linux/mm/zsmalloc.c
<<
>>
Prefs
   1/*
   2 * zsmalloc memory allocator
   3 *
   4 * Copyright (C) 2011  Nitin Gupta
   5 * Copyright (C) 2012, 2013 Minchan Kim
   6 *
   7 * This code is released using a dual license strategy: BSD/GPL
   8 * You can choose the license that better fits your requirements.
   9 *
  10 * Released under the terms of 3-clause BSD License
  11 * Released under the terms of GNU General Public License Version 2.0
  12 */
  13
  14/*
  15 * Following is how we use various fields and flags of underlying
  16 * struct page(s) to form a zspage.
  17 *
  18 * Usage of struct page fields:
  19 *      page->first_page: points to the first component (0-order) page
  20 *      page->index (union with page->freelist): offset of the first object
  21 *              starting in this page. For the first page, this is
  22 *              always 0, so we use this field (aka freelist) to point
  23 *              to the first free object in zspage.
  24 *      page->lru: links together all component pages (except the first page)
  25 *              of a zspage
  26 *
  27 *      For _first_ page only:
  28 *
  29 *      page->private (union with page->first_page): refers to the
  30 *              component page after the first page
  31 *              If the page is first_page for huge object, it stores handle.
  32 *              Look at size_class->huge.
  33 *      page->freelist: points to the first free object in zspage.
  34 *              Free objects are linked together using in-place
  35 *              metadata.
  36 *      page->objects: maximum number of objects we can store in this
  37 *              zspage (class->zspage_order * PAGE_SIZE / class->size)
  38 *      page->lru: links together first pages of various zspages.
  39 *              Basically forming list of zspages in a fullness group.
  40 *      page->mapping: class index and fullness group of the zspage
  41 *
  42 * Usage of struct page flags:
  43 *      PG_private: identifies the first component page
  44 *      PG_private2: identifies the last component page
  45 *
  46 */
  47
  48#ifdef CONFIG_ZSMALLOC_DEBUG
  49#define DEBUG
  50#endif
  51
  52#include <linux/module.h>
  53#include <linux/kernel.h>
  54#include <linux/sched.h>
  55#include <linux/bitops.h>
  56#include <linux/errno.h>
  57#include <linux/highmem.h>
  58#include <linux/string.h>
  59#include <linux/slab.h>
  60#include <asm/tlbflush.h>
  61#include <asm/pgtable.h>
  62#include <linux/cpumask.h>
  63#include <linux/cpu.h>
  64#include <linux/vmalloc.h>
  65#include <linux/hardirq.h>
  66#include <linux/spinlock.h>
  67#include <linux/types.h>
  68#include <linux/debugfs.h>
  69#include <linux/zsmalloc.h>
  70#include <linux/zpool.h>
  71
  72/*
  73 * This must be power of 2 and greater than of equal to sizeof(link_free).
  74 * These two conditions ensure that any 'struct link_free' itself doesn't
  75 * span more than 1 page which avoids complex case of mapping 2 pages simply
  76 * to restore link_free pointer values.
  77 */
  78#define ZS_ALIGN                8
  79
  80/*
  81 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
  82 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
  83 */
  84#define ZS_MAX_ZSPAGE_ORDER 2
  85#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
  86
  87#define ZS_HANDLE_SIZE (sizeof(unsigned long))
  88
  89/*
  90 * Object location (<PFN>, <obj_idx>) is encoded as
  91 * as single (unsigned long) handle value.
  92 *
  93 * Note that object index <obj_idx> is relative to system
  94 * page <PFN> it is stored in, so for each sub-page belonging
  95 * to a zspage, obj_idx starts with 0.
  96 *
  97 * This is made more complicated by various memory models and PAE.
  98 */
  99
 100#ifndef MAX_PHYSMEM_BITS
 101#ifdef CONFIG_HIGHMEM64G
 102#define MAX_PHYSMEM_BITS 36
 103#else /* !CONFIG_HIGHMEM64G */
 104/*
 105 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
 106 * be PAGE_SHIFT
 107 */
 108#define MAX_PHYSMEM_BITS BITS_PER_LONG
 109#endif
 110#endif
 111#define _PFN_BITS               (MAX_PHYSMEM_BITS - PAGE_SHIFT)
 112
 113/*
 114 * Memory for allocating for handle keeps object position by
 115 * encoding <page, obj_idx> and the encoded value has a room
 116 * in least bit(ie, look at obj_to_location).
 117 * We use the bit to synchronize between object access by
 118 * user and migration.
 119 */
 120#define HANDLE_PIN_BIT  0
 121
 122/*
 123 * Head in allocated object should have OBJ_ALLOCATED_TAG
 124 * to identify the object was allocated or not.
 125 * It's okay to add the status bit in the least bit because
 126 * header keeps handle which is 4byte-aligned address so we
 127 * have room for two bit at least.
 128 */
 129#define OBJ_ALLOCATED_TAG 1
 130#define OBJ_TAG_BITS 1
 131#define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
 132#define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
 133
 134#define MAX(a, b) ((a) >= (b) ? (a) : (b))
 135/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
 136#define ZS_MIN_ALLOC_SIZE \
 137        MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
 138/* each chunk includes extra space to keep handle */
 139#define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
 140
 141/*
 142 * On systems with 4K page size, this gives 255 size classes! There is a
 143 * trader-off here:
 144 *  - Large number of size classes is potentially wasteful as free page are
 145 *    spread across these classes
 146 *  - Small number of size classes causes large internal fragmentation
 147 *  - Probably its better to use specific size classes (empirically
 148 *    determined). NOTE: all those class sizes must be set as multiple of
 149 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 150 *
 151 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 152 *  (reason above)
 153 */
 154#define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> 8)
 155
 156/*
 157 * We do not maintain any list for completely empty or full pages
 158 */
 159enum fullness_group {
 160        ZS_ALMOST_FULL,
 161        ZS_ALMOST_EMPTY,
 162        _ZS_NR_FULLNESS_GROUPS,
 163
 164        ZS_EMPTY,
 165        ZS_FULL
 166};
 167
 168enum zs_stat_type {
 169        OBJ_ALLOCATED,
 170        OBJ_USED,
 171        CLASS_ALMOST_FULL,
 172        CLASS_ALMOST_EMPTY,
 173        NR_ZS_STAT_TYPE,
 174};
 175
 176#ifdef CONFIG_ZSMALLOC_STAT
 177
 178static struct dentry *zs_stat_root;
 179
 180struct zs_size_stat {
 181        unsigned long objs[NR_ZS_STAT_TYPE];
 182};
 183
 184#endif
 185
 186/*
 187 * number of size_classes
 188 */
 189static int zs_size_classes;
 190
 191/*
 192 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
 193 *      n <= N / f, where
 194 * n = number of allocated objects
 195 * N = total number of objects zspage can store
 196 * f = fullness_threshold_frac
 197 *
 198 * Similarly, we assign zspage to:
 199 *      ZS_ALMOST_FULL  when n > N / f
 200 *      ZS_EMPTY        when n == 0
 201 *      ZS_FULL         when n == N
 202 *
 203 * (see: fix_fullness_group())
 204 */
 205static const int fullness_threshold_frac = 4;
 206
 207struct size_class {
 208        /*
 209         * Size of objects stored in this class. Must be multiple
 210         * of ZS_ALIGN.
 211         */
 212        int size;
 213        unsigned int index;
 214
 215        /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
 216        int pages_per_zspage;
 217        /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
 218        bool huge;
 219
 220#ifdef CONFIG_ZSMALLOC_STAT
 221        struct zs_size_stat stats;
 222#endif
 223
 224        spinlock_t lock;
 225
 226        struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
 227};
 228
 229/*
 230 * Placed within free objects to form a singly linked list.
