linux/mm/memcontrol.c
<<
>>
Prefs
   1/* memcontrol.c - Memory Controller
   2 *
   3 * Copyright IBM Corporation, 2007
   4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   5 *
   6 * Copyright 2007 OpenVZ SWsoft Inc
   7 * Author: Pavel Emelianov <xemul@openvz.org>
   8 *
   9 * Memory thresholds
  10 * Copyright (C) 2009 Nokia Corporation
  11 * Author: Kirill A. Shutemov
  12 *
  13 * Kernel Memory Controller
  14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
  15 * Authors: Glauber Costa and Suleiman Souhlal
  16 *
  17 * Native page reclaim
  18 * Charge lifetime sanitation
  19 * Lockless page tracking & accounting
  20 * Unified hierarchy configuration model
  21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
  22 *
  23 * This program is free software; you can redistribute it and/or modify
  24 * it under the terms of the GNU General Public License as published by
  25 * the Free Software Foundation; either version 2 of the License, or
  26 * (at your option) any later version.
  27 *
  28 * This program is distributed in the hope that it will be useful,
  29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  31 * GNU General Public License for more details.
  32 */
  33
  34#include <linux/page_counter.h>
  35#include <linux/memcontrol.h>
  36#include <linux/cgroup.h>
  37#include <linux/mm.h>
  38#include <linux/hugetlb.h>
  39#include <linux/pagemap.h>
  40#include <linux/smp.h>
  41#include <linux/page-flags.h>
  42#include <linux/backing-dev.h>
  43#include <linux/bit_spinlock.h>
  44#include <linux/rcupdate.h>
  45#include <linux/limits.h>
  46#include <linux/export.h>
  47#include <linux/mutex.h>
  48#include <linux/rbtree.h>
  49#include <linux/slab.h>
  50#include <linux/swap.h>
  51#include <linux/swapops.h>
  52#include <linux/spinlock.h>
  53#include <linux/eventfd.h>
  54#include <linux/poll.h>
  55#include <linux/sort.h>
  56#include <linux/fs.h>
  57#include <linux/seq_file.h>
  58#include <linux/vmpressure.h>
  59#include <linux/mm_inline.h>
  60#include <linux/swap_cgroup.h>
  61#include <linux/cpu.h>
  62#include <linux/oom.h>
  63#include <linux/lockdep.h>
  64#include <linux/file.h>
  65#include "internal.h"
  66#include <net/sock.h>
  67#include <net/ip.h>
  68#include <net/tcp_memcontrol.h>
  69#include "slab.h"
  70
  71#include <asm/uaccess.h>
  72
  73#include <trace/events/vmscan.h>
  74
  75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  76EXPORT_SYMBOL(memory_cgrp_subsys);
  77
  78#define MEM_CGROUP_RECLAIM_RETRIES      5
  79static struct mem_cgroup *root_mem_cgroup __read_mostly;
  80
  81/* Whether the swap controller is active */
  82#ifdef CONFIG_MEMCG_SWAP
  83int do_swap_account __read_mostly;
  84#else
  85#define do_swap_account         0
  86#endif
  87
  88static const char * const mem_cgroup_stat_names[] = {
  89        "cache",
  90        "rss",
  91        "rss_huge",
  92        "mapped_file",
  93        "writeback",
  94        "swap",
  95};
  96
  97static const char * const mem_cgroup_events_names[] = {
  98        "pgpgin",
  99        "pgpgout",
 100        "pgfault",
 101        "pgmajfault",
 102};
 103
 104static const char * const mem_cgroup_lru_names[] = {
 105        "inactive_anon",
 106        "active_anon",
 107        "inactive_file",
 108        "active_file",
 109        "unevictable",
 110};
 111
 112/*
 113 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 114 * it will be incremated by the number of pages. This counter is used for
 115 * for trigger some periodic events. This is straightforward and better
 116 * than using jiffies etc. to handle periodic memcg event.
 117 */
 118enum mem_cgroup_events_target {
 119        MEM_CGROUP_TARGET_THRESH,
 120        MEM_CGROUP_TARGET_SOFTLIMIT,
 121        MEM_CGROUP_TARGET_NUMAINFO,
 122        MEM_CGROUP_NTARGETS,
 123};
 124#define THRESHOLDS_EVENTS_TARGET 128
 125#define SOFTLIMIT_EVENTS_TARGET 1024
 126#define NUMAINFO_EVENTS_TARGET  1024
 127
 128struct mem_cgroup_stat_cpu {
 129        long count[MEM_CGROUP_STAT_NSTATS];
 130        unsigned long events[MEMCG_NR_EVENTS];
 131        unsigned long nr_page_events;
 132        unsigned long targets[MEM_CGROUP_NTARGETS];
 133};
 134
 135struct reclaim_iter {
 136        struct mem_cgroup *position;
 137        /* scan generation, increased every round-trip */
 138        unsigned int generation;
 139};
 140
 141/*
 142 * per-zone information in memory controller.
 143 */
 144struct mem_cgroup_per_zone {
 145        struct lruvec           lruvec;
 146        unsigned long           lru_size[NR_LRU_LISTS];
 147
 148        struct reclaim_iter     iter[DEF_PRIORITY + 1];
 149
 150        struct rb_node          tree_node;      /* RB tree node */
 151        unsigned long           usage_in_excess;/* Set to the value by which */
 152                                                /* the soft limit is exceeded*/
 153        bool                    on_tree;
 154        struct mem_cgroup       *memcg;         /* Back pointer, we cannot */
 155                                                /* use container_of        */
 156};
 157
 158struct mem_cgroup_per_node {
 159        struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
 160};
 161
 162/*
 163 * Cgroups above their limits are maintained in a RB-Tree, independent of
 164 * their hierarchy representation
 165 */
 166
 167struct mem_cgroup_tree_per_zone {
 168        struct rb_root rb_root;
 169        spinlock_t lock;
 170};
 171
 172struct mem_cgroup_tree_per_node {
 173        struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
 174};
 175
 176struct mem_cgroup_tree {
 177        struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 178};
 179
 180static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 181
 182struct mem_cgroup_threshold {
 183        struct eventfd_ctx *eventfd;
 184        unsigned long threshold;
 185};
 186
 187/* For threshold */
 188struct mem_cgroup_threshold_ary {
 189        /* An array index points to threshold just below or equal to usage. */
 190        int current_threshold;
 191        /* Size of entries[] */
 192        unsigned int size;
 193        /* Array of thresholds */
 194        struct mem_cgroup_threshold entries[0];
 195};
 196
 197struct mem_cgroup_thresholds {
 198        /* Primary thresholds array */
 199        struct mem_cgroup_threshold_ary *primary;
 200        /*
 201         * Spare threshold array.
 202         * This is needed to make mem_cgroup_unregister_event() "never fail".
 203         * It must be able to store at least primary->size - 1 entries.
 204         */
 205        struct mem_cgroup_threshold_ary *spare;
 206};
 207
 208/* for OOM */
 209struct mem_cgroup_eventfd_list {
 210        struct list_head list;
 211        struct eventfd_ctx *eventfd;
 212};
 213
 214/*
 215 * cgroup_event represents events which userspace want to receive.
 216 */
 217struct mem_cgroup_event {
 218        /*
 219         * memcg which the event belongs to.
 220         */
 221        struct mem_cgroup *memcg;
 222        /*
 223         * eventfd to signal userspace about the event.
 224         */
 225        struct eventfd_ctx *eventfd;
 226        /*
 227         * Each of these stored in a list by the cgroup.
 228         */
 229        struct list_head list;
 230        /*
 231         * register_event() callback will be used to add new userspace
 232         * waiter for changes related to this event.  Use eventfd_signal()
 233         * on eventfd to send notification to userspace.
 234         */
 235        int (*register_event)(struct mem_cgroup *memcg,
 236                              struct eventfd_ctx *eventfd, const char *args);
 237        /*
 238         * unregister_event() callback will be called when userspace closes
 239         * the eventfd or on cgroup removing.  This callback must be set,
 240         * if you want provide notification functionality.
 241         */
 242        void (*unregister_event)(struct mem_cgroup *memcg,
 243                                 struct eventfd_ctx *eventfd);
 244        /*
 245         * All fields below needed to unregister event when
 246         * userspace closes eventfd.
 247         */
 248        poll_table pt;
 249        wait_queue_head_t *wqh;
 250        wait_queue_t wait;
 251        struct work_struct remove;
 252};
 253
 254static void mem_cgroup_threshold(struct mem_cgroup *memcg);
 255static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
 256
 257/*
 258 * The memory controller data structure. The memory controller controls both
 259 * page cache and RSS per cgroup. We would eventually like to provide
 260 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 261 * to help the administrator determine what knobs to tune.
 262 */
 263struct mem_cgroup {
 264        struct cgroup_subsys_state css;
 265
 266        /* Accounted resources */
 267        struct page_counter memory;
 268        struct page_counter memsw;
 269        struct page_counter kmem;
 270
 271        /* Normal memory consumption range */
 272        unsigned long low;
 273        unsigned long high;
 274
 275        unsigned long soft_limit;
 276
 277        /* vmpressure notifications */
 278        struct vmpressure vmpressure;
 279
 280        /* css_online() has been completed */
 281        int initialized;
 282
 283        /*
 284         * Should the accounting and control be hierarchical, per subtree?
 285         */
 286        bool use_hierarchy;
 287
 288        bool            oom_lock;
 289        atomic_t        under_oom;
 290        atomic_t        oom_wakeups;
 291
 292        int     swappiness;
 293        /* OOM-Killer disable */
 294        int             oom_kill_disable;
 295
 296        /* protect arrays of thresholds */
 297        struct mutex thresholds_lock;
 298
 299        /* thresholds for memory usage. RCU-protected */
 300        struct mem_cgroup_thresholds thresholds;
 301
 302        /* thresholds for mem+swap usage. RCU-protected */
 303        struct mem_cgroup_thresholds memsw_thresholds;
 304
 305        /* For oom notifier event fd */
 306        struct list_head oom_notify;
 307
 308        /*
 309         * Should we move charges of a task when a task is moved into this
 310         * mem_cgroup ? And what type of charges should we move ?
 311         */
 312        unsigned long move_charge_at_immigrate;
 313        /*
 314         * set > 0 if pages under this cgroup are moving to other cgroup.
 315         */
 316        atomic_t                moving_account;
 317        /* taken only while moving_account > 0 */
 318        spinlock_t              move_lock;
 319        struct task_struct      *move_lock_task;
 320        unsigned long           move_lock_flags;
 321        /*
 322         * percpu counter.
 323         */
 324        struct mem_cgroup_stat_cpu __percpu *stat;
 325        /*
 326         * used when a cpu is offlined or other synchronizations
 327         * See mem_cgroup_read_stat().
 328         */
 329        struct mem_cgroup_stat_cpu nocpu_base;
 330        spinlock_t pcp_counter_lock;
 331
 332#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
 333        struct cg_proto tcp_mem;
 334#endif
 335#if defined(CONFIG_MEMCG_KMEM)
 336        /* Index in the kmem_cache->memcg_params.memcg_caches array */
 337        int kmemcg_id;
 338        bool kmem_acct_activated;
 339        bool kmem_acct_active;
 340#endif
 341
 342        int last_scanned_node;
 343#if MAX_NUMNODES > 1
 344        nodemask_t      scan_nodes;
 345        atomic_t        numainfo_events;
 346        atomic_t        numainfo_updating;
 347#endif
 348
 349        /* List of events which userspace want to receive */
 350        struct list_head event_list;
 351        spinlock_t event_list_lock;
 352
 353        struct mem_cgroup_per_node *nodeinfo[0];
 354        /* WARNING: nodeinfo must be the last member here */
 355};
 356
 357#ifdef CONFIG_MEMCG_KMEM
 358bool memcg_kmem_is_active(struct mem_cgroup *memcg)
 359{
 360        return memcg->kmem_acct_active;
 361}
 362#endif
 363
 364/* Stuffs for move charges at task migration. */
 365/*
 366 * Types of charges to be moved.
 367 */
 368#define MOVE_ANON       0x1U
 369#define MOVE_FILE       0x2U
 370#define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
 371
 372/* "mc" and its members are protected by cgroup_mutex */
 373static struct move_charge_struct {
 374        spinlock_t        lock; /* for from, to */
 375        struct mem_cgroup *from;
 376        struct mem_cgroup *to;
 377        unsigned long flags;
 378        unsigned long precharge;
 379        unsigned long moved_charge;
 380        unsigned long moved_swap;
 381        struct task_struct *moving_task;        /* a task moving charges */
 382        wait_queue_head_t waitq;                /* a waitq for other context */
 383} mc = {
 384        .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 385        .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 386};
 387
 388/*
 389 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 390 * limit reclaim to prevent infinite loops, if they ever occur.
 391 */
 392#define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
 393#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
 394
 395enum charge_type {
 396        MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
 397        MEM_CGROUP_CHARGE_TYPE_ANON,
 398        MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
 399        MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
 400        NR_CHARGE_TYPE,
 401};
 402
 403/* for encoding cft->private value on file */
 404enum res_type {
 405        _MEM,
 406        _MEMSWAP,
 407        _OOM_TYPE,
 408        _KMEM,
 409};
 410
 411#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
 412#define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
 413#define MEMFILE_ATTR(val)       ((val) & 0xffff)
 414/* Used for OOM nofiier */
 415#define OOM_CONTROL             (0)
 416
 417/*
 418 * The memcg_create_mutex will be held whenever a new cgroup is created.
 419 * As a consequence, any change that needs to protect against new child cgroups
 420 * appearing has to hold it as well.
 421 */
 422static DEFINE_MUTEX(memcg_create_mutex);
 423
 424struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
 425{
 426        return s ? container_of(s, struct mem_cgroup, css) : NULL;
 427}
 428
 429/* Some nice accessors for the vmpressure. */
 430struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
 431{
 432        if (!memcg)
 433                memcg = root_mem_cgroup;
 434        return &memcg->vmpressure;
 435}
 436
 437struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
 438{
 439        return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
 440}
 441
 442static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
 443{
 444        return (memcg == root_mem_cgroup);
 445}
 446
 447/*
 448 * We restrict the id in the range of [1, 65535], so it can fit into
 449 * an unsigned short.
 450 */
 451#define MEM_CGROUP_ID_MAX       USHRT_MAX
 452
 453static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
 454{
 455        return memcg->css.id;
 456}
 457
 458/*
 459 * A helper function to get mem_cgroup from ID. must be called under
 460 * rcu_read_lock().  The caller is responsible for calling
 461 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 462 * refcnt from swap can be called against removed memcg.)
 463 */
 464static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
 465{
 466        struct cgroup_subsys_state *css;
 467
 468        css = css_from_id(id, &memory_cgrp_subsys);
 469        return mem_cgroup_from_css(css);
 470}
 471
 472/* Writing them here to avoid exposing memcg's inner layout */
 473#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
 474
 475void sock_update_memcg(struct sock *sk)
 476{
 477        if (mem_cgroup_sockets_enabled) {
 478                struct mem_cgroup *memcg;
 479                struct cg_proto *cg_proto;
 480
 481                BUG_ON(!sk->sk_prot->proto_cgroup);
 482
 483                /* Socket cloning can throw us here with sk_cgrp already
 484                 * filled. It won't however, necessarily happen from
 485                 * process context. So the test for root memcg given
 486                 * the current task's memcg won't help us in this case.
 487                 *
 488                 * Respecting the original socket's memcg is a better
 489                 * decision in this case.
 490                 */
 491                if (sk->sk_cgrp) {
 492                        BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
 493                        css_get(&sk->sk_cgrp->memcg->css);
 494                        return;
 495                }
 496
 497                rcu_read_lock();
 498                memcg = mem_cgroup_from_task(current);
 499                cg_proto = sk->sk_prot->proto_cgroup(memcg);
 500                if (!mem_cgroup_is_root(memcg) &&
 501                    memcg_proto_active(cg_proto) &&
 502                    css_tryget_online(&memcg->css)) {
 503                        sk->sk_cgrp = cg_proto;
 504                }
 505                rcu_read_unlock();
 506        }
 507}
 508EXPORT_SYMBOL(sock_update_memcg);
 509
 510void sock_release_memcg(struct sock *sk)
 511{
 512        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
 513                struct mem_cgroup *memcg;
 514                WARN_ON(!sk->sk_cgrp->memcg);
 515                memcg = sk->sk_cgrp->memcg;
 516                css_put(&sk->sk_cgrp->memcg->css);
 517        }
 518}
 519
 520struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
 521{
 522        if (!memcg || mem_cgroup_is_root(memcg))
 523                return NULL;
 524
 525        return &memcg->tcp_mem;
 526}
 527EXPORT_SYMBOL(tcp_proto_cgroup);
 528
 529#endif
 530
 531#ifdef CONFIG_MEMCG_KMEM
 532/*
 533 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
 534 * The main reason for not using cgroup id for this:
 535 *  this works better in sparse environments, where we have a lot of memcgs,
 536 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 537 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 538 *  200 entry array for that.
 539 *
 540 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 541 * will double each time we have to increase it.
 542 */
 543static DEFINE_IDA(memcg_cache_ida);
 544int memcg_nr_cache_ids;
 545
 546/* Protects memcg_nr_cache_ids */
 547static DECLARE_RWSEM(memcg_cache_ids_sem);
 548
 549void memcg_get_cache_ids(void)
 550{
 551        down_read(&memcg_cache_ids_sem);
 552}
 553
 554void memcg_put_cache_ids(void)
 555{
 556        up_read(&memcg_cache_ids_sem);
 557}
 558
 559/*
 560 * MIN_SIZE is different than 1, because we would like to avoid going through
 561 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 562 * cgroups is a reasonable guess. In the future, it could be a parameter or
 563 * tunable, but that is strictly not necessary.
 564 *
 565 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
 566 * this constant directly from cgroup, but it is understandable that this is
 567 * better kept as an internal representation in cgroup.c. In any case, the
 568 * cgrp_id space is not getting any smaller, and we don't have to necessarily
 569 * increase ours as well if it increases.
 570 */
 571#define MEMCG_CACHES_MIN_SIZE 4
 572#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
 573
 574/*
 575 * A lot of the calls to the cache allocation functions are expected to be
 576 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 577 * conditional to this static branch, we'll have to allow modules that does
 578 * kmem_cache_alloc and the such to see this symbol as well
 579 */
 580struct static_key memcg_kmem_enabled_key;
 581EXPORT_SYMBOL(memcg_kmem_enabled_key);
 582
 583#endif /* CONFIG_MEMCG_KMEM */
 584
 585static struct mem_cgroup_per_zone *
 586mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
 587{
 588        int nid = zone_to_nid(zone);
 589        int zid = zone_idx(zone);
 590
 591        return &memcg->nodeinfo[nid]->zoneinfo[zid];
 592}
 593
 594struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
 595{
 596        return &memcg->css;
 597}
 598
 599static struct mem_cgroup_per_zone *
 600mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
 601{
 602        int nid = page_to_nid(page);
 603        int zid = page_zonenum(page);
 604
 605        return &memcg->nodeinfo[nid]->zoneinfo[zid];
 606}
 607
 608static struct mem_cgroup_tree_per_zone *
 609soft_limit_tree_node_zone(int nid, int zid)
 610{
 611        return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 612}
 613
 614static struct mem_cgroup_tree_per_zone *
 615soft_limit_tree_from_page(struct page *page)
 616{
 617        int nid = page_to_nid(page);
 618        int zid = page_zonenum(page);
 619
 620        return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 621}
 622
 623static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
 624                                         struct mem_cgroup_tree_per_zone *mctz,
 625                                         unsigned long new_usage_in_excess)
 626{
 627        struct rb_node **p = &mctz->rb_root.rb_node;
 628        struct rb_node *parent = NULL;
 629        struct mem_cgroup_per_zone *mz_node;
 630
 631        if (mz->on_tree)
 632                return;
 633
 634        mz->usage_in_excess = new_usage_in_excess;
 635        if (!mz->usage_in_excess)
 636                return;
 637        while (*p) {
 638                parent = *p;
 639                mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
 640                                        tree_node);
 641                if (mz->usage_in_excess < mz_node->usage_in_excess)
 642                        p = &(*p)->rb_left;
 643                /*
 644                 * We can't avoid mem cgroups that are over their soft
 645                 * limit by the same amount
 646                 */
 647                else if (mz->usage_in_excess >= mz_node->usage_in_excess)
 648                        p = &(*p)->rb_right;
 649        }
 650        rb_link_node(&mz->tree_node, parent, p);
 651        rb_insert_color(&mz->tree_node, &mctz->rb_root);
 652        mz->on_tree = true;
 653}
 654
 655static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
 656                                         struct mem_cgroup_tree_per_zone *mctz)
 657{
 658        if (!mz->on_tree)
 659                return;
 660        rb_erase(&mz->tree_node, &mctz->rb_root);
 661        mz->on_tree = false;
 662}
 663
 664static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
 665                                       struct mem_cgroup_tree_per_zone *mctz)
 666{
 667        unsigned long flags;
 668
 669        spin_lock_irqsave(&mctz->lock, flags);
 670        __mem_cgroup_remove_exceeded(mz, mctz);
 671        spin_unlock_irqrestore(&mctz->lock, flags);
 672}
 673
 674static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
 675{
 676        unsigned long nr_pages = page_counter_read(&memcg->memory);
 677        unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
 678        unsigned long excess = 0;
 679
 680        if (nr_pages > soft_limit)
 681                excess = nr_pages - soft_limit;
 682
 683        return excess;
 684}
 685
 686static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
 687{
 688        unsigned long excess;
 689        struct mem_cgroup_per_zone *mz;
 690        struct mem_cgroup_tree_per_zone *mctz;
 691
 692        mctz = soft_limit_tree_from_page(page);
 693        /*
 694         * Necessary to update all ancestors when hierarchy is used.
 695         * because their event counter is not touched.
 696         */
 697        for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 698                mz = mem_cgroup_page_zoneinfo(memcg, page);
 699                excess = soft_limit_excess(memcg);
 700                /*
 701                 * We have to update the tree if mz is on RB-tree or
 702                 * mem is over its softlimit.
 703                 */
 704                if (excess || mz->on_tree) {
 705                        unsigned long flags;
 706
 707                        spin_lock_irqsave(&mctz->lock, flags);
 708                        /* if on-tree, remove it */
 709                        if (mz->on_tree)
 710                                __mem_cgroup_remove_exceeded(mz, mctz);
 711                        /*
 712                         * Insert again. mz->usage_in_excess will be updated.
