linux/mm/zbud.c
<<
>>
Prefs
   1/*
   2 * zbud.c
   3 *
   4 * Copyright (C) 2013, Seth Jennings, IBM
   5 *
   6 * Concepts based on zcache internal zbud allocator by Dan Magenheimer.
   7 *
   8 * zbud is an special purpose allocator for storing compressed pages.  Contrary
   9 * to what its name may suggest, zbud is not a buddy allocator, but rather an
  10 * allocator that "buddies" two compressed pages together in a single memory
  11 * page.
  12 *
  13 * While this design limits storage density, it has simple and deterministic
  14 * reclaim properties that make it preferable to a higher density approach when
  15 * reclaim will be used.
  16 *
  17 * zbud works by storing compressed pages, or "zpages", together in pairs in a
  18 * single memory page called a "zbud page".  The first buddy is "left
  19 * justified" at the beginning of the zbud page, and the last buddy is "right
  20 * justified" at the end of the zbud page.  The benefit is that if either
  21 * buddy is freed, the freed buddy space, coalesced with whatever slack space
  22 * that existed between the buddies, results in the largest possible free region
  23 * within the zbud page.
  24 *
  25 * zbud also provides an attractive lower bound on density. The ratio of zpages
  26 * to zbud pages can not be less than 1.  This ensures that zbud can never "do
  27 * harm" by using more pages to store zpages than the uncompressed zpages would
  28 * have used on their own.
  29 *
  30 * zbud pages are divided into "chunks".  The size of the chunks is fixed at
  31 * compile time and determined by NCHUNKS_ORDER below.  Dividing zbud pages
  32 * into chunks allows organizing unbuddied zbud pages into a manageable number
  33 * of unbuddied lists according to the number of free chunks available in the
  34 * zbud page.
  35 *
  36 * The zbud API differs from that of conventional allocators in that the
  37 * allocation function, zbud_alloc(), returns an opaque handle to the user,
  38 * not a dereferenceable pointer.  The user must map the handle using
  39 * zbud_map() in order to get a usable pointer by which to access the
  40 * allocation data and unmap the handle with zbud_unmap() when operations
  41 * on the allocation data are complete.
  42 */
  43
  44#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  45
  46#include <linux/atomic.h>
  47#include <linux/list.h>
  48#include <linux/mm.h>
  49#include <linux/module.h>
  50#include <linux/preempt.h>
  51#include <linux/slab.h>
  52#include <linux/spinlock.h>
  53#include <linux/zbud.h>
  54#include <linux/zpool.h>
  55
  56/*****************
  57 * Structures
  58*****************/
  59/*
  60 * NCHUNKS_ORDER determines the internal allocation granularity, effectively
  61 * adjusting internal fragmentation.  It also determines the number of
  62 * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
  63 * allocation granularity will be in chunks of size PAGE_SIZE/64. As one chunk
  64 * in allocated page is occupied by zbud header, NCHUNKS will be calculated to
  65 * 63 which shows the max number of free chunks in zbud page, also there will be
  66 * 63 freelists per pool.
  67 */
  68#define NCHUNKS_ORDER   6
  69
  70#define CHUNK_SHIFT     (PAGE_SHIFT - NCHUNKS_ORDER)
  71#define CHUNK_SIZE      (1 << CHUNK_SHIFT)
  72#define ZHDR_SIZE_ALIGNED CHUNK_SIZE
  73#define NCHUNKS         ((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)
  74
  75/**
  76 * struct zbud_pool - stores metadata for each zbud pool
  77 * @lock:       protects all pool fields and first|last_chunk fields of any
  78 *              zbud page in the pool
  79 * @unbuddied:  array of lists tracking zbud pages that only contain one buddy;
  80 *              the lists each zbud page is added to depends on the size of
  81 *              its free region.
  82 * @buddied:    list tracking the zbud pages that contain two buddies;
  83 *              these zbud pages are full
  84 * @lru:        list tracking the zbud pages in LRU order by most recently
  85 *              added buddy.
