linux/mm/bootmem.c
<<
>>
Prefs
   1/*
   2 *  bootmem - A boot-time physical memory allocator and configurator
   3 *
   4 *  Copyright (C) 1999 Ingo Molnar
   5 *                1999 Kanoj Sarcar, SGI
   6 *                2008 Johannes Weiner
   7 *
   8 * Access to this subsystem has to be serialized externally (which is true
   9 * for the boot process anyway).
  10 */
  11#include <linux/init.h>
  12#include <linux/pfn.h>
  13#include <linux/slab.h>
  14#include <linux/bootmem.h>
  15#include <linux/export.h>
  16#include <linux/kmemleak.h>
  17#include <linux/range.h>
  18#include <linux/memblock.h>
  19#include <linux/bug.h>
  20#include <linux/io.h>
  21
  22#include <asm/processor.h>
  23
  24#include "internal.h"
  25
  26#ifndef CONFIG_NEED_MULTIPLE_NODES
  27struct pglist_data __refdata contig_page_data = {
  28        .bdata = &bootmem_node_data[0]
  29};
  30EXPORT_SYMBOL(contig_page_data);
  31#endif
  32
  33unsigned long max_low_pfn;
  34unsigned long min_low_pfn;
  35unsigned long max_pfn;
  36
  37bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
  38
  39static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
  40
  41static int bootmem_debug;
  42
  43static int __init bootmem_debug_setup(char *buf)
  44{
  45        bootmem_debug = 1;
  46        return 0;
  47}
  48early_param("bootmem_debug", bootmem_debug_setup);
  49
  50#define bdebug(fmt, args...) ({                         \
  51        if (unlikely(bootmem_debug))                    \
  52                printk(KERN_INFO                        \
  53                        "bootmem::%s " fmt,             \
  54                        __func__, ## args);             \
  55})
  56
  57static unsigned long __init bootmap_bytes(unsigned long pages)
  58{
  59        unsigned long bytes = DIV_ROUND_UP(pages, 8);
  60
  61        return ALIGN(bytes, sizeof(long));
  62}
  63
  64/**
  65 * bootmem_bootmap_pages - calculate bitmap size in pages
  66 * @pages: number of pages the bitmap has to represent
  67 */
  68unsigned long __init bootmem_bootmap_pages(unsigned long pages)
  69{
  70        unsigned long bytes = bootmap_bytes(pages);
  71
  72        return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
  73}
  74
  75/*
  76 * link bdata in order
  77 */
  78static void __init link_bootmem(bootmem_data_t *bdata)
  79{
  80        bootmem_data_t *ent;
  81
  82        list_for_each_entry(ent, &bdata_list, list) {
  83                if (bdata->node_min_pfn < ent->node_min_pfn) {
  84                        list_add_tail(&bdata->list, &ent->list);
  85                        return;
  86                }
  87        }
  88
  89        list_add_tail(&bdata->list, &bdata_list);
  90}
  91
  92/*
  93 * Called once to set up the allocator itself.
  94 */
  95static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
  96        unsigned long mapstart, unsigned long start, unsigned long end)
  97{
  98        unsigned long mapsize;
  99
 100        mminit_validate_memmodel_limits(&start, &end);
 101        bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
 102        bdata->node_min_pfn = start;
 103        bdata->node_low_pfn = end;
 104        link_bootmem(bdata);
 105
 106        /*
 107         * Initially all pages are reserved - setup_arch() has to
 108         * register free RAM areas explicitly.
 109         */
 110        mapsize = bootmap_bytes(end - start);
 111        memset(bdata->node_bootmem_map, 0xff, mapsize);
 112
 113        bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
 114                bdata - bootmem_node_data, start, mapstart, end, mapsize);
 115
 116        return mapsize;
 117}
 118
 119/**
 120 * init_bootmem_node - register a node as boot memory
 121 * @pgdat: node to register
 122 * @freepfn: pfn where the bitmap for this node is to be placed
 123 * @startpfn: first pfn on the node
 124 * @endpfn: first pfn after the node
 125 *
 126 * Returns the number of bytes needed to hold the bitmap for this node.