 713                         * If excess is 0, no tree ops.
 714                         */
 715                        __mem_cgroup_insert_exceeded(mz, mctz, excess);
 716                        spin_unlock_irqrestore(&mctz->lock, flags);
 717                }
 718        }
 719}
 720
 721static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
 722{
 723        struct mem_cgroup_tree_per_zone *mctz;
 724        struct mem_cgroup_per_zone *mz;
 725        int nid, zid;
 726
 727        for_each_node(nid) {
 728                for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 729                        mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
 730                        mctz = soft_limit_tree_node_zone(nid, zid);
 731                        mem_cgroup_remove_exceeded(mz, mctz);
 732                }
 733        }
 734}
 735
 736static struct mem_cgroup_per_zone *
 737__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 738{
 739        struct rb_node *rightmost = NULL;
 740        struct mem_cgroup_per_zone *mz;
 741
 742retry:
 743        mz = NULL;
 744        rightmost = rb_last(&mctz->rb_root);
 745        if (!rightmost)
 746                goto done;              /* Nothing to reclaim from */
 747
 748        mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
 749        /*
 750         * Remove the node now but someone else can add it back,
 751         * we will to add it back at the end of reclaim to its correct
 752         * position in the tree.
 753         */
 754        __mem_cgroup_remove_exceeded(mz, mctz);
 755        if (!soft_limit_excess(mz->memcg) ||
 756            !css_tryget_online(&mz->memcg->css))
 757                goto retry;
 758done:
 759        return mz;
 760}
 761
 762static struct mem_cgroup_per_zone *
 763mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 764{
 765        struct mem_cgroup_per_zone *mz;
 766
 767        spin_lock_irq(&mctz->lock);
 768        mz = __mem_cgroup_largest_soft_limit_node(mctz);
 769        spin_unlock_irq(&mctz->lock);
 770        return mz;
 771}
 772
 773/*
 774 * Implementation Note: reading percpu statistics for memcg.
 775 *
 776 * Both of vmstat[] and percpu_counter has threshold and do periodic
 777 * synchronization to implement "quick" read. There are trade-off between
 778 * reading cost and precision of value. Then, we may have a chance to implement
 779 * a periodic synchronizion of counter in memcg's counter.
 780 *
 781 * But this _read() function is used for user interface now. The user accounts
 782 * memory usage by memory cgroup and he _always_ requires exact value because
 783 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 784 * have to visit all online cpus and make sum. So, for now, unnecessary
 785 * synchronization is not implemented. (just implemented for cpu hotplug)
 786 *
 787 * If there are kernel internal actions which can make use of some not-exact
 788 * value, and reading all cpu value can be performance bottleneck in some
 789 * common workload, threashold and synchonization as vmstat[] should be
 790 * implemented.
 791 */
 792static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
 793                                 enum mem_cgroup_stat_index idx)
 794{
 795        long val = 0;
 796        int cpu;
 797
 798        get_online_cpus();
 799        for_each_online_cpu(cpu)
 800                val += per_cpu(memcg->stat->count[idx], cpu);
 801#ifdef CONFIG_HOTPLUG_CPU
 802        spin_lock(&memcg->pcp_counter_lock);
 803        val += memcg->nocpu_base.count[idx];
 804        spin_unlock(&memcg->pcp_counter_lock);
 805#endif
 806        put_online_cpus();
 807        return val;
 808}
 809
 810static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
 811                                            enum mem_cgroup_events_index idx)
 812{
 813        unsigned long val = 0;
 814        int cpu;
 815
 816        get_online_cpus();
 817        for_each_online_cpu(cpu)
 818                val += per_cpu(memcg->stat->events[idx], cpu);
 819#ifdef CONFIG_HOTPLUG_CPU
 820        spin_lock(&memcg->pcp_counter_lock);
 821        val += memcg->nocpu_base.events[idx];
 822        spin_unlock(&memcg->pcp_counter_lock);
 823#endif
 824        put_online_cpus();
 825        return val;
 826}
 827
 828static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
 829                                         struct page *page,
 830                                         int nr_pages)
 831{
 832        /*
 833         * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
 834         * counted as CACHE even if it's on ANON LRU.
 835         */
 836        if (PageAnon(page))
 837                __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
 838                                nr_pages);
 839        else
 840                __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
 841                                nr_pages);
 842
 843        if (PageTransHuge(page))
 844                __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
 845                                nr_pages);
 846
 847        /* pagein of a big page is an event. So, ignore page size */
 848        if (nr_pages > 0)
 849                __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
 850        else {
 851                __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
 852                nr_pages = -nr_pages; /* for event */
 853        }
 854
 855        __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
 856}
 857
 858unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
 859{
 860        struct mem_cgroup_per_zone *mz;
 861
 862        mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
 863        return mz->lru_size[lru];
 864}
 865
 866static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
 867                                                  int nid,
 868                                                  unsigned int lru_mask)
 869{
 870        unsigned long nr = 0;
 871        int zid;
 872
 873        VM_BUG_ON((unsigned)nid >= nr_node_ids);
 874
 875        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 876                struct mem_cgroup_per_zone *mz;
 877                enum lru_list lru;
 878
 879                for_each_lru(lru) {
 880                        if (!(BIT(lru) & lru_mask))
 881                                continue;
 882                        mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
 883                        nr += mz->lru_size[lru];
 884                }
 885        }
 886        return nr;
 887}
 888
 889static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
 890                        unsigned int lru_mask)
 891{
 892        unsigned long nr = 0;
 893        int nid;
 894
 895        for_each_node_state(nid, N_MEMORY)
 896                nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
 897        return nr;
 898}
 899
 900static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
 901                                       enum mem_cgroup_events_target target)
 902{
 903        unsigned long val, next;
 904
 905        val = __this_cpu_read(memcg->stat->nr_page_events);
 906        next = __this_cpu_read(memcg->stat->targets[target]);
 907        /* from time_after() in jiffies.h */
 908        if ((long)next - (long)val < 0) {
 909                switch (target) {
 910                case MEM_CGROUP_TARGET_THRESH:
 911                        next = val + THRESHOLDS_EVENTS_TARGET;
 912                        break;
 913                case MEM_CGROUP_TARGET_SOFTLIMIT:
 914                        next = val + SOFTLIMIT_EVENTS_TARGET;
 915                        break;
 916                case MEM_CGROUP_TARGET_NUMAINFO:
 917                        next = val + NUMAINFO_EVENTS_TARGET;
 918                        break;
 919                default:
 920                        break;
 921                }
 922                __this_cpu_write(memcg->stat->targets[target], next);
 923                return true;
 924        }
 925        return false;
 926}
 927
 928/*
 929 * Check events in order.
 930 *
 931 */
 932static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
 933{
 934        /* threshold event is triggered in finer grain than soft limit */
 935        if (unlikely(mem_cgroup_event_ratelimit(memcg,
 936                                                MEM_CGROUP_TARGET_THRESH))) {
 937                bool do_softlimit;
 938                bool do_numainfo __maybe_unused;
 939
 940                do_softlimit = mem_cgroup_event_ratelimit(memcg,
 941                                                MEM_CGROUP_TARGET_SOFTLIMIT);
 942#if MAX_NUMNODES > 1
 943                do_numainfo = mem_cgroup_event_ratelimit(memcg,
 944                                                MEM_CGROUP_TARGET_NUMAINFO);
 945#endif
 946                mem_cgroup_threshold(memcg);
 947                if (unlikely(do_softlimit))
 948                        mem_cgroup_update_tree(memcg, page);
 949#if MAX_NUMNODES > 1
 950                if (unlikely(do_numainfo))
 951                        atomic_inc(&memcg->numainfo_events);
 952#endif
 953        }
 954}
 955
 956struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 957{
 958        /*
 959         * mm_update_next_owner() may clear mm->owner to NULL
 960         * if it races with swapoff, page migration, etc.
 961         * So this can be called with p == NULL.
 962         */
 963        if (unlikely(!p))
 964                return NULL;
 965
 966        return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
 967}
 968
 969static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
 970{
 971        struct mem_cgroup *memcg = NULL;
 972
 973        rcu_read_lock();
 974        do {
 975                /*
 976                 * Page cache insertions can happen withou an
 977                 * actual mm context, e.g. during disk probing
 978                 * on boot, loopback IO, acct() writes etc.
 979                 */
 980                if (unlikely(!mm))
 981                        memcg = root_mem_cgroup;
 982                else {
 983                        memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 984                        if (unlikely(!memcg))
 985                                memcg = root_mem_cgroup;
 986                }
 987        } while (!css_tryget_online(&memcg->css));
 988        rcu_read_unlock();
 989        return memcg;
 990}
 991
 992/**
 993 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 994 * @root: hierarchy root
 995 * @prev: previously returned memcg, NULL on first invocation
 996 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 997 *
 998 * Returns references to children of the hierarchy below @root, or
 999 * @root itself, or %NULL after a full round-trip.
1000 *
1001 * Caller must pass the return value in @prev on subsequent
1002 * invocations for reference counting, or use mem_cgroup_iter_break()
1003 * to cancel a hierarchy walk before the round-trip is complete.
1004 *
1005 * Reclaimers can specify a zone and a priority level in @reclaim to
1006 * divide up the memcgs in the hierarchy among all concurrent
1007 * reclaimers operating on the same zone and priority.
1008 */
1009struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1010                                   struct mem_cgroup *prev,
1011                                   struct mem_cgroup_reclaim_cookie *reclaim)
1012{
1013        struct reclaim_iter *uninitialized_var(iter);
1014        struct cgroup_subsys_state *css = NULL;
1015        struct mem_cgroup *memcg = NULL;
1016        struct mem_cgroup *pos = NULL;
1017
1018        if (mem_cgroup_disabled())
1019                return NULL;
1020
1021        if (!root)
1022                root = root_mem_cgroup;
1023
1024        if (prev && !reclaim)
1025                pos = prev;
1026
1027        if (!root->use_hierarchy && root != root_mem_cgroup) {
1028                if (prev)
1029                        goto out;
1030                return root;
1031        }
1032
1033        rcu_read_lock();
1034
1035        if (reclaim) {
1036                struct mem_cgroup_per_zone *mz;
1037
1038                mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1039                iter = &mz->iter[reclaim->priority];
1040
1041                if (prev && reclaim->generation != iter->generation)
1042                        goto out_unlock;
1043
1044                do {
1045                        pos = READ_ONCE(iter->position);
1046                        /*
1047                         * A racing update may change the position and
1048                         * put the last reference, hence css_tryget(),
1049                         * or retry to see the updated position.
1050                         */
1051                } while (pos && !css_tryget(&pos->css));
1052        }
1053
1054        if (pos)
1055                css = &pos->css;
1056
1057        for (;;) {
1058                css = css_next_descendant_pre(css, &root->css);
1059                if (!css) {
1060                        /*
1061                         * Reclaimers share the hierarchy walk, and a
1062                         * new one might jump in right at the end of
1063                         * the hierarchy - make sure they see at least
1064                         * one group and restart from the beginning.
1065                         */
1066                        if (!prev)
1067                                continue;
1068                        break;
1069                }
1070
1071                /*
1072                 * Verify the css and acquire a reference.  The root
1073                 * is provided by the caller, so we know it's alive
1074                 * and kicking, and don't take an extra reference.
1075                 */
1076                memcg = mem_cgroup_from_css(css);
1077
1078                if (css == &root->css)
1079                        break;
1080
1081                if (css_tryget(css)) {
1082                        /*
1083                         * Make sure the memcg is initialized:
1084                         * mem_cgroup_css_online() orders the the
1085                         * initialization against setting the flag.
1086                         */
1087                        if (smp_load_acquire(&memcg->initialized))
1088                                break;
1089
1090                        css_put(css);
1091                }
1092
1093                memcg = NULL;
1094        }
1095
1096        if (reclaim) {
1097                if (cmpxchg(&iter->position, pos, memcg) == pos) {
1098                        if (memcg)
1099                                css_get(&memcg->css);
1100                        if (pos)
1101                                css_put(&pos->css);
1102                }
1103
1104                /*
1105                 * pairs with css_tryget when dereferencing iter->position
1106                 * above.
1107                 */
1108                if (pos)
1109                        css_put(&pos->css);
1110
1111                if (!memcg)
1112                        iter->generation++;
1113                else if (!prev)
1114                        reclaim->generation = iter->generation;
1115        }
1116
1117out_unlock:
1118        rcu_read_unlock();
1119out:
1120        if (prev && prev != root)
1121                css_put(&prev->css);
1122
1123        return memcg;
1124}
1125
1126/**
1127 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1128 * @root: hierarchy root
1129 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1130 */
1131void mem_cgroup_iter_break(struct mem_cgroup *root,
1132                           struct mem_cgroup *prev)
1133{
1134        if (!root)
1135                root = root_mem_cgroup;
1136        if (prev && prev != root)
1137                css_put(&prev->css);
1138}
1139
1140/*
1141 * Iteration constructs for visiting all cgroups (under a tree).  If
1142 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1143 * be used for reference counting.
1144 */
1145#define for_each_mem_cgroup_tree(iter, root)            \
1146        for (iter = mem_cgroup_iter(root, NULL, NULL);  \
1147             iter != NULL;                              \
1148             iter = mem_cgroup_iter(root, iter, NULL))
1149
1150#define for_each_mem_cgroup(iter)                       \
1151        for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
1152             iter != NULL;                              \
1153             iter = mem_cgroup_iter(NULL, iter, NULL))
1154
1155void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1156{
1157        struct mem_cgroup *memcg;
1158
1159        rcu_read_lock();
1160        memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1161        if (unlikely(!memcg))
1162                goto out;
1163
1164        switch (idx) {
1165        case PGFAULT:
1166                this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1167                break;
1168        case PGMAJFAULT:
1169                this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1170                break;
1171        default:
1172                BUG();
1173        }
1174out:
1175        rcu_read_unlock();
1176}
1177EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1178
1179/**
1180 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1181 * @zone: zone of the wanted lruvec
1182 * @memcg: memcg of the wanted lruvec
1183 *
1184 * Returns the lru list vector holding pages for the given @zone and
1185 * @mem.  This can be the global zone lruvec, if the memory controller
1186 * is disabled.
1187 */
1188struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1189                                      struct mem_cgroup *memcg)
1190{
1191        struct mem_cgroup_per_zone *mz;
1192        struct lruvec *lruvec;
1193
1194        if (mem_cgroup_disabled()) {
1195                lruvec = &zone->lruvec;
1196                goto out;
1197        }
1198
1199        mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1200        lruvec = &mz->lruvec;
1201out:
1202        /*
1203         * Since a node can be onlined after the mem_cgroup was created,
1204         * we have to be prepared to initialize lruvec->zone here;
1205         * and if offlined then reonlined, we need to reinitialize it.
1206         */
1207        if (unlikely(lruvec->zone != zone))
1208                lruvec->zone = zone;
1209        return lruvec;
1210}
1211
1212/**
1213 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1214 * @page: the page
1215 * @zone: zone of the page
1216 *
1217 * This function is only safe when following the LRU page isolation
1218 * and putback protocol: the LRU lock must be held, and the page must
1219 * either be PageLRU() or the caller must have isolated/allocated it.
1220 */
1221struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1222{
1223        struct mem_cgroup_per_zone *mz;
1224        struct mem_cgroup *memcg;
1225        struct lruvec *lruvec;
1226
1227        if (mem_cgroup_disabled()) {
1228                lruvec = &zone->lruvec;
1229                goto out;
1230        }
1231
1232        memcg = page->mem_cgroup;
1233        /*
1234         * Swapcache readahead pages are added to the LRU - and
1235         * possibly migrated - before they are charged.
1236         */
1237        if (!memcg)
1238                memcg = root_mem_cgroup;
1239
1240        mz = mem_cgroup_page_zoneinfo(memcg, page);
1241        lruvec = &mz->lruvec;
1242out:
1243        /*
1244         * Since a node can be onlined after the mem_cgroup was created,
1245         * we have to be prepared to initialize lruvec->zone here;
1246         * and if offlined then reonlined, we need to reinitialize it.
1247         */
1248        if (unlikely(lruvec->zone != zone))
1249                lruvec->zone = zone;
1250        return lruvec;
1251}
1252
1253/**
1254 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1255 * @lruvec: mem_cgroup per zone lru vector
1256 * @lru: index of lru list the page is sitting on
1257 * @nr_pages: positive when adding or negative when removing
1258 *
1259 * This function must be called when a page is added to or removed from an
1260 * lru list.
1261 */
1262void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1263                                int nr_pages)
1264{
1265        struct mem_cgroup_per_zone *mz;
1266        unsigned long *lru_size;
1267
1268        if (mem_cgroup_disabled())
1269                return;
1270
1271        mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1272        lru_size = mz->lru_size + lru;
1273        *lru_size += nr_pages;
1274        VM_BUG_ON((long)(*lru_size) < 0);
1275}
1276
1277bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1278{
1279        if (root == memcg)
1280                return true;
1281        if (!root->use_hierarchy)
1282                return false;
1283        return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1284}
1285
1286bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1287{
1288        struct mem_cgroup *task_memcg;
1289        struct task_struct *p;
1290        bool ret;
1291
1292        p = find_lock_task_mm(task);
1293        if (p) {
1294                task_memcg = get_mem_cgroup_from_mm(p->mm);
1295                task_unlock(p);
1296        } else {
1297                /*
1298                 * All threads may have already detached their mm's, but the oom
1299                 * killer still needs to detect if they have already been oom
1300                 * killed to prevent needlessly killing additional tasks.
1301                 */
1302                rcu_read_lock();
1303                task_memcg = mem_cgroup_from_task(task);
1304                css_get(&task_memcg->css);
1305                rcu_read_unlock();
1306        }
1307        ret = mem_cgroup_is_descendant(task_memcg, memcg);
1308        css_put(&task_memcg->css);
1309        return ret;
1310}
1311
1312int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1313{
1314        unsigned long inactive_ratio;
1315        unsigned long inactive;
1316        unsigned long active;
1317        unsigned long gb;
1318
1319        inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1320        active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1321
1322        gb = (inactive + active) >> (30 - PAGE_SHIFT);
1323        if (gb)
1324                inactive_ratio = int_sqrt(10 * gb);
1325        else
1326                inactive_ratio = 1;
1327
1328        return inactive * inactive_ratio < active;
1329}
1330
1331bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
1332{
1333        struct mem_cgroup_per_zone *mz;
1334        struct mem_cgroup *memcg;
1335
1336        if (mem_cgroup_disabled())
1337                return true;
1338
1339        mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1340        memcg = mz->memcg;
1341
1342        return !!(memcg->css.flags & CSS_ONLINE);
1343}
1344
1345#define mem_cgroup_from_counter(counter, member)        \
1346        container_of(counter, struct mem_cgroup, member)
1347
1348/**
1349 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1350 * @memcg: the memory cgroup
1351 *
1352 * Returns the maximum amount of memory @mem can be charged with, in
1353 * pages.
1354 */
1355static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1356{
1357        unsigned long margin = 0;
1358        unsigned long count;
1359        unsigned long limit;
1360
1361        count = page_counter_read(&memcg->memory);
1362        limit = READ_ONCE(memcg->memory.limit);
1363        if (count < limit)
1364                margin = limit - count;
1365
1366        if (do_swap_account) {
1367                count = page_counter_read(&memcg->memsw);
1368                limit = READ_ONCE(memcg->memsw.limit);
1369                if (count <= limit)
1370                        margin = min(margin, limit - count);
1371        }
1372
1373        return margin;
1374}
1375
1376int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1377{
1378        /* root ? */
1379        if (mem_cgroup_disabled() || !memcg->css.parent)
1380                return vm_swappiness;
1381
1382        return memcg->swappiness;
1383}
1384
1385/*
1386 * A routine for checking "mem" is under move_account() or not.
1387 *
1388 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1389 * moving cgroups. This is for waiting at high-memory pressure
1390 * caused by "move".
1391 */
1392static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1393{
1394        struct mem_cgroup *from;
1395        struct mem_cgroup *to;
1396        bool ret = false;
1397        /*
1398         * Unlike task_move routines, we access mc.to, mc.from not under
1399         * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1400         */
1401        spin_lock(&mc.lock);
1402        from = mc.from;
1403        to = mc.to;
1404        if (!from)
1405                goto unlock;
1406
1407        ret = mem_cgroup_is_descendant(from, memcg) ||
1408                mem_cgroup_is_descendant(to, memcg);
1409unlock:
1410        spin_unlock(&mc.lock);
1411        return ret;
1412}
1413
1414static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1415{
1416        if (mc.moving_task && current != mc.moving_task) {
1417                if (mem_cgroup_under_move(memcg)) {
1418                        DEFINE_WAIT(wait);
1419                        prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1420                        /* moving charge context might have finished. */
1421                        if (mc.moving_task)
1422                                schedule();
1423                        finish_wait(&mc.waitq, &wait);
1424                        return true;
1425                }
1426        }
1427        return false;
1428}
1429
1430#define K(x) ((x) << (PAGE_SHIFT-10))
1431/**
1432 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1433 * @memcg: The memory cgroup that went over limit
1434 * @p: Task that is going to be killed
1435 *
1436 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1437 * enabled
1438 */
1439void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1440{
1441        /* oom_info_lock ensures that parallel ooms do not interleave */
1442        static DEFINE_MUTEX(oom_info_lock);
1443        struct mem_cgroup *iter;
1444        unsigned int i;
1445
1446        mutex_lock(&oom_info_lock);
1447        rcu_read_lock();
1448
1449        if (p) {
1450                pr_info("Task in ");
1451                pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1452                pr_cont(" killed as a result of limit of ");
1453        } else {
1454                pr_info("Memory limit reached of cgroup ");
1455        }
1456
1457        pr_cont_cgroup_path(memcg->css.cgroup);
1458        pr_cont("\n");
1459
1460        rcu_read_unlock();
1461
1462        pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1463                K((u64)page_counter_read(&memcg->memory)),
1464                K((u64)memcg->memory.limit), memcg->memory.failcnt);
1465        pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1466                K((u64)page_counter_read(&memcg->memsw)),
1467                K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1468        pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1469                K((u64)page_counter_read(&memcg->kmem)),
1470                K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1471
1472        for_each_mem_cgroup_tree(iter, memcg) {
1473                pr_info("Memory cgroup stats for ");
1474                pr_cont_cgroup_path(iter->css.cgroup);
1475                pr_cont(":");
1476
1477                for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1478                        if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1479                                continue;
1480                        pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1481                                K(mem_cgroup_read_stat(iter, i)));
1482                }
1483
1484                for (i = 0; i < NR_LRU_LISTS; i++)
1485                        pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1486                                K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1487
1488                pr_cont("\n");
1489        }
1490        mutex_unlock(&oom_info_lock);
1491}
1492
1493/*
1494 * This function returns the number of memcg under hierarchy tree. Returns
1495 * 1(self count) if no children.
