linux/mm/page-writeback.c
<<
>>
Prefs
   1/*
   2 * mm/page-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
   6 *
   7 * Contains functions related to writing back dirty pages at the
   8 * address_space level.
   9 *
  10 * 10Apr2002    Andrew Morton
  11 *              Initial version
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/export.h>
  16#include <linux/spinlock.h>
  17#include <linux/fs.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/slab.h>
  21#include <linux/pagemap.h>
  22#include <linux/writeback.h>
  23#include <linux/init.h>
  24#include <linux/backing-dev.h>
  25#include <linux/task_io_accounting_ops.h>
  26#include <linux/blkdev.h>
  27#include <linux/mpage.h>
  28#include <linux/rmap.h>
  29#include <linux/percpu.h>
  30#include <linux/notifier.h>
  31#include <linux/smp.h>
  32#include <linux/sysctl.h>
  33#include <linux/cpu.h>
  34#include <linux/syscalls.h>
  35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  36#include <linux/pagevec.h>
  37#include <linux/timer.h>
  38#include <linux/sched/rt.h>
  39#include <linux/mm_inline.h>
  40#include <trace/events/writeback.h>
  41
  42#include "internal.h"
  43
  44/*
  45 * Sleep at most 200ms at a time in balance_dirty_pages().
  46 */
  47#define MAX_PAUSE               max(HZ/5, 1)
  48
  49/*
  50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
  51 * by raising pause time to max_pause when falls below it.
  52 */
  53#define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
  54
  55/*
  56 * Estimate write bandwidth at 200ms intervals.
  57 */
  58#define BANDWIDTH_INTERVAL      max(HZ/5, 1)
  59
  60#define RATELIMIT_CALC_SHIFT    10
  61
  62/*
  63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  64 * will look to see if it needs to force writeback or throttling.
  65 */
  66static long ratelimit_pages = 32;
  67
  68/* The following parameters are exported via /proc/sys/vm */
  69
  70/*
  71 * Start background writeback (via writeback threads) at this percentage
  72 */
  73int dirty_background_ratio = 10;
  74
  75/*
  76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  77 * dirty_background_ratio * the amount of dirtyable memory
  78 */
  79unsigned long dirty_background_bytes;
  80
  81/*
  82 * free highmem will not be subtracted from the total free memory
  83 * for calculating free ratios if vm_highmem_is_dirtyable is true
  84 */
  85int vm_highmem_is_dirtyable;
  86
  87/*
  88 * The generator of dirty data starts writeback at this percentage
  89 */
  90int vm_dirty_ratio = 20;
  91
  92/*
  93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  94 * vm_dirty_ratio * the amount of dirtyable memory
  95 */
  96unsigned long vm_dirty_bytes;
  97
  98/*
  99 * The interval between `kupdate'-style writebacks
 100 */
 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
 102
 103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
 104
 105/*
 106 * The longest time for which data is allowed to remain dirty
 107 */
 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
 109
 110/*
 111 * Flag that makes the machine dump writes/reads and block dirtyings.
 112 */
 113int block_dump;
 114
 115/*
 116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 117 * a full sync is triggered after this time elapses without any disk activity.
 118 */
 119int laptop_mode;
 120
 121EXPORT_SYMBOL(laptop_mode);
 122
 123/* End of sysctl-exported parameters */
 124
 125unsigned long global_dirty_limit;
 126
 127/*
 128 * Scale the writeback cache size proportional to the relative writeout speeds.
 129 *
 130 * We do this by keeping a floating proportion between BDIs, based on page
 131 * writeback completions [end_page_writeback()]. Those devices that write out
 132 * pages fastest will get the larger share, while the slower will get a smaller
 133 * share.
 134 *
 135 * We use page writeout completions because we are interested in getting rid of
 136 * dirty pages. Having them written out is the primary goal.
 137 *
 138 * We introduce a concept of time, a period over which we measure these events,
 139 * because demand can/will vary over time. The length of this period itself is
 140 * measured in page writeback completions.
 141 *
 142 */
 143static struct fprop_global writeout_completions;
 144
 145static void writeout_period(unsigned long t);
 146/* Timer for aging of writeout_completions */
 147static struct timer_list writeout_period_timer =
 148                TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
 149static unsigned long writeout_period_time = 0;
 150
 151/*
 152 * Length of period for aging writeout fractions of bdis. This is an
 153 * arbitrarily chosen number. The longer the period, the slower fractions will
 154 * reflect changes in current writeout rate.
 155 */
 156#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
 157
 158/*
 159 * In a memory zone, there is a certain amount of pages we consider
 160 * available for the page cache, which is essentially the number of
 161 * free and reclaimable pages, minus some zone reserves to protect
 162 * lowmem and the ability to uphold the zone's watermarks without
 163 * requiring writeback.
 164 *
 165 * This number of dirtyable pages is the base value of which the
 166 * user-configurable dirty ratio is the effictive number of pages that
 167 * are allowed to be actually dirtied.  Per individual zone, or
 168 * globally by using the sum of dirtyable pages over all zones.
 169 *
 170 * Because the user is allowed to specify the dirty limit globally as
 171 * absolute number of bytes, calculating the per-zone dirty limit can
 172 * require translating the configured limit into a percentage of
 173 * global dirtyable memory first.
 174 */
 175
 176/**
 177 * zone_dirtyable_memory - number of dirtyable pages in a zone
 178 * @zone: the zone
 179 *
 180 * Returns the zone's number of pages potentially available for dirty
 181 * page cache.  This is the base value for the per-zone dirty limits.
 182 */
 183static unsigned long zone_dirtyable_memory(struct zone *zone)
 184{
 185        unsigned long nr_pages;
 186
 187        nr_pages = zone_page_state(zone, NR_FREE_PAGES);
 188        nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
 189
 190        nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
 191        nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
 192
 193        return nr_pages;
 194}
 195
 196static unsigned long highmem_dirtyable_memory(unsigned long total)
 197{
 198#ifdef CONFIG_HIGHMEM
 199        int node;
 200        unsigned long x = 0;
 201
 202        for_each_node_state(node, N_HIGH_MEMORY) {
 203                struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
 204
 205                x += zone_dirtyable_memory(z);
 206        }
 207        /*
 208         * Unreclaimable memory (kernel memory or anonymous memory
 209         * without swap) can bring down the dirtyable pages below
 210         * the zone's dirty balance reserve and the above calculation
 211         * will underflow.  However we still want to add in nodes
 212         * which are below threshold (negative values) to get a more
 213         * accurate calculation but make sure that the total never
 214         * underflows.
 215         */
 216        if ((long)x < 0)
 217                x = 0;
 218
 219        /*
 220         * Make sure that the number of highmem pages is never larger
 221         * than the number of the total dirtyable memory. This can only
 222         * occur in very strange VM situations but we want to make sure
 223         * that this does not occur.
 224         */
 225        return min(x, total);
 226#else
 227        return 0;
 228#endif
 229}
 230
 231/**
 232 * global_dirtyable_memory - number of globally dirtyable pages
 233 *
 234 * Returns the global number of pages potentially available for dirty
 235 * page cache.  This is the base value for the global dirty limits.
 236 */
 237static unsigned long global_dirtyable_memory(void)
 238{
 239        unsigned long x;
 240
 241        x = global_page_state(NR_FREE_PAGES);
 242        x -= min(x, dirty_balance_reserve);
 243
 244        x += global_page_state(NR_INACTIVE_FILE);
 245        x += global_page_state(NR_ACTIVE_FILE);
 246
 247        if (!vm_highmem_is_dirtyable)
 248                x -= highmem_dirtyable_memory(x);
 249
 250        return x + 1;   /* Ensure that we never return 0 */
 251}
 252
 253/*
 254 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 255 *
 256 * Calculate the dirty thresholds based on sysctl parameters
 257 * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
 258 * - vm.dirty_ratio             or  vm.dirty_bytes
 259 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
 260 * real-time tasks.
 261 */
 262void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
 263{
 264        const unsigned long available_memory = global_dirtyable_memory();
 265        unsigned long background;
 266        unsigned long dirty;
 267        struct task_struct *tsk;
 268
 269        if (vm_dirty_bytes)
 270                dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
 271        else
 272                dirty = (vm_dirty_ratio * available_memory) / 100;
 273
 274        if (dirty_background_bytes)
 275                background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
 276        else
 277                background = (dirty_background_ratio * available_memory) / 100;
 278
 279        if (background >= dirty)
 280                background = dirty / 2;
 281        tsk = current;
 282        if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
 283                background += background / 4;
 284                dirty += dirty / 4;
 285        }
 286        *pbackground = background;
 287        *pdirty = dirty;
 288        trace_global_dirty_state(background, dirty);
 289}
 290
 291/**
 292 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
 293 * @zone: the zone
 294 *
 295 * Returns the maximum number of dirty pages allowed in a zone, based
 296 * on the zone's dirtyable memory.
 297 */
 298static unsigned long zone_dirty_limit(struct zone *zone)
 299{
 300        unsigned long zone_memory = zone_dirtyable_memory(zone);
 301        struct task_struct *tsk = current;
 302        unsigned long dirty;
 303
 304        if (vm_dirty_bytes)
 305                dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
 306                        zone_memory / global_dirtyable_memory();
 307        else
 308                dirty = vm_dirty_ratio * zone_memory / 100;
 309
 310        if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
 311                dirty += dirty / 4;
 312
 313        return dirty;
 314}
 315
 316/**
 317 * zone_dirty_ok - tells whether a zone is within its dirty limits
 318 * @zone: the zone to check
 319 *
 320 * Returns %true when the dirty pages in @zone are within the zone's
 321 * dirty limit, %false if the limit is exceeded.