  86 * @pages_nr:   number of zbud pages in the pool.
  87 * @ops:        pointer to a structure of user defined operations specified at
  88 *              pool creation time.
  89 *
  90 * This structure is allocated at pool creation time and maintains metadata
  91 * pertaining to a particular zbud pool.
  92 */
  93struct zbud_pool {
  94        spinlock_t lock;
  95        struct list_head unbuddied[NCHUNKS];
  96        struct list_head buddied;
  97        struct list_head lru;
  98        u64 pages_nr;
  99        struct zbud_ops *ops;
 100};
 101
 102/*
 103 * struct zbud_header - zbud page metadata occupying the first chunk of each
 104 *                      zbud page.
 105 * @buddy:      links the zbud page into the unbuddied/buddied lists in the pool
 106 * @lru:        links the zbud page into the lru list in the pool
 107 * @first_chunks:       the size of the first buddy in chunks, 0 if free
 108 * @last_chunks:        the size of the last buddy in chunks, 0 if free
 109 */
 110struct zbud_header {
 111        struct list_head buddy;
 112        struct list_head lru;
 113        unsigned int first_chunks;
 114        unsigned int last_chunks;
 115        bool under_reclaim;
 116};
 117
 118/*****************
 119 * zpool
 120 ****************/
 121
 122#ifdef CONFIG_ZPOOL
 123
 124static int zbud_zpool_evict(struct zbud_pool *pool, unsigned long handle)
 125{
 126        return zpool_evict(pool, handle);
 127}
 128
 129static struct zbud_ops zbud_zpool_ops = {
 130        .evict =        zbud_zpool_evict
 131};
 132
 133static void *zbud_zpool_create(char *name, gfp_t gfp,
 134                        struct zpool_ops *zpool_ops)
 135{
 136        return zbud_create_pool(gfp, zpool_ops ? &zbud_zpool_ops : NULL);
 137}
 138
 139static void zbud_zpool_destroy(void *pool)
 140{
 141        zbud_destroy_pool(pool);
 142}
 143
 144static int zbud_zpool_malloc(void *pool, size_t size, gfp_t gfp,
 145                        unsigned long *handle)
 146{
 147        return zbud_alloc(pool, size, gfp, handle);
 148}
 149static void zbud_zpool_free(void *pool, unsigned long handle)
 150{
 151        zbud_free(pool, handle);
 152}
 153
 154static int zbud_zpool_shrink(void *pool, unsigned int pages,
 155                        unsigned int *reclaimed)
 156{
 157        unsigned int total = 0;
 158        int ret = -EINVAL;
 159
 160        while (total < pages) {
 161                ret = zbud_reclaim_page(pool, 8);
 162                if (ret < 0)
 163                        break;
 164                total++;
 165        }
 166
 167        if (reclaimed)
 168                *reclaimed = total;
 169
 170        return ret;
 171}
 172
 173static void *zbud_zpool_map(void *pool, unsigned long handle,
 174                        enum zpool_mapmode mm)
 175{
 176        return zbud_map(pool, handle);
 177}
 178static void zbud_zpool_unmap(void *pool, unsigned long handle)
 179{
 180        zbud_unmap(pool, handle);
 181}
 182
 183static u64 zbud_zpool_total_size(void *pool)
 184{
 185        return zbud_get_pool_size(pool) * PAGE_SIZE;
 186}
 187
 188static struct zpool_driver zbud_zpool_driver = {
 189        .type =         "zbud",
 190        .owner =        THIS_MODULE,
 191        .create =       zbud_zpool_create,
 192        .destroy =      zbud_zpool_destroy,
 193        .malloc =       zbud_zpool_malloc,
 194        .free =         zbud_zpool_free,
 195        .shrink =       zbud_zpool_shrink,
 196        .map =          zbud_zpool_map,
 197        .unmap =        zbud_zpool_unmap,
 198        .total_size =   zbud_zpool_total_size,
 199};
 200
 201MODULE_ALIAS("zpool-zbud");
 202#endif /* CONFIG_ZPOOL */
 203
 204/*****************
 205 * Helpers
 206*****************/
