (to_buffer)
 648                        memcpy(buf + offset, miter.addr, len);
 649                else
 650                        memcpy(miter.addr, buf + offset, len);
 651
 652                offset += len;
 653        }
 654
 655        sg_miter_stop(&miter);
 656
 657        local_irq_restore(flags);
 658        return offset;
 659}
 660
 661/**
 662 * sg_copy_from_buffer - Copy from a linear buffer to an SG list
 663 * @sgl:                 The SG list
 664 * @nents:               Number of SG entries
 665 * @buf:                 Where to copy from
 666 * @buflen:              The number of bytes to copy
 667 *
 668 * Returns the number of copied bytes.
 669 *
 670 **/
 671size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
 672                           void *buf, size_t buflen)
 673{
 674        return sg_copy_buffer(sgl, nents, buf, buflen, 0, false);
 675}
 676EXPORT_SYMBOL(sg_copy_from_buffer);
 677
 678/**
 679 * sg_copy_to_buffer - Copy from an SG list to a linear buffer
 680 * @sgl:                 The SG list
 681 * @nents:               Number of SG entries
 682 * @buf:                 Where to copy to
 683 * @buflen:              The number of bytes to copy
 684 *
 685 * Returns the number of copied bytes.
 686 *
 687 **/
 688size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
 689                         void *buf, size_t buflen)
 690{
 691        return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
 692}
 693EXPORT_SYMBOL(sg_copy_to_buffer);
 694
 695/**
 696 * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
 697 * @sgl:                 The SG list
 698 * @nents:               Number of SG entries
 699 * @buf:                 Where to copy from
 700 * @skip:                Number of bytes to skip before copying
 701 * @buflen:              The number of bytes to copy
 702 *
 703 * Returns the number of copied bytes.
 704 *
 705 **/
 706size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
 707                            void *buf, size_t buflen, off_t skip)
 708{
 709        return sg_copy_buffer(sgl, nents, buf, buflen, skip, false);
 710}
 711EXPORT_SYMBOL(sg_pcopy_from_buffer);
 712
 713/**
 714 * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
 715 * @sgl:                 The SG list
 716 * @nents:               Number of SG entries
 717 * @buf:                 Where to copy to
 718 * @skip:                Number of bytes to skip before copying
 719 * @buflen:              The number of bytes to copy
 720 *
 721 * Returns the number of copied bytes.
 722 *
 723 **/
 724size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
 725                          void *buf, size_t buflen, off_t skip)
 726{
 727        return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
 728}
 729EXPORT_SYMBOL(sg_pcopy_to_buffer);
 730