 231 * For every zspage, first_page->freelist gives head of this list.
 232 *
 233 * This must be power of 2 and less than or equal to ZS_ALIGN
 234 */
 235struct link_free {
 236        union {
 237                /*
 238                 * Position of next free chunk (encodes <PFN, obj_idx>)
 239                 * It's valid for non-allocated object
 240                 */
 241                void *next;
 242                /*
 243                 * Handle of allocated object.
 244                 */
 245                unsigned long handle;
 246        };
 247};
 248
 249struct zs_pool {
 250        char *name;
 251
 252        struct size_class **size_class;
 253        struct kmem_cache *handle_cachep;
 254
 255        gfp_t flags;    /* allocation flags used when growing pool */
 256        atomic_long_t pages_allocated;
 257
 258#ifdef CONFIG_ZSMALLOC_STAT
 259        struct dentry *stat_dentry;
 260#endif
 261};
 262
 263/*
 264 * A zspage's class index and fullness group
 265 * are encoded in its (first)page->mapping
 266 */
 267#define CLASS_IDX_BITS  28
 268#define FULLNESS_BITS   4
 269#define CLASS_IDX_MASK  ((1 << CLASS_IDX_BITS) - 1)
 270#define FULLNESS_MASK   ((1 << FULLNESS_BITS) - 1)
 271
 272struct mapping_area {
 273#ifdef CONFIG_PGTABLE_MAPPING
 274        struct vm_struct *vm; /* vm area for mapping object that span pages */
 275#else
 276        char *vm_buf; /* copy buffer for objects that span pages */
 277#endif
 278        char *vm_addr; /* address of kmap_atomic()'ed pages */
 279        enum zs_mapmode vm_mm; /* mapping mode */
 280        bool huge;
 281};
 282
 283static int create_handle_cache(struct zs_pool *pool)
 284{
 285        pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
 286                                        0, 0, NULL);
 287        return pool->handle_cachep ? 0 : 1;
 288}
 289
 290static void destroy_handle_cache(struct zs_pool *pool)
 291{
 292        if (pool->handle_cachep)
 293                kmem_cache_destroy(pool->handle_cachep);
 294}
 295
 296static unsigned long alloc_handle(struct zs_pool *pool)
 297{
 298        return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
 299                pool->flags & ~__GFP_HIGHMEM);
 300}
 301
 302static void free_handle(struct zs_pool *pool, unsigned long handle)
 303{
 304        kmem_cache_free(pool->handle_cachep, (void *)handle);
 305}
 306
 307static void record_obj(unsigned long handle, unsigned long obj)
 308{
 309        *(unsigned long *)handle = obj;
 310}
 311
 312/* zpool driver */
 313
 314#ifdef CONFIG_ZPOOL
 315
 316static void *zs_zpool_create(char *name, gfp_t gfp, struct zpool_ops *zpool_ops)
 317{
 318        return zs_create_pool(name, gfp);
 319}
 320
 321static void zs_zpool_destroy(void *pool)
 322{
 323        zs_destroy_pool(pool);
 324}
 325
 326static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
 327                        unsigned long *handle)
 328{
 329        *handle = zs_malloc(pool, size);
 330        return *handle ? 0 : -1;
 331}
 332static void zs_zpool_free(void *pool, unsigned long handle)
 333{
 334        zs_free(pool, handle);
 335}
 336
 337static int zs_zpool_shrink(void *pool, unsigned int pages,
 338                        unsigned int *reclaimed)
 339{
 340        return -EINVAL;
 341}
 342
 343static void *zs_zpool_map(void *pool, unsigned long handle,
 344                        enum zpool_mapmode mm)
 345{
 346        enum zs_mapmode zs_mm;
 347
 348        switch (mm) {
 349        case ZPOOL_MM_RO:
 350                zs_mm = ZS_MM_RO;
 351                break;
 352        case ZPOOL_MM_WO:
 353                zs_mm = ZS_MM_WO;
 354                break;
 355        case ZPOOL_MM_RW: /* fallthru */
 356        default:
 357                zs_mm = ZS_MM_RW;
 358                break;
 359        }
 360
 361        return zs_map_object(pool, handle, zs_mm);
 362}
 363static void zs_zpool_unmap(void *pool, unsigned long handle)
 364{
 365        zs_unmap_object(pool, handle);
 366}
 367
 368static u64 zs_zpool_total_size(void *pool)
 369{
 370        return zs_get_total_pages(pool) << PAGE_SHIFT;
 371}
 372
 373static struct zpool_driver zs_zpool_driver = {
 374        .type =         "zsmalloc",
 375        .owner =        THIS_MODULE,
 376        .create =       zs_zpool_create,
 377        .destroy =      zs_zpool_destroy,
 378        .malloc =       zs_zpool_malloc,
 379        .free =         zs_zpool_free,
 380        .shrink =       zs_zpool_shrink,
 381        .map =          zs_zpool_map,
 382        .unmap =        zs_zpool_unmap,
 383        .total_size =   zs_zpool_total_size,
 384};
 385
 386MODULE_ALIAS("zpool-zsmalloc");
 387#endif /* CONFIG_ZPOOL */
 388
 389static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
 390{
 391        return pages_per_zspage * PAGE_SIZE / size;
 392}
 393
 394/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
 395static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
 396
 397static int is_first_page(struct page *page)
 398{
 399        return PagePrivate(page);
 400}
 401
 402static int is_last_page(struct page *page)
 403{
 404        return PagePrivate2(page);
 405}
 406
 407static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
 408                                enum fullness_group *fullness)
 409{
 410        unsigned long m;
 411        BUG_ON(!is_first_page(page));
 412
 413        m = (unsigned long)page->mapping;
 414        *fullness = m & FULLNESS_MASK;
 415        *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
 416}
 417
 418static void set_zspage_mapping(struct page *page, unsigned int class_idx,
 419                                enum fullness_group fullness)
 420{
 421        unsigned long m;
 422        BUG_ON(!is_first_page(page));
 423
 424        m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
 425                        (fullness & FULLNESS_MASK);
 426        page->mapping = (struct address_space *)m;
 427}
 428
 429/*
 430 * zsmalloc divides the pool into various size classes where each
 431 * class maintains a list of zspages where each zspage is divided
 432 * into equal sized chunks. Each allocation falls into one of these
 433 * classes depending on its size. This function returns index of the
 434 * size class which has chunk size big enough to hold the give size.