 207/* Just to make the code easier to read */
 208enum buddy {
 209        FIRST,
 210        LAST
 211};
 212
 213/* Converts an allocation size in bytes to size in zbud chunks */
 214static int size_to_chunks(size_t size)
 215{
 216        return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
 217}
 218
 219#define for_each_unbuddied_list(_iter, _begin) \
 220        for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
 221
 222/* Initializes the zbud header of a newly allocated zbud page */
 223static struct zbud_header *init_zbud_page(struct page *page)
 224{
 225        struct zbud_header *zhdr = page_address(page);
 226        zhdr->first_chunks = 0;
 227        zhdr->last_chunks = 0;
 228        INIT_LIST_HEAD(&zhdr->buddy);
 229        INIT_LIST_HEAD(&zhdr->lru);
 230        zhdr->under_reclaim = 0;
 231        return zhdr;
 232}
 233
 234/* Resets the struct page fields and frees the page */
 235static void free_zbud_page(struct zbud_header *zhdr)
 236{
 237        __free_page(virt_to_page(zhdr));
 238}
 239
 240/*
 241 * Encodes the handle of a particular buddy within a zbud page
 242 * Pool lock should be held as this function accesses first|last_chunks
 243 */
 244static unsigned long encode_handle(struct zbud_header *zhdr, enum buddy bud)
 245{
 246        unsigned long handle;
 247
 248        /*
 249         * For now, the encoded handle is actually just the pointer to the data
 250         * but this might not always be the case.  A little information hiding.
 251         * Add CHUNK_SIZE to the handle if it is the first allocation to jump
 252         * over the zbud header in the first chunk.
 253         */
 254        handle = (unsigned long)zhdr;
 255        if (bud == FIRST)
 256                /* skip over zbud header */
 257                handle += ZHDR_SIZE_ALIGNED;
 258        else /* bud == LAST */
 259                handle += PAGE_SIZE - (zhdr->last_chunks  << CHUNK_SHIFT);
 260        return handle;
 261}
 262
 263/* Returns the zbud page where a given handle is stored */
 264static struct zbud_header *handle_to_zbud_header(unsigned long handle)
 265{
 266        return (struct zbud_header *)(handle & PAGE_MASK);
 267}
 268
 269/* Returns the number of free chunks in a zbud page */
 270static int num_free_chunks(struct zbud_header *zhdr)
 271{
 272        /*
 273         * Rather than branch for different situations, just use the fact that
 274         * free buddies have a length of zero to simplify everything.
 275         */
 276        return NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
 277}
 278
 279/*****************
 280 * API Functions
 281*****************/
 282/**
 283 * zbud_create_pool() - create a new zbud pool
 284 * @gfp:        gfp flags when allocating the zbud pool structure
 285 * @ops:        user-defined operations for the zbud pool
 286 *
 287 * Return: pointer to the new zbud pool or NULL if the metadata allocation
 288 * failed.
 289 */
 290struct zbud_pool *zbud_create_pool(gfp_t gfp, struct zbud_ops *ops)
 291{
 292        struct zbud_pool *pool;
 293        int i;
 294
 295        pool = kmalloc(sizeof(struct zbud_pool), gfp);
 296        if (!pool)
 297                return NULL;
 298        spin_lock_init(&pool->lock);
 299        for_each_unbuddied_list(i, 0)
 300                INIT_LIST_HEAD(&pool->unbuddied[i]);
 301        INIT_LIST_HEAD(&pool->buddied);
 302        INIT_LIST_HEAD(&pool->lru);
 303        pool->pages_nr = 0;
 304        pool->ops = ops;
 305        return pool;
 306}
 307
 308/**
 309 * zbud_destroy_pool() - destroys an existing zbud pool
 310 * @pool:       the zbud pool to be destroyed
 311 *
 312 * The pool should be emptied before this function is called.