 322 */
 323bool zone_dirty_ok(struct zone *zone)
 324{
 325        unsigned long limit = zone_dirty_limit(zone);
 326
 327        return zone_page_state(zone, NR_FILE_DIRTY) +
 328               zone_page_state(zone, NR_UNSTABLE_NFS) +
 329               zone_page_state(zone, NR_WRITEBACK) <= limit;
 330}
 331
 332int dirty_background_ratio_handler(struct ctl_table *table, int write,
 333                void __user *buffer, size_t *lenp,
 334                loff_t *ppos)
 335{
 336        int ret;
 337
 338        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 339        if (ret == 0 && write)
 340                dirty_background_bytes = 0;
 341        return ret;
 342}
 343
 344int dirty_background_bytes_handler(struct ctl_table *table, int write,
 345                void __user *buffer, size_t *lenp,
 346                loff_t *ppos)
 347{
 348        int ret;
 349
 350        ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 351        if (ret == 0 && write)
 352                dirty_background_ratio = 0;
 353        return ret;
 354}
 355
 356int dirty_ratio_handler(struct ctl_table *table, int write,
 357                void __user *buffer, size_t *lenp,
 358                loff_t *ppos)
 359{
 360        int old_ratio = vm_dirty_ratio;
 361        int ret;
 362
 363        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 364        if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 365                writeback_set_ratelimit();
 366                vm_dirty_bytes = 0;
 367        }
 368        return ret;
 369}
 370
 371int dirty_bytes_handler(struct ctl_table *table, int write,
 372                void __user *buffer, size_t *lenp,
 373                loff_t *ppos)
 374{
 375        unsigned long old_bytes = vm_dirty_bytes;
 376        int ret;
 377
 378        ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 379        if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
 380                writeback_set_ratelimit();
 381                vm_dirty_ratio = 0;
 382        }
 383        return ret;
 384}
 385
 386static unsigned long wp_next_time(unsigned long cur_time)
 387{
 388        cur_time += VM_COMPLETIONS_PERIOD_LEN;
 389        /* 0 has a special meaning... */
 390        if (!cur_time)
 391                return 1;
 392        return cur_time;
 393}
 394
 395/*
 396 * Increment the BDI's writeout completion count and the global writeout
 397 * completion count. Called from test_clear_page_writeback().
 398 */
 399static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
 400{
 401        __inc_bdi_stat(bdi, BDI_WRITTEN);
 402        __fprop_inc_percpu_max(&writeout_completions, &bdi->completions,
 403                               bdi->max_prop_frac);
 404        /* First event after period switching was turned off? */
 405        if (!unlikely(writeout_period_time)) {
 406                /*
 407                 * We can race with other __bdi_writeout_inc calls here but
 408                 * it does not cause any harm since the resulting time when
 409                 * timer will fire and what is in writeout_period_time will be
 410                 * roughly the same.
 411                 */
 412                writeout_period_time = wp_next_time(jiffies);
 413                mod_timer(&writeout_period_timer, writeout_period_time);
 414        }
 415}
 416
 417void bdi_writeout_inc(struct backing_dev_info *bdi)
 418{
 419        unsigned long flags;
 420
 421        local_irq_save(flags);
 422        __bdi_writeout_inc(bdi);
 423        local_irq_restore(flags);
 424}
 425EXPORT_SYMBOL_GPL(bdi_writeout_inc);
 426
 427/*
 428 * Obtain an accurate fraction of the BDI's portion.
 429 */
 430static void bdi_writeout_fraction(struct backing_dev_info *bdi,
 431                long *numerator, long *denominator)
 432{
 433        fprop_fraction_percpu(&writeout_completions, &bdi->completions,
 434                                numerator, denominator);
 435}
 436
 437/*
 438 * On idle system, we can be called long after we scheduled because we use
 439 * deferred timers so count with missed periods.
 440 */
 441static void writeout_period(unsigned long t)
 442{
 443        int miss_periods = (jiffies - writeout_period_time) /
 444                                                 VM_COMPLETIONS_PERIOD_LEN;
 445
 446        if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
 447                writeout_period_time = wp_next_time(writeout_period_time +
 448                                miss_periods * VM_COMPLETIONS_PERIOD_LEN);
 449                mod_timer(&writeout_period_timer, writeout_period_time);
 450        } else {
 451                /*
 452                 * Aging has zeroed all fractions. Stop wasting CPU on period
 453                 * updates.
 454                 */
 455                writeout_period_time = 0;
 456        }
 457}
 458
 459/*
 460 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 461 * registered backing devices, which, for obvious reasons, can not
 462 * exceed 100%.
 463 */
 464static unsigned int bdi_min_ratio;
 465
 466int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 467{
 468        int ret = 0;
 469
 470        spin_lock_bh(&bdi_lock);
 471        if (min_ratio > bdi->max_ratio) {
 472                ret = -EINVAL;
 473        } else {
 474                min_ratio -= bdi->min_ratio;
 475                if (bdi_min_ratio + min_ratio < 100) {
 476                        bdi_min_ratio += min_ratio;
 477                        bdi->min_ratio += min_ratio;
 478                } else {
 479                        ret = -EINVAL;
 480                }
 481        }
 482        spin_unlock_bh(&bdi_lock);
 483
 484        return ret;
 485}
 486
 487int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
 488{
 489        int ret = 0;
 490
 491        if (max_ratio > 100)
 492                return -EINVAL;
 493
 494        spin_lock_bh(&bdi_lock);
 495        if (bdi->min_ratio > max_ratio) {
 496                ret = -EINVAL;
 497        } else {
 498                bdi->max_ratio = max_ratio;
 499                bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
 500        }
 501        spin_unlock_bh(&bdi_lock);
 502
 503        return ret;
 504}
 505EXPORT_SYMBOL(bdi_set_max_ratio);
 506
 507static unsigned long dirty_freerun_ceiling(unsigned long thresh,
 508                                           unsigned long bg_thresh)
 509{
 510        return (thresh + bg_thresh) / 2;
 511}
 512
 513static unsigned long hard_dirty_limit(unsigned long thresh)
 514{
 515        return max(thresh, global_dirty_limit);
 516}
 517
 518/**
 519 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
 520 * @bdi: the backing_dev_info to query
 521 * @dirty: global dirty limit in pages
 522 *
 523 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
 524 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
 525 *
 526 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 527 * when sleeping max_pause per page is not enough to keep the dirty pages under
 528 * control. For example, when the device is completely stalled due to some error
 529 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 530 * In the other normal situations, it acts more gently by throttling the tasks
 531 * more (rather than completely block them) when the bdi dirty pages go high.
 532 *
 533 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
 534 * - starving fast devices
 535 * - piling up dirty pages (that will take long time to sync) on slow devices
 536 *
 537 * The bdi's share of dirty limit will be adapting to its throughput and
 538 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 539 */
 540unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
 541{
 542        u64 bdi_dirty;
 543        long numerator, denominator;
 544
 545        /*
 546         * Calculate this BDI's share of the dirty ratio.
 547         */
 548        bdi_writeout_fraction(bdi, &numerator, &denominator);
 549
 550        bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
 551        bdi_dirty *= numerator;
 552        do_div(bdi_dirty, denominator);
 553
 554        bdi_dirty += (dirty * bdi->min_ratio) / 100;
 555        if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
 556                bdi_dirty = dirty * bdi->max_ratio / 100;
 557
 558        return bdi_dirty;
 559}
 560
 561/*
 562 *                           setpoint - dirty 3
 563 *        f(dirty) := 1.0 + (----------------)
 564 *                           limit - setpoint
 565 *
 566 * it's a 3rd order polynomial that subjects to
 567 *
 568 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 569 * (2) f(setpoint) = 1.0 => the balance point
 570 * (3) f(limit)    = 0   => the hard limit
 571 * (4) df/dx      <= 0   => negative feedback control
 572 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 573 *     => fast response on large errors; small oscillation near setpoint
 574 */
 575static long long pos_ratio_polynom(unsigned long setpoint,
 576                                          unsigned long dirty,
 577                                          unsigned long limit)
 578{
 579        long long pos_ratio;
 580        long x;
 581
 582        x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
 583                      (limit - setpoint) | 1);
 584        pos_ratio = x;
 585        pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 586        pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 587        pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
 588
 589        return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
 590}
 591
 592/*
 593 * Dirty position control.
 594 *
 595 * (o) global/bdi setpoints
 596 *
 597 * We want the dirty pages be balanced around the global/bdi setpoints.
 598 * When the number of dirty pages is higher/lower than the setpoint, the
 599 * dirty position control ratio (and hence task dirty ratelimit) will be
 600 * decreased/increased to bring the dirty pages back to the setpoint.
 601 *
 602 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 603 *
 604 *     if (dirty < setpoint) scale up   pos_ratio
 605 *     if (dirty > setpoint) scale down pos_ratio
 606 *
 607 *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
 608 *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
 609 *
 610 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 611 *
 612 * (o) global control line
 613 *
 614 *     ^ pos_ratio
 615 *     |
 616 *     |            |<===== global dirty control scope ======>|
 617 * 2.0 .............*
 618 *     |            .*
 619 *     |            . *
 620 *     |            .   *
 621 *     |            .     *
 622 *     |            .        *
 623 *     |            .            *
 624 * 1.0 ................................*
 625 *     |            .                  .     *
 626 *     |            .                  .          *
 627 *     |            .                  .              *
 628 *     |            .                  .                 *
 629 *     |            .                  .                    *
 630 *   0 +------------.------------------.----------------------*------------->
 631 *           freerun^          setpoint^                 limit^   dirty pages
 632 *
 633 * (o) bdi control line
 634 *
 635 *     ^ pos_ratio
 636 *     |
 637 *     |            *
 638 *     |              *
 639 *     |                *
 640 *     |                  *
 641 *     |                    * |<=========== span ============>|
 642 * 1.0 .......................*
 643 *     |                      . *
 644 *     |                      .   *
 645 *     |                      .     *
 646 *     |                      .       *
 647 *     |                      .         *
 648 *     |                      .           *
 649 *     |                      .             *
 650 *     |                      .               *
 651 *     |                      .                 *
 652 *     |                      .                   *
 653 *     |                      .                     *
 654 * 1/4 ...............................................* * * * * * * * * * * *
 655 *     |                      .                         .
 656 *     |                      .                           .
 657 *     |                      .                             .
 658 *   0 +----------------------.-------------------------------.------------->
 659 *                bdi_setpoint^                    x_intercept^
 660 *
 661 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
 662 * be smoothly throttled down to normal if it starts high in situations like
 663 * - start writing to a slow SD card and a fast disk at the same time. The SD
 664 *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
 665 * - the bdi dirty thresh drops quickly due to change of JBOD workload
 666 */
 667static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
 668                                        unsigned long thresh,
 669                                        unsigned long bg_thresh,
 670                                        unsigned long dirty,
 671                                        unsigned long bdi_thresh,
 672                                        unsigned long bdi_dirty)
 673{
 674        unsigned long write_bw = bdi->avg_write_bandwidth;
 675        unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
 676        unsigned long limit = hard_dirty_limit(thresh);
 677        unsigned long x_intercept;
 678        unsigned long setpoint;         /* dirty pages' target balance point */
 679        unsigned long bdi_setpoint;
 680        unsigned long span;
 681        long long pos_ratio;            /* for scaling up/down the rate limit */
 682        long x;
 683
 684        if (unlikely(dirty >= limit))
 685                return 0;
 686
 687        /*
 688         * global setpoint
 689         *
 690         * See comment for pos_ratio_polynom().