 435 */
 436static int get_size_class_index(int size)
 437{
 438        int idx = 0;
 439
 440        if (likely(size > ZS_MIN_ALLOC_SIZE))
 441                idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
 442                                ZS_SIZE_CLASS_DELTA);
 443
 444        return min(zs_size_classes - 1, idx);
 445}
 446
 447#ifdef CONFIG_ZSMALLOC_STAT
 448
 449static inline void zs_stat_inc(struct size_class *class,
 450                                enum zs_stat_type type, unsigned long cnt)
 451{
 452        class->stats.objs[type] += cnt;
 453}
 454
 455static inline void zs_stat_dec(struct size_class *class,
 456                                enum zs_stat_type type, unsigned long cnt)
 457{
 458        class->stats.objs[type] -= cnt;
 459}
 460
 461static inline unsigned long zs_stat_get(struct size_class *class,
 462                                enum zs_stat_type type)
 463{
 464        return class->stats.objs[type];
 465}
 466
 467static int __init zs_stat_init(void)
 468{
 469        if (!debugfs_initialized())
 470                return -ENODEV;
 471
 472        zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
 473        if (!zs_stat_root)
 474                return -ENOMEM;
 475
 476        return 0;
 477}
 478
 479static void __exit zs_stat_exit(void)
 480{
 481        debugfs_remove_recursive(zs_stat_root);
 482}
 483
 484static int zs_stats_size_show(struct seq_file *s, void *v)
 485{
 486        int i;
 487        struct zs_pool *pool = s->private;
 488        struct size_class *class;
 489        int objs_per_zspage;
 490        unsigned long class_almost_full, class_almost_empty;
 491        unsigned long obj_allocated, obj_used, pages_used;
 492        unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
 493        unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
 494
 495        seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s\n",
 496                        "class", "size", "almost_full", "almost_empty",
 497                        "obj_allocated", "obj_used", "pages_used",
 498                        "pages_per_zspage");
 499
 500        for (i = 0; i < zs_size_classes; i++) {
 501                class = pool->size_class[i];
 502
 503                if (class->index != i)
 504                        continue;
 505
 506                spin_lock(&class->lock);
 507                class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
 508                class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
 509                obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
 510                obj_used = zs_stat_get(class, OBJ_USED);
 511                spin_unlock(&class->lock);
 512
 513                objs_per_zspage = get_maxobj_per_zspage(class->size,
 514                                class->pages_per_zspage);
 515                pages_used = obj_allocated / objs_per_zspage *
 516                                class->pages_per_zspage;
 517
 518                seq_printf(s, " %5u %5u %11lu %12lu %13lu %10lu %10lu %16d\n",
 519                        i, class->size, class_almost_full, class_almost_empty,
 520                        obj_allocated, obj_used, pages_used,
 521                        class->pages_per_zspage);
 522
 523                total_class_almost_full += class_almost_full;
 524                total_class_almost_empty += class_almost_empty;
 525                total_objs += obj_allocated;
 526                total_used_objs += obj_used;
 527                total_pages += pages_used;
 528        }
 529
 530        seq_puts(s, "\n");
 531        seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu\n",
 532                        "Total", "", total_class_almost_full,
 533                        total_class_almost_empty, total_objs,
 534                        total_used_objs, total_pages);
 535
 536        return 0;
 537}
 538
 539static int zs_stats_size_open(struct inode *inode, struct file *file)
 540{
 541        return single_open(file, zs_stats_size_show, inode->i_private);
 542}
 543
 544static const struct file_operations zs_stat_size_ops = {
 545        .open           = zs_stats_size_open,
 546        .read           = seq_read,
 547        .llseek         = seq_lseek,
 548        .release        = single_release,
 549};
 550
 551static int zs_pool_stat_create(char *name, struct zs_pool *pool)
 552{
 553        struct dentry *entry;
 554
 555        if (!zs_stat_root)
 556                return -ENODEV;
 557
 558        entry = debugfs_create_dir(name, zs_stat_root);
 559        if (!entry) {
 560                pr_warn("debugfs dir <%s> creation failed\n", name);
 561                return -ENOMEM;
 562        }
 563        pool->stat_dentry = entry;
 564
 565        entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
 566                        pool->stat_dentry, pool, &zs_stat_size_ops);
 567        if (!entry) {
 568                pr_warn("%s: debugfs file entry <%s> creation failed\n",
 569                                name, "classes");
 570                return -ENOMEM;
 571        }
 572
 573        return 0;
 574}
 575
 576static void zs_pool_stat_destroy(struct zs_pool *pool)
 577{
 578        debugfs_remove_recursive(pool->stat_dentry);
 579}
 580
 581#else /* CONFIG_ZSMALLOC_STAT */
 582
 583static inline void zs_stat_inc(struct size_class *class,
 584                                enum zs_stat_type type, unsigned long cnt)
 585{
 586}
 587
 588static inline void zs_stat_dec(struct size_class *class,
 589                                enum zs_stat_type type, unsigned long cnt)
 590{
 591}
 592
 593static inline unsigned long zs_stat_get(struct size_class *class,
 594                                enum zs_stat_type type)
 595{
 596        return 0;
 597}
 598
 599static int __init zs_stat_init(void)
 600{
 601        return 0;
 602}
 603
 604static void __exit zs_stat_exit(void)
 605{
 606}
 607
 608static inline int zs_pool_stat_create(char *name, struct zs_pool *pool)
 609{
 610        return 0;
 611}
 612
 613static inline void zs_pool_stat_destroy(struct zs_pool *pool)
 614{
 615}
 616
 617#endif
 618
 619
 620/*
 621 * For each size class, zspages are divided into different groups
 622 * depending on how "full" they are. This was done so that we could
 623 * easily find empty or nearly empty zspages when we try to shrink
 624 * the pool (not yet implemented). This function returns fullness
 625 * status of the given page.
 626 */
 627static enum fullness_group get_fullness_group(struct page *page)
 628{
 629        int inuse, max_objects;
 630        enum fullness_group fg;
 631        BUG_ON(!is_first_page(page));
 632
 633        inuse = page->inuse;
 634        max_objects = page->objects;
 635
 636        if (inuse == 0)
 637                fg = ZS_EMPTY;
 638        else if (inuse == max_objects)
 639                fg = ZS_FULL;
 640        else if (inuse <= 3 * max_objects / fullness_threshold_frac)
 641                fg = ZS_ALMOST_EMPTY;
 642        else
 643                fg = ZS_ALMOST_FULL;
 644
 645        return fg;
 646}
 647
 648/*
 649 * Each size class maintains various freelists and zspages are assigned
 650 * to one of these freelists based on the number of live objects they
 651 * have. This functions inserts the given zspage into the freelist
 652 * identified by <class, fullness_group>.
 653 */
 654static void insert_zspage(struct page *page, struct size_class *class,
 655                                enum fullness_group fullness)
 656{
 657        struct page **head;
 658
 659        BUG_ON(!is_first_page(page));
 660
 661        if (fullness >= _ZS_NR_FULLNESS_GROUPS)
 662                return;
 663
 664        head = &class->fullness_list[fullness];
 665        if (*head)
 666                list_add_tail(&page->lru, &(*head)->lru);
 667
 668        *head = page;
 669        zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
 670                        CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
 671}
 672
 673/*
 674 * This function removes the given zspage from the freelist identified
 675 * by <class, fullness_group>.
 676 */
 677static void remove_zspage(struct page *page, struct size_class *class,
 678                                enum fullness_group fullness)
 679{
 680        struct page **head;
 681
 682        BUG_ON(!is_first_page(page));
 683
 684        if (fullness >= _ZS_NR_FULLNESS_GROUPS)
 685                return;
 686
 687        head = &class->fullness_list[fullness];
 688        BUG_ON(!*head);
 689        if (list_empty(&(*head)->lru))
 690                *head = NULL;
 691        else if (*head == page)
 692                *head = (struct page *)list_entry((*head)->lru.next,
 693                                        struct page, lru);
 694
 695        list_del_init(&page->lru);
 696        zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
 697                        CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
 698}
 699
 700/*
 701 * Each size class maintains zspages in different fullness groups depending
 702 * on the number of live objects they contain. When allocating or freeing
 703 * objects, the fullness status of the page can change, say, from ALMOST_FULL
 704 * to ALMOST_EMPTY when freeing an object. This function checks if such
 705 * a status change has occurred for the given page and accordingly moves the
 706 * page from the freelist of the old fullness group to that of the new
 707 * fullness group.