 313 */
 314void zbud_destroy_pool(struct zbud_pool *pool)
 315{
 316        kfree(pool);
 317}
 318
 319/**
 320 * zbud_alloc() - allocates a region of a given size
 321 * @pool:       zbud pool from which to allocate
 322 * @size:       size in bytes of the desired allocation
 323 * @gfp:        gfp flags used if the pool needs to grow
 324 * @handle:     handle of the new allocation
 325 *
 326 * This function will attempt to find a free region in the pool large enough to
 327 * satisfy the allocation request.  A search of the unbuddied lists is
 328 * performed first. If no suitable free region is found, then a new page is
 329 * allocated and added to the pool to satisfy the request.
 330 *
 331 * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
 332 * as zbud pool pages.
 333 *
 334 * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
 335 * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
 336 * a new page.
 337 */
 338int zbud_alloc(struct zbud_pool *pool, size_t size, gfp_t gfp,
 339                        unsigned long *handle)
 340{
 341        int chunks, i, freechunks;
 342        struct zbud_header *zhdr = NULL;
 343        enum buddy bud;
 344        struct page *page;
 345
 346        if (!size || (gfp & __GFP_HIGHMEM))
 347                return -EINVAL;
 348        if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
 349                return -ENOSPC;
 350        chunks = size_to_chunks(size);
 351        spin_lock(&pool->lock);
 352
 353        /* First, try to find an unbuddied zbud page. */
 354        zhdr = NULL;
 355        for_each_unbuddied_list(i, chunks) {
 356                if (!list_empty(&pool->unbuddied[i])) {
 357                        zhdr = list_first_entry(&pool->unbuddied[i],
 358                                        struct zbud_header, buddy);
 359                        list_del(&zhdr->buddy);
 360                        if (zhdr->first_chunks == 0)
 361                                bud = FIRST;
 362                        else
 363                                bud = LAST;
 364                        goto found;
 365                }
 366        }
 367
 368        /* Couldn't find unbuddied zbud page, create new one */
 369        spin_unlock(&pool->lock);
 370        page = alloc_page(gfp);
 371        if (!page)
 372                return -ENOMEM;
 373        spin_lock(&pool->lock);
 374        pool->pages_nr++;
 375        zhdr = init_zbud_page(page);
 376        bud = FIRST;
 377
 378found:
 379        if (bud == FIRST)
 380                zhdr->first_chunks = chunks;
 381        else
 382                zhdr->last_chunks = chunks;
 383
 384        if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0) {
 385                /* Add to unbuddied list */
 386                freechunks = num_free_chunks(zhdr);
 387                list_add(&zhdr->buddy, &pool->unbuddied[freechunks]);
 388        } else {
 389                /* Add to buddied list */
 390                list_add(&zhdr->buddy, &pool->buddied);
 391        }
 392
 393        /* Add/move zbud page to beginning of LRU */
 394        if (!list_empty(&zhdr->lru))
 395                list_del(&zhdr->lru);
 396        list_add(&zhdr->lru, &pool->lru);
 397
 398        *handle = encode_handle(zhdr, bud);
 399        spin_unlock(&pool->lock);
 400
 401        return 0;
 402}
 403
 404/**
 405 * zbud_free() - frees the allocation associated with the given handle
 406 * @pool:       pool in which the allocation resided
 407 * @handle:     handle associated with the allocation returned by zbud_alloc()
 408 *
 409 * In the case that the zbud page in which the allocation resides is under
 410 * reclaim, as indicated by the PG_reclaim flag being set, this function
 411 * only sets the first|last_chunks to 0.  The page is actually freed
 412 * once both buddies are evicted (see zbud_reclaim_page() below).