 127 */
 128unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
 129                                unsigned long startpfn, unsigned long endpfn)
 130{
 131        return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
 132}
 133
 134/**
 135 * init_bootmem - register boot memory
 136 * @start: pfn where the bitmap is to be placed
 137 * @pages: number of available physical pages
 138 *
 139 * Returns the number of bytes needed to hold the bitmap.
 140 */
 141unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
 142{
 143        max_low_pfn = pages;
 144        min_low_pfn = start;
 145        return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
 146}
 147
 148/*
 149 * free_bootmem_late - free bootmem pages directly to page allocator
 150 * @addr: starting physical address of the range
 151 * @size: size of the range in bytes
 152 *
 153 * This is only useful when the bootmem allocator has already been torn
 154 * down, but we are still initializing the system.  Pages are given directly
 155 * to the page allocator, no bootmem metadata is updated because it is gone.
 156 */
 157void __init free_bootmem_late(unsigned long physaddr, unsigned long size)
 158{
 159        unsigned long cursor, end;
 160
 161        kmemleak_free_part(__va(physaddr), size);
 162
 163        cursor = PFN_UP(physaddr);
 164        end = PFN_DOWN(physaddr + size);
 165
 166        for (; cursor < end; cursor++) {
 167                __free_pages_bootmem(pfn_to_page(cursor), 0);
 168                totalram_pages++;
 169        }
 170}
 171
 172static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
 173{
 174        struct page *page;
 175        unsigned long *map, start, end, pages, count = 0;
 176
 177        if (!bdata->node_bootmem_map)
 178                return 0;
 179
 180        map = bdata->node_bootmem_map;
 181        start = bdata->node_min_pfn;
 182        end = bdata->node_low_pfn;
 183
 184        bdebug("nid=%td start=%lx end=%lx\n",
 185                bdata - bootmem_node_data, start, end);
 186
 187        while (start < end) {
 188                unsigned long idx, vec;
 189                unsigned shift;
 190
 191                idx = start - bdata->node_min_pfn;
 192                shift = idx & (BITS_PER_LONG - 1);
 193                /*
 194                 * vec holds at most BITS_PER_LONG map bits,
 195                 * bit 0 corresponds to start.
 196                 */
 197                vec = ~map[idx / BITS_PER_LONG];
 198
 199                if (shift) {
 200                        vec >>= shift;
 201                        if (end - start >= BITS_PER_LONG)
 202                                vec |= ~map[idx / BITS_PER_LONG + 1] <<
 203                                        (BITS_PER_LONG - shift);
 204                }
 205                /*
 206                 * If we have a properly aligned and fully unreserved
 207                 * BITS_PER_LONG block of pages in front of us, free
 208                 * it in one go.
 209                 */
 210                if (IS_ALIGNED(start, BITS_PER_LONG) && vec == ~0UL) {
 211                        int order = ilog2(BITS_PER_LONG);
 212
 213                        __free_pages_bootmem(pfn_to_page(start), order);
 214                        count += BITS_PER_LONG;
 215                        start += BITS_PER_LONG;
 216                } else {
 217                        unsigned long cur = start;
 218
 219                        start = ALIGN(start + 1, BITS_PER_LONG);
 220                        while (vec && cur != start) {
 221                                if (vec & 1) {
 222                                        page = pfn_to_page(cur);
 223                                        __free_pages_bootmem(page, 0);
 224                                        count++;
 225                                }
 226                                vec >>= 1;
 227                                ++cur;
 228                        }
 229                }
 230        }
 231
 232        page = virt_to_page(bdata->node_bootmem_map);
 233        pages = bdata->node_low_pfn - bdata->node_min_pfn;
 234        pages = bootmem_bootmap_pages(pages);
 235        count += pages;
 236        while (pages--)
 237                __free_pages_bootmem(page++, 0);
 238
 239        bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);
 240
 241        return count;
 242}
 243
 244static int reset_managed_pages_done __initdata;
 245
 246void reset_node_managed_pages(pg_data_t *pgdat)
 247{
 248        struct zone *z;
 249
 250        for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
 251                z->managed_pages = 0;
 252}
 253
 254void __init reset_all_zones_managed_pages(void)
 255{
 256        struct pglist_data *pgdat;
 257
 258        if (reset_managed_pages_done)
 259                return;
 260
 261        for_each_online_pgdat(pgdat)
 262                reset_node_managed_pages(pgdat);
 263
 264        reset_managed_pages_done = 1;
 265}
 266
 267/**
 268 * free_all_bootmem - release free pages to the buddy allocator
 269 *
 270 * Returns the number of pages actually released.