 691         */
 692        setpoint = (freerun + limit) / 2;
 693        pos_ratio = pos_ratio_polynom(setpoint, dirty, limit);
 694
 695        /*
 696         * The strictlimit feature is a tool preventing mistrusted filesystems
 697         * from growing a large number of dirty pages before throttling. For
 698         * such filesystems balance_dirty_pages always checks bdi counters
 699         * against bdi limits. Even if global "nr_dirty" is under "freerun".
 700         * This is especially important for fuse which sets bdi->max_ratio to
 701         * 1% by default. Without strictlimit feature, fuse writeback may
 702         * consume arbitrary amount of RAM because it is accounted in
 703         * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
 704         *
 705         * Here, in bdi_position_ratio(), we calculate pos_ratio based on
 706         * two values: bdi_dirty and bdi_thresh. Let's consider an example:
 707         * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
 708         * limits are set by default to 10% and 20% (background and throttle).
 709         * Then bdi_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
 710         * bdi_dirty_limit(bdi, bg_thresh) is about ~4K pages. bdi_setpoint is
 711         * about ~6K pages (as the average of background and throttle bdi
 712         * limits). The 3rd order polynomial will provide positive feedback if
 713         * bdi_dirty is under bdi_setpoint and vice versa.
 714         *
 715         * Note, that we cannot use global counters in these calculations
 716         * because we want to throttle process writing to a strictlimit BDI
 717         * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
 718         * in the example above).
 719         */
 720        if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
 721                long long bdi_pos_ratio;
 722                unsigned long bdi_bg_thresh;
 723
 724                if (bdi_dirty < 8)
 725                        return min_t(long long, pos_ratio * 2,
 726                                     2 << RATELIMIT_CALC_SHIFT);
 727
 728                if (bdi_dirty >= bdi_thresh)
 729                        return 0;
 730
 731                bdi_bg_thresh = div_u64((u64)bdi_thresh * bg_thresh, thresh);
 732                bdi_setpoint = dirty_freerun_ceiling(bdi_thresh,
 733                                                     bdi_bg_thresh);
 734
 735                if (bdi_setpoint == 0 || bdi_setpoint == bdi_thresh)
 736                        return 0;
 737
 738                bdi_pos_ratio = pos_ratio_polynom(bdi_setpoint, bdi_dirty,
 739                                                  bdi_thresh);
 740
 741                /*
 742                 * Typically, for strictlimit case, bdi_setpoint << setpoint
 743                 * and pos_ratio >> bdi_pos_ratio. In the other words global
 744                 * state ("dirty") is not limiting factor and we have to
 745                 * make decision based on bdi counters. But there is an
 746                 * important case when global pos_ratio should get precedence:
 747                 * global limits are exceeded (e.g. due to activities on other
 748                 * BDIs) while given strictlimit BDI is below limit.
 749                 *
 750                 * "pos_ratio * bdi_pos_ratio" would work for the case above,
 751                 * but it would look too non-natural for the case of all
 752                 * activity in the system coming from a single strictlimit BDI
 753                 * with bdi->max_ratio == 100%.
 754                 *
 755                 * Note that min() below somewhat changes the dynamics of the
 756                 * control system. Normally, pos_ratio value can be well over 3
 757                 * (when globally we are at freerun and bdi is well below bdi
 758                 * setpoint). Now the maximum pos_ratio in the same situation
 759                 * is 2. We might want to tweak this if we observe the control
 760                 * system is too slow to adapt.
 761                 */
 762                return min(pos_ratio, bdi_pos_ratio);
 763        }
 764
 765        /*
 766         * We have computed basic pos_ratio above based on global situation. If
 767         * the bdi is over/under its share of dirty pages, we want to scale
 768         * pos_ratio further down/up. That is done by the following mechanism.
 769         */
 770
 771        /*
 772         * bdi setpoint
 773         *
 774         *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
 775         *
 776         *                        x_intercept - bdi_dirty
 777         *                     := --------------------------
 778         *                        x_intercept - bdi_setpoint
 779         *
 780         * The main bdi control line is a linear function that subjects to
 781         *
 782         * (1) f(bdi_setpoint) = 1.0
 783         * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
 784         *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
 785         *
 786         * For single bdi case, the dirty pages are observed to fluctuate
 787         * regularly within range
 788         *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
 789         * for various filesystems, where (2) can yield in a reasonable 12.5%
 790         * fluctuation range for pos_ratio.
 791         *
 792         * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
 793         * own size, so move the slope over accordingly and choose a slope that
 794         * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
 795         */
 796        if (unlikely(bdi_thresh > thresh))
 797                bdi_thresh = thresh;
 798        /*
 799         * It's very possible that bdi_thresh is close to 0 not because the
 800         * device is slow, but that it has remained inactive for long time.
 801         * Honour such devices a reasonable good (hopefully IO efficient)
 802         * threshold, so that the occasional writes won't be blocked and active
 803         * writes can rampup the threshold quickly.
 804         */
 805        bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
 806        /*
 807         * scale global setpoint to bdi's:
 808         *      bdi_setpoint = setpoint * bdi_thresh / thresh
 809         */
 810        x = div_u64((u64)bdi_thresh << 16, thresh | 1);
 811        bdi_setpoint = setpoint * (u64)x >> 16;
 812        /*
 813         * Use span=(8*write_bw) in single bdi case as indicated by
 814         * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
 815         *
 816         *        bdi_thresh                    thresh - bdi_thresh
 817         * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
 818         *          thresh                            thresh
 819         */
 820        span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
 821        x_intercept = bdi_setpoint + span;
 822
 823        if (bdi_dirty < x_intercept - span / 4) {
 824                pos_ratio = div64_u64(pos_ratio * (x_intercept - bdi_dirty),
 825                                      (x_intercept - bdi_setpoint) | 1);
 826        } else
 827                pos_ratio /= 4;
 828
 829        /*
 830         * bdi reserve area, safeguard against dirty pool underrun and disk idle
 831         * It may push the desired control point of global dirty pages higher
 832         * than setpoint.
 833         */
 834        x_intercept = bdi_thresh / 2;
 835        if (bdi_dirty < x_intercept) {
 836                if (bdi_dirty > x_intercept / 8)
 837                        pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
 838                else
 839                        pos_ratio *= 8;
 840        }
 841
 842        return pos_ratio;
 843}
 844
 845static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
 846                                       unsigned long elapsed,
 847                                       unsigned long written)
 848{
 849        const unsigned long period = roundup_pow_of_two(3 * HZ);
 850        unsigned long avg = bdi->avg_write_bandwidth;
 851        unsigned long old = bdi->write_bandwidth;
 852        u64 bw;
 853
 854        /*
 855         * bw = written * HZ / elapsed
 856         *
 857         *                   bw * elapsed + write_bandwidth * (period - elapsed)
 858         * write_bandwidth = ---------------------------------------------------
 859         *                                          period
 860         *
 861         * @written may have decreased due to account_page_redirty().
 862         * Avoid underflowing @bw calculation.
 863         */
 864        bw = written - min(written, bdi->written_stamp);
 865        bw *= HZ;
 866        if (unlikely(elapsed > period)) {
 867                do_div(bw, elapsed);
 868                avg = bw;
 869                goto out;
 870        }
 871        bw += (u64)bdi->write_bandwidth * (period - elapsed);
 872        bw >>= ilog2(period);
 873
 874        /*
 875         * one more level of smoothing, for filtering out sudden spikes
 876         */
 877        if (avg > old && old >= (unsigned long)bw)
 878                avg -= (avg - old) >> 3;
 879
 880        if (avg < old && old <= (unsigned long)bw)
 881                avg += (old - avg) >> 3;
 882
 883out:
 884        bdi->write_bandwidth = bw;
 885        bdi->avg_write_bandwidth = avg;
 886}
 887
 888/*
 889 * The global dirtyable memory and dirty threshold could be suddenly knocked
 890 * down by a large amount (eg. on the startup of KVM in a swapless system).
 891 * This may throw the system into deep dirty exceeded state and throttle
 892 * heavy/light dirtiers alike. To retain good responsiveness, maintain
 893 * global_dirty_limit for tracking slowly down to the knocked down dirty
 894 * threshold.
 895 */
 896static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
 897{
 898        unsigned long limit = global_dirty_limit;
 899
 900        /*
 901         * Follow up in one step.
 902         */
 903        if (limit < thresh) {
 904                limit = thresh;
 905                goto update;
 906        }
 907
 908        /*
 909         * Follow down slowly. Use the higher one as the target, because thresh
 910         * may drop below dirty. This is exactly the reason to introduce
 911         * global_dirty_limit which is guaranteed to lie above the dirty pages.
 912         */
 913        thresh = max(thresh, dirty);
 914        if (limit > thresh) {
 915                limit -= (limit - thresh) >> 5;
 916                goto update;
 917        }
 918        return;
 919update:
 920        global_dirty_limit = limit;
 921}
 922
 923static void global_update_bandwidth(unsigned long thresh,
 924                                    unsigned long dirty,
 925                                    unsigned long now)
 926{
 927        static DEFINE_SPINLOCK(dirty_lock);
 928        static unsigned long update_time = INITIAL_JIFFIES;
 929
 930        /*
 931         * check locklessly first to optimize away locking for the most time
 932         */
 933        if (time_before(now, update_time + BANDWIDTH_INTERVAL))
 934                return;
 935
 936        spin_lock(&dirty_lock);
 937        if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
 938                update_dirty_limit(thresh, dirty);
 939                update_time = now;
 940        }
 941        spin_unlock(&dirty_lock);
 942}
 943
 944/*
 945 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
 946 *
 947 * Normal bdi tasks will be curbed at or below it in long term.
 948 * Obviously it should be around (write_bw / N) when there are N dd tasks.