1496 */
1497static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1498{
1499        int num = 0;
1500        struct mem_cgroup *iter;
1501
1502        for_each_mem_cgroup_tree(iter, memcg)
1503                num++;
1504        return num;
1505}
1506
1507/*
1508 * Return the memory (and swap, if configured) limit for a memcg.
1509 */
1510static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1511{
1512        unsigned long limit;
1513
1514        limit = memcg->memory.limit;
1515        if (mem_cgroup_swappiness(memcg)) {
1516                unsigned long memsw_limit;
1517
1518                memsw_limit = memcg->memsw.limit;
1519                limit = min(limit + total_swap_pages, memsw_limit);
1520        }
1521        return limit;
1522}
1523
1524static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1525                                     int order)
1526{
1527        struct mem_cgroup *iter;
1528        unsigned long chosen_points = 0;
1529        unsigned long totalpages;
1530        unsigned int points = 0;
1531        struct task_struct *chosen = NULL;
1532
1533        /*
1534         * If current has a pending SIGKILL or is exiting, then automatically
1535         * select it.  The goal is to allow it to allocate so that it may
1536         * quickly exit and free its memory.
1537         */
1538        if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1539                mark_tsk_oom_victim(current);
1540                return;
1541        }
1542
1543        check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL, memcg);
1544        totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1545        for_each_mem_cgroup_tree(iter, memcg) {
1546                struct css_task_iter it;
1547                struct task_struct *task;
1548
1549                css_task_iter_start(&iter->css, &it);
1550                while ((task = css_task_iter_next(&it))) {
1551                        switch (oom_scan_process_thread(task, totalpages, NULL,
1552                                                        false)) {
1553                        case OOM_SCAN_SELECT:
1554                                if (chosen)
1555                                        put_task_struct(chosen);
1556                                chosen = task;
1557                                chosen_points = ULONG_MAX;
1558                                get_task_struct(chosen);
1559                                /* fall through */
1560                        case OOM_SCAN_CONTINUE:
1561                                continue;
1562                        case OOM_SCAN_ABORT:
1563                                css_task_iter_end(&it);
1564                                mem_cgroup_iter_break(memcg, iter);
1565                                if (chosen)
1566                                        put_task_struct(chosen);
1567                                return;
1568                        case OOM_SCAN_OK:
1569                                break;
1570                        };
1571                        points = oom_badness(task, memcg, NULL, totalpages);
1572                        if (!points || points < chosen_points)
1573                                continue;
1574                        /* Prefer thread group leaders for display purposes */
1575                        if (points == chosen_points &&
1576                            thread_group_leader(chosen))
1577                                continue;
1578
1579                        if (chosen)
1580                                put_task_struct(chosen);
1581                        chosen = task;
1582                        chosen_points = points;
1583                        get_task_struct(chosen);
1584                }
1585                css_task_iter_end(&it);
1586        }
1587
1588        if (!chosen)
1589                return;
1590        points = chosen_points * 1000 / totalpages;
1591        oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1592                         NULL, "Memory cgroup out of memory");
1593}
1594
1595#if MAX_NUMNODES > 1
1596
1597/**
1598 * test_mem_cgroup_node_reclaimable
1599 * @memcg: the target memcg
1600 * @nid: the node ID to be checked.
1601 * @noswap : specify true here if the user wants flle only information.
1602 *
1603 * This function returns whether the specified memcg contains any
1604 * reclaimable pages on a node. Returns true if there are any reclaimable
1605 * pages in the node.
1606 */
1607static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1608                int nid, bool noswap)
1609{
1610        if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1611                return true;
1612        if (noswap || !total_swap_pages)
1613                return false;
1614        if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1615                return true;
1616        return false;
1617
1618}
1619
1620/*
1621 * Always updating the nodemask is not very good - even if we have an empty
1622 * list or the wrong list here, we can start from some node and traverse all
1623 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1624 *
1625 */
1626static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1627{
1628        int nid;
1629        /*
1630         * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1631         * pagein/pageout changes since the last update.
1632         */
1633        if (!atomic_read(&memcg->numainfo_events))
1634                return;
1635        if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1636                return;
1637
1638        /* make a nodemask where this memcg uses memory from */
1639        memcg->scan_nodes = node_states[N_MEMORY];
1640
1641        for_each_node_mask(nid, node_states[N_MEMORY]) {
1642
1643                if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1644                        node_clear(nid, memcg->scan_nodes);
1645        }
1646
1647        atomic_set(&memcg->numainfo_events, 0);
1648        atomic_set(&memcg->numainfo_updating, 0);
1649}
1650
1651/*
1652 * Selecting a node where we start reclaim from. Because what we need is just
1653 * reducing usage counter, start from anywhere is O,K. Considering
1654 * memory reclaim from current node, there are pros. and cons.
1655 *
1656 * Freeing memory from current node means freeing memory from a node which
1657 * we'll use or we've used. So, it may make LRU bad. And if several threads
1658 * hit limits, it will see a contention on a node. But freeing from remote
1659 * node means more costs for memory reclaim because of memory latency.
1660 *
1661 * Now, we use round-robin. Better algorithm is welcomed.
1662 */
1663int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1664{
1665        int node;
1666
1667        mem_cgroup_may_update_nodemask(memcg);
1668        node = memcg->last_scanned_node;
1669
1670        node = next_node(node, memcg->scan_nodes);
1671        if (node == MAX_NUMNODES)
1672                node = first_node(memcg->scan_nodes);
1673        /*
1674         * We call this when we hit limit, not when pages are added to LRU.
1675         * No LRU may hold pages because all pages are UNEVICTABLE or
1676         * memcg is too small and all pages are not on LRU. In that case,
1677         * we use curret node.
1678         */
1679        if (unlikely(node == MAX_NUMNODES))
1680                node = numa_node_id();
1681
1682        memcg->last_scanned_node = node;
1683        return node;
1684}
1685#else
1686int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1687{
1688        return 0;
1689}
1690#endif
1691
1692static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1693                                   struct zone *zone,
1694                                   gfp_t gfp_mask,
1695                                   unsigned long *total_scanned)
1696{
1697        struct mem_cgroup *victim = NULL;
1698        int total = 0;
1699        int loop = 0;
1700        unsigned long excess;
1701        unsigned long nr_scanned;
1702        struct mem_cgroup_reclaim_cookie reclaim = {
1703                .zone = zone,
1704                .priority = 0,
1705        };
1706
1707        excess = soft_limit_excess(root_memcg);
1708
1709        while (1) {
1710                victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1711                if (!victim) {
1712                        loop++;
1713                        if (loop >= 2) {
1714                                /*
1715                                 * If we have not been able to reclaim
1716                                 * anything, it might because there are
1717                                 * no reclaimable pages under this hierarchy
1718                                 */
1719                                if (!total)
1720                                        break;
1721                                /*
1722                                 * We want to do more targeted reclaim.
1723                                 * excess >> 2 is not to excessive so as to
1724                                 * reclaim too much, nor too less that we keep
1725                                 * coming back to reclaim from this cgroup
1726                                 */
1727                                if (total >= (excess >> 2) ||
1728                                        (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1729                                        break;
1730                        }
1731                        continue;
1732                }
1733                total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1734                                                     zone, &nr_scanned);
1735                *total_scanned += nr_scanned;
1736                if (!soft_limit_excess(root_memcg))
1737                        break;
1738        }
1739        mem_cgroup_iter_break(root_memcg, victim);
1740        return total;
1741}
1742
1743#ifdef CONFIG_LOCKDEP
1744static struct lockdep_map memcg_oom_lock_dep_map = {
1745        .name = "memcg_oom_lock",
1746};
1747#endif
1748
1749static DEFINE_SPINLOCK(memcg_oom_lock);
1750
1751/*
1752 * Check OOM-Killer is already running under our hierarchy.
1753 * If someone is running, return false.
1754 */
1755static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1756{
1757        struct mem_cgroup *iter, *failed = NULL;
1758
1759        spin_lock(&memcg_oom_lock);
1760
1761        for_each_mem_cgroup_tree(iter, memcg) {
1762                if (iter->oom_lock) {
1763                        /*
1764                         * this subtree of our hierarchy is already locked
1765                         * so we cannot give a lock.
1766                         */
1767                        failed = iter;
1768                        mem_cgroup_iter_break(memcg, iter);
1769                        break;
1770                } else
1771                        iter->oom_lock = true;
1772        }
1773
1774        if (failed) {
1775                /*
1776                 * OK, we failed to lock the whole subtree so we have
1777                 * to clean up what we set up to the failing subtree
1778                 */
1779                for_each_mem_cgroup_tree(iter, memcg) {
1780                        if (iter == failed) {
1781                                mem_cgroup_iter_break(memcg, iter);
1782                                break;
1783                        }
1784                        iter->oom_lock = false;
1785                }
1786        } else
1787                mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1788
1789        spin_unlock(&memcg_oom_lock);
1790
1791        return !failed;
1792}
1793
1794static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1795{
1796        struct mem_cgroup *iter;
1797
1798        spin_lock(&memcg_oom_lock);
1799        mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1800        for_each_mem_cgroup_tree(iter, memcg)
1801                iter->oom_lock = false;
1802        spin_unlock(&memcg_oom_lock);
1803}
1804
1805static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1806{
1807        struct mem_cgroup *iter;
1808
1809        for_each_mem_cgroup_tree(iter, memcg)
1810                atomic_inc(&iter->under_oom);
1811}
1812
1813static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1814{
1815        struct mem_cgroup *iter;
1816
1817        /*
1818         * When a new child is created while the hierarchy is under oom,
1819         * mem_cgroup_oom_lock() may not be called. We have to use
1820         * atomic_add_unless() here.
1821         */
1822        for_each_mem_cgroup_tree(iter, memcg)
1823                atomic_add_unless(&iter->under_oom, -1, 0);
1824}
1825
1826static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1827
1828struct oom_wait_info {
1829        struct mem_cgroup *memcg;
1830        wait_queue_t    wait;
1831};
1832
1833static int memcg_oom_wake_function(wait_queue_t *wait,
1834        unsigned mode, int sync, void *arg)
1835{
1836        struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1837        struct mem_cgroup *oom_wait_memcg;
1838        struct oom_wait_info *oom_wait_info;
1839
1840        oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1841        oom_wait_memcg = oom_wait_info->memcg;
1842
1843        if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1844            !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1845                return 0;
1846        return autoremove_wake_function(wait, mode, sync, arg);
1847}
1848
1849static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1850{
1851        atomic_inc(&memcg->oom_wakeups);
1852        /* for filtering, pass "memcg" as argument. */
1853        __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1854}
1855
1856static void memcg_oom_recover(struct mem_cgroup *memcg)
1857{
1858        if (memcg && atomic_read(&memcg->under_oom))
1859                memcg_wakeup_oom(memcg);
1860}
1861
1862static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1863{
1864        if (!current->memcg_oom.may_oom)
1865                return;
1866        /*
1867         * We are in the middle of the charge context here, so we
1868         * don't want to block when potentially sitting on a callstack
1869         * that holds all kinds of filesystem and mm locks.
1870         *
1871         * Also, the caller may handle a failed allocation gracefully
1872         * (like optional page cache readahead) and so an OOM killer
1873         * invocation might not even be necessary.
1874         *
1875         * That's why we don't do anything here except remember the
1876         * OOM context and then deal with it at the end of the page
1877         * fault when the stack is unwound, the locks are released,
1878         * and when we know whether the fault was overall successful.
1879         */
1880        css_get(&memcg->css);
1881        current->memcg_oom.memcg = memcg;
1882        current->memcg_oom.gfp_mask = mask;
1883        current->memcg_oom.order = order;
1884}
1885
1886/**
1887 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1888 * @handle: actually kill/wait or just clean up the OOM state
1889 *
1890 * This has to be called at the end of a page fault if the memcg OOM
1891 * handler was enabled.
1892 *
1893 * Memcg supports userspace OOM handling where failed allocations must
1894 * sleep on a waitqueue until the userspace task resolves the
1895 * situation.  Sleeping directly in the charge context with all kinds
1896 * of locks held is not a good idea, instead we remember an OOM state
1897 * in the task and mem_cgroup_oom_synchronize() has to be called at
1898 * the end of the page fault to complete the OOM handling.
1899 *
1900 * Returns %true if an ongoing memcg OOM situation was detected and
1901 * completed, %false otherwise.
1902 */
1903bool mem_cgroup_oom_synchronize(bool handle)
1904{
1905        struct mem_cgroup *memcg = current->memcg_oom.memcg;
1906        struct oom_wait_info owait;
1907        bool locked;
1908
1909        /* OOM is global, do not handle */
1910        if (!memcg)
1911                return false;
1912
1913        if (!handle || oom_killer_disabled)
1914                goto cleanup;
1915
1916        owait.memcg = memcg;
1917        owait.wait.flags = 0;
1918        owait.wait.func = memcg_oom_wake_function;
1919        owait.wait.private = current;
1920        INIT_LIST_HEAD(&owait.wait.task_list);
1921
1922        prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1923        mem_cgroup_mark_under_oom(memcg);
1924
1925        locked = mem_cgroup_oom_trylock(memcg);
1926
1927        if (locked)
1928                mem_cgroup_oom_notify(memcg);
1929
1930        if (locked && !memcg->oom_kill_disable) {
1931                mem_cgroup_unmark_under_oom(memcg);
1932                finish_wait(&memcg_oom_waitq, &owait.wait);
1933                mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1934                                         current->memcg_oom.order);
1935        } else {
1936                schedule();
1937                mem_cgroup_unmark_under_oom(memcg);
1938                finish_wait(&memcg_oom_waitq, &owait.wait);
1939        }
1940
1941        if (locked) {
1942                mem_cgroup_oom_unlock(memcg);
1943                /*
1944                 * There is no guarantee that an OOM-lock contender
1945                 * sees the wakeups triggered by the OOM kill
1946                 * uncharges.  Wake any sleepers explicitely.
1947                 */
1948                memcg_oom_recover(memcg);
1949        }
1950cleanup:
1951        current->memcg_oom.memcg = NULL;
1952        css_put(&memcg->css);
1953        return true;
1954}
1955
1956/**
1957 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1958 * @page: page that is going to change accounted state
1959 *
1960 * This function must mark the beginning of an accounted page state
1961 * change to prevent double accounting when the page is concurrently
1962 * being moved to another memcg:
1963 *
1964 *   memcg = mem_cgroup_begin_page_stat(page);
1965 *   if (TestClearPageState(page))
1966 *     mem_cgroup_update_page_stat(memcg, state, -1);
1967 *   mem_cgroup_end_page_stat(memcg);
1968 */
1969struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1970{
1971        struct mem_cgroup *memcg;
1972        unsigned long flags;
1973
1974        /*
1975         * The RCU lock is held throughout the transaction.  The fast
1976         * path can get away without acquiring the memcg->move_lock
1977         * because page moving starts with an RCU grace period.
1978         *
1979         * The RCU lock also protects the memcg from being freed when
1980         * the page state that is going to change is the only thing
1981         * preventing the page from being uncharged.
1982         * E.g. end-writeback clearing PageWriteback(), which allows
1983         * migration to go ahead and uncharge the page before the
1984         * account transaction might be complete.
1985         */
1986        rcu_read_lock();
1987
1988        if (mem_cgroup_disabled())
1989                return NULL;
1990again:
1991        memcg = page->mem_cgroup;
1992        if (unlikely(!memcg))
1993                return NULL;
1994
1995        if (atomic_read(&memcg->moving_account) <= 0)
1996                return memcg;
1997
1998        spin_lock_irqsave(&memcg->move_lock, flags);
1999        if (memcg != page->mem_cgroup) {
2000                spin_unlock_irqrestore(&memcg->move_lock, flags);
2001                goto again;
2002        }
2003
2004        /*
2005         * When charge migration first begins, we can have locked and
2006         * unlocked page stat updates happening concurrently.  Track
2007         * the task who has the lock for mem_cgroup_end_page_stat().
2008         */
2009        memcg->move_lock_task = current;
2010        memcg->move_lock_flags = flags;
2011
2012        return memcg;
2013}
2014
2015/**
2016 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2017 * @memcg: the memcg that was accounted against
2018 */
2019void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
2020{
2021        if (memcg && memcg->move_lock_task == current) {
2022                unsigned long flags = memcg->move_lock_flags;
2023
2024                memcg->move_lock_task = NULL;
2025                memcg->move_lock_flags = 0;
2026
2027                spin_unlock_irqrestore(&memcg->move_lock, flags);
2028        }
2029
2030        rcu_read_unlock();
2031}
2032
2033/**
2034 * mem_cgroup_update_page_stat - update page state statistics
2035 * @memcg: memcg to account against
2036 * @idx: page state item to account
2037 * @val: number of pages (positive or negative)
2038 *
2039 * See mem_cgroup_begin_page_stat() for locking requirements.
2040 */
2041void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
2042                                 enum mem_cgroup_stat_index idx, int val)
2043{
2044        VM_BUG_ON(!rcu_read_lock_held());
2045
2046        if (memcg)
2047                this_cpu_add(memcg->stat->count[idx], val);
2048}
2049
2050/*
2051 * size of first charge trial. "32" comes from vmscan.c's magic value.
2052 * TODO: maybe necessary to use big numbers in big irons.
2053 */
2054#define CHARGE_BATCH    32U
2055struct memcg_stock_pcp {
2056        struct mem_cgroup *cached; /* this never be root cgroup */
2057        unsigned int nr_pages;
2058        struct work_struct work;
2059        unsigned long flags;
2060#define FLUSHING_CACHED_CHARGE  0
2061};
2062static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2063static DEFINE_MUTEX(percpu_charge_mutex);
2064
2065/**
2066 * consume_stock: Try to consume stocked charge on this cpu.
2067 * @memcg: memcg to consume from.
2068 * @nr_pages: how many pages to charge.
2069 *
2070 * The charges will only happen if @memcg matches the current cpu's memcg
2071 * stock, and at least @nr_pages are available in that stock.  Failure to
2072 * service an allocation will refill the stock.
2073 *
2074 * returns true if successful, false otherwise.
2075 */
2076static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2077{
2078        struct memcg_stock_pcp *stock;
2079        bool ret = false;
2080
2081        if (nr_pages > CHARGE_BATCH)
2082                return ret;
2083
2084        stock = &get_cpu_var(memcg_stock);
2085        if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2086                stock->nr_pages -= nr_pages;
2087                ret = true;
2088        }
2089        put_cpu_var(memcg_stock);
2090        return ret;
2091}
2092
2093/*
2094 * Returns stocks cached in percpu and reset cached information.
2095 */
2096static void drain_stock(struct memcg_stock_pcp *stock)
2097{
2098        struct mem_cgroup *old = stock->cached;
2099
2100        if (stock->nr_pages) {
2101                page_counter_uncharge(&old->memory, stock->nr_pages);
2102                if (do_swap_account)
2103                        page_counter_uncharge(&old->memsw, stock->nr_pages);
2104                css_put_many(&old->css, stock->nr_pages);
2105                stock->nr_pages = 0;
2106        }
2107        stock->cached = NULL;
2108}
2109
2110/*
2111 * This must be called under preempt disabled or must be called by
2112 * a thread which is pinned to local cpu.
2113 */
2114static void drain_local_stock(struct work_struct *dummy)
2115{
2116        struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2117        drain_stock(stock);
2118        clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2119}
2120
2121/*
2122 * Cache charges(val) to local per_cpu area.
2123 * This will be consumed by consume_stock() function, later.
2124 */
2125static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2126{
2127        struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2128
2129        if (stock->cached != memcg) { /* reset if necessary */
2130                drain_stock(stock);
2131                stock->cached = memcg;
2132        }
2133        stock->nr_pages += nr_pages;
2134        put_cpu_var(memcg_stock);
2135}
2136
2137/*
2138 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2139 * of the hierarchy under it.
2140 */
2141static void drain_all_stock(struct mem_cgroup *root_memcg)
2142{
2143        int cpu, curcpu;
2144
2145        /* If someone's already draining, avoid adding running more workers. */
2146        if (!mutex_trylock(&percpu_charge_mutex))
2147                return;
2148        /* Notify other cpus that system-wide "drain" is running */
2149        get_online_cpus();
2150        curcpu = get_cpu();
2151        for_each_online_cpu(cpu) {
2152                struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2153                struct mem_cgroup *memcg;
2154
2155                memcg = stock->cached;
2156                if (!memcg || !stock->nr_pages)
2157                        continue;
2158                if (!mem_cgroup_is_descendant(memcg, root_memcg))
2159                        continue;
2160                if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2161                        if (cpu == curcpu)
2162                                drain_local_stock(&stock->work);
2163                        else
2164                                schedule_work_on(cpu, &stock->work);
2165                }
2166        }
2167        put_cpu();
2168        put_online_cpus();
2169        mutex_unlock(&percpu_charge_mutex);
2170}
2171
2172/*
2173 * This function drains percpu counter value from DEAD cpu and
2174 * move it to local cpu. Note that this function can be preempted.