 708 */
 709static enum fullness_group fix_fullness_group(struct size_class *class,
 710                                                struct page *page)
 711{
 712        int class_idx;
 713        enum fullness_group currfg, newfg;
 714
 715        BUG_ON(!is_first_page(page));
 716
 717        get_zspage_mapping(page, &class_idx, &currfg);
 718        newfg = get_fullness_group(page);
 719        if (newfg == currfg)
 720                goto out;
 721
 722        remove_zspage(page, class, currfg);
 723        insert_zspage(page, class, newfg);
 724        set_zspage_mapping(page, class_idx, newfg);
 725
 726out:
 727        return newfg;
 728}
 729
 730/*
 731 * We have to decide on how many pages to link together
 732 * to form a zspage for each size class. This is important
 733 * to reduce wastage due to unusable space left at end of
 734 * each zspage which is given as:
 735 *     wastage = Zp % class_size
 736 *     usage = Zp - wastage
 737 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
 738 *
 739 * For example, for size class of 3/8 * PAGE_SIZE, we should
 740 * link together 3 PAGE_SIZE sized pages to form a zspage
 741 * since then we can perfectly fit in 8 such objects.
 742 */
 743static int get_pages_per_zspage(int class_size)
 744{
 745        int i, max_usedpc = 0;
 746        /* zspage order which gives maximum used size per KB */
 747        int max_usedpc_order = 1;
 748
 749        for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
 750                int zspage_size;
 751                int waste, usedpc;
 752
 753                zspage_size = i * PAGE_SIZE;
 754                waste = zspage_size % class_size;
 755                usedpc = (zspage_size - waste) * 100 / zspage_size;
 756
 757                if (usedpc > max_usedpc) {
 758                        max_usedpc = usedpc;
 759                        max_usedpc_order = i;
 760                }
 761        }
 762
 763        return max_usedpc_order;
 764}
 765
 766/*
 767 * A single 'zspage' is composed of many system pages which are
 768 * linked together using fields in struct page. This function finds
 769 * the first/head page, given any component page of a zspage.
 770 */
 771static struct page *get_first_page(struct page *page)
 772{
 773        if (is_first_page(page))
 774                return page;
 775        else
 776                return page->first_page;
 777}
 778
 779static struct page *get_next_page(struct page *page)
 780{
 781        struct page *next;
 782
 783        if (is_last_page(page))
 784                next = NULL;
 785        else if (is_first_page(page))
 786                next = (struct page *)page_private(page);
 787        else
 788                next = list_entry(page->lru.next, struct page, lru);
 789
 790        return next;
 791}
 792
 793/*
 794 * Encode <page, obj_idx> as a single handle value.
 795 * We use the least bit of handle for tagging.
 796 */
 797static void *location_to_obj(struct page *page, unsigned long obj_idx)
 798{
 799        unsigned long obj;
 800
 801        if (!page) {
 802                BUG_ON(obj_idx);
 803                return NULL;
 804        }
 805
 806        obj = page_to_pfn(page) << OBJ_INDEX_BITS;
 807        obj |= ((obj_idx) & OBJ_INDEX_MASK);
 808        obj <<= OBJ_TAG_BITS;
 809
 810        return (void *)obj;
 811}
 812
 813/*
 814 * Decode <page, obj_idx> pair from the given object handle. We adjust the
 815 * decoded obj_idx back to its original value since it was adjusted in
 816 * location_to_obj().
 817 */
 818static void obj_to_location(unsigned long obj, struct page **page,
 819                                unsigned long *obj_idx)
 820{
 821        obj >>= OBJ_TAG_BITS;
 822        *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
 823        *obj_idx = (obj & OBJ_INDEX_MASK);
 824}
 825
 826static unsigned long handle_to_obj(unsigned long handle)
 827{
 828        return *(unsigned long *)handle;
 829}
 830
 831static unsigned long obj_to_head(struct size_class *class, struct page *page,
 832                        void *obj)
 833{
 834        if (class->huge) {
 835                VM_BUG_ON(!is_first_page(page));
 836                return *(unsigned long *)page_private(page);
 837        } else
 838                return *(unsigned long *)obj;
 839}
 840
 841static unsigned long obj_idx_to_offset(struct page *page,
 842                                unsigned long obj_idx, int class_size)
 843{
 844        unsigned long off = 0;
 845
 846        if (!is_first_page(page))
 847                off = page->index;
 848
 849        return off + obj_idx * class_size;
 850}
 851
 852static inline int trypin_tag(unsigned long handle)
 853{
 854        unsigned long *ptr = (unsigned long *)handle;
 855
 856        return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
 857}
 858
 859static void pin_tag(unsigned long handle)
 860{
 861        while (!trypin_tag(handle));
 862}
 863
 864static void unpin_tag(unsigned long handle)
 865{
 866        unsigned long *ptr = (unsigned long *)handle;
 867
 868        clear_bit_unlock(HANDLE_PIN_BIT, ptr);
 869}
 870
 871static void reset_page(struct page *page)
 872{
 873        clear_bit(PG_private, &page->flags);
 874        clear_bit(PG_private_2, &page->flags);
 875        set_page_private(page, 0);
 876        page->mapping = NULL;
 877        page->freelist = NULL;
 878        page_mapcount_reset(page);
 879}
 880
 881static void free_zspage(struct page *first_page)
 882{
 883        struct page *nextp, *tmp, *head_extra;
 884
 885        BUG_ON(!is_first_page(first_page));
 886        BUG_ON(first_page->inuse);
 887
 888        head_extra = (struct page *)page_private(first_page);
 889
 890        reset_page(first_page);
 891        __free_page(first_page);
 892
 893        /* zspage with only 1 system page */
 894        if (!head_extra)
 895                return;
 896
 897        list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
 898                list_del(&nextp->lru);
 899                reset_page(nextp);
 900                __free_page(nextp);
 901        }
 902        reset_page(head_extra);
 903        __free_page(head_extra);
 904}
 905
 906/* Initialize a newly allocated zspage */
 907static void init_zspage(struct page *first_page, struct size_class *class)
 908{
 909        unsigned long off = 0;
 910        struct page *page = first_page;
 911
 912        BUG_ON(!is_first_page(first_page));
 913        while (page) {
 914                struct page *next_page;
 915                struct link_free *link;
 916                unsigned int i = 1;
 917                void *vaddr;
 918
 919                /*
 920                 * page->index stores offset of first object starting
 921                 * in the page. For the first page, this is always 0,
 922                 * so we use first_page->index (aka ->freelist) to store
 923                 * head of corresponding zspage's freelist.
 924                 */
 925                if (page != first_page)
 926                        page->index = off;
 927
 928                vaddr = kmap_atomic(page);
 929                link = (struct link_free *)vaddr + off / sizeof(*link);
 930
 931                while ((off += class->size) < PAGE_SIZE) {
 932                        link->next = location_to_obj(page, i++);
 933                        link += class->size / sizeof(*link);
 934                }
 935
 936                /*
 937                 * We now come to the last (full or partial) object on this
 938                 * page, which must point to the first object on the next
 939                 * page (if present)
 940                 */
 941                next_page = get_next_page(page);
 942                link->next = location_to_obj(next_page, 0);
 943                kunmap_atomic(vaddr);
 944                page = next_page;
 945                off %= PAGE_SIZE;
 946        }
 947}
 948
 949/*
 950 * Allocate a zspage for the given size class
 951 */
 952static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
 953{
 954        int i, error;
 955        struct page *first_page = NULL, *uninitialized_var(prev_page);
 956
 957        /*
 958         * Allocate individual pages and link them together as:
 959         * 1. first page->private = first sub-page
 960         * 2. all sub-pages are linked together using page->lru
 961         * 3. each sub-page is linked to the first page using page->first_page
 962         *
 963         * For each size class, First/Head pages are linked together using
 964         * page->lru. Also, we set PG_private to identify the first page
 965         * (i.e. no other sub-page has this flag set) and PG_private_2 to
 966         * identify the last page.