 949 */
 950static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
 951                                       unsigned long thresh,
 952                                       unsigned long bg_thresh,
 953                                       unsigned long dirty,
 954                                       unsigned long bdi_thresh,
 955                                       unsigned long bdi_dirty,
 956                                       unsigned long dirtied,
 957                                       unsigned long elapsed)
 958{
 959        unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
 960        unsigned long limit = hard_dirty_limit(thresh);
 961        unsigned long setpoint = (freerun + limit) / 2;
 962        unsigned long write_bw = bdi->avg_write_bandwidth;
 963        unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
 964        unsigned long dirty_rate;
 965        unsigned long task_ratelimit;
 966        unsigned long balanced_dirty_ratelimit;
 967        unsigned long pos_ratio;
 968        unsigned long step;
 969        unsigned long x;
 970
 971        /*
 972         * The dirty rate will match the writeout rate in long term, except
 973         * when dirty pages are truncated by userspace or re-dirtied by FS.
 974         */
 975        dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
 976
 977        pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
 978                                       bdi_thresh, bdi_dirty);
 979        /*
 980         * task_ratelimit reflects each dd's dirty rate for the past 200ms.
 981         */
 982        task_ratelimit = (u64)dirty_ratelimit *
 983                                        pos_ratio >> RATELIMIT_CALC_SHIFT;
 984        task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
 985
 986        /*
 987         * A linear estimation of the "balanced" throttle rate. The theory is,
 988         * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
 989         * dirty_rate will be measured to be (N * task_ratelimit). So the below
 990         * formula will yield the balanced rate limit (write_bw / N).
 991         *
 992         * Note that the expanded form is not a pure rate feedback:
 993         *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
 994         * but also takes pos_ratio into account:
 995         *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
 996         *
 997         * (1) is not realistic because pos_ratio also takes part in balancing
 998         * the dirty rate.  Consider the state
 999         *      pos_ratio = 0.5                                              (3)
1000         *      rate = 2 * (write_bw / N)                                    (4)
1001         * If (1) is used, it will stuck in that state! Because each dd will
1002         * be throttled at
1003         *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
1004         * yielding
1005         *      dirty_rate = N * task_ratelimit = write_bw                   (6)
1006         * put (6) into (1) we get
1007         *      rate_(i+1) = rate_(i)                                        (7)
1008         *
1009         * So we end up using (2) to always keep
1010         *      rate_(i+1) ~= (write_bw / N)                                 (8)
1011         * regardless of the value of pos_ratio. As long as (8) is satisfied,
1012         * pos_ratio is able to drive itself to 1.0, which is not only where
1013         * the dirty count meet the setpoint, but also where the slope of
1014         * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1015         */
1016        balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1017                                           dirty_rate | 1);
1018        /*
1019         * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1020         */
1021        if (unlikely(balanced_dirty_ratelimit > write_bw))
1022                balanced_dirty_ratelimit = write_bw;
1023
1024        /*
1025         * We could safely do this and return immediately:
1026         *
1027         *      bdi->dirty_ratelimit = balanced_dirty_ratelimit;
1028         *
1029         * However to get a more stable dirty_ratelimit, the below elaborated
1030         * code makes use of task_ratelimit to filter out singular points and
1031         * limit the step size.
1032         *
1033         * The below code essentially only uses the relative value of
1034         *
1035         *      task_ratelimit - dirty_ratelimit
1036         *      = (pos_ratio - 1) * dirty_ratelimit
1037         *
1038         * which reflects the direction and size of dirty position error.
1039         */
1040
1041        /*
1042         * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1043         * task_ratelimit is on the same side of dirty_ratelimit, too.
1044         * For example, when
1045         * - dirty_ratelimit > balanced_dirty_ratelimit
1046         * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1047         * lowering dirty_ratelimit will help meet both the position and rate
1048         * control targets. Otherwise, don't update dirty_ratelimit if it will
1049         * only help meet the rate target. After all, what the users ultimately
1050         * feel and care are stable dirty rate and small position error.
1051         *
1052         * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1053         * and filter out the singular points of balanced_dirty_ratelimit. Which
1054         * keeps jumping around randomly and can even leap far away at times
1055         * due to the small 200ms estimation period of dirty_rate (we want to
1056         * keep that period small to reduce time lags).
1057         */
1058        step = 0;
1059
1060        /*
1061         * For strictlimit case, calculations above were based on bdi counters
1062         * and limits (starting from pos_ratio = bdi_position_ratio() and up to
1063         * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1064         * Hence, to calculate "step" properly, we have to use bdi_dirty as
1065         * "dirty" and bdi_setpoint as "setpoint".
1066         *
1067         * We rampup dirty_ratelimit forcibly if bdi_dirty is low because
1068         * it's possible that bdi_thresh is close to zero due to inactivity
1069         * of backing device (see the implementation of bdi_dirty_limit()).
1070         */
1071        if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1072                dirty = bdi_dirty;
1073                if (bdi_dirty < 8)
1074                        setpoint = bdi_dirty + 1;
1075                else
1076                        setpoint = (bdi_thresh +
1077                                    bdi_dirty_limit(bdi, bg_thresh)) / 2;
1078        }
1079
1080        if (dirty < setpoint) {
1081                x = min3(bdi->balanced_dirty_ratelimit,
1082                         balanced_dirty_ratelimit, task_ratelimit);
1083                if (dirty_ratelimit < x)
1084                        step = x - dirty_ratelimit;
1085        } else {
1086                x = max3(bdi->balanced_dirty_ratelimit,
1087                         balanced_dirty_ratelimit, task_ratelimit);
1088                if (dirty_ratelimit > x)
1089                        step = dirty_ratelimit - x;
1090        }
1091
1092        /*
1093         * Don't pursue 100% rate matching. It's impossible since the balanced
1094         * rate itself is constantly fluctuating. So decrease the track speed
1095         * when it gets close to the target. Helps eliminate pointless tremors.
1096         */
1097        step >>= dirty_ratelimit / (2 * step + 1);
1098        /*
1099         * Limit the tracking speed to avoid overshooting.
1100         */
1101        step = (step + 7) / 8;
1102
1103        if (dirty_ratelimit < balanced_dirty_ratelimit)
1104                dirty_ratelimit += step;
1105        else
1106                dirty_ratelimit -= step;
1107
1108        bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1109        bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1110
1111        trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
1112}
1113
1114void __bdi_update_bandwidth(struct backing_dev_info *bdi,
1115                            unsigned long thresh,
1116                            unsigned long bg_thresh,
1117                            unsigned long dirty,
1118                            unsigned long bdi_thresh,
1119                            unsigned long bdi_dirty,
1120                            unsigned long start_time)
1121{
1122        unsigned long now = jiffies;
1123        unsigned long elapsed = now - bdi->bw_time_stamp;
1124        unsigned long dirtied;
1125        unsigned long written;
1126
1127        /*
1128         * rate-limit, only update once every 200ms.
1129         */
1130        if (elapsed < BANDWIDTH_INTERVAL)
1131                return;
1132
1133        dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
1134        written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
1135
1136        /*
1137         * Skip quiet periods when disk bandwidth is under-utilized.
1138         * (at least 1s idle time between two flusher runs)
1139         */
1140        if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
1141                goto snapshot;
1142
1143        if (thresh) {
1144                global_update_bandwidth(thresh, dirty, now);
1145                bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
1146                                           bdi_thresh, bdi_dirty,
1147                                           dirtied, elapsed);
1148        }
1149        bdi_update_write_bandwidth(bdi, elapsed, written);
1150
1151snapshot:
1152        bdi->dirtied_stamp = dirtied;
1153        bdi->written_stamp = written;
1154        bdi->bw_time_stamp = now;
1155}
1156
1157static void bdi_update_bandwidth(struct backing_dev_info *bdi,
1158                                 unsigned long thresh,
1159                                 unsigned long bg_thresh,
1160                                 unsigned long dirty,
1161                                 unsigned long bdi_thresh,
1162                                 unsigned long bdi_dirty,
1163                                 unsigned long start_time)
1164{
1165        if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
1166                return;
1167        spin_lock(&bdi->wb.list_lock);
1168        __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
1169                               bdi_thresh, bdi_dirty, start_time);
1170        spin_unlock(&bdi->wb.list_lock);
1171}
1172
1173/*
1174 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1175 * will look to see if it needs to start dirty throttling.
1176 *
1177 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1178 * global_page_state() too often. So scale it near-sqrt to the safety margin
1179 * (the number of pages we may dirty without exceeding the dirty limits).
1180 */
1181static unsigned long dirty_poll_interval(unsigned long dirty,
1182                                         unsigned long thresh)
1183{
1184        if (thresh > dirty)
1185                return 1UL << (ilog2(thresh - dirty) >> 1);
1186
1187        return 1;
1188}
1189
1190static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
1191                                   unsigned long bdi_dirty)
1192{
1193        unsigned long bw = bdi->avg_write_bandwidth;
1194        unsigned long t;
1195
1196        /*
1197         * Limit pause time for small memory systems. If sleeping for too long
1198         * time, a small pool of dirty/writeback pages may go empty and disk go
1199         * idle.
1200         *
1201         * 8 serves as the safety ratio.
1202         */
1203        t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1204        t++;
1205
1206        return min_t(unsigned long, t, MAX_PAUSE);
1207}
1208
1209static long bdi_min_pause(struct backing_dev_info *bdi,
1210                          long max_pause,
1211                          unsigned long task_ratelimit,
1212                          unsigned long dirty_ratelimit,
1213                          int *nr_dirtied_pause)
1214{
1215        long hi = ilog2(bdi->avg_write_bandwidth);
1216        long lo = ilog2(bdi->dirty_ratelimit);
1217        long t;         /* target pause */
1218        long pause;     /* estimated next pause */
1219        int pages;      /* target nr_dirtied_pause */
1220
1221        /* target for 10ms pause on 1-dd case */
1222        t = max(1, HZ / 100);
1223
1224        /*
1225         * Scale up pause time for concurrent dirtiers in order to reduce CPU
1226         * overheads.
1227         *
1228         * (N * 10ms) on 2^N concurrent tasks.
1229         */
1230        if (hi > lo)
1231                t += (hi - lo) * (10 * HZ) / 1024;
1232
1233        /*
1234         * This is a bit convoluted. We try to base the next nr_dirtied_pause
1235         * on the much more stable dirty_ratelimit. However the next pause time
1236         * will be computed based on task_ratelimit and the two rate limits may
1237         * depart considerably at some time. Especially if task_ratelimit goes
1238         * below dirty_ratelimit/2 and the target pause is max_pause, the next
1239         * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1240         * result task_ratelimit won't be executed faithfully, which could
1241         * eventually bring down dirty_ratelimit.