2175 */
2176static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2177{
2178        int i;
2179
2180        spin_lock(&memcg->pcp_counter_lock);
2181        for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2182                long x = per_cpu(memcg->stat->count[i], cpu);
2183
2184                per_cpu(memcg->stat->count[i], cpu) = 0;
2185                memcg->nocpu_base.count[i] += x;
2186        }
2187        for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2188                unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2189
2190                per_cpu(memcg->stat->events[i], cpu) = 0;
2191                memcg->nocpu_base.events[i] += x;
2192        }
2193        spin_unlock(&memcg->pcp_counter_lock);
2194}
2195
2196static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2197                                        unsigned long action,
2198                                        void *hcpu)
2199{
2200        int cpu = (unsigned long)hcpu;
2201        struct memcg_stock_pcp *stock;
2202        struct mem_cgroup *iter;
2203
2204        if (action == CPU_ONLINE)
2205                return NOTIFY_OK;
2206
2207        if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2208                return NOTIFY_OK;
2209
2210        for_each_mem_cgroup(iter)
2211                mem_cgroup_drain_pcp_counter(iter, cpu);
2212
2213        stock = &per_cpu(memcg_stock, cpu);
2214        drain_stock(stock);
2215        return NOTIFY_OK;
2216}
2217
2218static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2219                      unsigned int nr_pages)
2220{
2221        unsigned int batch = max(CHARGE_BATCH, nr_pages);
2222        int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2223        struct mem_cgroup *mem_over_limit;
2224        struct page_counter *counter;
2225        unsigned long nr_reclaimed;
2226        bool may_swap = true;
2227        bool drained = false;
2228        int ret = 0;
2229
2230        if (mem_cgroup_is_root(memcg))
2231                goto done;
2232retry:
2233        if (consume_stock(memcg, nr_pages))
2234                goto done;
2235
2236        if (!do_swap_account ||
2237            !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2238                if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2239                        goto done_restock;
2240                if (do_swap_account)
2241                        page_counter_uncharge(&memcg->memsw, batch);
2242                mem_over_limit = mem_cgroup_from_counter(counter, memory);
2243        } else {
2244                mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2245                may_swap = false;
2246        }
2247
2248        if (batch > nr_pages) {
2249                batch = nr_pages;
2250                goto retry;
2251        }
2252
2253        /*
2254         * Unlike in global OOM situations, memcg is not in a physical
2255         * memory shortage.  Allow dying and OOM-killed tasks to
2256         * bypass the last charges so that they can exit quickly and
2257         * free their memory.
2258         */
2259        if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2260                     fatal_signal_pending(current) ||
2261                     current->flags & PF_EXITING))
2262                goto bypass;
2263
2264        if (unlikely(task_in_memcg_oom(current)))
2265                goto nomem;
2266
2267        if (!(gfp_mask & __GFP_WAIT))
2268                goto nomem;
2269
2270        mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2271
2272        nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2273                                                    gfp_mask, may_swap);
2274
2275        if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2276                goto retry;
2277
2278        if (!drained) {
2279                drain_all_stock(mem_over_limit);
2280                drained = true;
2281                goto retry;
2282        }
2283
2284        if (gfp_mask & __GFP_NORETRY)
2285                goto nomem;
2286        /*
2287         * Even though the limit is exceeded at this point, reclaim
2288         * may have been able to free some pages.  Retry the charge
2289         * before killing the task.
2290         *
2291         * Only for regular pages, though: huge pages are rather
2292         * unlikely to succeed so close to the limit, and we fall back
2293         * to regular pages anyway in case of failure.
2294         */
2295        if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2296                goto retry;
2297        /*
2298         * At task move, charge accounts can be doubly counted. So, it's
2299         * better to wait until the end of task_move if something is going on.
2300         */
2301        if (mem_cgroup_wait_acct_move(mem_over_limit))
2302                goto retry;
2303
2304        if (nr_retries--)
2305                goto retry;
2306
2307        if (gfp_mask & __GFP_NOFAIL)
2308                goto bypass;
2309
2310        if (fatal_signal_pending(current))
2311                goto bypass;
2312
2313        mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2314
2315        mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2316nomem:
2317        if (!(gfp_mask & __GFP_NOFAIL))
2318                return -ENOMEM;
2319bypass:
2320        return -EINTR;
2321
2322done_restock:
2323        css_get_many(&memcg->css, batch);
2324        if (batch > nr_pages)
2325                refill_stock(memcg, batch - nr_pages);
2326        if (!(gfp_mask & __GFP_WAIT))
2327                goto done;
2328        /*
2329         * If the hierarchy is above the normal consumption range,
2330         * make the charging task trim their excess contribution.
2331         */
2332        do {
2333                if (page_counter_read(&memcg->memory) <= memcg->high)
2334                        continue;
2335                mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2336                try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2337        } while ((memcg = parent_mem_cgroup(memcg)));
2338done:
2339        return ret;
2340}
2341
2342static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2343{
2344        if (mem_cgroup_is_root(memcg))
2345                return;
2346
2347        page_counter_uncharge(&memcg->memory, nr_pages);
2348        if (do_swap_account)
2349                page_counter_uncharge(&memcg->memsw, nr_pages);
2350
2351        css_put_many(&memcg->css, nr_pages);
2352}
2353
2354/*
2355 * try_get_mem_cgroup_from_page - look up page's memcg association
2356 * @page: the page
2357 *
2358 * Look up, get a css reference, and return the memcg that owns @page.
2359 *
2360 * The page must be locked to prevent racing with swap-in and page
2361 * cache charges.  If coming from an unlocked page table, the caller
2362 * must ensure the page is on the LRU or this can race with charging.
2363 */
2364struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2365{
2366        struct mem_cgroup *memcg;
2367        unsigned short id;
2368        swp_entry_t ent;
2369
2370        VM_BUG_ON_PAGE(!PageLocked(page), page);
2371
2372        memcg = page->mem_cgroup;
2373        if (memcg) {
2374                if (!css_tryget_online(&memcg->css))
2375                        memcg = NULL;
2376        } else if (PageSwapCache(page)) {
2377                ent.val = page_private(page);
2378                id = lookup_swap_cgroup_id(ent);
2379                rcu_read_lock();
2380                memcg = mem_cgroup_from_id(id);
2381                if (memcg && !css_tryget_online(&memcg->css))
2382                        memcg = NULL;
2383                rcu_read_unlock();
2384        }
2385        return memcg;
2386}
2387
2388static void lock_page_lru(struct page *page, int *isolated)
2389{
2390        struct zone *zone = page_zone(page);
2391
2392        spin_lock_irq(&zone->lru_lock);
2393        if (PageLRU(page)) {
2394                struct lruvec *lruvec;
2395
2396                lruvec = mem_cgroup_page_lruvec(page, zone);
2397                ClearPageLRU(page);
2398                del_page_from_lru_list(page, lruvec, page_lru(page));
2399                *isolated = 1;
2400        } else
2401                *isolated = 0;
2402}
2403
2404static void unlock_page_lru(struct page *page, int isolated)
2405{
2406        struct zone *zone = page_zone(page);
2407
2408        if (isolated) {
2409                struct lruvec *lruvec;
2410
2411                lruvec = mem_cgroup_page_lruvec(page, zone);
2412                VM_BUG_ON_PAGE(PageLRU(page), page);
2413                SetPageLRU(page);
2414                add_page_to_lru_list(page, lruvec, page_lru(page));
2415        }
2416        spin_unlock_irq(&zone->lru_lock);
2417}
2418
2419static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2420                          bool lrucare)
2421{
2422        int isolated;
2423
2424        VM_BUG_ON_PAGE(page->mem_cgroup, page);
2425
2426        /*
2427         * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2428         * may already be on some other mem_cgroup's LRU.  Take care of it.
2429         */
2430        if (lrucare)
2431                lock_page_lru(page, &isolated);
2432
2433        /*
2434         * Nobody should be changing or seriously looking at
2435         * page->mem_cgroup at this point:
2436         *
2437         * - the page is uncharged
2438         *
2439         * - the page is off-LRU
2440         *
2441         * - an anonymous fault has exclusive page access, except for
2442         *   a locked page table
2443         *
2444         * - a page cache insertion, a swapin fault, or a migration
2445         *   have the page locked
2446         */
2447        page->mem_cgroup = memcg;
2448
2449        if (lrucare)
2450                unlock_page_lru(page, isolated);
2451}
2452
2453#ifdef CONFIG_MEMCG_KMEM
2454int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2455                      unsigned long nr_pages)
2456{
2457        struct page_counter *counter;
2458        int ret = 0;
2459
2460        ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2461        if (ret < 0)
2462                return ret;
2463
2464        ret = try_charge(memcg, gfp, nr_pages);
2465        if (ret == -EINTR)  {
2466                /*
2467                 * try_charge() chose to bypass to root due to OOM kill or
2468                 * fatal signal.  Since our only options are to either fail
2469                 * the allocation or charge it to this cgroup, do it as a
2470                 * temporary condition. But we can't fail. From a kmem/slab
2471                 * perspective, the cache has already been selected, by
2472                 * mem_cgroup_kmem_get_cache(), so it is too late to change
2473                 * our minds.
2474                 *
2475                 * This condition will only trigger if the task entered
2476                 * memcg_charge_kmem in a sane state, but was OOM-killed
2477                 * during try_charge() above. Tasks that were already dying
2478                 * when the allocation triggers should have been already
2479                 * directed to the root cgroup in memcontrol.h
2480                 */
2481                page_counter_charge(&memcg->memory, nr_pages);
2482                if (do_swap_account)
2483                        page_counter_charge(&memcg->memsw, nr_pages);
2484                css_get_many(&memcg->css, nr_pages);
2485                ret = 0;
2486        } else if (ret)
2487                page_counter_uncharge(&memcg->kmem, nr_pages);
2488
2489        return ret;
2490}
2491
2492void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2493{
2494        page_counter_uncharge(&memcg->memory, nr_pages);
2495        if (do_swap_account)
2496                page_counter_uncharge(&memcg->memsw, nr_pages);
2497
2498        page_counter_uncharge(&memcg->kmem, nr_pages);
2499
2500        css_put_many(&memcg->css, nr_pages);
2501}
2502
2503/*
2504 * helper for acessing a memcg's index. It will be used as an index in the
2505 * child cache array in kmem_cache, and also to derive its name. This function
2506 * will return -1 when this is not a kmem-limited memcg.
2507 */
2508int memcg_cache_id(struct mem_cgroup *memcg)
2509{
2510        return memcg ? memcg->kmemcg_id : -1;
2511}
2512
2513static int memcg_alloc_cache_id(void)
2514{
2515        int id, size;
2516        int err;
2517
2518        id = ida_simple_get(&memcg_cache_ida,
2519                            0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2520        if (id < 0)
2521                return id;
2522
2523        if (id < memcg_nr_cache_ids)
2524                return id;
2525
2526        /*
2527         * There's no space for the new id in memcg_caches arrays,
2528         * so we have to grow them.
2529         */
2530        down_write(&memcg_cache_ids_sem);
2531
2532        size = 2 * (id + 1);
2533        if (size < MEMCG_CACHES_MIN_SIZE)
2534                size = MEMCG_CACHES_MIN_SIZE;
2535        else if (size > MEMCG_CACHES_MAX_SIZE)
2536                size = MEMCG_CACHES_MAX_SIZE;
2537
2538        err = memcg_update_all_caches(size);
2539        if (!err)
2540                err = memcg_update_all_list_lrus(size);
2541        if (!err)
2542                memcg_nr_cache_ids = size;
2543
2544        up_write(&memcg_cache_ids_sem);
2545
2546        if (err) {
2547                ida_simple_remove(&memcg_cache_ida, id);
2548                return err;
2549        }
2550        return id;
2551}
2552
2553static void memcg_free_cache_id(int id)
2554{
2555        ida_simple_remove(&memcg_cache_ida, id);
2556}
2557
2558struct memcg_kmem_cache_create_work {
2559        struct mem_cgroup *memcg;
2560        struct kmem_cache *cachep;
2561        struct work_struct work;
2562};
2563
2564static void memcg_kmem_cache_create_func(struct work_struct *w)
2565{
2566        struct memcg_kmem_cache_create_work *cw =
2567                container_of(w, struct memcg_kmem_cache_create_work, work);
2568        struct mem_cgroup *memcg = cw->memcg;
2569        struct kmem_cache *cachep = cw->cachep;
2570
2571        memcg_create_kmem_cache(memcg, cachep);
2572
2573        css_put(&memcg->css);
2574        kfree(cw);
2575}
2576
2577/*
2578 * Enqueue the creation of a per-memcg kmem_cache.
2579 */
2580static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2581                                               struct kmem_cache *cachep)
2582{
2583        struct memcg_kmem_cache_create_work *cw;
2584
2585        cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2586        if (!cw)
2587                return;
2588
2589        css_get(&memcg->css);
2590
2591        cw->memcg = memcg;
2592        cw->cachep = cachep;
2593        INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2594
2595        schedule_work(&cw->work);
2596}
2597
2598static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2599                                             struct kmem_cache *cachep)
2600{
2601        /*
2602         * We need to stop accounting when we kmalloc, because if the
2603         * corresponding kmalloc cache is not yet created, the first allocation
2604         * in __memcg_schedule_kmem_cache_create will recurse.
2605         *
2606         * However, it is better to enclose the whole function. Depending on
2607         * the debugging options enabled, INIT_WORK(), for instance, can
2608         * trigger an allocation. This too, will make us recurse. Because at
2609         * this point we can't allow ourselves back into memcg_kmem_get_cache,
2610         * the safest choice is to do it like this, wrapping the whole function.
2611         */
2612        current->memcg_kmem_skip_account = 1;
2613        __memcg_schedule_kmem_cache_create(memcg, cachep);
2614        current->memcg_kmem_skip_account = 0;
2615}
2616
2617/*
2618 * Return the kmem_cache we're supposed to use for a slab allocation.
2619 * We try to use the current memcg's version of the cache.
2620 *
2621 * If the cache does not exist yet, if we are the first user of it,
2622 * we either create it immediately, if possible, or create it asynchronously
2623 * in a workqueue.
2624 * In the latter case, we will let the current allocation go through with
2625 * the original cache.
2626 *
2627 * Can't be called in interrupt context or from kernel threads.
2628 * This function needs to be called with rcu_read_lock() held.
2629 */
2630struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2631{
2632        struct mem_cgroup *memcg;
2633        struct kmem_cache *memcg_cachep;
2634        int kmemcg_id;
2635
2636        VM_BUG_ON(!is_root_cache(cachep));
2637
2638        if (current->memcg_kmem_skip_account)
2639                return cachep;
2640
2641        memcg = get_mem_cgroup_from_mm(current->mm);
2642        kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2643        if (kmemcg_id < 0)
2644                goto out;
2645
2646        memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2647        if (likely(memcg_cachep))
2648                return memcg_cachep;
2649
2650        /*
2651         * If we are in a safe context (can wait, and not in interrupt
2652         * context), we could be be predictable and return right away.
2653         * This would guarantee that the allocation being performed
2654         * already belongs in the new cache.
2655         *
2656         * However, there are some clashes that can arrive from locking.
2657         * For instance, because we acquire the slab_mutex while doing
2658         * memcg_create_kmem_cache, this means no further allocation
2659         * could happen with the slab_mutex held. So it's better to
2660         * defer everything.
2661         */
2662        memcg_schedule_kmem_cache_create(memcg, cachep);
2663out:
2664        css_put(&memcg->css);
2665        return cachep;
2666}
2667
2668void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2669{
2670        if (!is_root_cache(cachep))
2671                css_put(&cachep->memcg_params.memcg->css);
2672}
2673
2674/*
2675 * We need to verify if the allocation against current->mm->owner's memcg is
2676 * possible for the given order. But the page is not allocated yet, so we'll
2677 * need a further commit step to do the final arrangements.
2678 *
2679 * It is possible for the task to switch cgroups in this mean time, so at
2680 * commit time, we can't rely on task conversion any longer.  We'll then use
2681 * the handle argument to return to the caller which cgroup we should commit
2682 * against. We could also return the memcg directly and avoid the pointer
2683 * passing, but a boolean return value gives better semantics considering
2684 * the compiled-out case as well.
2685 *
2686 * Returning true means the allocation is possible.
2687 */
2688bool
2689__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2690{
2691        struct mem_cgroup *memcg;
2692        int ret;
2693
2694        *_memcg = NULL;
2695
2696        memcg = get_mem_cgroup_from_mm(current->mm);
2697
2698        if (!memcg_kmem_is_active(memcg)) {
2699                css_put(&memcg->css);
2700                return true;
2701        }
2702
2703        ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2704        if (!ret)
2705                *_memcg = memcg;
2706
2707        css_put(&memcg->css);
2708        return (ret == 0);
2709}
2710
2711void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2712                              int order)
2713{
2714        VM_BUG_ON(mem_cgroup_is_root(memcg));
2715
2716        /* The page allocation failed. Revert */
2717        if (!page) {
2718                memcg_uncharge_kmem(memcg, 1 << order);
2719                return;
2720        }
2721        page->mem_cgroup = memcg;
2722}
2723
2724void __memcg_kmem_uncharge_pages(struct page *page, int order)
2725{
2726        struct mem_cgroup *memcg = page->mem_cgroup;
2727
2728        if (!memcg)
2729                return;
2730
2731        VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2732
2733        memcg_uncharge_kmem(memcg, 1 << order);
2734        page->mem_cgroup = NULL;
2735}
2736
2737struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2738{
2739        struct mem_cgroup *memcg = NULL;
2740        struct kmem_cache *cachep;
2741        struct page *page;
2742
2743        page = virt_to_head_page(ptr);
2744        if (PageSlab(page)) {
2745                cachep = page->slab_cache;
2746                if (!is_root_cache(cachep))
2747                        memcg = cachep->memcg_params.memcg;
2748        } else
2749                /* page allocated by alloc_kmem_pages */
2750                memcg = page->mem_cgroup;
2751
2752        return memcg;
2753}
2754#endif /* CONFIG_MEMCG_KMEM */
2755
2756#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2757
2758/*
2759 * Because tail pages are not marked as "used", set it. We're under
2760 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2761 * charge/uncharge will be never happen and move_account() is done under
2762 * compound_lock(), so we don't have to take care of races.
2763 */
2764void mem_cgroup_split_huge_fixup(struct page *head)
2765{
2766        int i;
2767
2768        if (mem_cgroup_disabled())
2769                return;
2770
2771        for (i = 1; i < HPAGE_PMD_NR; i++)
2772                head[i].mem_cgroup = head->mem_cgroup;
2773
2774        __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2775                       HPAGE_PMD_NR);
2776}
2777#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2778
2779#ifdef CONFIG_MEMCG_SWAP
2780static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2781                                         bool charge)
2782{
2783        int val = (charge) ? 1 : -1;
2784        this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2785}
2786
2787/**
2788 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2789 * @entry: swap entry to be moved
2790 * @from:  mem_cgroup which the entry is moved from
2791 * @to:  mem_cgroup which the entry is moved to
2792 *
2793 * It succeeds only when the swap_cgroup's record for this entry is the same
2794 * as the mem_cgroup's id of @from.
2795 *
2796 * Returns 0 on success, -EINVAL on failure.
2797 *
2798 * The caller must have charged to @to, IOW, called page_counter_charge() about
2799 * both res and memsw, and called css_get().
2800 */
2801static int mem_cgroup_move_swap_account(swp_entry_t entry,
2802                                struct mem_cgroup *from, struct mem_cgroup *to)
2803{
2804        unsigned short old_id, new_id;
2805
2806        old_id = mem_cgroup_id(from);
2807        new_id = mem_cgroup_id(to);
2808
2809        if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2810                mem_cgroup_swap_statistics(from, false);
2811                mem_cgroup_swap_statistics(to, true);
2812                return 0;
2813        }
2814        return -EINVAL;
2815}
2816#else
2817static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2818                                struct mem_cgroup *from, struct mem_cgroup *to)
2819{
2820        return -EINVAL;
2821}
2822#endif
2823
2824static DEFINE_MUTEX(memcg_limit_mutex);
2825
2826static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2827                                   unsigned long limit)
2828{
2829        unsigned long curusage;
2830        unsigned long oldusage;
2831        bool enlarge = false;
2832        int retry_count;
2833        int ret;
2834
2835        /*
2836         * For keeping hierarchical_reclaim simple, how long we should retry
2837         * is depends on callers. We set our retry-count to be function
2838         * of # of children which we should visit in this loop.
2839         */
2840        retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2841                      mem_cgroup_count_children(memcg);
2842
2843        oldusage = page_counter_read(&memcg->memory);
2844
2845        do {
2846                if (signal_pending(current)) {
2847                        ret = -EINTR;
2848                        break;
2849                }
2850
2851                mutex_lock(&memcg_limit_mutex);
2852                if (limit > memcg->memsw.limit) {
2853                        mutex_unlock(&memcg_limit_mutex);
2854                        ret = -EINVAL;
2855                        break;
2856                }
2857                if (limit > memcg->memory.limit)
2858                        enlarge = true;
2859                ret = page_counter_limit(&memcg->memory, limit);
2860                mutex_unlock(&memcg_limit_mutex);
2861
2862                if (!ret)
2863                        break;
2864
2865                try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2866
2867                curusage = page_counter_read(&memcg->memory);
2868                /* Usage is reduced ? */
2869                if (curusage >= oldusage)
2870                        retry_count--;
2871                else
2872                        oldusage = curusage;
2873        } while (retry_count);
2874
2875        if (!ret && enlarge)
2876                memcg_oom_recover(memcg);
2877
2878        return ret;
2879}
2880
2881static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2882                                         unsigned long limit)
2883{
2884        unsigned long curusage;
2885        unsigned long oldusage;
2886        bool enlarge = false;
2887        int retry_count;
2888        int ret;
2889
2890        /* see mem_cgroup_resize_res_limit */
2891        retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2892                      mem_cgroup_count_children(memcg);
2893
2894        oldusage = page_counter_read(&memcg->memsw);
2895
2896        do {
2897                if (signal_pending(current)) {
2898                        ret = -EINTR;
2899                        break;
2900                }
2901
2902                mutex_lock(&memcg_limit_mutex);
2903                if (limit < memcg->memory.limit) {
2904                        mutex_unlock(&memcg_limit_mutex);
2905                        ret = -EINVAL;
2906                        break;
2907                }
2908                if (limit > memcg->memsw.limit)
2909                        enlarge = true;
2910                ret = page_counter_limit(&memcg->memsw, limit);
2911                mutex_unlock(&memcg_limit_mutex);
2912
2913                if (!ret)
2914                        break;
2915
2916                try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2917
2918                curusage = page_counter_read(&memcg->memsw);
2919                /* Usage is reduced ? */
2920                if (curusage >= oldusage)
2921                        retry_count--;
2922                else
2923                        oldusage = curusage;
2924        } while (retry_count);
2925
2926        if (!ret && enlarge)
2927                memcg_oom_recover(memcg);
2928
2929        return ret;
2930}
2931
2932unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2933                                            gfp_t gfp_mask,
2934                                            unsigned long *total_scanned)
2935{
2936        unsigned long nr_reclaimed = 0;
2937        struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2938        unsigned long reclaimed;
2939        int loop = 0;
2940        struct mem_cgroup_tree_per_zone *mctz;
2941        unsigned long excess;
2942        unsigned long nr_scanned;
2943
2944        if (order > 0)
2945                return 0;
2946
2947        mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2948        /*
2949         * This loop can run a while, specially if mem_cgroup's continuously
2950         * keep exceeding their soft limit and putting the system under
2951         * pressure
2952         */
2953        do {
2954                if (next_mz)
2955                        mz = next_mz;
2956                else
2957                        mz = mem_cgroup_largest_soft_limit_node(mctz);
2958                if (!mz)
2959                        break;
2960
2961                nr_scanned = 0;
2962                reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2963                                                    gfp_mask, &nr_scanned);
2964                nr_reclaimed += reclaimed;
2965                *total_scanned += nr_scanned;
2966                spin_lock_irq(&mctz->lock);
2967                __mem_cgroup_remove_exceeded(mz, mctz);
2968
2969                /*
2970                 * If we failed to reclaim anything from this memory cgroup
2971                 * it is time to move on to the next cgroup
2972                 */
2973                next_mz = NULL;
2974                if (!reclaimed)
2975                        next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2976
2977                excess = soft_limit_excess(mz->memcg);
2978                /*
2979                 * One school of thought says that we should not add
2980                 * back the node to the tree if reclaim returns 0.