 413 */
 414void zbud_free(struct zbud_pool *pool, unsigned long handle)
 415{
 416        struct zbud_header *zhdr;
 417        int freechunks;
 418
 419        spin_lock(&pool->lock);
 420        zhdr = handle_to_zbud_header(handle);
 421
 422        /* If first buddy, handle will be page aligned */
 423        if ((handle - ZHDR_SIZE_ALIGNED) & ~PAGE_MASK)
 424                zhdr->last_chunks = 0;
 425        else
 426                zhdr->first_chunks = 0;
 427
 428        if (zhdr->under_reclaim) {
 429                /* zbud page is under reclaim, reclaim will free */
 430                spin_unlock(&pool->lock);
 431                return;
 432        }
 433
 434        /* Remove from existing buddy list */
 435        list_del(&zhdr->buddy);
 436
 437        if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
 438                /* zbud page is empty, free */
 439                list_del(&zhdr->lru);
 440                free_zbud_page(zhdr);
 441                pool->pages_nr--;
 442        } else {
 443                /* Add to unbuddied list */
 444                freechunks = num_free_chunks(zhdr);
 445                list_add(&zhdr->buddy, &pool->unbuddied[freechunks]);
 446        }
 447
 448        spin_unlock(&pool->lock);
 449}
 450
 451#define list_tail_entry(ptr, type, member) \
 452        list_entry((ptr)->prev, type, member)
 453
 454/**
 455 * zbud_reclaim_page() - evicts allocations from a pool page and frees it
 456 * @pool:       pool from which a page will attempt to be evicted
 457 * @retires:    number of pages on the LRU list for which eviction will
 458 *              be attempted before failing
 459 *
 460 * zbud reclaim is different from normal system reclaim in that the reclaim is
 461 * done from the bottom, up.  This is because only the bottom layer, zbud, has
 462 * information on how the allocations are organized within each zbud page. This
 463 * has the potential to create interesting locking situations between zbud and
 464 * the user, however.
 465 *
 466 * To avoid these, this is how zbud_reclaim_page() should be called:
 467
 468 * The user detects a page should be reclaimed and calls zbud_reclaim_page().
 469 * zbud_reclaim_page() will remove a zbud page from the pool LRU list and call
 470 * the user-defined eviction handler with the pool and handle as arguments.
 471 *
 472 * If the handle can not be evicted, the eviction handler should return
 473 * non-zero. zbud_reclaim_page() will add the zbud page back to the
 474 * appropriate list and try the next zbud page on the LRU up to
 475 * a user defined number of retries.
 476 *
 477 * If the handle is successfully evicted, the eviction handler should
 478 * return 0 _and_ should have called zbud_free() on the handle. zbud_free()
 479 * contains logic to delay freeing the page if the page is under reclaim,
 480 * as indicated by the setting of the PG_reclaim flag on the underlying page.
 481 *
 482 * If all buddies in the zbud page are successfully evicted, then the
 483 * zbud page can be freed.
 484 *
 485 * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
 486 * no pages to evict or an eviction handler is not registered, -EAGAIN if
 487 * the retry limit was hit.
 488 */
 489int zbud_reclaim_page(struct zbud_pool *pool, unsigned int retries)
 490{
 491        int i, ret, freechunks;
 492        struct zbud_header *zhdr;
 493        unsigned long first_handle = 0, last_handle = 0;
 494
 495        spin_lock(&pool->lock);
 496        if (!pool->ops || !pool->ops->evict || list_empty(&pool->lru) ||
 497                        retries == 0) {
 498                spin_unlock(&pool->lock);
 499                return -EINVAL;
 500        }
 501        for (i = 0; i < retries; i++) {
 502                zhdr = list_tail_entry(&pool->lru, struct zbud_header, lru);
 503                list_del(&zhdr->lru);
 504                list_del(&zhdr->buddy);
 505                /* Protect zbud page against free */
 506                zhdr->under_reclaim = true;
 507                /*
 508                 * We need encode the handles before unlocking, since we can
 509                 * race with free that will set (first|last)_chunks to 0
 510                 */
 511                first_handle = 0;
 512                last_handle = 0;
 513                if (zhdr->first_chunks)
 514                        first_handle = encode_handle(zhdr, FIRST);
 515                if (zhdr->last_chunks)
 516                        last_handle = encode_handle(zhdr, LAST);
 517                spin_unlock(&pool->lock);
 518
 519                /* Issue the eviction callback(s) */
 520                if (first_handle) {
 521                        ret = pool->ops->evict(pool, first_handle);
 522                        if (ret)
 523                                goto next;
 524                }
 525                if (last_handle) {
 526                        ret = pool->ops->evict(pool, last_handle);
 527                        if (ret)
 528                                goto next;
 529                }
 530next:
 531                spin_lock(&pool->lock);
 532                zhdr->under_reclaim = false;
 533                if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
 534                        /*
 535                         * Both buddies are now free, free the zbud page and
 536                         * return success.