1242         *
1243         * We apply two rules to fix it up:
1244         * 1) try to estimate the next pause time and if necessary, use a lower
1245         *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1246         *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1247         * 2) limit the target pause time to max_pause/2, so that the normal
1248         *    small fluctuations of task_ratelimit won't trigger rule (1) and
1249         *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1250         */
1251        t = min(t, 1 + max_pause / 2);
1252        pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1253
1254        /*
1255         * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1256         * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1257         * When the 16 consecutive reads are often interrupted by some dirty
1258         * throttling pause during the async writes, cfq will go into idles
1259         * (deadline is fine). So push nr_dirtied_pause as high as possible
1260         * until reaches DIRTY_POLL_THRESH=32 pages.
1261         */
1262        if (pages < DIRTY_POLL_THRESH) {
1263                t = max_pause;
1264                pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1265                if (pages > DIRTY_POLL_THRESH) {
1266                        pages = DIRTY_POLL_THRESH;
1267                        t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1268                }
1269        }
1270
1271        pause = HZ * pages / (task_ratelimit + 1);
1272        if (pause > max_pause) {
1273                t = max_pause;
1274                pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1275        }
1276
1277        *nr_dirtied_pause = pages;
1278        /*
1279         * The minimal pause time will normally be half the target pause time.
1280         */
1281        return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1282}
1283
1284static inline void bdi_dirty_limits(struct backing_dev_info *bdi,
1285                                    unsigned long dirty_thresh,
1286                                    unsigned long background_thresh,
1287                                    unsigned long *bdi_dirty,
1288                                    unsigned long *bdi_thresh,
1289                                    unsigned long *bdi_bg_thresh)
1290{
1291        unsigned long bdi_reclaimable;
1292
1293        /*
1294         * bdi_thresh is not treated as some limiting factor as
1295         * dirty_thresh, due to reasons
1296         * - in JBOD setup, bdi_thresh can fluctuate a lot
1297         * - in a system with HDD and USB key, the USB key may somehow
1298         *   go into state (bdi_dirty >> bdi_thresh) either because
1299         *   bdi_dirty starts high, or because bdi_thresh drops low.
1300         *   In this case we don't want to hard throttle the USB key
1301         *   dirtiers for 100 seconds until bdi_dirty drops under
1302         *   bdi_thresh. Instead the auxiliary bdi control line in
1303         *   bdi_position_ratio() will let the dirtier task progress
1304         *   at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1305         */
1306        *bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1307
1308        if (bdi_bg_thresh)
1309                *bdi_bg_thresh = dirty_thresh ? div_u64((u64)*bdi_thresh *
1310                                                        background_thresh,
1311                                                        dirty_thresh) : 0;
1312
1313        /*
1314         * In order to avoid the stacked BDI deadlock we need
1315         * to ensure we accurately count the 'dirty' pages when
1316         * the threshold is low.
1317         *
1318         * Otherwise it would be possible to get thresh+n pages
1319         * reported dirty, even though there are thresh-m pages
1320         * actually dirty; with m+n sitting in the percpu
1321         * deltas.
1322         */
1323        if (*bdi_thresh < 2 * bdi_stat_error(bdi)) {
1324                bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1325                *bdi_dirty = bdi_reclaimable +
1326                        bdi_stat_sum(bdi, BDI_WRITEBACK);
1327        } else {
1328                bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1329                *bdi_dirty = bdi_reclaimable +
1330                        bdi_stat(bdi, BDI_WRITEBACK);
1331        }
1332}
1333
1334/*
1335 * balance_dirty_pages() must be called by processes which are generating dirty
1336 * data.  It looks at the number of dirty pages in the machine and will force
1337 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1338 * If we're over `background_thresh' then the writeback threads are woken to
1339 * perform some writeout.
1340 */
1341static void balance_dirty_pages(struct address_space *mapping,
1342                                unsigned long pages_dirtied)
1343{
1344        unsigned long nr_reclaimable;   /* = file_dirty + unstable_nfs */
1345        unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
1346        unsigned long background_thresh;
1347        unsigned long dirty_thresh;
1348        long period;
1349        long pause;
1350        long max_pause;
1351        long min_pause;
1352        int nr_dirtied_pause;
1353        bool dirty_exceeded = false;
1354        unsigned long task_ratelimit;
1355        unsigned long dirty_ratelimit;
1356        unsigned long pos_ratio;
1357        struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
1358        bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1359        unsigned long start_time = jiffies;
1360
1361        for (;;) {
1362                unsigned long now = jiffies;
1363                unsigned long uninitialized_var(bdi_thresh);
1364                unsigned long thresh;
1365                unsigned long uninitialized_var(bdi_dirty);
1366                unsigned long dirty;
1367                unsigned long bg_thresh;
1368
1369                /*
1370                 * Unstable writes are a feature of certain networked
1371                 * filesystems (i.e. NFS) in which data may have been
1372                 * written to the server's write cache, but has not yet
1373                 * been flushed to permanent storage.
1374                 */
1375                nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1376                                        global_page_state(NR_UNSTABLE_NFS);
1377                nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1378
1379                global_dirty_limits(&background_thresh, &dirty_thresh);
1380
1381                if (unlikely(strictlimit)) {
1382                        bdi_dirty_limits(bdi, dirty_thresh, background_thresh,
1383                                         &bdi_dirty, &bdi_thresh, &bg_thresh);
1384
1385                        dirty = bdi_dirty;
1386                        thresh = bdi_thresh;
1387                } else {
1388                        dirty = nr_dirty;
1389                        thresh = dirty_thresh;
1390                        bg_thresh = background_thresh;
1391                }
1392
1393                /*
1394                 * Throttle it only when the background writeback cannot
1395                 * catch-up. This avoids (excessively) small writeouts
1396                 * when the bdi limits are ramping up in case of !strictlimit.
1397                 *
1398                 * In strictlimit case make decision based on the bdi counters
1399                 * and limits. Small writeouts when the bdi limits are ramping
1400                 * up are the price we consciously pay for strictlimit-ing.
1401                 */
1402                if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
1403                        current->dirty_paused_when = now;
1404                        current->nr_dirtied = 0;
1405                        current->nr_dirtied_pause =
1406                                dirty_poll_interval(dirty, thresh);
1407                        break;
1408                }
1409
1410                if (unlikely(!writeback_in_progress(bdi)))
1411                        bdi_start_background_writeback(bdi);
1412
1413                if (!strictlimit)
1414                        bdi_dirty_limits(bdi, dirty_thresh, background_thresh,
1415                                         &bdi_dirty, &bdi_thresh, NULL);
1416
1417                dirty_exceeded = (bdi_dirty > bdi_thresh) &&
1418                                 ((nr_dirty > dirty_thresh) || strictlimit);
1419                if (dirty_exceeded && !bdi->dirty_exceeded)
1420                        bdi->dirty_exceeded = 1;
1421
1422                bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1423                                     nr_dirty, bdi_thresh, bdi_dirty,
1424                                     start_time);
1425
1426                dirty_ratelimit = bdi->dirty_ratelimit;
1427                pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1428                                               background_thresh, nr_dirty,
1429                                               bdi_thresh, bdi_dirty);
1430                task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1431                                                        RATELIMIT_CALC_SHIFT;
1432                max_pause = bdi_max_pause(bdi, bdi_dirty);
1433                min_pause = bdi_min_pause(bdi, max_pause,
1434                                          task_ratelimit, dirty_ratelimit,
1435                                          &nr_dirtied_pause);
1436
1437                if (unlikely(task_ratelimit == 0)) {
1438                        period = max_pause;
1439                        pause = max_pause;
1440                        goto pause;
1441                }
1442                period = HZ * pages_dirtied / task_ratelimit;
1443                pause = period;
1444                if (current->dirty_paused_when)
1445                        pause -= now - current->dirty_paused_when;
1446                /*
1447                 * For less than 1s think time (ext3/4 may block the dirtier
1448                 * for up to 800ms from time to time on 1-HDD; so does xfs,
1449                 * however at much less frequency), try to compensate it in
1450                 * future periods by updating the virtual time; otherwise just
1451                 * do a reset, as it may be a light dirtier.
1452                 */
1453                if (pause < min_pause) {
1454                        trace_balance_dirty_pages(bdi,
1455                                                  dirty_thresh,
1456                                                  background_thresh,
1457                                                  nr_dirty,
1458                                                  bdi_thresh,
1459                                                  bdi_dirty,
1460                                                  dirty_ratelimit,
1461                                                  task_ratelimit,
1462                                                  pages_dirtied,
1463                                                  period,
1464                                                  min(pause, 0L),
1465                                                  start_time);
1466                        if (pause < -HZ) {
1467                                current->dirty_paused_when = now;
1468                                current->nr_dirtied = 0;
1469                        } else if (period) {
1470                                current->dirty_paused_when += period;
1471                                current->nr_dirtied = 0;
1472                        } else if (current->nr_dirtied_pause <= pages_dirtied)
1473                                current->nr_dirtied_pause += pages_dirtied;
1474                        break;
1475                }
1476                if (unlikely(pause > max_pause)) {
1477                        /* for occasional dropped task_ratelimit */
1478                        now += min(pause - max_pause, max_pause);
1479                        pause = max_pause;
1480                }
1481
1482pause:
1483                trace_balance_dirty_pages(bdi,
1484                                          dirty_thresh,
1485                                          background_thresh,
1486                                          nr_dirty,
1487                                          bdi_thresh,
1488                                          bdi_dirty,
1489                                          dirty_ratelimit,
1490                                          task_ratelimit,
1491                                          pages_dirtied,
1492                                          period,
1493                                          pause,
1494                                          start_time);
1495                __set_current_state(TASK_KILLABLE);
1496                io_schedule_timeout(pause);
1497
1498                current->dirty_paused_when = now + pause;
1499                current->nr_dirtied = 0;
1500                current->nr_dirtied_pause = nr_dirtied_pause;
1501
1502                /*
1503                 * This is typically equal to (nr_dirty < dirty_thresh) and can
1504                 * also keep "1000+ dd on a slow USB stick" under control.
1505                 */
1506                if (task_ratelimit)
1507                        break;
1508
1509                /*
1510                 * In the case of an unresponding NFS server and the NFS dirty
1511                 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1512                 * to go through, so that tasks on them still remain responsive.
1513                 *
1514                 * In theory 1 page is enough to keep the comsumer-producer
1515                 * pipe going: the flusher cleans 1 page => the task dirties 1
1516                 * more page. However bdi_dirty has accounting errors.  So use
1517                 * the larger and more IO friendly bdi_stat_error.