2981                 * But our reclaim could return 0, simply because due
2982                 * to priority we are exposing a smaller subset of
2983                 * memory to reclaim from. Consider this as a longer
2984                 * term TODO.
2985                 */
2986                /* If excess == 0, no tree ops */
2987                __mem_cgroup_insert_exceeded(mz, mctz, excess);
2988                spin_unlock_irq(&mctz->lock);
2989                css_put(&mz->memcg->css);
2990                loop++;
2991                /*
2992                 * Could not reclaim anything and there are no more
2993                 * mem cgroups to try or we seem to be looping without
2994                 * reclaiming anything.
2995                 */
2996                if (!nr_reclaimed &&
2997                        (next_mz == NULL ||
2998                        loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2999                        break;
3000        } while (!nr_reclaimed);
3001        if (next_mz)
3002                css_put(&next_mz->memcg->css);
3003        return nr_reclaimed;
3004}
3005
3006/*
3007 * Test whether @memcg has children, dead or alive.  Note that this
3008 * function doesn't care whether @memcg has use_hierarchy enabled and
3009 * returns %true if there are child csses according to the cgroup
3010 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
3011 */
3012static inline bool memcg_has_children(struct mem_cgroup *memcg)
3013{
3014        bool ret;
3015
3016        /*
3017         * The lock does not prevent addition or deletion of children, but
3018         * it prevents a new child from being initialized based on this
3019         * parent in css_online(), so it's enough to decide whether
3020         * hierarchically inherited attributes can still be changed or not.
3021         */
3022        lockdep_assert_held(&memcg_create_mutex);
3023
3024        rcu_read_lock();
3025        ret = css_next_child(NULL, &memcg->css);
3026        rcu_read_unlock();
3027        return ret;
3028}
3029
3030/*
3031 * Reclaims as many pages from the given memcg as possible and moves
3032 * the rest to the parent.
3033 *
3034 * Caller is responsible for holding css reference for memcg.
3035 */
3036static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3037{
3038        int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3039
3040        /* we call try-to-free pages for make this cgroup empty */
3041        lru_add_drain_all();
3042        /* try to free all pages in this cgroup */
3043        while (nr_retries && page_counter_read(&memcg->memory)) {
3044                int progress;
3045
3046                if (signal_pending(current))
3047                        return -EINTR;
3048
3049                progress = try_to_free_mem_cgroup_pages(memcg, 1,
3050                                                        GFP_KERNEL, true);
3051                if (!progress) {
3052                        nr_retries--;
3053                        /* maybe some writeback is necessary */
3054                        congestion_wait(BLK_RW_ASYNC, HZ/10);
3055                }
3056
3057        }
3058
3059        return 0;
3060}
3061
3062static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3063                                            char *buf, size_t nbytes,
3064                                            loff_t off)
3065{
3066        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3067
3068        if (mem_cgroup_is_root(memcg))
3069                return -EINVAL;
3070        return mem_cgroup_force_empty(memcg) ?: nbytes;
3071}
3072
3073static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3074                                     struct cftype *cft)
3075{
3076        return mem_cgroup_from_css(css)->use_hierarchy;
3077}
3078
3079static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3080                                      struct cftype *cft, u64 val)
3081{
3082        int retval = 0;
3083        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3084        struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3085
3086        mutex_lock(&memcg_create_mutex);
3087
3088        if (memcg->use_hierarchy == val)
3089                goto out;
3090
3091        /*
3092         * If parent's use_hierarchy is set, we can't make any modifications
3093         * in the child subtrees. If it is unset, then the change can
3094         * occur, provided the current cgroup has no children.
3095         *
3096         * For the root cgroup, parent_mem is NULL, we allow value to be
3097         * set if there are no children.
3098         */
3099        if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3100                                (val == 1 || val == 0)) {
3101                if (!memcg_has_children(memcg))
3102                        memcg->use_hierarchy = val;
3103                else
3104                        retval = -EBUSY;
3105        } else
3106                retval = -EINVAL;
3107
3108out:
3109        mutex_unlock(&memcg_create_mutex);
3110
3111        return retval;
3112}
3113
3114static unsigned long tree_stat(struct mem_cgroup *memcg,
3115                               enum mem_cgroup_stat_index idx)
3116{
3117        struct mem_cgroup *iter;
3118        long val = 0;
3119
3120        /* Per-cpu values can be negative, use a signed accumulator */
3121        for_each_mem_cgroup_tree(iter, memcg)
3122                val += mem_cgroup_read_stat(iter, idx);
3123
3124        if (val < 0) /* race ? */
3125                val = 0;
3126        return val;
3127}
3128
3129static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3130{
3131        u64 val;
3132
3133        if (mem_cgroup_is_root(memcg)) {
3134                val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3135                val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3136                if (swap)
3137                        val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3138        } else {
3139                if (!swap)
3140                        val = page_counter_read(&memcg->memory);
3141                else
3142                        val = page_counter_read(&memcg->memsw);
3143        }
3144        return val << PAGE_SHIFT;
3145}
3146
3147enum {
3148        RES_USAGE,
3149        RES_LIMIT,
3150        RES_MAX_USAGE,
3151        RES_FAILCNT,
3152        RES_SOFT_LIMIT,
3153};
3154
3155static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3156                               struct cftype *cft)
3157{
3158        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3159        struct page_counter *counter;
3160
3161        switch (MEMFILE_TYPE(cft->private)) {
3162        case _MEM:
3163                counter = &memcg->memory;
3164                break;
3165        case _MEMSWAP:
3166                counter = &memcg->memsw;
3167                break;
3168        case _KMEM:
3169                counter = &memcg->kmem;
3170                break;
3171        default:
3172                BUG();
3173        }
3174
3175        switch (MEMFILE_ATTR(cft->private)) {
3176        case RES_USAGE:
3177                if (counter == &memcg->memory)
3178                        return mem_cgroup_usage(memcg, false);
3179                if (counter == &memcg->memsw)
3180                        return mem_cgroup_usage(memcg, true);
3181                return (u64)page_counter_read(counter) * PAGE_SIZE;
3182        case RES_LIMIT:
3183                return (u64)counter->limit * PAGE_SIZE;
3184        case RES_MAX_USAGE:
3185                return (u64)counter->watermark * PAGE_SIZE;
3186        case RES_FAILCNT:
3187                return counter->failcnt;
3188        case RES_SOFT_LIMIT:
3189                return (u64)memcg->soft_limit * PAGE_SIZE;
3190        default:
3191                BUG();
3192        }
3193}
3194
3195#ifdef CONFIG_MEMCG_KMEM
3196static int memcg_activate_kmem(struct mem_cgroup *memcg,
3197                               unsigned long nr_pages)
3198{
3199        int err = 0;
3200        int memcg_id;
3201
3202        BUG_ON(memcg->kmemcg_id >= 0);
3203        BUG_ON(memcg->kmem_acct_activated);
3204        BUG_ON(memcg->kmem_acct_active);
3205
3206        /*
3207         * For simplicity, we won't allow this to be disabled.  It also can't
3208         * be changed if the cgroup has children already, or if tasks had
3209         * already joined.
3210         *
3211         * If tasks join before we set the limit, a person looking at
3212         * kmem.usage_in_bytes will have no way to determine when it took
3213         * place, which makes the value quite meaningless.
3214         *
3215         * After it first became limited, changes in the value of the limit are
3216         * of course permitted.
3217         */
3218        mutex_lock(&memcg_create_mutex);
3219        if (cgroup_has_tasks(memcg->css.cgroup) ||
3220            (memcg->use_hierarchy && memcg_has_children(memcg)))
3221                err = -EBUSY;
3222        mutex_unlock(&memcg_create_mutex);
3223        if (err)
3224                goto out;
3225
3226        memcg_id = memcg_alloc_cache_id();
3227        if (memcg_id < 0) {
3228                err = memcg_id;
3229                goto out;
3230        }
3231
3232        /*
3233         * We couldn't have accounted to this cgroup, because it hasn't got
3234         * activated yet, so this should succeed.
3235         */
3236        err = page_counter_limit(&memcg->kmem, nr_pages);
3237        VM_BUG_ON(err);
3238
3239        static_key_slow_inc(&memcg_kmem_enabled_key);
3240        /*
3241         * A memory cgroup is considered kmem-active as soon as it gets
3242         * kmemcg_id. Setting the id after enabling static branching will
3243         * guarantee no one starts accounting before all call sites are
3244         * patched.
3245         */
3246        memcg->kmemcg_id = memcg_id;
3247        memcg->kmem_acct_activated = true;
3248        memcg->kmem_acct_active = true;
3249out:
3250        return err;
3251}
3252
3253static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3254                                   unsigned long limit)
3255{
3256        int ret;
3257
3258        mutex_lock(&memcg_limit_mutex);
3259        if (!memcg_kmem_is_active(memcg))
3260                ret = memcg_activate_kmem(memcg, limit);
3261        else
3262                ret = page_counter_limit(&memcg->kmem, limit);
3263        mutex_unlock(&memcg_limit_mutex);
3264        return ret;
3265}
3266
3267static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3268{
3269        int ret = 0;
3270        struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3271
3272        if (!parent)
3273                return 0;
3274
3275        mutex_lock(&memcg_limit_mutex);
3276        /*
3277         * If the parent cgroup is not kmem-active now, it cannot be activated
3278         * after this point, because it has at least one child already.
3279         */
3280        if (memcg_kmem_is_active(parent))
3281                ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3282        mutex_unlock(&memcg_limit_mutex);
3283        return ret;
3284}
3285#else
3286static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3287                                   unsigned long limit)
3288{
3289        return -EINVAL;
3290}
3291#endif /* CONFIG_MEMCG_KMEM */
3292
3293/*
3294 * The user of this function is...
3295 * RES_LIMIT.
3296 */
3297static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3298                                char *buf, size_t nbytes, loff_t off)
3299{
3300        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3301        unsigned long nr_pages;
3302        int ret;
3303
3304        buf = strstrip(buf);
3305        ret = page_counter_memparse(buf, "-1", &nr_pages);
3306        if (ret)
3307                return ret;
3308
3309        switch (MEMFILE_ATTR(of_cft(of)->private)) {
3310        case RES_LIMIT:
3311                if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3312                        ret = -EINVAL;
3313                        break;
3314                }
3315                switch (MEMFILE_TYPE(of_cft(of)->private)) {
3316                case _MEM:
3317                        ret = mem_cgroup_resize_limit(memcg, nr_pages);
3318                        break;
3319                case _MEMSWAP:
3320                        ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3321                        break;
3322                case _KMEM:
3323                        ret = memcg_update_kmem_limit(memcg, nr_pages);
3324                        break;
3325                }
3326                break;
3327        case RES_SOFT_LIMIT:
3328                memcg->soft_limit = nr_pages;
3329                ret = 0;
3330                break;
3331        }
3332        return ret ?: nbytes;
3333}
3334
3335static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3336                                size_t nbytes, loff_t off)
3337{
3338        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3339        struct page_counter *counter;
3340
3341        switch (MEMFILE_TYPE(of_cft(of)->private)) {
3342        case _MEM:
3343                counter = &memcg->memory;
3344                break;
3345        case _MEMSWAP:
3346                counter = &memcg->memsw;
3347                break;
3348        case _KMEM:
3349                counter = &memcg->kmem;
3350                break;
3351        default:
3352                BUG();
3353        }
3354
3355        switch (MEMFILE_ATTR(of_cft(of)->private)) {
3356        case RES_MAX_USAGE:
3357                page_counter_reset_watermark(counter);
3358                break;
3359        case RES_FAILCNT:
3360                counter->failcnt = 0;
3361                break;
3362        default:
3363                BUG();
3364        }
3365
3366        return nbytes;
3367}
3368
3369static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3370                                        struct cftype *cft)
3371{
3372        return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3373}
3374
3375#ifdef CONFIG_MMU
3376static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3377                                        struct cftype *cft, u64 val)
3378{
3379        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3380
3381        if (val & ~MOVE_MASK)
3382                return -EINVAL;
3383
3384        /*
3385         * No kind of locking is needed in here, because ->can_attach() will
3386         * check this value once in the beginning of the process, and then carry
3387         * on with stale data. This means that changes to this value will only
3388         * affect task migrations starting after the change.
3389         */
3390        memcg->move_charge_at_immigrate = val;
3391        return 0;
3392}
3393#else
3394static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3395                                        struct cftype *cft, u64 val)
3396{
3397        return -ENOSYS;
3398}
3399#endif
3400
3401#ifdef CONFIG_NUMA
3402static int memcg_numa_stat_show(struct seq_file *m, void *v)
3403{
3404        struct numa_stat {
3405                const char *name;
3406                unsigned int lru_mask;
3407        };
3408
3409        static const struct numa_stat stats[] = {
3410                { "total", LRU_ALL },
3411                { "file", LRU_ALL_FILE },
3412                { "anon", LRU_ALL_ANON },
3413                { "unevictable", BIT(LRU_UNEVICTABLE) },
3414        };
3415        const struct numa_stat *stat;
3416        int nid;
3417        unsigned long nr;
3418        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3419
3420        for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3421                nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3422                seq_printf(m, "%s=%lu", stat->name, nr);
3423                for_each_node_state(nid, N_MEMORY) {
3424                        nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3425                                                          stat->lru_mask);
3426                        seq_printf(m, " N%d=%lu", nid, nr);
3427                }
3428                seq_putc(m, '\n');
3429        }
3430
3431        for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3432                struct mem_cgroup *iter;
3433
3434                nr = 0;
3435                for_each_mem_cgroup_tree(iter, memcg)
3436                        nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3437                seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3438                for_each_node_state(nid, N_MEMORY) {
3439                        nr = 0;
3440                        for_each_mem_cgroup_tree(iter, memcg)
3441                                nr += mem_cgroup_node_nr_lru_pages(
3442                                        iter, nid, stat->lru_mask);
3443                        seq_printf(m, " N%d=%lu", nid, nr);
3444                }
3445                seq_putc(m, '\n');
3446        }
3447
3448        return 0;
3449}
3450#endif /* CONFIG_NUMA */
3451
3452static int memcg_stat_show(struct seq_file *m, void *v)
3453{
3454        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3455        unsigned long memory, memsw;
3456        struct mem_cgroup *mi;
3457        unsigned int i;
3458
3459        BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3460                     MEM_CGROUP_STAT_NSTATS);
3461        BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3462                     MEM_CGROUP_EVENTS_NSTATS);
3463        BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3464
3465        for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3466                if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3467                        continue;
3468                seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3469                           mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3470        }
3471
3472        for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3473                seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3474                           mem_cgroup_read_events(memcg, i));
3475
3476        for (i = 0; i < NR_LRU_LISTS; i++)
3477                seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3478                           mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3479
3480        /* Hierarchical information */
3481        memory = memsw = PAGE_COUNTER_MAX;
3482        for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3483                memory = min(memory, mi->memory.limit);
3484                memsw = min(memsw, mi->memsw.limit);
3485        }
3486        seq_printf(m, "hierarchical_memory_limit %llu\n",
3487                   (u64)memory * PAGE_SIZE);
3488        if (do_swap_account)
3489                seq_printf(m, "hierarchical_memsw_limit %llu\n",
3490                           (u64)memsw * PAGE_SIZE);
3491
3492        for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3493                long long val = 0;
3494
3495                if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3496                        continue;
3497                for_each_mem_cgroup_tree(mi, memcg)
3498                        val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3499                seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3500        }
3501
3502        for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3503                unsigned long long val = 0;
3504
3505                for_each_mem_cgroup_tree(mi, memcg)
3506                        val += mem_cgroup_read_events(mi, i);
3507                seq_printf(m, "total_%s %llu\n",
3508                           mem_cgroup_events_names[i], val);
3509        }
3510
3511        for (i = 0; i < NR_LRU_LISTS; i++) {
3512                unsigned long long val = 0;
3513
3514                for_each_mem_cgroup_tree(mi, memcg)
3515                        val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3516                seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3517        }
3518
3519#ifdef CONFIG_DEBUG_VM
3520        {
3521                int nid, zid;
3522                struct mem_cgroup_per_zone *mz;
3523                struct zone_reclaim_stat *rstat;
3524                unsigned long recent_rotated[2] = {0, 0};
3525                unsigned long recent_scanned[2] = {0, 0};
3526
3527                for_each_online_node(nid)
3528                        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3529                                mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3530                                rstat = &mz->lruvec.reclaim_stat;
3531
3532                                recent_rotated[0] += rstat->recent_rotated[0];
3533                                recent_rotated[1] += rstat->recent_rotated[1];
3534                                recent_scanned[0] += rstat->recent_scanned[0];
3535                                recent_scanned[1] += rstat->recent_scanned[1];
3536                        }
3537                seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3538                seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3539                seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3540                seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3541        }
3542#endif
3543
3544        return 0;
3545}
3546
3547static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3548                                      struct cftype *cft)
3549{
3550        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3551
3552        return mem_cgroup_swappiness(memcg);
3553}
3554
3555static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3556                                       struct cftype *cft, u64 val)
3557{
3558        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3559
3560        if (val > 100)
3561                return -EINVAL;
3562
3563        if (css->parent)
3564                memcg->swappiness = val;
3565        else
3566                vm_swappiness = val;
3567
3568        return 0;
3569}
3570
3571static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3572{
3573        struct mem_cgroup_threshold_ary *t;
3574        unsigned long usage;
3575        int i;
3576
3577        rcu_read_lock();
3578        if (!swap)
3579                t = rcu_dereference(memcg->thresholds.primary);
3580        else
3581                t = rcu_dereference(memcg->memsw_thresholds.primary);
3582
3583        if (!t)
3584                goto unlock;
3585
3586        usage = mem_cgroup_usage(memcg, swap);
3587
3588        /*
3589         * current_threshold points to threshold just below or equal to usage.
3590         * If it's not true, a threshold was crossed after last
3591         * call of __mem_cgroup_threshold().
3592         */
3593        i = t->current_threshold;
3594
3595        /*
3596         * Iterate backward over array of thresholds starting from
3597         * current_threshold and check if a threshold is crossed.
3598         * If none of thresholds below usage is crossed, we read
3599         * only one element of the array here.
3600         */
3601        for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3602                eventfd_signal(t->entries[i].eventfd, 1);
3603
3604        /* i = current_threshold + 1 */
3605        i++;
3606
3607        /*
3608         * Iterate forward over array of thresholds starting from
3609         * current_threshold+1 and check if a threshold is crossed.
3610         * If none of thresholds above usage is crossed, we read
3611         * only one element of the array here.
3612         */
3613        for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3614                eventfd_signal(t->entries[i].eventfd, 1);
3615
3616        /* Update current_threshold */
3617        t->current_threshold = i - 1;
3618unlock:
3619        rcu_read_unlock();
3620}
3621
3622static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3623{
3624        while (memcg) {
3625                __mem_cgroup_threshold(memcg, false);
3626                if (do_swap_account)
3627                        __mem_cgroup_threshold(memcg, true);
3628
3629                memcg = parent_mem_cgroup(memcg);
3630        }
3631}
3632
3633static int compare_thresholds(const void *a, const void *b)
3634{
3635        const struct mem_cgroup_threshold *_a = a;
3636        const struct mem_cgroup_threshold *_b = b;
3637
3638        if (_a->threshold > _b->threshold)
3639                return 1;
3640
3641        if (_a->threshold < _b->threshold)
3642                return -1;
3643
3644        return 0;
3645}
3646
3647static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3648{
3649        struct mem_cgroup_eventfd_list *ev;
3650
3651        spin_lock(&memcg_oom_lock);
3652
3653        list_for_each_entry(ev, &memcg->oom_notify, list)
3654                eventfd_signal(ev->eventfd, 1);
3655
3656        spin_unlock(&memcg_oom_lock);
3657        return 0;
3658}
3659
3660static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3661{
3662        struct mem_cgroup *iter;
3663
3664        for_each_mem_cgroup_tree(iter, memcg)
3665                mem_cgroup_oom_notify_cb(iter);
3666}
3667
3668static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3669        struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3670{
3671        struct mem_cgroup_thresholds *thresholds;
3672        struct mem_cgroup_threshold_ary *new;
3673        unsigned long threshold;
3674        unsigned long usage;
3675        int i, size, ret;
3676
3677        ret = page_counter_memparse(args, "-1", &threshold);
3678        if (ret)
3679                return ret;
3680
3681        mutex_lock(&memcg->thresholds_lock);
3682
3683        if (type == _MEM) {
3684                thresholds = &memcg->thresholds;
3685                usage = mem_cgroup_usage(memcg, false);
3686        } else if (type == _MEMSWAP) {
3687                thresholds = &memcg->memsw_thresholds;
3688                usage = mem_cgroup_usage(memcg, true);
3689        } else
3690                BUG();
3691
3692        /* Check if a threshold crossed before adding a new one */
3693        if (thresholds->primary)
3694                __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3695
3696        size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3697
3698        /* Allocate memory for new array of thresholds */
3699        new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3700                        GFP_KERNEL);
3701        if (!new) {
3702                ret = -ENOMEM;
3703                goto unlock;
3704        }
3705        new->size = size;
3706
3707        /* Copy thresholds (if any) to new array */
3708        if (thresholds->primary) {
3709                memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3710                                sizeof(struct mem_cgroup_threshold));
3711        }
3712
3713        /* Add new threshold */
3714        new->entries[size - 1].eventfd = eventfd;
3715        new->entries[size - 1].threshold = threshold;
3716
3717        /* Sort thresholds. Registering of new threshold isn't time-critical */
3718        sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3719                        compare_thresholds, NULL);
3720
3721        /* Find current threshold */
3722        new->current_threshold = -1;
3723        for (i = 0; i < size; i++) {
3724                if (new->entries[i].threshold <= usage) {
3725                        /*
3726                         * new->current_threshold will not be used until
3727                         * rcu_assign_pointer(), so it's safe to increment
3728                         * it here.