 271 */
 272unsigned long __init free_all_bootmem(void)
 273{
 274        unsigned long total_pages = 0;
 275        bootmem_data_t *bdata;
 276
 277        reset_all_zones_managed_pages();
 278
 279        list_for_each_entry(bdata, &bdata_list, list)
 280                total_pages += free_all_bootmem_core(bdata);
 281
 282        totalram_pages += total_pages;
 283
 284        return total_pages;
 285}
 286
 287static void __init __free(bootmem_data_t *bdata,
 288                        unsigned long sidx, unsigned long eidx)
 289{
 290        unsigned long idx;
 291
 292        bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
 293                sidx + bdata->node_min_pfn,
 294                eidx + bdata->node_min_pfn);
 295
 296        if (bdata->hint_idx > sidx)
 297                bdata->hint_idx = sidx;
 298
 299        for (idx = sidx; idx < eidx; idx++)
 300                if (!test_and_clear_bit(idx, bdata->node_bootmem_map))
 301                        BUG();
 302}
 303
 304static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx,
 305                        unsigned long eidx, int flags)
 306{
 307        unsigned long idx;
 308        int exclusive = flags & BOOTMEM_EXCLUSIVE;
 309
 310        bdebug("nid=%td start=%lx end=%lx flags=%x\n",
 311                bdata - bootmem_node_data,
 312                sidx + bdata->node_min_pfn,
 313                eidx + bdata->node_min_pfn,
 314                flags);
 315
 316        for (idx = sidx; idx < eidx; idx++)
 317                if (test_and_set_bit(idx, bdata->node_bootmem_map)) {
 318                        if (exclusive) {
 319                                __free(bdata, sidx, idx);
 320                                return -EBUSY;
 321                        }
 322                        bdebug("silent double reserve of PFN %lx\n",
 323                                idx + bdata->node_min_pfn);
 324                }
 325        return 0;
 326}
 327
 328static int __init mark_bootmem_node(bootmem_data_t *bdata,
 329                                unsigned long start, unsigned long end,
 330                                int reserve, int flags)
 331{
 332        unsigned long sidx, eidx;
 333
 334        bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
 335                bdata - bootmem_node_data, start, end, reserve, flags);
 336
 337        BUG_ON(start < bdata->node_min_pfn);
 338        BUG_ON(end > bdata->node_low_pfn);
 339
 340        sidx = start - bdata->node_min_pfn;
 341        eidx = end - bdata->node_min_pfn;
 342
 343        if (reserve)
 344                return __reserve(bdata, sidx, eidx, flags);
 345        else
 346                __free(bdata, sidx, eidx);
 347        return 0;
 348}
 349
 350static int __init mark_bootmem(unsigned long start, unsigned long end,
 351                                int reserve, int flags)
 352{
 353        unsigned long pos;
 354        bootmem_data_t *bdata;
 355
 356        pos = start;
 357        list_for_each_entry(bdata, &bdata_list, list) {
 358                int err;
 359                unsigned long max;
 360
 361                if (pos < bdata->node_min_pfn ||
 362                    pos >= bdata->node_low_pfn) {
 363                        BUG_ON(pos != start);
 364                        continue;
 365                }
 366
 367                max = min(bdata->node_low_pfn, end);
 368
 369                err = mark_bootmem_node(bdata, pos, max, reserve, flags);
 370                if (reserve && err) {
 371                        mark_bootmem(start, pos, 0, 0);
 372                        return err;
 373                }
 374
 375                if (max == end)
 376                        return 0;
 377                pos = bdata->node_low_pfn;
 378        }
 379        BUG();
 380}
 381
 382/**
 383 * free_bootmem_node - mark a page range as usable
 384 * @pgdat: node the range resides on
 385 * @physaddr: starting address of the range
 386 * @size: size of the range in bytes
 387 *
 388 * Partial pages will be considered reserved and left as they are.