 967         */
 968        error = -ENOMEM;
 969        for (i = 0; i < class->pages_per_zspage; i++) {
 970                struct page *page;
 971
 972                page = alloc_page(flags);
 973                if (!page)
 974                        goto cleanup;
 975
 976                INIT_LIST_HEAD(&page->lru);
 977                if (i == 0) {   /* first page */
 978                        SetPagePrivate(page);
 979                        set_page_private(page, 0);
 980                        first_page = page;
 981                        first_page->inuse = 0;
 982                }
 983                if (i == 1)
 984                        set_page_private(first_page, (unsigned long)page);
 985                if (i >= 1)
 986                        page->first_page = first_page;
 987                if (i >= 2)
 988                        list_add(&page->lru, &prev_page->lru);
 989                if (i == class->pages_per_zspage - 1)   /* last page */
 990                        SetPagePrivate2(page);
 991                prev_page = page;
 992        }
 993
 994        init_zspage(first_page, class);
 995
 996        first_page->freelist = location_to_obj(first_page, 0);
 997        /* Maximum number of objects we can store in this zspage */
 998        first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
 999
1000        error = 0; /* Success */
1001
1002cleanup:
1003        if (unlikely(error) && first_page) {
1004                free_zspage(first_page);
1005                first_page = NULL;
1006        }
1007
1008        return first_page;
1009}
1010
1011static struct page *find_get_zspage(struct size_class *class)
1012{
1013        int i;
1014        struct page *page;
1015
1016        for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1017                page = class->fullness_list[i];
1018                if (page)
1019                        break;
1020        }
1021
1022        return page;
1023}
1024
1025#ifdef CONFIG_PGTABLE_MAPPING
1026static inline int __zs_cpu_up(struct mapping_area *area)
1027{
1028        /*
1029         * Make sure we don't leak memory if a cpu UP notification
1030         * and zs_init() race and both call zs_cpu_up() on the same cpu
1031         */
1032        if (area->vm)
1033                return 0;
1034        area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1035        if (!area->vm)
1036                return -ENOMEM;
1037        return 0;
1038}
1039
1040static inline void __zs_cpu_down(struct mapping_area *area)
1041{
1042        if (area->vm)
1043                free_vm_area(area->vm);
1044        area->vm = NULL;
1045}
1046
1047static inline void *__zs_map_object(struct mapping_area *area,
1048                                struct page *pages[2], int off, int size)
1049{
1050        BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1051        area->vm_addr = area->vm->addr;
1052        return area->vm_addr + off;
1053}
1054
1055static inline void __zs_unmap_object(struct mapping_area *area,
1056                                struct page *pages[2], int off, int size)
1057{
1058        unsigned long addr = (unsigned long)area->vm_addr;
1059
1060        unmap_kernel_range(addr, PAGE_SIZE * 2);
1061}
1062
1063#else /* CONFIG_PGTABLE_MAPPING */
1064
1065static inline int __zs_cpu_up(struct mapping_area *area)
1066{
1067        /*
1068         * Make sure we don't leak memory if a cpu UP notification
1069         * and zs_init() race and both call zs_cpu_up() on the same cpu
1070         */
1071        if (area->vm_buf)
1072                return 0;
1073        area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1074        if (!area->vm_buf)
1075                return -ENOMEM;
1076        return 0;
1077}
1078
1079static inline void __zs_cpu_down(struct mapping_area *area)
1080{
1081        kfree(area->vm_buf);
1082        area->vm_buf = NULL;
1083}
1084
1085static void *__zs_map_object(struct mapping_area *area,
1086                        struct page *pages[2], int off, int size)
1087{
1088        int sizes[2];
1089        void *addr;
1090        char *buf = area->vm_buf;
1091
1092        /* disable page faults to match kmap_atomic() return conditions */
1093        pagefault_disable();
1094
1095        /* no read fastpath */
1096        if (area->vm_mm == ZS_MM_WO)
1097                goto out;
1098
1099        sizes[0] = PAGE_SIZE - off;
1100        sizes[1] = size - sizes[0];
1101
1102        /* copy object to per-cpu buffer */
1103        addr = kmap_atomic(pages[0]);
1104        memcpy(buf, addr + off, sizes[0]);
1105        kunmap_atomic(addr);
1106        addr = kmap_atomic(pages[1]);
1107        memcpy(buf + sizes[0], addr, sizes[1]);
1108        kunmap_atomic(addr);
1109out:
1110        return area->vm_buf;
1111}
1112
1113static void __zs_unmap_object(struct mapping_area *area,
1114                        struct page *pages[2], int off, int size)
1115{
1116        int sizes[2];
1117        void *addr;
1118        char *buf;
1119
1120        /* no write fastpath */
1121        if (area->vm_mm == ZS_MM_RO)
1122                goto out;
1123
1124        buf = area->vm_buf;
1125        if (!area->huge) {
1126                buf = buf + ZS_HANDLE_SIZE;
1127                size -= ZS_HANDLE_SIZE;
1128                off += ZS_HANDLE_SIZE;
1129        }
1130
1131        sizes[0] = PAGE_SIZE - off;
1132        sizes[1] = size - sizes[0];
1133
1134        /* copy per-cpu buffer to object */
1135        addr = kmap_atomic(pages[0]);
1136        memcpy(addr + off, buf, sizes[0]);
1137        kunmap_atomic(addr);
1138        addr = kmap_atomic(pages[1]);
1139        memcpy(addr, buf + sizes[0], sizes[1]);
1140        kunmap_atomic(addr);
1141
1142out:
1143        /* enable page faults to match kunmap_atomic() return conditions */
1144        pagefault_enable();
1145}
1146
1147#endif /* CONFIG_PGTABLE_MAPPING */
1148
1149static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1150                                void *pcpu)
1151{
1152        int ret, cpu = (long)pcpu;
1153        struct mapping_area *area;
1154
1155        switch (action) {
1156        case CPU_UP_PREPARE:
1157                area = &per_cpu(zs_map_area, cpu);
1158                ret = __zs_cpu_up(area);
1159                if (ret)
1160                        return notifier_from_errno(ret);
1161                break;
1162        case CPU_DEAD:
1163        case CPU_UP_CANCELED:
1164                area = &per_cpu(zs_map_area, cpu);
1165                __zs_cpu_down(area);
1166                break;
1167        }
1168
1169        return NOTIFY_OK;
1170}
1171
1172static struct notifier_block zs_cpu_nb = {
1173        .notifier_call = zs_cpu_notifier
1174};
1175
1176static int zs_register_cpu_notifier(void)
1177{
1178        int cpu, uninitialized_var(ret);
1179
1180        cpu_notifier_register_begin();
1181
1182        __register_cpu_notifier(&zs_cpu_nb);
1183        for_each_online_cpu(cpu) {
1184                ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1185                if (notifier_to_errno(ret))
1186                        break;
1187        }
1188
1189        cpu_notifier_register_done();
1190        return notifier_to_errno(ret);
1191}
1192
1193static void zs_unregister_cpu_notifier(void)
1194{
1195        int cpu;
1196
1197        cpu_notifier_register_begin();
1198
1199        for_each_online_cpu(cpu)
1200                zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1201        __unregister_cpu_notifier(&zs_cpu_nb);
1202
1203        cpu_notifier_register_done();
1204}
1205
1206static void init_zs_size_classes(void)
1207{
1208        int nr;
1209
1210        nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1211        if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1212                nr += 1;
1213
1214        zs_size_classes = nr;
1215}
1216
1217static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1218{
1219        if (prev->pages_per_zspage != pages_per_zspage)
1220                return false;
1221
1222        if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1223                != get_maxobj_per_zspage(size, pages_per_zspage))
1224                return false;
1225
1226        return true;
1227}
1228
1229static bool zspage_full(struct page *page)
1230{
1231        BUG_ON(!is_first_page(page));
1232
1233        return page->inuse == page->objects;
1234}
1235
1236unsigned long zs_get_total_pages(struct zs_pool *pool)
1237{
1238        return atomic_long_read(&pool->pages_allocated);
1239}
1240EXPORT_SYMBOL_GPL(zs_get_total_pages);
1241
1242/**
1243 * zs_map_object - get address of allocated object from handle.