 537                         */
 538                        free_zbud_page(zhdr);
 539                        pool->pages_nr--;
 540                        spin_unlock(&pool->lock);
 541                        return 0;
 542                } else if (zhdr->first_chunks == 0 ||
 543                                zhdr->last_chunks == 0) {
 544                        /* add to unbuddied list */
 545                        freechunks = num_free_chunks(zhdr);
 546                        list_add(&zhdr->buddy, &pool->unbuddied[freechunks]);
 547                } else {
 548                        /* add to buddied list */
 549                        list_add(&zhdr->buddy, &pool->buddied);
 550                }
 551
 552                /* add to beginning of LRU */
 553                list_add(&zhdr->lru, &pool->lru);
 554        }
 555        spin_unlock(&pool->lock);
 556        return -EAGAIN;
 557}
 558
 559/**
 560 * zbud_map() - maps the allocation associated with the given handle
 561 * @pool:       pool in which the allocation resides
 562 * @handle:     handle associated with the allocation to be mapped
 563 *
 564 * While trivial for zbud, the mapping functions for others allocators
 565 * implementing this allocation API could have more complex information encoded
 566 * in the handle and could create temporary mappings to make the data
 567 * accessible to the user.
 568 *
 569 * Returns: a pointer to the mapped allocation
 570 */
 571void *zbud_map(struct zbud_pool *pool, unsigned long handle)
 572{
 573        return (void *)(handle);
 574}
 575
 576/**
 577 * zbud_unmap() - maps the allocation associated with the given handle
 578 * @pool:       pool in which the allocation resides
 579 * @handle:     handle associated with the allocation to be unmapped
 580 */
 581void zbud_unmap(struct zbud_pool *pool, unsigned long handle)
 582{
 583}
 584
 585/**
 586 * zbud_get_pool_size() - gets the zbud pool size in pages
 587 * @pool:       pool whose size is being queried
 588 *
 589 * Returns: size in pages of the given pool.  The pool lock need not be
 590 * taken to access pages_nr.
 591 */
 592u64 zbud_get_pool_size(struct zbud_pool *pool)
 593{
 594        return pool->pages_nr;
 595}
 596
 597static int __init init_zbud(void)
 598{
 599        /* Make sure the zbud header will fit in one chunk */
 600        BUILD_BUG_ON(sizeof(struct zbud_header) > ZHDR_SIZE_ALIGNED);
 601        pr_info("loaded\n");
 602
 603#ifdef CONFIG_ZPOOL
 604        zpool_register_driver(&zbud_zpool_driver);
 605#endif
 606
 607        return 0;
 608}
 609
 610static void __exit exit_zbud(void)
 611{
 612#ifdef CONFIG_ZPOOL
 613        zpool_unregister_driver(&zbud_zpool_driver);
 614#endif
 615
 616        pr_info("unloaded\n");
 617}
 618
 619module_init(init_zbud);
 620module_exit(exit_zbud);
 621
 622MODULE_LICENSE("GPL");
 623MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
 624MODULE_DESCRIPTION("Buddy Allocator for Compressed Pages");
 625