 389 *
 390 * The range must reside completely on the specified node.
 391 */
 392void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
 393                              unsigned long size)
 394{
 395        unsigned long start, end;
 396
 397        kmemleak_free_part(__va(physaddr), size);
 398
 399        start = PFN_UP(physaddr);
 400        end = PFN_DOWN(physaddr + size);
 401
 402        mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
 403}
 404
 405/**
 406 * free_bootmem - mark a page range as usable
 407 * @addr: starting physical address of the range
 408 * @size: size of the range in bytes
 409 *
 410 * Partial pages will be considered reserved and left as they are.
 411 *
 412 * The range must be contiguous but may span node boundaries.
 413 */
 414void __init free_bootmem(unsigned long physaddr, unsigned long size)
 415{
 416        unsigned long start, end;
 417
 418        kmemleak_free_part(__va(physaddr), size);
 419
 420        start = PFN_UP(physaddr);
 421        end = PFN_DOWN(physaddr + size);
 422
 423        mark_bootmem(start, end, 0, 0);
 424}
 425
 426/**
 427 * reserve_bootmem_node - mark a page range as reserved
 428 * @pgdat: node the range resides on
 429 * @physaddr: starting address of the range
 430 * @size: size of the range in bytes
 431 * @flags: reservation flags (see linux/bootmem.h)
 432 *
 433 * Partial pages will be reserved.
 434 *
 435 * The range must reside completely on the specified node.
 436 */
 437int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
 438                                 unsigned long size, int flags)
 439{
 440        unsigned long start, end;
 441
 442        start = PFN_DOWN(physaddr);
 443        end = PFN_UP(physaddr + size);
 444
 445        return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
 446}
 447
 448/**
 449 * reserve_bootmem - mark a page range as reserved
 450 * @addr: starting address of the range
 451 * @size: size of the range in bytes
 452 * @flags: reservation flags (see linux/bootmem.h)
 453 *
 454 * Partial pages will be reserved.
 455 *
 456 * The range must be contiguous but may span node boundaries.
 457 */
 458int __init reserve_bootmem(unsigned long addr, unsigned long size,
 459                            int flags)
 460{
 461        unsigned long start, end;
 462
 463        start = PFN_DOWN(addr);
 464        end = PFN_UP(addr + size);
 465
 466        return mark_bootmem(start, end, 1, flags);
 467}
 468
 469static unsigned long __init align_idx(struct bootmem_data *bdata,
 470                                      unsigned long idx, unsigned long step)
 471{
 472        unsigned long base = bdata->node_min_pfn;
 473
 474        /*
 475         * Align the index with respect to the node start so that the
 476         * combination of both satisfies the requested alignment.