1244 * @pool: pool from which the object was allocated
1245 * @handle: handle returned from zs_malloc
1246 *
1247 * Before using an object allocated from zs_malloc, it must be mapped using
1248 * this function. When done with the object, it must be unmapped using
1249 * zs_unmap_object.
1250 *
1251 * Only one object can be mapped per cpu at a time. There is no protection
1252 * against nested mappings.
1253 *
1254 * This function returns with preemption and page faults disabled.
1255 */
1256void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1257                        enum zs_mapmode mm)
1258{
1259        struct page *page;
1260        unsigned long obj, obj_idx, off;
1261
1262        unsigned int class_idx;
1263        enum fullness_group fg;
1264        struct size_class *class;
1265        struct mapping_area *area;
1266        struct page *pages[2];
1267        void *ret;
1268
1269        BUG_ON(!handle);
1270
1271        /*
1272         * Because we use per-cpu mapping areas shared among the
1273         * pools/users, we can't allow mapping in interrupt context
1274         * because it can corrupt another users mappings.
1275         */
1276        BUG_ON(in_interrupt());
1277
1278        /* From now on, migration cannot move the object */
1279        pin_tag(handle);
1280
1281        obj = handle_to_obj(handle);
1282        obj_to_location(obj, &page, &obj_idx);
1283        get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1284        class = pool->size_class[class_idx];
1285        off = obj_idx_to_offset(page, obj_idx, class->size);
1286
1287        area = &get_cpu_var(zs_map_area);
1288        area->vm_mm = mm;
1289        if (off + class->size <= PAGE_SIZE) {
1290                /* this object is contained entirely within a page */
1291                area->vm_addr = kmap_atomic(page);
1292                ret = area->vm_addr + off;
1293                goto out;
1294        }
1295
1296        /* this object spans two pages */
1297        pages[0] = page;
1298        pages[1] = get_next_page(page);
1299        BUG_ON(!pages[1]);
1300
1301        ret = __zs_map_object(area, pages, off, class->size);
1302out:
1303        if (!class->huge)
1304                ret += ZS_HANDLE_SIZE;
1305
1306        return ret;
1307}
1308EXPORT_SYMBOL_GPL(zs_map_object);
1309
1310void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1311{
1312        struct page *page;
1313        unsigned long obj, obj_idx, off;
1314
1315        unsigned int class_idx;
1316        enum fullness_group fg;
1317        struct size_class *class;
1318        struct mapping_area *area;
1319
1320        BUG_ON(!handle);
1321
1322        obj = handle_to_obj(handle);
1323        obj_to_location(obj, &page, &obj_idx);
1324        get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1325        class = pool->size_class[class_idx];
1326        off = obj_idx_to_offset(page, obj_idx, class->size);
1327
1328        area = this_cpu_ptr(&zs_map_area);
1329        if (off + class->size <= PAGE_SIZE)
1330                kunmap_atomic(area->vm_addr);
1331        else {
1332                struct page *pages[2];
1333
1334                pages[0] = page;
1335                pages[1] = get_next_page(page);
1336                BUG_ON(!pages[1]);
1337
1338                __zs_unmap_object(area, pages, off, class->size);
1339        }
1340        put_cpu_var(zs_map_area);
1341        unpin_tag(handle);
1342}
1343EXPORT_SYMBOL_GPL(zs_unmap_object);
1344
1345static unsigned long obj_malloc(struct page *first_page,
1346                struct size_class *class, unsigned long handle)
1347{
1348        unsigned long obj;
1349        struct link_free *link;
1350
1351        struct page *m_page;
1352        unsigned long m_objidx, m_offset;
1353        void *vaddr;
1354
1355        handle |= OBJ_ALLOCATED_TAG;
1356        obj = (unsigned long)first_page->freelist;
1357        obj_to_location(obj, &m_page, &m_objidx);
1358        m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1359
1360        vaddr = kmap_atomic(m_page);
1361        link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1362        first_page->freelist = link->next;
1363        if (!class->huge)
1364                /* record handle in the header of allocated chunk */
1365                link->handle = handle;
1366        else
1367                /* record handle in first_page->private */
1368                set_page_private(first_page, handle);
1369        kunmap_atomic(vaddr);
1370        first_page->inuse++;
1371        zs_stat_inc(class, OBJ_USED, 1);
1372
1373        return obj;
1374}
1375
1376
1377/**
1378 * zs_malloc - Allocate block of given size from pool.
1379 * @pool: pool to allocate from
1380 * @size: size of block to allocate
1381 *
1382 * On success, handle to the allocated object is returned,
1383 * otherwise 0.