3729                         */
3730                        ++new->current_threshold;
3731                } else
3732                        break;
3733        }
3734
3735        /* Free old spare buffer and save old primary buffer as spare */
3736        kfree(thresholds->spare);
3737        thresholds->spare = thresholds->primary;
3738
3739        rcu_assign_pointer(thresholds->primary, new);
3740
3741        /* To be sure that nobody uses thresholds */
3742        synchronize_rcu();
3743
3744unlock:
3745        mutex_unlock(&memcg->thresholds_lock);
3746
3747        return ret;
3748}
3749
3750static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3751        struct eventfd_ctx *eventfd, const char *args)
3752{
3753        return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3754}
3755
3756static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3757        struct eventfd_ctx *eventfd, const char *args)
3758{
3759        return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3760}
3761
3762static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3763        struct eventfd_ctx *eventfd, enum res_type type)
3764{
3765        struct mem_cgroup_thresholds *thresholds;
3766        struct mem_cgroup_threshold_ary *new;
3767        unsigned long usage;
3768        int i, j, size;
3769
3770        mutex_lock(&memcg->thresholds_lock);
3771
3772        if (type == _MEM) {
3773                thresholds = &memcg->thresholds;
3774                usage = mem_cgroup_usage(memcg, false);
3775        } else if (type == _MEMSWAP) {
3776                thresholds = &memcg->memsw_thresholds;
3777                usage = mem_cgroup_usage(memcg, true);
3778        } else
3779                BUG();
3780
3781        if (!thresholds->primary)
3782                goto unlock;
3783
3784        /* Check if a threshold crossed before removing */
3785        __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3786
3787        /* Calculate new number of threshold */
3788        size = 0;
3789        for (i = 0; i < thresholds->primary->size; i++) {
3790                if (thresholds->primary->entries[i].eventfd != eventfd)
3791                        size++;
3792        }
3793
3794        new = thresholds->spare;
3795
3796        /* Set thresholds array to NULL if we don't have thresholds */
3797        if (!size) {
3798                kfree(new);
3799                new = NULL;
3800                goto swap_buffers;
3801        }
3802
3803        new->size = size;
3804
3805        /* Copy thresholds and find current threshold */
3806        new->current_threshold = -1;
3807        for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3808                if (thresholds->primary->entries[i].eventfd == eventfd)
3809                        continue;
3810
3811                new->entries[j] = thresholds->primary->entries[i];
3812                if (new->entries[j].threshold <= usage) {
3813                        /*
3814                         * new->current_threshold will not be used
3815                         * until rcu_assign_pointer(), so it's safe to increment
3816                         * it here.
3817                         */
3818                        ++new->current_threshold;
3819                }
3820                j++;
3821        }
3822
3823swap_buffers:
3824        /* Swap primary and spare array */
3825        thresholds->spare = thresholds->primary;
3826        /* If all events are unregistered, free the spare array */
3827        if (!new) {
3828                kfree(thresholds->spare);
3829                thresholds->spare = NULL;
3830        }
3831
3832        rcu_assign_pointer(thresholds->primary, new);
3833
3834        /* To be sure that nobody uses thresholds */
3835        synchronize_rcu();
3836unlock:
3837        mutex_unlock(&memcg->thresholds_lock);
3838}
3839
3840static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3841        struct eventfd_ctx *eventfd)
3842{
3843        return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3844}
3845
3846static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3847        struct eventfd_ctx *eventfd)
3848{
3849        return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3850}
3851
3852static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3853        struct eventfd_ctx *eventfd, const char *args)
3854{
3855        struct mem_cgroup_eventfd_list *event;
3856
3857        event = kmalloc(sizeof(*event), GFP_KERNEL);
3858        if (!event)
3859                return -ENOMEM;
3860
3861        spin_lock(&memcg_oom_lock);
3862
3863        event->eventfd = eventfd;
3864        list_add(&event->list, &memcg->oom_notify);
3865
3866        /* already in OOM ? */
3867        if (atomic_read(&memcg->under_oom))
3868                eventfd_signal(eventfd, 1);
3869        spin_unlock(&memcg_oom_lock);
3870
3871        return 0;
3872}
3873
3874static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3875        struct eventfd_ctx *eventfd)
3876{
3877        struct mem_cgroup_eventfd_list *ev, *tmp;
3878
3879        spin_lock(&memcg_oom_lock);
3880
3881        list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3882                if (ev->eventfd == eventfd) {
3883                        list_del(&ev->list);
3884                        kfree(ev);
3885                }
3886        }
3887
3888        spin_unlock(&memcg_oom_lock);
3889}
3890
3891static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3892{
3893        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3894
3895        seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3896        seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3897        return 0;
3898}
3899
3900static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3901        struct cftype *cft, u64 val)
3902{
3903        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3904
3905        /* cannot set to root cgroup and only 0 and 1 are allowed */
3906        if (!css->parent || !((val == 0) || (val == 1)))
3907                return -EINVAL;
3908
3909        memcg->oom_kill_disable = val;
3910        if (!val)
3911                memcg_oom_recover(memcg);
3912
3913        return 0;
3914}
3915
3916#ifdef CONFIG_MEMCG_KMEM
3917static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3918{
3919        int ret;
3920
3921        ret = memcg_propagate_kmem(memcg);
3922        if (ret)
3923                return ret;
3924
3925        return mem_cgroup_sockets_init(memcg, ss);
3926}
3927
3928static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3929{
3930        struct cgroup_subsys_state *css;
3931        struct mem_cgroup *parent, *child;
3932        int kmemcg_id;
3933
3934        if (!memcg->kmem_acct_active)
3935                return;
3936
3937        /*
3938         * Clear the 'active' flag before clearing memcg_caches arrays entries.
3939         * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3940         * guarantees no cache will be created for this cgroup after we are
3941         * done (see memcg_create_kmem_cache()).
3942         */
3943        memcg->kmem_acct_active = false;
3944
3945        memcg_deactivate_kmem_caches(memcg);
3946
3947        kmemcg_id = memcg->kmemcg_id;
3948        BUG_ON(kmemcg_id < 0);
3949
3950        parent = parent_mem_cgroup(memcg);
3951        if (!parent)
3952                parent = root_mem_cgroup;
3953
3954        /*
3955         * Change kmemcg_id of this cgroup and all its descendants to the
3956         * parent's id, and then move all entries from this cgroup's list_lrus
3957         * to ones of the parent. After we have finished, all list_lrus
3958         * corresponding to this cgroup are guaranteed to remain empty. The
3959         * ordering is imposed by list_lru_node->lock taken by
3960         * memcg_drain_all_list_lrus().
3961         */
3962        css_for_each_descendant_pre(css, &memcg->css) {
3963                child = mem_cgroup_from_css(css);
3964                BUG_ON(child->kmemcg_id != kmemcg_id);
3965                child->kmemcg_id = parent->kmemcg_id;
3966                if (!memcg->use_hierarchy)
3967                        break;
3968        }
3969        memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3970
3971        memcg_free_cache_id(kmemcg_id);
3972}
3973
3974static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3975{
3976        if (memcg->kmem_acct_activated) {
3977                memcg_destroy_kmem_caches(memcg);
3978                static_key_slow_dec(&memcg_kmem_enabled_key);
3979                WARN_ON(page_counter_read(&memcg->kmem));
3980        }
3981        mem_cgroup_sockets_destroy(memcg);
3982}
3983#else
3984static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3985{
3986        return 0;
3987}
3988
3989static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3990{
3991}
3992
3993static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3994{
3995}
3996#endif
3997
3998/*
3999 * DO NOT USE IN NEW FILES.
4000 *
4001 * "cgroup.event_control" implementation.
4002 *
4003 * This is way over-engineered.  It tries to support fully configurable
4004 * events for each user.  Such level of flexibility is completely
4005 * unnecessary especially in the light of the planned unified hierarchy.
4006 *
4007 * Please deprecate this and replace with something simpler if at all
4008 * possible.
4009 */
4010
4011/*
4012 * Unregister event and free resources.
4013 *
4014 * Gets called from workqueue.
4015 */
4016static void memcg_event_remove(struct work_struct *work)
4017{
4018        struct mem_cgroup_event *event =
4019                container_of(work, struct mem_cgroup_event, remove);
4020        struct mem_cgroup *memcg = event->memcg;
4021
4022        remove_wait_queue(event->wqh, &event->wait);
4023
4024        event->unregister_event(memcg, event->eventfd);
4025
4026        /* Notify userspace the event is going away. */
4027        eventfd_signal(event->eventfd, 1);
4028
4029        eventfd_ctx_put(event->eventfd);
4030        kfree(event);
4031        css_put(&memcg->css);
4032}
4033
4034/*
4035 * Gets called on POLLHUP on eventfd when user closes it.
4036 *
4037 * Called with wqh->lock held and interrupts disabled.
4038 */
4039static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4040                            int sync, void *key)
4041{
4042        struct mem_cgroup_event *event =
4043                container_of(wait, struct mem_cgroup_event, wait);
4044        struct mem_cgroup *memcg = event->memcg;
4045        unsigned long flags = (unsigned long)key;
4046
4047        if (flags & POLLHUP) {
4048                /*
4049                 * If the event has been detached at cgroup removal, we
4050                 * can simply return knowing the other side will cleanup
4051                 * for us.
4052                 *
4053                 * We can't race against event freeing since the other
4054                 * side will require wqh->lock via remove_wait_queue(),
4055                 * which we hold.
4056                 */
4057                spin_lock(&memcg->event_list_lock);
4058                if (!list_empty(&event->list)) {
4059                        list_del_init(&event->list);
4060                        /*
4061                         * We are in atomic context, but cgroup_event_remove()
4062                         * may sleep, so we have to call it in workqueue.
4063                         */
4064                        schedule_work(&event->remove);
4065                }
4066                spin_unlock(&memcg->event_list_lock);
4067        }
4068
4069        return 0;
4070}
4071
4072static void memcg_event_ptable_queue_proc(struct file *file,
4073                wait_queue_head_t *wqh, poll_table *pt)
4074{
4075        struct mem_cgroup_event *event =
4076                container_of(pt, struct mem_cgroup_event, pt);
4077
4078        event->wqh = wqh;
4079        add_wait_queue(wqh, &event->wait);
4080}
4081
4082/*
4083 * DO NOT USE IN NEW FILES.
4084 *
4085 * Parse input and register new cgroup event handler.
4086 *
4087 * Input must be in format '<event_fd> <control_fd> <args>'.
4088 * Interpretation of args is defined by control file implementation.
4089 */
4090static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4091                                         char *buf, size_t nbytes, loff_t off)
4092{
4093        struct cgroup_subsys_state *css = of_css(of);
4094        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4095        struct mem_cgroup_event *event;
4096        struct cgroup_subsys_state *cfile_css;
4097        unsigned int efd, cfd;
4098        struct fd efile;
4099        struct fd cfile;
4100        const char *name;
4101        char *endp;
4102        int ret;
4103
4104        buf = strstrip(buf);
4105
4106        efd = simple_strtoul(buf, &endp, 10);
4107        if (*endp != ' ')
4108                return -EINVAL;
4109        buf = endp + 1;
4110
4111        cfd = simple_strtoul(buf, &endp, 10);
4112        if ((*endp != ' ') && (*endp != '\0'))
4113                return -EINVAL;
4114        buf = endp + 1;
4115
4116        event = kzalloc(sizeof(*event), GFP_KERNEL);
4117        if (!event)
4118                return -ENOMEM;
4119
4120        event->memcg = memcg;
4121        INIT_LIST_HEAD(&event->list);
4122        init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4123        init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4124        INIT_WORK(&event->remove, memcg_event_remove);
4125
4126        efile = fdget(efd);
4127        if (!efile.file) {
4128                ret = -EBADF;
4129                goto out_kfree;
4130        }
4131
4132        event->eventfd = eventfd_ctx_fileget(efile.file);
4133        if (IS_ERR(event->eventfd)) {
4134                ret = PTR_ERR(event->eventfd);
4135                goto out_put_efile;
4136        }
4137
4138        cfile = fdget(cfd);
4139        if (!cfile.file) {
4140                ret = -EBADF;
4141                goto out_put_eventfd;
4142        }
4143
4144        /* the process need read permission on control file */
4145        /* AV: shouldn't we check that it's been opened for read instead? */
4146        ret = inode_permission(file_inode(cfile.file), MAY_READ);
4147        if (ret < 0)
4148                goto out_put_cfile;
4149
4150        /*
4151         * Determine the event callbacks and set them in @event.  This used
4152         * to be done via struct cftype but cgroup core no longer knows
4153         * about these events.  The following is crude but the whole thing
4154         * is for compatibility anyway.
4155         *
4156         * DO NOT ADD NEW FILES.
4157         */
4158        name = cfile.file->f_path.dentry->d_name.name;
4159
4160        if (!strcmp(name, "memory.usage_in_bytes")) {
4161                event->register_event = mem_cgroup_usage_register_event;
4162                event->unregister_event = mem_cgroup_usage_unregister_event;
4163        } else if (!strcmp(name, "memory.oom_control")) {
4164                event->register_event = mem_cgroup_oom_register_event;
4165                event->unregister_event = mem_cgroup_oom_unregister_event;
4166        } else if (!strcmp(name, "memory.pressure_level")) {
4167                event->register_event = vmpressure_register_event;
4168                event->unregister_event = vmpressure_unregister_event;
4169        } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4170                event->register_event = memsw_cgroup_usage_register_event;
4171                event->unregister_event = memsw_cgroup_usage_unregister_event;
4172        } else {
4173                ret = -EINVAL;
4174                goto out_put_cfile;
4175        }
4176
4177        /*
4178         * Verify @cfile should belong to @css.  Also, remaining events are
4179         * automatically removed on cgroup destruction but the removal is
4180         * asynchronous, so take an extra ref on @css.
4181         */
4182        cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4183                                               &memory_cgrp_subsys);
4184        ret = -EINVAL;
4185        if (IS_ERR(cfile_css))
4186                goto out_put_cfile;
4187        if (cfile_css != css) {
4188                css_put(cfile_css);
4189                goto out_put_cfile;
4190        }
4191
4192        ret = event->register_event(memcg, event->eventfd, buf);
4193        if (ret)
4194                goto out_put_css;
4195
4196        efile.file->f_op->poll(efile.file, &event->pt);
4197
4198        spin_lock(&memcg->event_list_lock);
4199        list_add(&event->list, &memcg->event_list);
4200        spin_unlock(&memcg->event_list_lock);
4201
4202        fdput(cfile);
4203        fdput(efile);
4204
4205        return nbytes;
4206
4207out_put_css:
4208        css_put(css);
4209out_put_cfile:
4210        fdput(cfile);
4211out_put_eventfd:
4212        eventfd_ctx_put(event->eventfd);
4213out_put_efile:
4214        fdput(efile);
4215out_kfree:
4216        kfree(event);
4217
4218        return ret;
4219}
4220
4221static struct cftype mem_cgroup_legacy_files[] = {
4222        {
4223                .name = "usage_in_bytes",
4224                .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4225                .read_u64 = mem_cgroup_read_u64,
4226        },
4227        {
4228                .name = "max_usage_in_bytes",
4229                .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4230                .write = mem_cgroup_reset,
4231                .read_u64 = mem_cgroup_read_u64,
4232        },
4233        {
4234                .name = "limit_in_bytes",
4235                .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4236                .write = mem_cgroup_write,
4237                .read_u64 = mem_cgroup_read_u64,
4238        },
4239        {
4240                .name = "soft_limit_in_bytes",
4241                .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4242                .write = mem_cgroup_write,
4243                .read_u64 = mem_cgroup_read_u64,
4244        },
4245        {
4246                .name = "failcnt",
4247                .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4248                .write = mem_cgroup_reset,
4249                .read_u64 = mem_cgroup_read_u64,
4250        },
4251        {
4252                .name = "stat",
4253                .seq_show = memcg_stat_show,
4254        },
4255        {
4256                .name = "force_empty",
4257                .write = mem_cgroup_force_empty_write,
4258        },
4259        {
4260                .name = "use_hierarchy",
4261                .write_u64 = mem_cgroup_hierarchy_write,
4262                .read_u64 = mem_cgroup_hierarchy_read,
4263        },
4264        {
4265                .name = "cgroup.event_control",         /* XXX: for compat */
4266                .write = memcg_write_event_control,
4267                .flags = CFTYPE_NO_PREFIX,
4268                .mode = S_IWUGO,
4269        },
4270        {
4271                .name = "swappiness",
4272                .read_u64 = mem_cgroup_swappiness_read,
4273                .write_u64 = mem_cgroup_swappiness_write,
4274        },
4275        {
4276                .name = "move_charge_at_immigrate",
4277                .read_u64 = mem_cgroup_move_charge_read,
4278                .write_u64 = mem_cgroup_move_charge_write,
4279        },
4280        {
4281                .name = "oom_control",
4282                .seq_show = mem_cgroup_oom_control_read,
4283                .write_u64 = mem_cgroup_oom_control_write,
4284                .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4285        },
4286        {
4287                .name = "pressure_level",
4288        },
4289#ifdef CONFIG_NUMA
4290        {
4291                .name = "numa_stat",
4292                .seq_show = memcg_numa_stat_show,
4293        },
4294#endif
4295#ifdef CONFIG_MEMCG_KMEM
4296        {
4297                .name = "kmem.limit_in_bytes",
4298                .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4299                .write = mem_cgroup_write,
4300                .read_u64 = mem_cgroup_read_u64,
4301        },
4302        {
4303                .name = "kmem.usage_in_bytes",
4304                .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4305                .read_u64 = mem_cgroup_read_u64,
4306        },
4307        {
4308                .name = "kmem.failcnt",
4309                .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4310                .write = mem_cgroup_reset,
4311                .read_u64 = mem_cgroup_read_u64,
4312        },
4313        {
4314                .name = "kmem.max_usage_in_bytes",
4315                .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4316                .write = mem_cgroup_reset,
4317                .read_u64 = mem_cgroup_read_u64,
4318        },
4319#ifdef CONFIG_SLABINFO
4320        {
4321                .name = "kmem.slabinfo",
4322                .seq_start = slab_start,
4323                .seq_next = slab_next,
4324                .seq_stop = slab_stop,
4325                .seq_show = memcg_slab_show,
4326        },
4327#endif
4328#endif
4329        { },    /* terminate */
4330};
4331
4332static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4333{
4334        struct mem_cgroup_per_node *pn;
4335        struct mem_cgroup_per_zone *mz;
4336        int zone, tmp = node;
4337        /*
4338         * This routine is called against possible nodes.
4339         * But it's BUG to call kmalloc() against offline node.
4340         *
4341         * TODO: this routine can waste much memory for nodes which will
4342         *       never be onlined. It's better to use memory hotplug callback
4343         *       function.
4344         */
4345        if (!node_state(node, N_NORMAL_MEMORY))
4346                tmp = -1;
4347        pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4348        if (!pn)
4349                return 1;
4350
4351        for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4352                mz = &pn->zoneinfo[zone];
4353                lruvec_init(&mz->lruvec);
4354                mz->usage_in_excess = 0;
4355                mz->on_tree = false;
4356                mz->memcg = memcg;
4357        }
4358        memcg->nodeinfo[node] = pn;
4359        return 0;
4360}
4361
4362static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4363{
4364        kfree(memcg->nodeinfo[node]);
4365}
4366
4367static struct mem_cgroup *mem_cgroup_alloc(void)
4368{
4369        struct mem_cgroup *memcg;
4370        size_t size;
4371
4372        size = sizeof(struct mem_cgroup);
4373        size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4374
4375        memcg = kzalloc(size, GFP_KERNEL);
4376        if (!memcg)
4377                return NULL;
4378
4379        memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4380        if (!memcg->stat)
4381                goto out_free;
4382        spin_lock_init(&memcg->pcp_counter_lock);
4383        return memcg;
4384
4385out_free:
4386        kfree(memcg);
4387        return NULL;
4388}
4389
4390/*
4391 * At destroying mem_cgroup, references from swap_cgroup can remain.
4392 * (scanning all at force_empty is too costly...)
4393 *
4394 * Instead of clearing all references at force_empty, we remember
4395 * the number of reference from swap_cgroup and free mem_cgroup when
4396 * it goes down to 0.
4397 *
4398 * Removal of cgroup itself succeeds regardless of refs from swap.