 477         */
 478
 479        return ALIGN(base + idx, step) - base;
 480}
 481
 482static unsigned long __init align_off(struct bootmem_data *bdata,
 483                                      unsigned long off, unsigned long align)
 484{
 485        unsigned long base = PFN_PHYS(bdata->node_min_pfn);
 486
 487        /* Same as align_idx for byte offsets */
 488
 489        return ALIGN(base + off, align) - base;
 490}
 491
 492static void * __init alloc_bootmem_bdata(struct bootmem_data *bdata,
 493                                        unsigned long size, unsigned long align,
 494                                        unsigned long goal, unsigned long limit)
 495{
 496        unsigned long fallback = 0;
 497        unsigned long min, max, start, sidx, midx, step;
 498
 499        bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
 500                bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
 501                align, goal, limit);
 502
 503        BUG_ON(!size);
 504        BUG_ON(align & (align - 1));
 505        BUG_ON(limit && goal + size > limit);
 506
 507        if (!bdata->node_bootmem_map)
 508                return NULL;
 509
 510        min = bdata->node_min_pfn;
 511        max = bdata->node_low_pfn;
 512
 513        goal >>= PAGE_SHIFT;
 514        limit >>= PAGE_SHIFT;
 515
 516        if (limit && max > limit)
 517                max = limit;
 518        if (max <= min)
 519                return NULL;
 520
 521        step = max(align >> PAGE_SHIFT, 1UL);
 522
 523        if (goal && min < goal && goal < max)
 524                start = ALIGN(goal, step);
 525        else
 526                start = ALIGN(min, step);
 527
 528        sidx = start - bdata->node_min_pfn;
 529        midx = max - bdata->node_min_pfn;
 530
 531        if (bdata->hint_idx > sidx) {
 532                /*
 533                 * Handle the valid case of sidx being zero and still
 534                 * catch the fallback below.
 535                 */
 536                fallback = sidx + 1;
 537                sidx = align_idx(bdata, bdata->hint_idx, step);
 538        }
 539
 540        while (1) {
 541                int merge;
 542                void *region;
 543                unsigned long eidx, i, start_off, end_off;
 544find_block:
 545                sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx);
 546                sidx = align_idx(bdata, sidx, step);
 547                eidx = sidx + PFN_UP(size);
 548
 549                if (sidx >= midx || eidx > midx)
 550                        break;
 551
 552                for (i = sidx; i < eidx; i++)
 553                        if (test_bit(i, bdata->node_bootmem_map)) {
 554                                sidx = align_idx(bdata, i, step);
 555                                if (sidx == i)
 556                                        sidx += step;
 557                                goto find_block;
 558                        }
 559
 560                if (bdata->last_end_off & (PAGE_SIZE - 1) &&
 561                                PFN_DOWN(bdata->last_end_off) + 1 == sidx)
 562                        start_off = align_off(bdata, bdata->last_end_off, align);
 563                else
 564                        start_off = PFN_PHYS(sidx);
 565
 566                merge = PFN_DOWN(start_off) < sidx;
 567                end_off = start_off + size;
 568
 569                bdata->last_end_off = end_off;
 570                bdata->hint_idx = PFN_UP(end_off);
 571
 572                /*
 573                 * Reserve the area now:
 574                 */
 575                if (__reserve(bdata, PFN_DOWN(start_off) + merge,
 576                                PFN_UP(end_off), BOOTMEM_EXCLUSIVE))
 577                        BUG();
 578
 579                region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) +
 580                                start_off);
 581                memset(region, 0, size);
 582                /*
 583                 * The min_count is set to 0 so that bootmem allocated blocks
 584                 * are never reported as leaks.