1384 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1385 */
1386unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1387{
1388        unsigned long handle, obj;
1389        struct size_class *class;
1390        struct page *first_page;
1391
1392        if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1393                return 0;
1394
1395        handle = alloc_handle(pool);
1396        if (!handle)
1397                return 0;
1398
1399        /* extra space in chunk to keep the handle */
1400        size += ZS_HANDLE_SIZE;
1401        class = pool->size_class[get_size_class_index(size)];
1402
1403        spin_lock(&class->lock);
1404        first_page = find_get_zspage(class);
1405
1406        if (!first_page) {
1407                spin_unlock(&class->lock);
1408                first_page = alloc_zspage(class, pool->flags);
1409                if (unlikely(!first_page)) {
1410                        free_handle(pool, handle);
1411                        return 0;
1412                }
1413
1414                set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1415                atomic_long_add(class->pages_per_zspage,
1416                                        &pool->pages_allocated);
1417
1418                spin_lock(&class->lock);
1419                zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1420                                class->size, class->pages_per_zspage));
1421        }
1422
1423        obj = obj_malloc(first_page, class, handle);
1424        /* Now move the zspage to another fullness group, if required */
1425        fix_fullness_group(class, first_page);
1426        record_obj(handle, obj);
1427        spin_unlock(&class->lock);
1428
1429        return handle;
1430}
1431EXPORT_SYMBOL_GPL(zs_malloc);
1432
1433static void obj_free(struct zs_pool *pool, struct size_class *class,
1434                        unsigned long obj)
1435{
1436        struct link_free *link;
1437        struct page *first_page, *f_page;
1438        unsigned long f_objidx, f_offset;
1439        void *vaddr;
1440        int class_idx;
1441        enum fullness_group fullness;
1442
1443        BUG_ON(!obj);
1444
1445        obj &= ~OBJ_ALLOCATED_TAG;
1446        obj_to_location(obj, &f_page, &f_objidx);
1447        first_page = get_first_page(f_page);
1448
1449        get_zspage_mapping(first_page, &class_idx, &fullness);
1450        f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1451
1452        vaddr = kmap_atomic(f_page);
1453
1454        /* Insert this object in containing zspage's freelist */
1455        link = (struct link_free *)(vaddr + f_offset);
1456        link->next = first_page->freelist;
1457        if (class->huge)
1458                set_page_private(first_page, 0);
1459        kunmap_atomic(vaddr);
1460        first_page->freelist = (void *)obj;
1461        first_page->inuse--;
1462        zs_stat_dec(class, OBJ_USED, 1);
1463}
1464
1465void zs_free(struct zs_pool *pool, unsigned long handle)
1466{
1467        struct page *first_page, *f_page;
1468        unsigned long obj, f_objidx;
1469        int class_idx;
1470        struct size_class *class;
1471        enum fullness_group fullness;
1472
1473        if (unlikely(!handle))
1474                return;
1475
1476        pin_tag(handle);
1477        obj = handle_to_obj(handle);
1478        obj_to_location(obj, &f_page, &f_objidx);
1479        first_page = get_first_page(f_page);
1480
1481        get_zspage_mapping(first_page, &class_idx, &fullness);
1482        class = pool->size_class[class_idx];
1483
1484        spin_lock(&class->lock);
1485        obj_free(pool, class, obj);
1486        fullness = fix_fullness_group(class, first_page);
1487        if (fullness == ZS_EMPTY) {
1488                zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1489                                class->size, class->pages_per_zspage));
1490                atomic_long_sub(class->pages_per_zspage,
1491                                &pool->pages_allocated);
1492                free_zspage(first_page);
1493        }
1494        spin_unlock(&class->lock);
1495        unpin_tag(handle);
1496
1497        free_handle(pool, handle);
1498}
1499EXPORT_SYMBOL_GPL(zs_free);
1500
1501static void zs_object_copy(unsigned long src, unsigned long dst,
1502                                struct size_class *class)
1503{
1504        struct page *s_page, *d_page;
1505        unsigned long s_objidx, d_objidx;
1506        unsigned long s_off, d_off;
1507        void *s_addr, *d_addr;
1508        int s_size, d_size, size;
1509        int written = 0;
1510
1511        s_size = d_size = class->size;
1512
1513        obj_to_location(src, &s_page, &s_objidx);
1514        obj_to_location(dst, &d_page, &d_objidx);
1515
1516        s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1517        d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1518
1519        if (s_off + class->size > PAGE_SIZE)
1520                s_size = PAGE_SIZE - s_off;
1521
1522        if (d_off + class->size > PAGE_SIZE)
1523                d_size = PAGE_SIZE - d_off;
1524
1525        s_addr = kmap_atomic(s_page);
1526        d_addr = kmap_atomic(d_page);
1527
1528        while (1) {
1529                size = min(s_size, d_size);
1530                memcpy(d_addr + d_off, s_addr + s_off, size);
1531                written += size;
1532
1533                if (written == class->size)
1534                        break;
1535
1536                s_off += size;
1537                s_size -= size;
1538                d_off += size;
1539                d_size -= size;
1540
1541                if (s_off >= PAGE_SIZE) {
1542                        kunmap_atomic(d_addr);
1543                        kunmap_atomic(s_addr);
1544                        s_page = get_next_page(s_page);
1545                        BUG_ON(!s_page);
1546                        s_addr = kmap_atomic(s_page);
1547                        d_addr = kmap_atomic(d_page);
1548                        s_size = class->size - written;
1549                        s_off = 0;
1550                }
1551
1552                if (d_off >= PAGE_SIZE) {
1553                        kunmap_atomic(d_addr);
1554                        d_page = get_next_page(d_page);
1555                        BUG_ON(!d_page);
1556                        d_addr = kmap_atomic(d_page);
1557                        d_size = class->size - written;
1558                        d_off = 0;
1559                }
1560        }
1561
1562        kunmap_atomic(d_addr);
1563        kunmap_atomic(s_addr);
1564}
1565
1566/*
1567 * Find alloced object in zspage from index object and
1568 * return handle.
1569 */
1570static unsigned long find_alloced_obj(struct page *page, int index,
1571                                        struct size_class *class)
1572{
1573        unsigned long head;
1574        int offset = 0;
1575        unsigned long handle = 0;
1576        void *addr = kmap_atomic(page);
1577
1578        if (!is_first_page(page))
1579                offset = page->index;
1580        offset += class->size * index;
1581
1582        while (offset < PAGE_SIZE) {
1583                head = obj_to_head(class, page, addr + offset);
1584                if (head & OBJ_ALLOCATED_TAG) {
1585                        handle = head & ~OBJ_ALLOCATED_TAG;
1586                        if (trypin_tag(handle))
1587                                break;
1588                        handle = 0;
1589                }
1590
1591                offset += class->size;
1592                index++;
1593        }
1594
1595        kunmap_atomic(addr);
1596        return handle;
1597}
1598
1599struct zs_compact_control {
1600        /* Source page for migration which could be a subpage of zspage. */
1601        struct page *s_page;
1602        /* Destination page for migration which should be a first page
1603         * of zspage. */
1604        struct page *d_page;
1605         /* Starting object index within @s_page which used for live object
1606          * in the subpage. */
1607        int index;
1608        /* how many of objects are migrated */
1609        int nr_migrated;
1610};
1611
1612static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1613                                struct zs_compact_control *cc)
1614{
1615        unsigned long used_obj, free_obj;
1616        unsigned long handle;
1617        struct page *s_page = cc->s_page;
1618        struct page *d_page = cc->d_page;
1619        unsigned long index = cc->index;
1620        int nr_migrated = 0;
1621        int ret = 0;
1622
1623        while (1) {
1624                handle = find_alloced_obj(s_page, index, class);
1625                if (!handle) {
1626                        s_page = get_next_page(s_page);
1627                        if (!s_page)
1628                                break;
1629                        index = 0;
1630                        continue;
1631                }
1632
1633                /* Stop if there is no more space */
1634                if (zspage_full(d_page)) {
1635                        unpin_tag(handle);
1636                        ret = -ENOMEM;
1637                        break;
1638                }
1639
1640                used_obj = handle_to_obj(handle);
1641                free_obj = obj_malloc(d_page, class, handle);
1642                zs_object_copy(used_obj, free_obj, class);
1643                index++;
1644                record_obj(handle, free_obj);
1645                unpin_tag(handle);
1646                obj_free(pool, class, used_obj);
1647                nr_migrated++;
1648        }
1649
1650        /* Remember last position in this iteration */
1651        cc->s_page = s_page;
1652        cc->index = index;
1653        cc->nr_migrated = nr_migrated;
1654
1655        return ret;
1656}
1657
1658static struct page *alloc_target_page(struct size_class *class)
1659{
1660        int i;
1661        struct page *page;
1662
1663        for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1664                page = class->fullness_list[i];
1665                if (page) {
1666                        remove_zspage(page, class, i);
1667                        break;
1668                }
1669        }
1670
1671        return page;
1672}
1673
1674static void putback_zspage(struct zs_pool *pool, struct size_class *class,
1675                                struct page *first_page)
1676{
1677        enum fullness_group fullness;
1678
1679        BUG_ON(!is_first_page(first_page));
1680
1681        fullness = get_fullness_group(first_page);
1682        insert_zspage(first_page, class, fullness);
1683        set_zspage_mapping(first_page, class->index, fullness);
1684
1685        if (fullness == ZS_EMPTY) {
1686                zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1687                        class->size, class->pages_per_zspage));
1688                atomic_long_sub(class->pages_per_zspage,
1689                                &pool->pages_allocated);
1690
1691                free_zspage(first_page);
1692        }
1693}
1694
1695static struct page *isolate_source_page(struct size_class *class)
1696{
1697        struct page *page;
1698
1699        page = class->fullness_list[ZS_ALMOST_EMPTY];
1700        if (page)
1701                remove_zspage(page, class, ZS_ALMOST_EMPTY);
1702
1703        return page;
1704}
1705
1706static unsigned long __zs_compact(struct zs_pool *pool,
1707                                struct size_class *class)
1708{
1709        int nr_to_migrate;
1710        struct zs_compact_control cc;
1711        struct page *src_page;
1712        struct page *dst_page = NULL;
1713        unsigned long nr_total_migrated = 0;
1714
1715        spin_lock(&class->lock);
1716        while ((src_page = isolate_source_page(class))) {
1717
1718                BUG_ON(!is_first_page(src_page));
1719
1720                /* The goal is to migrate all live objects in source page */
1721                nr_to_migrate = src_page->inuse;
1722                cc.index = 0;
1723                cc.s_page = src_page;
1724
1725                while ((dst_page = alloc_target_page(class))) {
1726                        cc.d_page = dst_page;
1727                        /*
1728                         * If there is no more space in dst_page, try to
1729                         * allocate another zspage.