1518                 */
1519                if (bdi_dirty <= bdi_stat_error(bdi))
1520                        break;
1521
1522                if (fatal_signal_pending(current))
1523                        break;
1524        }
1525
1526        if (!dirty_exceeded && bdi->dirty_exceeded)
1527                bdi->dirty_exceeded = 0;
1528
1529        if (writeback_in_progress(bdi))
1530                return;
1531
1532        /*
1533         * In laptop mode, we wait until hitting the higher threshold before
1534         * starting background writeout, and then write out all the way down
1535         * to the lower threshold.  So slow writers cause minimal disk activity.
1536         *
1537         * In normal mode, we start background writeout at the lower
1538         * background_thresh, to keep the amount of dirty memory low.
1539         */
1540        if (laptop_mode)
1541                return;
1542
1543        if (nr_reclaimable > background_thresh)
1544                bdi_start_background_writeback(bdi);
1545}
1546
1547static DEFINE_PER_CPU(int, bdp_ratelimits);
1548
1549/*
1550 * Normal tasks are throttled by
1551 *      loop {
1552 *              dirty tsk->nr_dirtied_pause pages;
1553 *              take a snap in balance_dirty_pages();
1554 *      }
1555 * However there is a worst case. If every task exit immediately when dirtied
1556 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1557 * called to throttle the page dirties. The solution is to save the not yet
1558 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1559 * randomly into the running tasks. This works well for the above worst case,
1560 * as the new task will pick up and accumulate the old task's leaked dirty
1561 * count and eventually get throttled.
1562 */
1563DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1564
1565/**
1566 * balance_dirty_pages_ratelimited - balance dirty memory state
1567 * @mapping: address_space which was dirtied
1568 *
1569 * Processes which are dirtying memory should call in here once for each page
1570 * which was newly dirtied.  The function will periodically check the system's
1571 * dirty state and will initiate writeback if needed.
1572 *
1573 * On really big machines, get_writeback_state is expensive, so try to avoid
1574 * calling it too often (ratelimiting).  But once we're over the dirty memory
1575 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1576 * from overshooting the limit by (ratelimit_pages) each.
1577 */
1578void balance_dirty_pages_ratelimited(struct address_space *mapping)
1579{
1580        struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
1581        int ratelimit;
1582        int *p;
1583
1584        if (!bdi_cap_account_dirty(bdi))
1585                return;
1586
1587        ratelimit = current->nr_dirtied_pause;
1588        if (bdi->dirty_exceeded)
1589                ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1590
1591        preempt_disable();
1592        /*
1593         * This prevents one CPU to accumulate too many dirtied pages without
1594         * calling into balance_dirty_pages(), which can happen when there are
1595         * 1000+ tasks, all of them start dirtying pages at exactly the same
1596         * time, hence all honoured too large initial task->nr_dirtied_pause.
1597         */
1598        p =  this_cpu_ptr(&bdp_ratelimits);
1599        if (unlikely(current->nr_dirtied >= ratelimit))
1600                *p = 0;
1601        else if (unlikely(*p >= ratelimit_pages)) {
1602                *p = 0;
1603                ratelimit = 0;
1604        }
1605        /*
1606         * Pick up the dirtied pages by the exited tasks. This avoids lots of
1607         * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1608         * the dirty throttling and livelock other long-run dirtiers.
1609         */
1610        p = this_cpu_ptr(&dirty_throttle_leaks);
1611        if (*p > 0 && current->nr_dirtied < ratelimit) {
1612                unsigned long nr_pages_dirtied;
1613                nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1614                *p -= nr_pages_dirtied;
1615                current->nr_dirtied += nr_pages_dirtied;
1616        }
1617        preempt_enable();
1618
1619        if (unlikely(current->nr_dirtied >= ratelimit))
1620                balance_dirty_pages(mapping, current->nr_dirtied);
1621}
1622EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1623
1624void throttle_vm_writeout(gfp_t gfp_mask)
1625{
1626        unsigned long background_thresh;
1627        unsigned long dirty_thresh;
1628
1629        for ( ; ; ) {
1630                global_dirty_limits(&background_thresh, &dirty_thresh);
1631                dirty_thresh = hard_dirty_limit(dirty_thresh);
1632
1633                /*
1634                 * Boost the allowable dirty threshold a bit for page
1635                 * allocators so they don't get DoS'ed by heavy writers
1636                 */
1637                dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1638
1639                if (global_page_state(NR_UNSTABLE_NFS) +
1640                        global_page_state(NR_WRITEBACK) <= dirty_thresh)
1641                                break;
1642                congestion_wait(BLK_RW_ASYNC, HZ/10);
1643
1644                /*
1645                 * The caller might hold locks which can prevent IO completion
1646                 * or progress in the filesystem.  So we cannot just sit here
1647                 * waiting for IO to complete.
1648                 */
1649                if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1650                        break;
1651        }
1652}
1653
1654/*
1655 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1656 */
1657int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1658        void __user *buffer, size_t *length, loff_t *ppos)
1659{
1660        proc_dointvec(table, write, buffer, length, ppos);
1661        return 0;
1662}
1663
1664#ifdef CONFIG_BLOCK
1665void laptop_mode_timer_fn(unsigned long data)
1666{
1667        struct request_queue *q = (struct request_queue *)data;
1668        int nr_pages = global_page_state(NR_FILE_DIRTY) +
1669                global_page_state(NR_UNSTABLE_NFS);
1670
1671        /*
1672         * We want to write everything out, not just down to the dirty
1673         * threshold
1674         */
1675        if (bdi_has_dirty_io(&q->backing_dev_info))
1676                bdi_start_writeback(&q->backing_dev_info, nr_pages,
1677                                        WB_REASON_LAPTOP_TIMER);
1678}
1679
1680/*
1681 * We've spun up the disk and we're in laptop mode: schedule writeback
1682 * of all dirty data a few seconds from now.  If the flush is already scheduled
1683 * then push it back - the user is still using the disk.
1684 */
1685void laptop_io_completion(struct backing_dev_info *info)
1686{
1687        mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1688}
1689
1690/*
1691 * We're in laptop mode and we've just synced. The sync's writes will have
1692 * caused another writeback to be scheduled by laptop_io_completion.
1693 * Nothing needs to be written back anymore, so we unschedule the writeback.
1694 */
1695void laptop_sync_completion(void)
1696{
1697        struct backing_dev_info *bdi;
1698
1699        rcu_read_lock();
1700
1701        list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1702                del_timer(&bdi->laptop_mode_wb_timer);
1703
1704        rcu_read_unlock();
1705}
1706#endif
1707
1708/*
1709 * If ratelimit_pages is too high then we can get into dirty-data overload
1710 * if a large number of processes all perform writes at the same time.
1711 * If it is too low then SMP machines will call the (expensive)
1712 * get_writeback_state too often.
1713 *
1714 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1715 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1716 * thresholds.
1717 */
1718
1719void writeback_set_ratelimit(void)
1720{
1721        unsigned long background_thresh;
1722        unsigned long dirty_thresh;
1723        global_dirty_limits(&background_thresh, &dirty_thresh);
1724        global_dirty_limit = dirty_thresh;
1725        ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1726        if (ratelimit_pages < 16)
1727                ratelimit_pages = 16;
1728}
1729
1730static int
1731ratelimit_handler(struct notifier_block *self, unsigned long action,
1732                  void *hcpu)
1733{
1734
1735        switch (action & ~CPU_TASKS_FROZEN) {
1736        case CPU_ONLINE:
1737        case CPU_DEAD:
1738                writeback_set_ratelimit();
1739                return NOTIFY_OK;
1740        default:
1741                return NOTIFY_DONE;
1742        }
1743}
1744
1745static struct notifier_block ratelimit_nb = {
1746        .notifier_call  = ratelimit_handler,
1747        .next           = NULL,
1748};
1749
1750/*
1751 * Called early on to tune the page writeback dirty limits.
1752 *
1753 * We used to scale dirty pages according to how total memory
1754 * related to pages that could be allocated for buffers (by
1755 * comparing nr_free_buffer_pages() to vm_total_pages.
1756 *
1757 * However, that was when we used "dirty_ratio" to scale with
1758 * all memory, and we don't do that any more. "dirty_ratio"
1759 * is now applied to total non-HIGHPAGE memory (by subtracting
1760 * totalhigh_pages from vm_total_pages), and as such we can't
1761 * get into the old insane situation any more where we had
1762 * large amounts of dirty pages compared to a small amount of
1763 * non-HIGHMEM memory.
1764 *
1765 * But we might still want to scale the dirty_ratio by how
1766 * much memory the box has..
1767 */
1768void __init page_writeback_init(void)
1769{
1770        writeback_set_ratelimit();
1771        register_cpu_notifier(&ratelimit_nb);
1772
1773        fprop_global_init(&writeout_completions, GFP_KERNEL);
1774}
1775
1776/**
1777 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1778 * @mapping: address space structure to write
1779 * @start: starting page index
1780 * @end: ending page index (inclusive)
1781 *
1782 * This function scans the page range from @start to @end (inclusive) and tags
1783 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1784 * that write_cache_pages (or whoever calls this function) will then use
1785 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1786 * used to avoid livelocking of writeback by a process steadily creating new
1787 * dirty pages in the file (thus it is important for this function to be quick
1788 * so that it can tag pages faster than a dirtying process can create them).
1789 */
1790/*
1791 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1792 */
1793void tag_pages_for_writeback(struct address_space *mapping,
1794                             pgoff_t start, pgoff_t end)
1795{
1796#define WRITEBACK_TAG_BATCH 4096
1797        unsigned long tagged;
1798
1799        do {
1800                spin_lock_irq(&mapping->tree_lock);
1801                tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1802                                &start, end, WRITEBACK_TAG_BATCH,
1803                                PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1804                spin_unlock_irq(&mapping->tree_lock);
1805                WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1806                cond_resched();
1807                /* We check 'start' to handle wrapping when end == ~0UL */
1808        } while (tagged >= WRITEBACK_TAG_BATCH && start);
1809}
1810EXPORT_SYMBOL(tag_pages_for_writeback);
1811
1812/**
1813 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1814 * @mapping: address space structure to write
1815 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1816 * @writepage: function called for each page
1817 * @data: data passed to writepage function
1818 *
1819 * If a page is already under I/O, write_cache_pages() skips it, even
1820 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1821 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1822 * and msync() need to guarantee that all the data which was dirty at the time
1823 * the call was made get new I/O started against them.  If wbc->sync_mode is
1824 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1825 * existing IO to complete.