4399 */
4400
4401static void __mem_cgroup_free(struct mem_cgroup *memcg)
4402{
4403        int node;
4404
4405        mem_cgroup_remove_from_trees(memcg);
4406
4407        for_each_node(node)
4408                free_mem_cgroup_per_zone_info(memcg, node);
4409
4410        free_percpu(memcg->stat);
4411        kfree(memcg);
4412}
4413
4414/*
4415 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4416 */
4417struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4418{
4419        if (!memcg->memory.parent)
4420                return NULL;
4421        return mem_cgroup_from_counter(memcg->memory.parent, memory);
4422}
4423EXPORT_SYMBOL(parent_mem_cgroup);
4424
4425static struct cgroup_subsys_state * __ref
4426mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4427{
4428        struct mem_cgroup *memcg;
4429        long error = -ENOMEM;
4430        int node;
4431
4432        memcg = mem_cgroup_alloc();
4433        if (!memcg)
4434                return ERR_PTR(error);
4435
4436        for_each_node(node)
4437                if (alloc_mem_cgroup_per_zone_info(memcg, node))
4438                        goto free_out;
4439
4440        /* root ? */
4441        if (parent_css == NULL) {
4442                root_mem_cgroup = memcg;
4443                page_counter_init(&memcg->memory, NULL);
4444                memcg->high = PAGE_COUNTER_MAX;
4445                memcg->soft_limit = PAGE_COUNTER_MAX;
4446                page_counter_init(&memcg->memsw, NULL);
4447                page_counter_init(&memcg->kmem, NULL);
4448        }
4449
4450        memcg->last_scanned_node = MAX_NUMNODES;
4451        INIT_LIST_HEAD(&memcg->oom_notify);
4452        memcg->move_charge_at_immigrate = 0;
4453        mutex_init(&memcg->thresholds_lock);
4454        spin_lock_init(&memcg->move_lock);
4455        vmpressure_init(&memcg->vmpressure);
4456        INIT_LIST_HEAD(&memcg->event_list);
4457        spin_lock_init(&memcg->event_list_lock);
4458#ifdef CONFIG_MEMCG_KMEM
4459        memcg->kmemcg_id = -1;
4460#endif
4461
4462        return &memcg->css;
4463
4464free_out:
4465        __mem_cgroup_free(memcg);
4466        return ERR_PTR(error);
4467}
4468
4469static int
4470mem_cgroup_css_online(struct cgroup_subsys_state *css)
4471{
4472        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4473        struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4474        int ret;
4475
4476        if (css->id > MEM_CGROUP_ID_MAX)
4477                return -ENOSPC;
4478
4479        if (!parent)
4480                return 0;
4481
4482        mutex_lock(&memcg_create_mutex);
4483
4484        memcg->use_hierarchy = parent->use_hierarchy;
4485        memcg->oom_kill_disable = parent->oom_kill_disable;
4486        memcg->swappiness = mem_cgroup_swappiness(parent);
4487
4488        if (parent->use_hierarchy) {
4489                page_counter_init(&memcg->memory, &parent->memory);
4490                memcg->high = PAGE_COUNTER_MAX;
4491                memcg->soft_limit = PAGE_COUNTER_MAX;
4492                page_counter_init(&memcg->memsw, &parent->memsw);
4493                page_counter_init(&memcg->kmem, &parent->kmem);
4494
4495                /*
4496                 * No need to take a reference to the parent because cgroup
4497                 * core guarantees its existence.
4498                 */
4499        } else {
4500                page_counter_init(&memcg->memory, NULL);
4501                memcg->high = PAGE_COUNTER_MAX;
4502                memcg->soft_limit = PAGE_COUNTER_MAX;
4503                page_counter_init(&memcg->memsw, NULL);
4504                page_counter_init(&memcg->kmem, NULL);
4505                /*
4506                 * Deeper hierachy with use_hierarchy == false doesn't make
4507                 * much sense so let cgroup subsystem know about this
4508                 * unfortunate state in our controller.
4509                 */
4510                if (parent != root_mem_cgroup)
4511                        memory_cgrp_subsys.broken_hierarchy = true;
4512        }
4513        mutex_unlock(&memcg_create_mutex);
4514
4515        ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4516        if (ret)
4517                return ret;
4518
4519        /*
4520         * Make sure the memcg is initialized: mem_cgroup_iter()
4521         * orders reading memcg->initialized against its callers
4522         * reading the memcg members.
4523         */
4524        smp_store_release(&memcg->initialized, 1);
4525
4526        return 0;
4527}
4528
4529static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4530{
4531        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4532        struct mem_cgroup_event *event, *tmp;
4533
4534        /*
4535         * Unregister events and notify userspace.
4536         * Notify userspace about cgroup removing only after rmdir of cgroup
4537         * directory to avoid race between userspace and kernelspace.
4538         */
4539        spin_lock(&memcg->event_list_lock);
4540        list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4541                list_del_init(&event->list);
4542                schedule_work(&event->remove);
4543        }
4544        spin_unlock(&memcg->event_list_lock);
4545
4546        vmpressure_cleanup(&memcg->vmpressure);
4547
4548        memcg_deactivate_kmem(memcg);
4549}
4550
4551static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4552{
4553        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4554
4555        memcg_destroy_kmem(memcg);
4556        __mem_cgroup_free(memcg);
4557}
4558
4559/**
4560 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4561 * @css: the target css
4562 *
4563 * Reset the states of the mem_cgroup associated with @css.  This is
4564 * invoked when the userland requests disabling on the default hierarchy
4565 * but the memcg is pinned through dependency.  The memcg should stop
4566 * applying policies and should revert to the vanilla state as it may be
4567 * made visible again.
4568 *
4569 * The current implementation only resets the essential configurations.
4570 * This needs to be expanded to cover all the visible parts.
4571 */
4572static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4573{
4574        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4575
4576        mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4577        mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4578        memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4579        memcg->low = 0;
4580        memcg->high = PAGE_COUNTER_MAX;
4581        memcg->soft_limit = PAGE_COUNTER_MAX;
4582}
4583
4584#ifdef CONFIG_MMU
4585/* Handlers for move charge at task migration. */
4586static int mem_cgroup_do_precharge(unsigned long count)
4587{
4588        int ret;
4589
4590        /* Try a single bulk charge without reclaim first */
4591        ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4592        if (!ret) {
4593                mc.precharge += count;
4594                return ret;
4595        }
4596        if (ret == -EINTR) {
4597                cancel_charge(root_mem_cgroup, count);
4598                return ret;
4599        }
4600
4601        /* Try charges one by one with reclaim */
4602        while (count--) {
4603                ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4604                /*
4605                 * In case of failure, any residual charges against
4606                 * mc.to will be dropped by mem_cgroup_clear_mc()
4607                 * later on.  However, cancel any charges that are
4608                 * bypassed to root right away or they'll be lost.
4609                 */
4610                if (ret == -EINTR)
4611                        cancel_charge(root_mem_cgroup, 1);
4612                if (ret)
4613                        return ret;
4614                mc.precharge++;
4615                cond_resched();
4616        }
4617        return 0;
4618}
4619
4620/**
4621 * get_mctgt_type - get target type of moving charge
4622 * @vma: the vma the pte to be checked belongs
4623 * @addr: the address corresponding to the pte to be checked
4624 * @ptent: the pte to be checked
4625 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4626 *
4627 * Returns
4628 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4629 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4630 *     move charge. if @target is not NULL, the page is stored in target->page
4631 *     with extra refcnt got(Callers should handle it).
4632 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4633 *     target for charge migration. if @target is not NULL, the entry is stored
4634 *     in target->ent.
4635 *
4636 * Called with pte lock held.
4637 */
4638union mc_target {
4639        struct page     *page;
4640        swp_entry_t     ent;
4641};
4642
4643enum mc_target_type {
4644        MC_TARGET_NONE = 0,
4645        MC_TARGET_PAGE,
4646        MC_TARGET_SWAP,
4647};
4648
4649static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4650                                                unsigned long addr, pte_t ptent)
4651{
4652        struct page *page = vm_normal_page(vma, addr, ptent);
4653
4654        if (!page || !page_mapped(page))
4655                return NULL;
4656        if (PageAnon(page)) {
4657                if (!(mc.flags & MOVE_ANON))
4658                        return NULL;
4659        } else {
4660                if (!(mc.flags & MOVE_FILE))
4661                        return NULL;
4662        }
4663        if (!get_page_unless_zero(page))
4664                return NULL;
4665
4666        return page;
4667}
4668
4669#ifdef CONFIG_SWAP
4670static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4671                        unsigned long addr, pte_t ptent, swp_entry_t *entry)
4672{
4673        struct page *page = NULL;
4674        swp_entry_t ent = pte_to_swp_entry(ptent);
4675
4676        if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4677                return NULL;
4678        /*
4679         * Because lookup_swap_cache() updates some statistics counter,
4680         * we call find_get_page() with swapper_space directly.
4681         */
4682        page = find_get_page(swap_address_space(ent), ent.val);
4683        if (do_swap_account)
4684                entry->val = ent.val;
4685
4686        return page;
4687}
4688#else
4689static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4690                        unsigned long addr, pte_t ptent, swp_entry_t *entry)
4691{
4692        return NULL;
4693}
4694#endif
4695
4696static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4697                        unsigned long addr, pte_t ptent, swp_entry_t *entry)
4698{
4699        struct page *page = NULL;
4700        struct address_space *mapping;
4701        pgoff_t pgoff;
4702
4703        if (!vma->vm_file) /* anonymous vma */
4704                return NULL;
4705        if (!(mc.flags & MOVE_FILE))
4706                return NULL;
4707
4708        mapping = vma->vm_file->f_mapping;
4709        pgoff = linear_page_index(vma, addr);
4710
4711        /* page is moved even if it's not RSS of this task(page-faulted). */
4712#ifdef CONFIG_SWAP
4713        /* shmem/tmpfs may report page out on swap: account for that too. */
4714        if (shmem_mapping(mapping)) {
4715                page = find_get_entry(mapping, pgoff);
4716                if (radix_tree_exceptional_entry(page)) {
4717                        swp_entry_t swp = radix_to_swp_entry(page);
4718                        if (do_swap_account)
4719                                *entry = swp;
4720                        page = find_get_page(swap_address_space(swp), swp.val);
4721                }
4722        } else
4723                page = find_get_page(mapping, pgoff);
4724#else
4725        page = find_get_page(mapping, pgoff);
4726#endif
4727        return page;
4728}
4729
4730/**
4731 * mem_cgroup_move_account - move account of the page
4732 * @page: the page
4733 * @nr_pages: number of regular pages (>1 for huge pages)
4734 * @from: mem_cgroup which the page is moved from.
4735 * @to: mem_cgroup which the page is moved to. @from != @to.
4736 *
4737 * The caller must confirm following.
4738 * - page is not on LRU (isolate_page() is useful.)
4739 * - compound_lock is held when nr_pages > 1
4740 *
4741 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4742 * from old cgroup.
4743 */
4744static int mem_cgroup_move_account(struct page *page,
4745                                   unsigned int nr_pages,
4746                                   struct mem_cgroup *from,
4747                                   struct mem_cgroup *to)
4748{
4749        unsigned long flags;
4750        int ret;
4751
4752        VM_BUG_ON(from == to);
4753        VM_BUG_ON_PAGE(PageLRU(page), page);
4754        /*
4755         * The page is isolated from LRU. So, collapse function
4756         * will not handle this page. But page splitting can happen.
4757         * Do this check under compound_page_lock(). The caller should
4758         * hold it.
4759         */
4760        ret = -EBUSY;
4761        if (nr_pages > 1 && !PageTransHuge(page))
4762                goto out;
4763
4764        /*
4765         * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
4766         * of its source page while we change it: page migration takes
4767         * both pages off the LRU, but page cache replacement doesn't.
4768         */
4769        if (!trylock_page(page))
4770                goto out;
4771
4772        ret = -EINVAL;
4773        if (page->mem_cgroup != from)
4774                goto out_unlock;
4775
4776        spin_lock_irqsave(&from->move_lock, flags);
4777
4778        if (!PageAnon(page) && page_mapped(page)) {
4779                __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4780                               nr_pages);
4781                __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4782                               nr_pages);
4783        }
4784
4785        if (PageWriteback(page)) {
4786                __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4787                               nr_pages);
4788                __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4789                               nr_pages);
4790        }
4791
4792        /*
4793         * It is safe to change page->mem_cgroup here because the page
4794         * is referenced, charged, and isolated - we can't race with
4795         * uncharging, charging, migration, or LRU putback.
4796         */
4797
4798        /* caller should have done css_get */
4799        page->mem_cgroup = to;
4800        spin_unlock_irqrestore(&from->move_lock, flags);
4801
4802        ret = 0;
4803
4804        local_irq_disable();
4805        mem_cgroup_charge_statistics(to, page, nr_pages);
4806        memcg_check_events(to, page);
4807        mem_cgroup_charge_statistics(from, page, -nr_pages);
4808        memcg_check_events(from, page);
4809        local_irq_enable();
4810out_unlock:
4811        unlock_page(page);
4812out:
4813        return ret;
4814}
4815
4816static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4817                unsigned long addr, pte_t ptent, union mc_target *target)
4818{
4819        struct page *page = NULL;
4820        enum mc_target_type ret = MC_TARGET_NONE;
4821        swp_entry_t ent = { .val = 0 };
4822
4823        if (pte_present(ptent))
4824                page = mc_handle_present_pte(vma, addr, ptent);
4825        else if (is_swap_pte(ptent))
4826                page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4827        else if (pte_none(ptent))
4828                page = mc_handle_file_pte(vma, addr, ptent, &ent);
4829
4830        if (!page && !ent.val)
4831                return ret;
4832        if (page) {
4833                /*
4834                 * Do only loose check w/o serialization.
4835                 * mem_cgroup_move_account() checks the page is valid or
4836                 * not under LRU exclusion.
4837                 */
4838                if (page->mem_cgroup == mc.from) {
4839                        ret = MC_TARGET_PAGE;
4840                        if (target)
4841                                target->page = page;
4842                }
4843                if (!ret || !target)
4844                        put_page(page);
4845        }
4846        /* There is a swap entry and a page doesn't exist or isn't charged */
4847        if (ent.val && !ret &&
4848            mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4849                ret = MC_TARGET_SWAP;
4850                if (target)
4851                        target->ent = ent;
4852        }
4853        return ret;
4854}
4855
4856#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4857/*
4858 * We don't consider swapping or file mapped pages because THP does not
4859 * support them for now.
4860 * Caller should make sure that pmd_trans_huge(pmd) is true.
4861 */
4862static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4863                unsigned long addr, pmd_t pmd, union mc_target *target)
4864{
4865        struct page *page = NULL;
4866        enum mc_target_type ret = MC_TARGET_NONE;
4867
4868        page = pmd_page(pmd);
4869        VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4870        if (!(mc.flags & MOVE_ANON))
4871                return ret;
4872        if (page->mem_cgroup == mc.from) {
4873                ret = MC_TARGET_PAGE;
4874                if (target) {
4875                        get_page(page);
4876                        target->page = page;
4877                }
4878        }
4879        return ret;
4880}
4881#else
4882static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4883                unsigned long addr, pmd_t pmd, union mc_target *target)
4884{
4885        return MC_TARGET_NONE;
4886}
4887#endif
4888
4889static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4890                                        unsigned long addr, unsigned long end,
4891                                        struct mm_walk *walk)
4892{
4893        struct vm_area_struct *vma = walk->vma;
4894        pte_t *pte;
4895        spinlock_t *ptl;
4896
4897        if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4898                if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4899                        mc.precharge += HPAGE_PMD_NR;
4900                spin_unlock(ptl);
4901                return 0;
4902        }
4903
4904        if (pmd_trans_unstable(pmd))
4905                return 0;
4906        pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4907        for (; addr != end; pte++, addr += PAGE_SIZE)
4908                if (get_mctgt_type(vma, addr, *pte, NULL))
4909                        mc.precharge++; /* increment precharge temporarily */
4910        pte_unmap_unlock(pte - 1, ptl);
4911        cond_resched();
4912
4913        return 0;
4914}
4915
4916static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4917{
4918        unsigned long precharge;
4919
4920        struct mm_walk mem_cgroup_count_precharge_walk = {
4921                .pmd_entry = mem_cgroup_count_precharge_pte_range,
4922                .mm = mm,
4923        };
4924        down_read(&mm->mmap_sem);
4925        walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4926        up_read(&mm->mmap_sem);
4927
4928        precharge = mc.precharge;
4929        mc.precharge = 0;
4930
4931        return precharge;
4932}
4933
4934static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4935{
4936        unsigned long precharge = mem_cgroup_count_precharge(mm);
4937
4938        VM_BUG_ON(mc.moving_task);
4939        mc.moving_task = current;
4940        return mem_cgroup_do_precharge(precharge);
4941}
4942
4943/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4944static void __mem_cgroup_clear_mc(void)
4945{
4946        struct mem_cgroup *from = mc.from;
4947        struct mem_cgroup *to = mc.to;
4948
4949        /* we must uncharge all the leftover precharges from mc.to */
4950        if (mc.precharge) {
4951                cancel_charge(mc.to, mc.precharge);
4952                mc.precharge = 0;
4953        }
4954        /*
4955         * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4956         * we must uncharge here.
4957         */
4958        if (mc.moved_charge) {
4959                cancel_charge(mc.from, mc.moved_charge);
4960                mc.moved_charge = 0;
4961        }
4962        /* we must fixup refcnts and charges */
4963        if (mc.moved_swap) {
4964                /* uncharge swap account from the old cgroup */
4965                if (!mem_cgroup_is_root(mc.from))
4966                        page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4967
4968                /*
4969                 * we charged both to->memory and to->memsw, so we
4970                 * should uncharge to->memory.
4971                 */
4972                if (!mem_cgroup_is_root(mc.to))
4973                        page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4974
4975                css_put_many(&mc.from->css, mc.moved_swap);
4976
4977                /* we've already done css_get(mc.to) */
4978                mc.moved_swap = 0;
4979        }
4980        memcg_oom_recover(from);
4981        memcg_oom_recover(to);
4982        wake_up_all(&mc.waitq);
4983}
4984
4985static void mem_cgroup_clear_mc(void)
4986{
4987        /*
4988         * we must clear moving_task before waking up waiters at the end of
4989         * task migration.
4990         */
4991        mc.moving_task = NULL;
4992        __mem_cgroup_clear_mc();
4993        spin_lock(&mc.lock);
4994        mc.from = NULL;
4995        mc.to = NULL;
4996        spin_unlock(&mc.lock);
4997}
4998
4999static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5000                                 struct cgroup_taskset *tset)
5001{
5002        struct task_struct *p = cgroup_taskset_first(tset);
5003        int ret = 0;
5004        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5005        unsigned long move_flags;
5006
5007        /*
5008         * We are now commited to this value whatever it is. Changes in this
5009         * tunable will only affect upcoming migrations, not the current one.
5010         * So we need to save it, and keep it going.
5011         */
5012        move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5013        if (move_flags) {
5014                struct mm_struct *mm;
5015                struct mem_cgroup *from = mem_cgroup_from_task(p);
5016
5017                VM_BUG_ON(from == memcg);
5018
5019                mm = get_task_mm(p);
5020                if (!mm)
5021                        return 0;
5022                /* We move charges only when we move a owner of the mm */
5023                if (mm->owner == p) {
5024                        VM_BUG_ON(mc.from);
5025                        VM_BUG_ON(mc.to);
5026                        VM_BUG_ON(mc.precharge);
5027                        VM_BUG_ON(mc.moved_charge);
5028                        VM_BUG_ON(mc.moved_swap);
5029
5030                        spin_lock(&mc.lock);
5031                        mc.from = from;
5032                        mc.to = memcg;
5033                        mc.flags = move_flags;
5034                        spin_unlock(&mc.lock);
5035                        /* We set mc.moving_task later */
5036
5037                        ret = mem_cgroup_precharge_mc(mm);
5038                        if (ret)
5039                                mem_cgroup_clear_mc();
5040                }
5041                mmput(mm);
5042        }
5043        return ret;
5044}
5045
5046static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5047                                     struct cgroup_taskset *tset)
5048{
5049        if (mc.to)
5050                mem_cgroup_clear_mc();
5051}
5052
5053static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5054                                unsigned long addr, unsigned long end,
5055                                struct mm_walk *walk)
5056{
5057        int ret = 0;
5058        struct vm_area_struct *vma = walk->vma;
5059        pte_t *pte;
5060        spinlock_t *ptl;
5061        enum mc_target_type target_type;
5062        union mc_target target;
5063        struct page *page;
5064
5065        /*
5066         * We don't take compound_lock() here but no race with splitting thp
5067         * happens because:
5068         *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5069         *    under splitting, which means there's no concurrent thp split,
5070         *  - if another thread runs into split_huge_page() just after we
5071         *    entered this if-block, the thread must wait for page table lock
5072         *    to be unlocked in __split_huge_page_splitting(), where the main
5073         *    part of thp split is not executed yet.
5074         */
5075        if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5076                if (mc.precharge < HPAGE_PMD_NR) {
5077                        spin_unlock(ptl);
5078                        return 0;
5079                }
5080                target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5081                if (target_type == MC_TARGET_PAGE) {
5082                        page = target.page;
5083                        if (!isolate_lru_page(page)) {
5084                                if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5085                                                             mc.from, mc.to)) {
5086                                        mc.precharge -= HPAGE_PMD_NR;
5087                                        mc.moved_charge += HPAGE_PMD_NR;
5088                                }
5089                                putback_lru_page(page);
5090                        }
5091                        put_page(page);
5092                }
5093                spin_unlock(ptl);
5094                return 0;
5095        }
5096
5097        if (pmd_trans_unstable(pmd))
5098                return 0;
5099retry:
5100        pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5101        for (; addr != end; addr += PAGE_SIZE) {
5102                pte_t ptent = *(pte++);
5103                swp_entry_t ent;
5104
5105                if (!mc.precharge)
5106                        break;
5107
5108                switch (get_mctgt_type(vma, addr, ptent, &target)) {
5109                case MC_TARGET_PAGE:
5110                        page = target.page;
5111                        if (isolate_lru_page(page))
5112                                goto put;
5113                        if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5114                                mc.precharge--;
5115                                /* we uncharge from mc.from later. */
5116                                mc.moved_charge++;
5117                        }
5118                        putback_lru_page(page);
5119put:                    /* get_mctgt_type() gets the page */
5120                        put_page(page);
5121                        break;
5122                case MC_TARGET_SWAP:
5123                        ent = target.ent;
5124                        if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5125                                mc.precharge--;
5126                                /* we fixup refcnts and charges later. */
5127                                mc.moved_swap++;
5128                        }
5129                        break;
5130                default:
5131                        break;
5132                }
5133        }
5134        pte_unmap_unlock(pte - 1, ptl);
5135        cond_resched();
5136
5137        if (addr != end) {
5138                /*
5139                 * We have consumed all precharges we got in can_attach().
5140                 * We try charge one by one, but don't do any additional
5141                 * charges to mc.to if we have failed in charge once in attach()
5142                 * phase.
5143                 */
5144                ret = mem_cgroup_do_precharge(1);
5145                if (!ret)
5146                        goto retry;
5147        }
5148
5149        return ret;
5150}
5151
5152static void mem_cgroup_move_charge(struct mm_struct *mm)
5153{
5154        struct mm_walk mem_cgroup_move_charge_walk = {
5155                .pmd_entry = mem_cgroup_move_charge_pte_range,
5156                .mm = mm,
5157        };
5158
5159        lru_add_drain_all();
5160        /*
5161         * Signal mem_cgroup_begin_page_stat() to take the memcg's
5162         * move_lock while we're moving its pages to another memcg.
5163         * Then wait for already started RCU-only updates to finish.