1730                         */
1731                        if (!migrate_zspage(pool, class, &cc))
1732                                break;
1733
1734                        putback_zspage(pool, class, dst_page);
1735                        nr_total_migrated += cc.nr_migrated;
1736                        nr_to_migrate -= cc.nr_migrated;
1737                }
1738
1739                /* Stop if we couldn't find slot */
1740                if (dst_page == NULL)
1741                        break;
1742
1743                putback_zspage(pool, class, dst_page);
1744                putback_zspage(pool, class, src_page);
1745                spin_unlock(&class->lock);
1746                nr_total_migrated += cc.nr_migrated;
1747                cond_resched();
1748                spin_lock(&class->lock);
1749        }
1750
1751        if (src_page)
1752                putback_zspage(pool, class, src_page);
1753
1754        spin_unlock(&class->lock);
1755
1756        return nr_total_migrated;
1757}
1758
1759unsigned long zs_compact(struct zs_pool *pool)
1760{
1761        int i;
1762        unsigned long nr_migrated = 0;
1763        struct size_class *class;
1764
1765        for (i = zs_size_classes - 1; i >= 0; i--) {
1766                class = pool->size_class[i];
1767                if (!class)
1768                        continue;
1769                if (class->index != i)
1770                        continue;
1771                nr_migrated += __zs_compact(pool, class);
1772        }
1773
1774        return nr_migrated;
1775}
1776EXPORT_SYMBOL_GPL(zs_compact);
1777
1778/**
1779 * zs_create_pool - Creates an allocation pool to work from.
1780 * @flags: allocation flags used to allocate pool metadata
1781 *
1782 * This function must be called before anything when using
1783 * the zsmalloc allocator.
1784 *
1785 * On success, a pointer to the newly created pool is returned,
1786 * otherwise NULL.
1787 */
1788struct zs_pool *zs_create_pool(char *name, gfp_t flags)
1789{
1790        int i;
1791        struct zs_pool *pool;
1792        struct size_class *prev_class = NULL;
1793
1794        pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1795        if (!pool)
1796                return NULL;
1797
1798        pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1799                        GFP_KERNEL);
1800        if (!pool->size_class) {
1801                kfree(pool);
1802                return NULL;
1803        }
1804
1805        pool->name = kstrdup(name, GFP_KERNEL);
1806        if (!pool->name)
1807                goto err;
1808
1809        if (create_handle_cache(pool))
1810                goto err;
1811
1812        /*
1813         * Iterate reversly, because, size of size_class that we want to use
1814         * for merging should be larger or equal to current size.
1815         */
1816        for (i = zs_size_classes - 1; i >= 0; i--) {
1817                int size;
1818                int pages_per_zspage;
1819                struct size_class *class;
1820
1821                size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1822                if (size > ZS_MAX_ALLOC_SIZE)
1823                        size = ZS_MAX_ALLOC_SIZE;
1824                pages_per_zspage = get_pages_per_zspage(size);
1825
1826                /*
1827                 * size_class is used for normal zsmalloc operation such
1828                 * as alloc/free for that size. Although it is natural that we
1829                 * have one size_class for each size, there is a chance that we
1830                 * can get more memory utilization if we use one size_class for
1831                 * many different sizes whose size_class have same
1832                 * characteristics. So, we makes size_class point to
1833                 * previous size_class if possible.
1834                 */
1835                if (prev_class) {
1836                        if (can_merge(prev_class, size, pages_per_zspage)) {
1837                                pool->size_class[i] = prev_class;
1838                                continue;
1839                        }
1840                }
1841
1842                class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1843                if (!class)
1844                        goto err;
1845
1846                class->size = size;
1847                class->index = i;
1848                class->pages_per_zspage = pages_per_zspage;
1849                if (pages_per_zspage == 1 &&
1850                        get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1851                        class->huge = true;
1852                spin_lock_init(&class->lock);
1853                pool->size_class[i] = class;
1854
1855                prev_class = class;
1856        }
1857
1858        pool->flags = flags;
1859
1860        if (zs_pool_stat_create(name, pool))
1861                goto err;
1862
1863        return pool;
1864
1865err:
1866        zs_destroy_pool(pool);
1867        return NULL;
1868}
1869EXPORT_SYMBOL_GPL(zs_create_pool);
1870
1871void zs_destroy_pool(struct zs_pool *pool)
1872{
1873        int i;
1874
1875        zs_pool_stat_destroy(pool);
1876
1877        for (i = 0; i < zs_size_classes; i++) {
1878                int fg;
1879                struct size_class *class = pool->size_class[i];
1880
1881                if (!class)
1882                        continue;
1883
1884                if (class->index != i)
1885                        continue;
1886
1887                for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1888                        if (class->fullness_list[fg]) {
1889                                pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1890                                        class->size, fg);
1891                        }
1892                }
1893                kfree(class);
1894        }
1895
1896        destroy_handle_cache(pool);
1897        kfree(pool->size_class);
1898        kfree(pool->name);
1899        kfree(pool);
1900}
1901EXPORT_SYMBOL_GPL(zs_destroy_pool);
1902
1903static int __init zs_init(void)
1904{
1905        int ret = zs_register_cpu_notifier();
1906
1907        if (ret)
1908                goto notifier_fail;
1909
1910        init_zs_size_classes();
1911
1912#ifdef CONFIG_ZPOOL
1913        zpool_register_driver(&zs_zpool_driver);
1914#endif
1915
1916        ret = zs_stat_init();
1917        if (ret) {
1918                pr_err("zs stat initialization failed\n");
1919                goto stat_fail;
1920        }
1921        return 0;
1922
1923stat_fail:
1924#ifdef CONFIG_ZPOOL
1925        zpool_unregister_driver(&zs_zpool_driver);
1926#endif
1927notifier_fail:
1928        zs_unregister_cpu_notifier();
1929
1930        return ret;
1931}
1932
1933static void __exit zs_exit(void)
1934{
1935#ifdef CONFIG_ZPOOL
1936        zpool_unregister_driver(&zs_zpool_driver);
1937#endif
1938        zs_unregister_cpu_notifier();
1939
1940        zs_stat_exit();
1941}
1942
1943module_init(zs_init);
1944module_exit(zs_exit);
1945
1946MODULE_LICENSE("Dual BSD/GPL");
1947MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1948