 585                 */
 586                kmemleak_alloc(region, size, 0, 0);
 587                return region;
 588        }
 589
 590        if (fallback) {
 591                sidx = align_idx(bdata, fallback - 1, step);
 592                fallback = 0;
 593                goto find_block;
 594        }
 595
 596        return NULL;
 597}
 598
 599static void * __init alloc_bootmem_core(unsigned long size,
 600                                        unsigned long align,
 601                                        unsigned long goal,
 602                                        unsigned long limit)
 603{
 604        bootmem_data_t *bdata;
 605        void *region;
 606
 607        if (WARN_ON_ONCE(slab_is_available()))
 608                return kzalloc(size, GFP_NOWAIT);
 609
 610        list_for_each_entry(bdata, &bdata_list, list) {
 611                if (goal && bdata->node_low_pfn <= PFN_DOWN(goal))
 612                        continue;
 613                if (limit && bdata->node_min_pfn >= PFN_DOWN(limit))
 614                        break;
 615
 616                region = alloc_bootmem_bdata(bdata, size, align, goal, limit);
 617                if (region)
 618                        return region;
 619        }
 620
 621        return NULL;
 622}
 623
 624static void * __init ___alloc_bootmem_nopanic(unsigned long size,
 625                                              unsigned long align,
 626                                              unsigned long goal,
 627                                              unsigned long limit)
 628{
 629        void *ptr;
 630
 631restart:
 632        ptr = alloc_bootmem_core(size, align, goal, limit);
 633        if (ptr)
 634                return ptr;
 635        if (goal) {
 636                goal = 0;
 637                goto restart;
 638        }
 639
 640        return NULL;
 641}
 642
 643/**
 644 * __alloc_bootmem_nopanic - allocate boot memory without panicking
 645 * @size: size of the request in bytes
 646 * @align: alignment of the region
 647 * @goal: preferred starting address of the region
 648 *
 649 * The goal is dropped if it can not be satisfied and the allocation will
 650 * fall back to memory below @goal.
 651 *
 652 * Allocation may happen on any node in the system.
 653 *
 654 * Returns NULL on failure.
 655 */
 656void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
 657                                        unsigned long goal)
 658{
 659        unsigned long limit = 0;
 660
 661        return ___alloc_bootmem_nopanic(size, align, goal, limit);
 662}
 663
 664static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
 665                                        unsigned long goal, unsigned long limit)
 666{
 667        void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
 668
 669        if (mem)
 670                return mem;
 671        /*
 672         * Whoops, we cannot satisfy the allocation request.
 673         */
 674        printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
 675        panic("Out of memory");
 676        return NULL;
 677}
 678
 679/**
 680 * __alloc_bootmem - allocate boot memory
 681 * @size: size of the request in bytes
 682 * @align: alignment of the region
 683 * @goal: preferred starting address of the region
 684 *
 685 * The goal is dropped if it can not be satisfied and the allocation will
 686 * fall back to memory below @goal.
 687 *
 688 * Allocation may happen on any node in the system.
 689 *
 690 * The function panics if the request can not be satisfied.
 691 */
 692void * __init __alloc_bootmem(unsigned long size, unsigned long align,
 693                              unsigned long goal)
 694{
 695        unsigned long limit = 0;
 696
 697        return ___alloc_bootmem(size, align, goal, limit);
 698}
 699
 700void * __init ___alloc_bootmem_node_nopanic(pg_data_t *pgdat,
 701                                unsigned long size, unsigned long align,
 702                                unsigned long goal, unsigned long limit)
 703{
 704        void *ptr;
 705
 706        if (WARN_ON_ONCE(slab_is_available()))
 707                return kzalloc(size, GFP_NOWAIT);
 708again:
 709
 710        /* do not panic in alloc_bootmem_bdata() */
 711        if (limit && goal + size > limit)
 712                limit = 0;
 713
 714        ptr = alloc_bootmem_bdata(pgdat->bdata, size, align, goal, limit);
 715        if (ptr)
 716                return ptr;
 717
 718        ptr = alloc_bootmem_core(size, align, goal, limit);
 719        if (ptr)
 720                return ptr;
 721
 722        if (goal) {
 723                goal = 0;
 724                goto again;
 725        }
 726
 727        return NULL;
 728}
 729
 730void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
 731                                   unsigned long align, unsigned long goal)
 732{
 733        if (WARN_ON_ONCE(slab_is_available()))
 734                return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
 735
 736        return ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
 737}
 738
 739void * __init ___alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
 740                                    unsigned long align, unsigned long goal,
 741                                    unsigned long limit)
 742{
 743        void *ptr;
 744
 745        ptr = ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
 746        if (ptr)
 747                return ptr;
 748
 749        printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
 750        panic("Out of memory");
 751        return NULL;
 752}
 753
 754/**
 755 * __alloc_bootmem_node - allocate boot memory from a specific node
 756 * @pgdat: node to allocate from
 757 * @size: size of the request in bytes
 758 * @align: alignment of the region
 759 * @goal: preferred starting address of the region
 760 *
 761 * The goal is dropped if it can not be satisfied and the allocation will
 762 * fall back to memory below @goal.