1826 *
1827 * To avoid livelocks (when other process dirties new pages), we first tag
1828 * pages which should be written back with TOWRITE tag and only then start
1829 * writing them. For data-integrity sync we have to be careful so that we do
1830 * not miss some pages (e.g., because some other process has cleared TOWRITE
1831 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1832 * by the process clearing the DIRTY tag (and submitting the page for IO).
1833 */
1834int write_cache_pages(struct address_space *mapping,
1835                      struct writeback_control *wbc, writepage_t writepage,
1836                      void *data)
1837{
1838        int ret = 0;
1839        int done = 0;
1840        struct pagevec pvec;
1841        int nr_pages;
1842        pgoff_t uninitialized_var(writeback_index);
1843        pgoff_t index;
1844        pgoff_t end;            /* Inclusive */
1845        pgoff_t done_index;
1846        int cycled;
1847        int range_whole = 0;
1848        int tag;
1849
1850        pagevec_init(&pvec, 0);
1851        if (wbc->range_cyclic) {
1852                writeback_index = mapping->writeback_index; /* prev offset */
1853                index = writeback_index;
1854                if (index == 0)
1855                        cycled = 1;
1856                else
1857                        cycled = 0;
1858                end = -1;
1859        } else {
1860                index = wbc->range_start >> PAGE_CACHE_SHIFT;
1861                end = wbc->range_end >> PAGE_CACHE_SHIFT;
1862                if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1863                        range_whole = 1;
1864                cycled = 1; /* ignore range_cyclic tests */
1865        }
1866        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1867                tag = PAGECACHE_TAG_TOWRITE;
1868        else
1869                tag = PAGECACHE_TAG_DIRTY;
1870retry:
1871        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1872                tag_pages_for_writeback(mapping, index, end);
1873        done_index = index;
1874        while (!done && (index <= end)) {
1875                int i;
1876
1877                nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1878                              min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1879                if (nr_pages == 0)
1880                        break;
1881
1882                for (i = 0; i < nr_pages; i++) {
1883                        struct page *page = pvec.pages[i];
1884
1885                        /*
1886                         * At this point, the page may be truncated or
1887                         * invalidated (changing page->mapping to NULL), or
1888                         * even swizzled back from swapper_space to tmpfs file
1889                         * mapping. However, page->index will not change
1890                         * because we have a reference on the page.
1891                         */
1892                        if (page->index > end) {
1893                                /*
1894                                 * can't be range_cyclic (1st pass) because
1895                                 * end == -1 in that case.
1896                                 */
1897                                done = 1;
1898                                break;
1899                        }
1900
1901                        done_index = page->index;
1902
1903                        lock_page(page);
1904
1905                        /*
1906                         * Page truncated or invalidated. We can freely skip it
1907                         * then, even for data integrity operations: the page
1908                         * has disappeared concurrently, so there could be no
1909                         * real expectation of this data interity operation
1910                         * even if there is now a new, dirty page at the same
1911                         * pagecache address.
1912                         */
1913                        if (unlikely(page->mapping != mapping)) {
1914continue_unlock:
1915                                unlock_page(page);
1916                                continue;
1917                        }
1918
1919                        if (!PageDirty(page)) {
1920                                /* someone wrote it for us */
1921                                goto continue_unlock;
1922                        }
1923
1924                        if (PageWriteback(page)) {
1925                                if (wbc->sync_mode != WB_SYNC_NONE)
1926                                        wait_on_page_writeback(page);
1927                                else
1928                                        goto continue_unlock;
1929                        }
1930
1931                        BUG_ON(PageWriteback(page));
1932                        if (!clear_page_dirty_for_io(page))
1933                                goto continue_unlock;
1934
1935                        trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
1936                        ret = (*writepage)(page, wbc, data);
1937                        if (unlikely(ret)) {
1938                                if (ret == AOP_WRITEPAGE_ACTIVATE) {
1939                                        unlock_page(page);
1940                                        ret = 0;
1941                                } else {
1942                                        /*
1943                                         * done_index is set past this page,
1944                                         * so media errors will not choke
1945                                         * background writeout for the entire
1946                                         * file. This has consequences for
1947                                         * range_cyclic semantics (ie. it may
1948                                         * not be suitable for data integrity
1949                                         * writeout).
1950                                         */
1951                                        done_index = page->index + 1;
1952                                        done = 1;
1953                                        break;
1954                                }
1955                        }
1956
1957                        /*
1958                         * We stop writing back only if we are not doing
1959                         * integrity sync. In case of integrity sync we have to
1960                         * keep going until we have written all the pages
1961                         * we tagged for writeback prior to entering this loop.
1962                         */
1963                        if (--wbc->nr_to_write <= 0 &&
1964                            wbc->sync_mode == WB_SYNC_NONE) {
1965                                done = 1;
1966                                break;
1967                        }
1968                }
1969                pagevec_release(&pvec);
1970                cond_resched();
1971        }
1972        if (!cycled && !done) {
1973                /*
1974                 * range_cyclic:
1975                 * We hit the last page and there is more work to be done: wrap
1976                 * back to the start of the file
1977                 */
1978                cycled = 1;
1979                index = 0;
1980                end = writeback_index - 1;
1981                goto retry;
1982        }
1983        if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1984                mapping->writeback_index = done_index;
1985
1986        return ret;
1987}
1988EXPORT_SYMBOL(write_cache_pages);
1989
1990/*
1991 * Function used by generic_writepages to call the real writepage
1992 * function and set the mapping flags on error
1993 */
1994static int __writepage(struct page *page, struct writeback_control *wbc,
1995                       void *data)
1996{
1997        struct address_space *mapping = data;
1998        int ret = mapping->a_ops->writepage(page, wbc);
1999        mapping_set_error(mapping, ret);
2000        return ret;
2001}
2002
2003/**
2004 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2005 * @mapping: address space structure to write
2006 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2007 *
2008 * This is a library function, which implements the writepages()
2009 * address_space_operation.
2010 */
2011int generic_writepages(struct address_space *mapping,
2012                       struct writeback_control *wbc)
2013{
2014        struct blk_plug plug;
2015        int ret;
2016
2017        /* deal with chardevs and other special file */
2018        if (!mapping->a_ops->writepage)
2019                return 0;
2020
2021        blk_start_plug(&plug);
2022        ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2023        blk_finish_plug(&plug);
2024        return ret;
2025}
2026
2027EXPORT_SYMBOL(generic_writepages);
2028
2029int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2030{
2031        int ret;
2032
2033        if (wbc->nr_to_write <= 0)
2034                return 0;
2035        if (mapping->a_ops->writepages)
2036                ret = mapping->a_ops->writepages(mapping, wbc);
2037        else
2038                ret = generic_writepages(mapping, wbc);
2039        return ret;
2040}
2041
2042/**
2043 * write_one_page - write out a single page and optionally wait on I/O
2044 * @page: the page to write
2045 * @wait: if true, wait on writeout
2046 *
2047 * The page must be locked by the caller and will be unlocked upon return.
2048 *
2049 * write_one_page() returns a negative error code if I/O failed.
2050 */
2051int write_one_page(struct page *page, int wait)
2052{
2053        struct address_space *mapping = page->mapping;
2054        int ret = 0;
2055        struct writeback_control wbc = {
2056                .sync_mode = WB_SYNC_ALL,
2057                .nr_to_write = 1,
2058        };
2059
2060        BUG_ON(!PageLocked(page));
2061
2062        if (wait)
2063                wait_on_page_writeback(page);
2064
2065        if (clear_page_dirty_for_io(page)) {
2066                page_cache_get(page);
2067                ret = mapping->a_ops->writepage(page, &wbc);
2068                if (ret == 0 && wait) {
2069                        wait_on_page_writeback(page);
2070                        if (PageError(page))
2071                                ret = -EIO;
2072                }
2073                page_cache_release(page);
2074        } else {
2075                unlock_page(page);
2076        }
2077        return ret;
2078}
2079EXPORT_SYMBOL(write_one_page);
2080
2081/*
2082 * For address_spaces which do not use buffers nor write back.
2083 */
2084int __set_page_dirty_no_writeback(struct page *page)
2085{
2086        if (!PageDirty(page))
2087                return !TestSetPageDirty(page);
2088        return 0;
2089}
2090
2091/*
2092 * Helper function for set_page_dirty family.
2093 * NOTE: This relies on being atomic wrt interrupts.
2094 */
2095void account_page_dirtied(struct page *page, struct address_space *mapping)
2096{
2097        trace_writeback_dirty_page(page, mapping);
2098
2099        if (mapping_cap_account_dirty(mapping)) {
2100                struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
2101
2102                __inc_zone_page_state(page, NR_FILE_DIRTY);
2103                __inc_zone_page_state(page, NR_DIRTIED);
2104                __inc_bdi_stat(bdi, BDI_RECLAIMABLE);
2105                __inc_bdi_stat(bdi, BDI_DIRTIED);
2106                task_io_account_write(PAGE_CACHE_SIZE);
2107                current->nr_dirtied++;
2108                this_cpu_inc(bdp_ratelimits);
2109        }
2110}
2111EXPORT_SYMBOL(account_page_dirtied);
2112
2113/*
2114 * Helper function for deaccounting dirty page without writeback.
2115 *
2116 * Doing this should *normally* only ever be done when a page
2117 * is truncated, and is not actually mapped anywhere at all. However,
2118 * fs/buffer.c does this when it notices that somebody has cleaned
2119 * out all the buffers on a page without actually doing it through
2120 * the VM. Can you say "ext3 is horribly ugly"? Thought you could.
2121 */
2122void account_page_cleaned(struct page *page, struct address_space *mapping)
2123{
2124        if (mapping_cap_account_dirty(mapping)) {
2125                dec_zone_page_state(page, NR_FILE_DIRTY);
2126                dec_bdi_stat(inode_to_bdi(mapping->host), BDI_RECLAIMABLE);
2127                task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2128        }
2129}
2130EXPORT_SYMBOL(account_page_cleaned);
2131
2132/*
2133 * For address_spaces which do not use buffers.  Just tag the page as dirty in
2134 * its radix tree.
2135 *
2136 * This is also used when a single buffer is being dirtied: we want to set the
2137 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2138 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2139 *
2140 * The caller must ensure this doesn't race with truncation.  Most will simply
2141 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2142 * the pte lock held, which also locks out truncation.