5164         */
5165        atomic_inc(&mc.from->moving_account);
5166        synchronize_rcu();
5167retry:
5168        if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5169                /*
5170                 * Someone who are holding the mmap_sem might be waiting in
5171                 * waitq. So we cancel all extra charges, wake up all waiters,
5172                 * and retry. Because we cancel precharges, we might not be able
5173                 * to move enough charges, but moving charge is a best-effort
5174                 * feature anyway, so it wouldn't be a big problem.
5175                 */
5176                __mem_cgroup_clear_mc();
5177                cond_resched();
5178                goto retry;
5179        }
5180        /*
5181         * When we have consumed all precharges and failed in doing
5182         * additional charge, the page walk just aborts.
5183         */
5184        walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5185        up_read(&mm->mmap_sem);
5186        atomic_dec(&mc.from->moving_account);
5187}
5188
5189static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5190                                 struct cgroup_taskset *tset)
5191{
5192        struct task_struct *p = cgroup_taskset_first(tset);
5193        struct mm_struct *mm = get_task_mm(p);
5194
5195        if (mm) {
5196                if (mc.to)
5197                        mem_cgroup_move_charge(mm);
5198                mmput(mm);
5199        }
5200        if (mc.to)
5201                mem_cgroup_clear_mc();
5202}
5203#else   /* !CONFIG_MMU */
5204static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5205                                 struct cgroup_taskset *tset)
5206{
5207        return 0;
5208}
5209static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5210                                     struct cgroup_taskset *tset)
5211{
5212}
5213static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5214                                 struct cgroup_taskset *tset)
5215{
5216}
5217#endif
5218
5219/*
5220 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5221 * to verify whether we're attached to the default hierarchy on each mount
5222 * attempt.
5223 */
5224static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5225{
5226        /*
5227         * use_hierarchy is forced on the default hierarchy.  cgroup core
5228         * guarantees that @root doesn't have any children, so turning it
5229         * on for the root memcg is enough.
5230         */
5231        if (cgroup_on_dfl(root_css->cgroup))
5232                root_mem_cgroup->use_hierarchy = true;
5233        else
5234                root_mem_cgroup->use_hierarchy = false;
5235}
5236
5237static u64 memory_current_read(struct cgroup_subsys_state *css,
5238                               struct cftype *cft)
5239{
5240        return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5241}
5242
5243static int memory_low_show(struct seq_file *m, void *v)
5244{
5245        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5246        unsigned long low = READ_ONCE(memcg->low);
5247
5248        if (low == PAGE_COUNTER_MAX)
5249                seq_puts(m, "max\n");
5250        else
5251                seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5252
5253        return 0;
5254}
5255
5256static ssize_t memory_low_write(struct kernfs_open_file *of,
5257                                char *buf, size_t nbytes, loff_t off)
5258{
5259        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5260        unsigned long low;
5261        int err;
5262
5263        buf = strstrip(buf);
5264        err = page_counter_memparse(buf, "max", &low);
5265        if (err)
5266                return err;
5267
5268        memcg->low = low;
5269
5270        return nbytes;
5271}
5272
5273static int memory_high_show(struct seq_file *m, void *v)
5274{
5275        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5276        unsigned long high = READ_ONCE(memcg->high);
5277
5278        if (high == PAGE_COUNTER_MAX)
5279                seq_puts(m, "max\n");
5280        else
5281                seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5282
5283        return 0;
5284}
5285
5286static ssize_t memory_high_write(struct kernfs_open_file *of,
5287                                 char *buf, size_t nbytes, loff_t off)
5288{
5289        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5290        unsigned long high;
5291        int err;
5292
5293        buf = strstrip(buf);
5294        err = page_counter_memparse(buf, "max", &high);
5295        if (err)
5296                return err;
5297
5298        memcg->high = high;
5299
5300        return nbytes;
5301}
5302
5303static int memory_max_show(struct seq_file *m, void *v)
5304{
5305        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5306        unsigned long max = READ_ONCE(memcg->memory.limit);
5307
5308        if (max == PAGE_COUNTER_MAX)
5309                seq_puts(m, "max\n");
5310        else
5311                seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5312
5313        return 0;
5314}
5315
5316static ssize_t memory_max_write(struct kernfs_open_file *of,
5317                                char *buf, size_t nbytes, loff_t off)
5318{
5319        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5320        unsigned long max;
5321        int err;
5322
5323        buf = strstrip(buf);
5324        err = page_counter_memparse(buf, "max", &max);
5325        if (err)
5326                return err;
5327
5328        err = mem_cgroup_resize_limit(memcg, max);
5329        if (err)
5330                return err;
5331
5332        return nbytes;
5333}
5334
5335static int memory_events_show(struct seq_file *m, void *v)
5336{
5337        struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5338
5339        seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5340        seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5341        seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5342        seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5343
5344        return 0;
5345}
5346
5347static struct cftype memory_files[] = {
5348        {
5349                .name = "current",
5350                .read_u64 = memory_current_read,
5351        },
5352        {
5353                .name = "low",
5354                .flags = CFTYPE_NOT_ON_ROOT,
5355                .seq_show = memory_low_show,
5356                .write = memory_low_write,
5357        },
5358        {
5359                .name = "high",
5360                .flags = CFTYPE_NOT_ON_ROOT,
5361                .seq_show = memory_high_show,
5362                .write = memory_high_write,
5363        },
5364        {
5365                .name = "max",
5366                .flags = CFTYPE_NOT_ON_ROOT,
5367                .seq_show = memory_max_show,
5368                .write = memory_max_write,
5369        },
5370        {
5371                .name = "events",
5372                .flags = CFTYPE_NOT_ON_ROOT,
5373                .seq_show = memory_events_show,
5374        },
5375        { }     /* terminate */
5376};
5377
5378struct cgroup_subsys memory_cgrp_subsys = {
5379        .css_alloc = mem_cgroup_css_alloc,
5380        .css_online = mem_cgroup_css_online,
5381        .css_offline = mem_cgroup_css_offline,
5382        .css_free = mem_cgroup_css_free,
5383        .css_reset = mem_cgroup_css_reset,
5384        .can_attach = mem_cgroup_can_attach,
5385        .cancel_attach = mem_cgroup_cancel_attach,
5386        .attach = mem_cgroup_move_task,
5387        .bind = mem_cgroup_bind,
5388        .dfl_cftypes = memory_files,
5389        .legacy_cftypes = mem_cgroup_legacy_files,
5390        .early_init = 0,
5391};
5392
5393/**
5394 * mem_cgroup_events - count memory events against a cgroup
5395 * @memcg: the memory cgroup
5396 * @idx: the event index
5397 * @nr: the number of events to account for
5398 */
5399void mem_cgroup_events(struct mem_cgroup *memcg,
5400                       enum mem_cgroup_events_index idx,
5401                       unsigned int nr)
5402{
5403        this_cpu_add(memcg->stat->events[idx], nr);
5404}
5405
5406/**
5407 * mem_cgroup_low - check if memory consumption is below the normal range
5408 * @root: the highest ancestor to consider
5409 * @memcg: the memory cgroup to check
5410 *
5411 * Returns %true if memory consumption of @memcg, and that of all
5412 * configurable ancestors up to @root, is below the normal range.
5413 */
5414bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5415{
5416        if (mem_cgroup_disabled())
5417                return false;
5418
5419        /*
5420         * The toplevel group doesn't have a configurable range, so
5421         * it's never low when looked at directly, and it is not
5422         * considered an ancestor when assessing the hierarchy.
5423         */
5424
5425        if (memcg == root_mem_cgroup)
5426                return false;
5427
5428        if (page_counter_read(&memcg->memory) >= memcg->low)
5429                return false;
5430
5431        while (memcg != root) {
5432                memcg = parent_mem_cgroup(memcg);
5433
5434                if (memcg == root_mem_cgroup)
5435                        break;
5436
5437                if (page_counter_read(&memcg->memory) >= memcg->low)
5438                        return false;
5439        }
5440        return true;
5441}
5442
5443/**
5444 * mem_cgroup_try_charge - try charging a page
5445 * @page: page to charge
5446 * @mm: mm context of the victim
5447 * @gfp_mask: reclaim mode
5448 * @memcgp: charged memcg return
5449 *
5450 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5451 * pages according to @gfp_mask if necessary.
5452 *
5453 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5454 * Otherwise, an error code is returned.
5455 *
5456 * After page->mapping has been set up, the caller must finalize the
5457 * charge with mem_cgroup_commit_charge().  Or abort the transaction
5458 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5459 */
5460int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5461                          gfp_t gfp_mask, struct mem_cgroup **memcgp)
5462{
5463        struct mem_cgroup *memcg = NULL;
5464        unsigned int nr_pages = 1;
5465        int ret = 0;
5466
5467        if (mem_cgroup_disabled())
5468                goto out;
5469
5470        if (PageSwapCache(page)) {
5471                /*
5472                 * Every swap fault against a single page tries to charge the
5473                 * page, bail as early as possible.  shmem_unuse() encounters
5474                 * already charged pages, too.  The USED bit is protected by
5475                 * the page lock, which serializes swap cache removal, which
5476                 * in turn serializes uncharging.
5477                 */
5478                if (page->mem_cgroup)
5479                        goto out;
5480        }
5481
5482        if (PageTransHuge(page)) {
5483                nr_pages <<= compound_order(page);
5484                VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5485        }
5486
5487        if (do_swap_account && PageSwapCache(page))
5488                memcg = try_get_mem_cgroup_from_page(page);
5489        if (!memcg)
5490                memcg = get_mem_cgroup_from_mm(mm);
5491
5492        ret = try_charge(memcg, gfp_mask, nr_pages);
5493
5494        css_put(&memcg->css);
5495
5496        if (ret == -EINTR) {
5497                memcg = root_mem_cgroup;
5498                ret = 0;
5499        }
5500out:
5501        *memcgp = memcg;
5502        return ret;
5503}
5504
5505/**
5506 * mem_cgroup_commit_charge - commit a page charge
5507 * @page: page to charge
5508 * @memcg: memcg to charge the page to
5509 * @lrucare: page might be on LRU already
5510 *
5511 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5512 * after page->mapping has been set up.  This must happen atomically
5513 * as part of the page instantiation, i.e. under the page table lock
5514 * for anonymous pages, under the page lock for page and swap cache.
5515 *
5516 * In addition, the page must not be on the LRU during the commit, to
5517 * prevent racing with task migration.  If it might be, use @lrucare.
5518 *
5519 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5520 */
5521void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5522                              bool lrucare)
5523{
5524        unsigned int nr_pages = 1;
5525
5526        VM_BUG_ON_PAGE(!page->mapping, page);
5527        VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5528
5529        if (mem_cgroup_disabled())
5530                return;
5531        /*
5532         * Swap faults will attempt to charge the same page multiple
5533         * times.  But reuse_swap_page() might have removed the page
5534         * from swapcache already, so we can't check PageSwapCache().
5535         */
5536        if (!memcg)
5537                return;
5538
5539        commit_charge(page, memcg, lrucare);
5540
5541        if (PageTransHuge(page)) {
5542                nr_pages <<= compound_order(page);
5543                VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5544        }
5545
5546        local_irq_disable();
5547        mem_cgroup_charge_statistics(memcg, page, nr_pages);
5548        memcg_check_events(memcg, page);
5549        local_irq_enable();
5550
5551        if (do_swap_account && PageSwapCache(page)) {
5552                swp_entry_t entry = { .val = page_private(page) };
5553                /*
5554                 * The swap entry might not get freed for a long time,
5555                 * let's not wait for it.  The page already received a
5556                 * memory+swap charge, drop the swap entry duplicate.
5557                 */
5558                mem_cgroup_uncharge_swap(entry);
5559        }
5560}
5561
5562/**
5563 * mem_cgroup_cancel_charge - cancel a page charge
5564 * @page: page to charge
5565 * @memcg: memcg to charge the page to
5566 *
5567 * Cancel a charge transaction started by mem_cgroup_try_charge().
5568 */
5569void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5570{
5571        unsigned int nr_pages = 1;
5572
5573        if (mem_cgroup_disabled())
5574                return;
5575        /*
5576         * Swap faults will attempt to charge the same page multiple
5577         * times.  But reuse_swap_page() might have removed the page
5578         * from swapcache already, so we can't check PageSwapCache().
5579         */
5580        if (!memcg)
5581                return;
5582
5583        if (PageTransHuge(page)) {
5584                nr_pages <<= compound_order(page);
5585                VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5586        }
5587
5588        cancel_charge(memcg, nr_pages);
5589}
5590
5591static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5592                           unsigned long nr_anon, unsigned long nr_file,
5593                           unsigned long nr_huge, struct page *dummy_page)
5594{
5595        unsigned long nr_pages = nr_anon + nr_file;
5596        unsigned long flags;
5597
5598        if (!mem_cgroup_is_root(memcg)) {
5599                page_counter_uncharge(&memcg->memory, nr_pages);
5600                if (do_swap_account)
5601                        page_counter_uncharge(&memcg->memsw, nr_pages);
5602                memcg_oom_recover(memcg);
5603        }
5604
5605        local_irq_save(flags);
5606        __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5607        __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5608        __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5609        __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5610        __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5611        memcg_check_events(memcg, dummy_page);
5612        local_irq_restore(flags);
5613
5614        if (!mem_cgroup_is_root(memcg))
5615                css_put_many(&memcg->css, nr_pages);
5616}
5617
5618static void uncharge_list(struct list_head *page_list)
5619{
5620        struct mem_cgroup *memcg = NULL;
5621        unsigned long nr_anon = 0;
5622        unsigned long nr_file = 0;
5623        unsigned long nr_huge = 0;
5624        unsigned long pgpgout = 0;
5625        struct list_head *next;
5626        struct page *page;
5627
5628        next = page_list->next;
5629        do {
5630                unsigned int nr_pages = 1;
5631
5632                page = list_entry(next, struct page, lru);
5633                next = page->lru.next;
5634
5635                VM_BUG_ON_PAGE(PageLRU(page), page);
5636                VM_BUG_ON_PAGE(page_count(page), page);
5637
5638                if (!page->mem_cgroup)
5639                        continue;
5640
5641                /*
5642                 * Nobody should be changing or seriously looking at
5643                 * page->mem_cgroup at this point, we have fully
5644                 * exclusive access to the page.
5645                 */
5646
5647                if (memcg != page->mem_cgroup) {
5648                        if (memcg) {
5649                                uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5650                                               nr_huge, page);
5651                                pgpgout = nr_anon = nr_file = nr_huge = 0;
5652                        }
5653                        memcg = page->mem_cgroup;
5654                }
5655
5656                if (PageTransHuge(page)) {
5657                        nr_pages <<= compound_order(page);
5658                        VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5659                        nr_huge += nr_pages;
5660                }
5661
5662                if (PageAnon(page))
5663                        nr_anon += nr_pages;
5664                else
5665                        nr_file += nr_pages;
5666
5667                page->mem_cgroup = NULL;
5668
5669                pgpgout++;
5670        } while (next != page_list);
5671
5672        if (memcg)
5673                uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5674                               nr_huge, page);
5675}
5676
5677/**
5678 * mem_cgroup_uncharge - uncharge a page
5679 * @page: page to uncharge
5680 *
5681 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5682 * mem_cgroup_commit_charge().
5683 */
5684void mem_cgroup_uncharge(struct page *page)
5685{
5686        if (mem_cgroup_disabled())
5687                return;
5688
5689        /* Don't touch page->lru of any random page, pre-check: */
5690        if (!page->mem_cgroup)
5691                return;
5692
5693        INIT_LIST_HEAD(&page->lru);
5694        uncharge_list(&page->lru);
5695}
5696
5697/**
5698 * mem_cgroup_uncharge_list - uncharge a list of page
5699 * @page_list: list of pages to uncharge
5700 *
5701 * Uncharge a list of pages previously charged with
5702 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5703 */
5704void mem_cgroup_uncharge_list(struct list_head *page_list)
5705{
5706        if (mem_cgroup_disabled())
5707                return;
5708
5709        if (!list_empty(page_list))
5710                uncharge_list(page_list);
5711}
5712
5713/**
5714 * mem_cgroup_migrate - migrate a charge to another page
5715 * @oldpage: currently charged page
5716 * @newpage: page to transfer the charge to
5717 * @lrucare: either or both pages might be on the LRU already
5718 *
5719 * Migrate the charge from @oldpage to @newpage.
5720 *
5721 * Both pages must be locked, @newpage->mapping must be set up.
5722 */
5723void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5724                        bool lrucare)
5725{
5726        struct mem_cgroup *memcg;
5727        int isolated;
5728
5729        VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5730        VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5731        VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5732        VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5733        VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5734        VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5735                       newpage);
5736
5737        if (mem_cgroup_disabled())
5738                return;
5739
5740        /* Page cache replacement: new page already charged? */
5741        if (newpage->mem_cgroup)
5742                return;
5743
5744        /*
5745         * Swapcache readahead pages can get migrated before being
5746         * charged, and migration from compaction can happen to an
5747         * uncharged page when the PFN walker finds a page that
5748         * reclaim just put back on the LRU but has not released yet.
5749         */
5750        memcg = oldpage->mem_cgroup;
5751        if (!memcg)
5752                return;
5753
5754        if (lrucare)
5755                lock_page_lru(oldpage, &isolated);
5756
5757        oldpage->mem_cgroup = NULL;
5758
5759        if (lrucare)
5760                unlock_page_lru(oldpage, isolated);
5761
5762        commit_charge(newpage, memcg, lrucare);
5763}
5764
5765/*
5766 * subsys_initcall() for memory controller.
5767 *
5768 * Some parts like hotcpu_notifier() have to be initialized from this context
5769 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5770 * everything that doesn't depend on a specific mem_cgroup structure should
5771 * be initialized from here.
5772 */
5773static int __init mem_cgroup_init(void)
5774{
5775        int cpu, node;
5776
5777        hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5778
5779        for_each_possible_cpu(cpu)
5780                INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5781                          drain_local_stock);
5782
5783        for_each_node(node) {
5784                struct mem_cgroup_tree_per_node *rtpn;
5785                int zone;
5786
5787                rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5788                                    node_online(node) ? node : NUMA_NO_NODE);
5789
5790                for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5791                        struct mem_cgroup_tree_per_zone *rtpz;
5792
5793                        rtpz = &rtpn->rb_tree_per_zone[zone];
5794                        rtpz->rb_root = RB_ROOT;
5795                        spin_lock_init(&rtpz->lock);
5796                }
5797                soft_limit_tree.rb_tree_per_node[node] = rtpn;
5798        }
5799
5800        return 0;
5801}
5802subsys_initcall(mem_cgroup_init);
5803
5804#ifdef CONFIG_MEMCG_SWAP
5805/**
5806 * mem_cgroup_swapout - transfer a memsw charge to swap
5807 * @page: page whose memsw charge to transfer
5808 * @entry: swap entry to move the charge to
5809 *
5810 * Transfer the memsw charge of @page to @entry.
5811 */
5812void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5813{
5814        struct mem_cgroup *memcg;
5815        unsigned short oldid;
5816
5817        VM_BUG_ON_PAGE(PageLRU(page), page);
5818        VM_BUG_ON_PAGE(page_count(page), page);
5819
5820        if (!do_swap_account)
5821                return;
5822
5823        memcg = page->mem_cgroup;
5824
5825        /* Readahead page, never charged */
5826        if (!memcg)
5827                return;
5828
5829        oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5830        VM_BUG_ON_PAGE(oldid, page);
5831        mem_cgroup_swap_statistics(memcg, true);
5832
5833        page->mem_cgroup = NULL;
5834
5835        if (!mem_cgroup_is_root(memcg))
5836                page_counter_uncharge(&memcg->memory, 1);
5837
5838        /* Caller disabled preemption with mapping->tree_lock */
5839        mem_cgroup_charge_statistics(memcg, page, -1);
5840        memcg_check_events(memcg, page);
5841}
5842
5843/**
5844 * mem_cgroup_uncharge_swap - uncharge a swap entry
5845 * @entry: swap entry to uncharge
5846 *
5847 * Drop the memsw charge associated with @entry.
5848 */
5849void mem_cgroup_uncharge_swap(swp_entry_t entry)
5850{
5851        struct mem_cgroup *memcg;
5852        unsigned short id;
5853
5854        if (!do_swap_account)
5855                return;
5856
5857        id = swap_cgroup_record(entry, 0);
5858        rcu_read_lock();
5859        memcg = mem_cgroup_from_id(id);
5860        if (memcg) {
5861                if (!mem_cgroup_is_root(memcg))
5862                        page_counter_uncharge(&memcg->memsw, 1);
5863                mem_cgroup_swap_statistics(memcg, false);
5864                css_put(&memcg->css);
5865        }
5866        rcu_read_unlock();
5867}
5868
5869/* for remember boot option*/
5870#ifdef CONFIG_MEMCG_SWAP_ENABLED
5871static int really_do_swap_account __initdata = 1;
5872#else
5873static int really_do_swap_account __initdata;
5874#endif
5875
5876static int __init enable_swap_account(char *s)
5877{
5878        if (!strcmp(s, "1"))
5879                really_do_swap_account = 1;
5880        else if (!strcmp(s, "0"))
5881                really_do_swap_account = 0;
5882        return 1;
5883}
5884__setup("swapaccount=", enable_swap_account);
5885
5886static struct cftype memsw_cgroup_files[] = {
5887        {
5888                .name = "memsw.usage_in_bytes",
5889                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5890                .read_u64 = mem_cgroup_read_u64,
5891        },
5892        {
5893                .name = "memsw.max_usage_in_bytes",
5894                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5895                .write = mem_cgroup_reset,
5896                .read_u64 = mem_cgroup_read_u64,
5897        },
5898        {
5899                .name = "memsw.limit_in_bytes",
5900                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5901                .write = mem_cgroup_write,
5902                .read_u64 = mem_cgroup_read_u64,
5903        },
5904        {
5905                .name = "memsw.failcnt",
5906                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5907                .write = mem_cgroup_reset,
5908                .read_u64 = mem_cgroup_read_u64,
5909        },
5910        { },    /* terminate */
5911};
5912
5913static int __init mem_cgroup_swap_init(void)
5914{
5915        if (!mem_cgroup_disabled() && really_do_swap_account) {
5916                do_swap_account = 1;
5917                WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5918                                                  memsw_cgroup_files));
5919        }
5920        return 0;
5921}
5922subsys_initcall(mem_cgroup_swap_init);
5923
5924#endif /* CONFIG_MEMCG_SWAP */
5925