 763 *
 764 * Allocation may fall back to any node in the system if the specified node
 765 * can not hold the requested memory.
 766 *
 767 * The function panics if the request can not be satisfied.
 768 */
 769void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
 770                                   unsigned long align, unsigned long goal)
 771{
 772        if (WARN_ON_ONCE(slab_is_available()))
 773                return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
 774
 775        return  ___alloc_bootmem_node(pgdat, size, align, goal, 0);
 776}
 777
 778void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
 779                                   unsigned long align, unsigned long goal)
 780{
 781#ifdef MAX_DMA32_PFN
 782        unsigned long end_pfn;
 783
 784        if (WARN_ON_ONCE(slab_is_available()))
 785                return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
 786
 787        /* update goal according ...MAX_DMA32_PFN */
 788        end_pfn = pgdat_end_pfn(pgdat);
 789
 790        if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) &&
 791            (goal >> PAGE_SHIFT) < MAX_DMA32_PFN) {
 792                void *ptr;
 793                unsigned long new_goal;
 794
 795                new_goal = MAX_DMA32_PFN << PAGE_SHIFT;
 796                ptr = alloc_bootmem_bdata(pgdat->bdata, size, align,
 797                                                 new_goal, 0);
 798                if (ptr)
 799                        return ptr;
 800        }
 801#endif
 802
 803        return __alloc_bootmem_node(pgdat, size, align, goal);
 804
 805}
 806
 807#ifndef ARCH_LOW_ADDRESS_LIMIT
 808#define ARCH_LOW_ADDRESS_LIMIT  0xffffffffUL
 809#endif
 810
 811/**
 812 * __alloc_bootmem_low - allocate low boot memory
 813 * @size: size of the request in bytes
 814 * @align: alignment of the region
 815 * @goal: preferred starting address of the region
 816 *
 817 * The goal is dropped if it can not be satisfied and the allocation will
 818 * fall back to memory below @goal.
 819 *
 820 * Allocation may happen on any node in the system.
 821 *
 822 * The function panics if the request can not be satisfied.
 823 */
 824void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
 825                                  unsigned long goal)
 826{
 827        return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
 828}
 829
 830void * __init __alloc_bootmem_low_nopanic(unsigned long size,
 831                                          unsigned long align,
 832                                          unsigned long goal)
 833{
 834        return ___alloc_bootmem_nopanic(size, align, goal,
 835                                        ARCH_LOW_ADDRESS_LIMIT);
 836}
 837
 838/**
 839 * __alloc_bootmem_low_node - allocate low boot memory from a specific node
 840 * @pgdat: node to allocate from
 841 * @size: size of the request in bytes
 842 * @align: alignment of the region
 843 * @goal: preferred starting address of the region
 844 *
 845 * The goal is dropped if it can not be satisfied and the allocation will
 846 * fall back to memory below @goal.
 847 *
 848 * Allocation may fall back to any node in the system if the specified node
 849 * can not hold the requested memory.
 850 *
 851 * The function panics if the request can not be satisfied.
 852 */
 853void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
 854                                       unsigned long align, unsigned long goal)
 855{
 856        if (WARN_ON_ONCE(slab_is_available()))
 857                return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
 858
 859        return ___alloc_bootmem_node(pgdat, size, align,
 860                                     goal, ARCH_LOW_ADDRESS_LIMIT);
 861}
 862