2143 */
2144int __set_page_dirty_nobuffers(struct page *page)
2145{
2146        if (!TestSetPageDirty(page)) {
2147                struct address_space *mapping = page_mapping(page);
2148                unsigned long flags;
2149
2150                if (!mapping)
2151                        return 1;
2152
2153                spin_lock_irqsave(&mapping->tree_lock, flags);
2154                BUG_ON(page_mapping(page) != mapping);
2155                WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2156                account_page_dirtied(page, mapping);
2157                radix_tree_tag_set(&mapping->page_tree, page_index(page),
2158                                   PAGECACHE_TAG_DIRTY);
2159                spin_unlock_irqrestore(&mapping->tree_lock, flags);
2160                if (mapping->host) {
2161                        /* !PageAnon && !swapper_space */
2162                        __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2163                }
2164                return 1;
2165        }
2166        return 0;
2167}
2168EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2169
2170/*
2171 * Call this whenever redirtying a page, to de-account the dirty counters
2172 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2173 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2174 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2175 * control.
2176 */
2177void account_page_redirty(struct page *page)
2178{
2179        struct address_space *mapping = page->mapping;
2180        if (mapping && mapping_cap_account_dirty(mapping)) {
2181                current->nr_dirtied--;
2182                dec_zone_page_state(page, NR_DIRTIED);
2183                dec_bdi_stat(inode_to_bdi(mapping->host), BDI_DIRTIED);
2184        }
2185}
2186EXPORT_SYMBOL(account_page_redirty);
2187
2188/*
2189 * When a writepage implementation decides that it doesn't want to write this
2190 * page for some reason, it should redirty the locked page via
2191 * redirty_page_for_writepage() and it should then unlock the page and return 0
2192 */
2193int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2194{
2195        int ret;
2196
2197        wbc->pages_skipped++;
2198        ret = __set_page_dirty_nobuffers(page);
2199        account_page_redirty(page);
2200        return ret;
2201}
2202EXPORT_SYMBOL(redirty_page_for_writepage);
2203
2204/*
2205 * Dirty a page.
2206 *
2207 * For pages with a mapping this should be done under the page lock
2208 * for the benefit of asynchronous memory errors who prefer a consistent
2209 * dirty state. This rule can be broken in some special cases,
2210 * but should be better not to.
2211 *
2212 * If the mapping doesn't provide a set_page_dirty a_op, then
2213 * just fall through and assume that it wants buffer_heads.
2214 */
2215int set_page_dirty(struct page *page)
2216{
2217        struct address_space *mapping = page_mapping(page);
2218
2219        if (likely(mapping)) {
2220                int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2221                /*
2222                 * readahead/lru_deactivate_page could remain
2223                 * PG_readahead/PG_reclaim due to race with end_page_writeback
2224                 * About readahead, if the page is written, the flags would be
2225                 * reset. So no problem.
2226                 * About lru_deactivate_page, if the page is redirty, the flag
2227                 * will be reset. So no problem. but if the page is used by readahead
2228                 * it will confuse readahead and make it restart the size rampup
2229                 * process. But it's a trivial problem.
2230                 */
2231                if (PageReclaim(page))
2232                        ClearPageReclaim(page);
2233#ifdef CONFIG_BLOCK
2234                if (!spd)
2235                        spd = __set_page_dirty_buffers;
2236#endif
2237                return (*spd)(page);
2238        }
2239        if (!PageDirty(page)) {
2240                if (!TestSetPageDirty(page))
2241                        return 1;
2242        }
2243        return 0;
2244}
2245EXPORT_SYMBOL(set_page_dirty);
2246
2247/*
2248 * set_page_dirty() is racy if the caller has no reference against
2249 * page->mapping->host, and if the page is unlocked.  This is because another
2250 * CPU could truncate the page off the mapping and then free the mapping.
2251 *
2252 * Usually, the page _is_ locked, or the caller is a user-space process which
2253 * holds a reference on the inode by having an open file.
2254 *
2255 * In other cases, the page should be locked before running set_page_dirty().
2256 */
2257int set_page_dirty_lock(struct page *page)
2258{
2259        int ret;
2260
2261        lock_page(page);
2262        ret = set_page_dirty(page);
2263        unlock_page(page);
2264        return ret;
2265}
2266EXPORT_SYMBOL(set_page_dirty_lock);
2267
2268/*
2269 * Clear a page's dirty flag, while caring for dirty memory accounting.
2270 * Returns true if the page was previously dirty.
2271 *
2272 * This is for preparing to put the page under writeout.  We leave the page
2273 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2274 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2275 * implementation will run either set_page_writeback() or set_page_dirty(),
2276 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2277 * back into sync.
2278 *
2279 * This incoherency between the page's dirty flag and radix-tree tag is
2280 * unfortunate, but it only exists while the page is locked.
2281 */
2282int clear_page_dirty_for_io(struct page *page)
2283{
2284        struct address_space *mapping = page_mapping(page);
2285
2286        BUG_ON(!PageLocked(page));
2287
2288        if (mapping && mapping_cap_account_dirty(mapping)) {
2289                /*
2290                 * Yes, Virginia, this is indeed insane.
2291                 *
2292                 * We use this sequence to make sure that
2293                 *  (a) we account for dirty stats properly
2294                 *  (b) we tell the low-level filesystem to
2295                 *      mark the whole page dirty if it was
2296                 *      dirty in a pagetable. Only to then
2297                 *  (c) clean the page again and return 1 to
2298                 *      cause the writeback.
2299                 *
2300                 * This way we avoid all nasty races with the
2301                 * dirty bit in multiple places and clearing
2302                 * them concurrently from different threads.
2303                 *
2304                 * Note! Normally the "set_page_dirty(page)"
2305                 * has no effect on the actual dirty bit - since
2306                 * that will already usually be set. But we
2307                 * need the side effects, and it can help us
2308                 * avoid races.
2309                 *
2310                 * We basically use the page "master dirty bit"
2311                 * as a serialization point for all the different
2312                 * threads doing their things.
2313                 */
2314                if (page_mkclean(page))
2315                        set_page_dirty(page);
2316                /*
2317                 * We carefully synchronise fault handlers against
2318                 * installing a dirty pte and marking the page dirty
2319                 * at this point.  We do this by having them hold the
2320                 * page lock while dirtying the page, and pages are
2321                 * always locked coming in here, so we get the desired
2322                 * exclusion.
2323                 */
2324                if (TestClearPageDirty(page)) {
2325                        dec_zone_page_state(page, NR_FILE_DIRTY);
2326                        dec_bdi_stat(inode_to_bdi(mapping->host),
2327                                        BDI_RECLAIMABLE);
2328                        return 1;
2329                }
2330                return 0;
2331        }
2332        return TestClearPageDirty(page);
2333}
2334EXPORT_SYMBOL(clear_page_dirty_for_io);
2335
2336int test_clear_page_writeback(struct page *page)
2337{
2338        struct address_space *mapping = page_mapping(page);
2339        struct mem_cgroup *memcg;
2340        int ret;
2341
2342        memcg = mem_cgroup_begin_page_stat(page);
2343        if (mapping) {
2344                struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
2345                unsigned long flags;
2346
2347                spin_lock_irqsave(&mapping->tree_lock, flags);
2348                ret = TestClearPageWriteback(page);
2349                if (ret) {
2350                        radix_tree_tag_clear(&mapping->page_tree,
2351                                                page_index(page),
2352                                                PAGECACHE_TAG_WRITEBACK);
2353                        if (bdi_cap_account_writeback(bdi)) {
2354                                __dec_bdi_stat(bdi, BDI_WRITEBACK);
2355                                __bdi_writeout_inc(bdi);
2356                        }
2357                }
2358                spin_unlock_irqrestore(&mapping->tree_lock, flags);
2359        } else {
2360                ret = TestClearPageWriteback(page);
2361        }
2362        if (ret) {
2363                mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2364                dec_zone_page_state(page, NR_WRITEBACK);
2365                inc_zone_page_state(page, NR_WRITTEN);
2366        }
2367        mem_cgroup_end_page_stat(memcg);
2368        return ret;
2369}
2370
2371int __test_set_page_writeback(struct page *page, bool keep_write)
2372{
2373        struct address_space *mapping = page_mapping(page);
2374        struct mem_cgroup *memcg;
2375        int ret;
2376
2377        memcg = mem_cgroup_begin_page_stat(page);
2378        if (mapping) {
2379                struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
2380                unsigned long flags;
2381
2382                spin_lock_irqsave(&mapping->tree_lock, flags);
2383                ret = TestSetPageWriteback(page);
2384                if (!ret) {
2385                        radix_tree_tag_set(&mapping->page_tree,
2386                                                page_index(page),
2387                                                PAGECACHE_TAG_WRITEBACK);
2388                        if (bdi_cap_account_writeback(bdi))
2389                                __inc_bdi_stat(bdi, BDI_WRITEBACK);
2390                }
2391                if (!PageDirty(page))
2392                        radix_tree_tag_clear(&mapping->page_tree,
2393                                                page_index(page),
2394                                                PAGECACHE_TAG_DIRTY);
2395                if (!keep_write)
2396                        radix_tree_tag_clear(&mapping->page_tree,
2397                                                page_index(page),
2398                                                PAGECACHE_TAG_TOWRITE);
2399                spin_unlock_irqrestore(&mapping->tree_lock, flags);
2400        } else {
2401                ret = TestSetPageWriteback(page);
2402        }
2403        if (!ret) {
2404                mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2405                inc_zone_page_state(page, NR_WRITEBACK);
2406        }
2407        mem_cgroup_end_page_stat(memcg);
2408        return ret;
2409
2410}
2411EXPORT_SYMBOL(__test_set_page_writeback);
2412
2413/*
2414 * Return true if any of the pages in the mapping are marked with the
2415 * passed tag.
2416 */
2417int mapping_tagged(struct address_space *mapping, int tag)
2418{
2419        return radix_tree_tagged(&mapping->page_tree, tag);
2420}
2421EXPORT_SYMBOL(mapping_tagged);
2422
2423/**
2424 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2425 * @page:       The page to wait on.
2426 *
2427 * This function determines if the given page is related to a backing device
2428 * that requires page contents to be held stable during writeback.  If so, then
2429 * it will wait for any pending writeback to complete.
2430 */
2431void wait_for_stable_page(struct page *page)
2432{
2433        if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2434                wait_on_page_writeback(page);
2435}
2436EXPORT_SYMBOL_GPL(wait_for_stable_page);
2437