linux/net/core/skbuff.c
<<
>>
Prefs
   1/*
   2 *      Routines having to do with the 'struct sk_buff' memory handlers.
   3 *
   4 *      Authors:        Alan Cox <alan@lxorguk.ukuu.org.uk>
   5 *                      Florian La Roche <rzsfl@rz.uni-sb.de>
   6 *
   7 *      Fixes:
   8 *              Alan Cox        :       Fixed the worst of the load
   9 *                                      balancer bugs.
  10 *              Dave Platt      :       Interrupt stacking fix.
  11 *      Richard Kooijman        :       Timestamp fixes.
  12 *              Alan Cox        :       Changed buffer format.
  13 *              Alan Cox        :       destructor hook for AF_UNIX etc.
  14 *              Linus Torvalds  :       Better skb_clone.
  15 *              Alan Cox        :       Added skb_copy.
  16 *              Alan Cox        :       Added all the changed routines Linus
  17 *                                      only put in the headers
  18 *              Ray VanTassle   :       Fixed --skb->lock in free
  19 *              Alan Cox        :       skb_copy copy arp field
  20 *              Andi Kleen      :       slabified it.
  21 *              Robert Olsson   :       Removed skb_head_pool
  22 *
  23 *      NOTE:
  24 *              The __skb_ routines should be called with interrupts
  25 *      disabled, or you better be *real* sure that the operation is atomic
  26 *      with respect to whatever list is being frobbed (e.g. via lock_sock()
  27 *      or via disabling bottom half handlers, etc).
  28 *
  29 *      This program is free software; you can redistribute it and/or
  30 *      modify it under the terms of the GNU General Public License
  31 *      as published by the Free Software Foundation; either version
  32 *      2 of the License, or (at your option) any later version.
  33 */
  34
  35/*
  36 *      The functions in this file will not compile correctly with gcc 2.4.x
  37 */
  38
  39#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  40
  41#include <linux/module.h>
  42#include <linux/types.h>
  43#include <linux/kernel.h>
  44#include <linux/kmemcheck.h>
  45#include <linux/mm.h>
  46#include <linux/interrupt.h>
  47#include <linux/in.h>
  48#include <linux/inet.h>
  49#include <linux/slab.h>
  50#include <linux/tcp.h>
  51#include <linux/udp.h>
  52#include <linux/netdevice.h>
  53#ifdef CONFIG_NET_CLS_ACT
  54#include <net/pkt_sched.h>
  55#endif
  56#include <linux/string.h>
  57#include <linux/skbuff.h>
  58#include <linux/splice.h>
  59#include <linux/cache.h>
  60#include <linux/rtnetlink.h>
  61#include <linux/init.h>
  62#include <linux/scatterlist.h>
  63#include <linux/errqueue.h>
  64#include <linux/prefetch.h>
  65#include <linux/if_vlan.h>
  66
  67#include <net/protocol.h>
  68#include <net/dst.h>
  69#include <net/sock.h>
  70#include <net/checksum.h>
  71#include <net/ip6_checksum.h>
  72#include <net/xfrm.h>
  73
  74#include <asm/uaccess.h>
  75#include <trace/events/skb.h>
  76#include <linux/highmem.h>
  77#include <linux/capability.h>
  78#include <linux/user_namespace.h>
  79
  80struct kmem_cache *skbuff_head_cache __read_mostly;
  81static struct kmem_cache *skbuff_fclone_cache __read_mostly;
  82
  83/**
  84 *      skb_panic - private function for out-of-line support
  85 *      @skb:   buffer
  86 *      @sz:    size
  87 *      @addr:  address
  88 *      @msg:   skb_over_panic or skb_under_panic
  89 *
  90 *      Out-of-line support for skb_put() and skb_push().
  91 *      Called via the wrapper skb_over_panic() or skb_under_panic().
  92 *      Keep out of line to prevent kernel bloat.
  93 *      __builtin_return_address is not used because it is not always reliable.
  94 */
  95static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
  96                      const char msg[])
  97{
  98        pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
  99                 msg, addr, skb->len, sz, skb->head, skb->data,
 100                 (unsigned long)skb->tail, (unsigned long)skb->end,
 101                 skb->dev ? skb->dev->name : "<NULL>");
 102        BUG();
 103}
 104
 105static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 106{
 107        skb_panic(skb, sz, addr, __func__);
 108}
 109
 110static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 111{
 112        skb_panic(skb, sz, addr, __func__);
 113}
 114
 115/*
 116 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
 117 * the caller if emergency pfmemalloc reserves are being used. If it is and
 118 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
 119 * may be used. Otherwise, the packet data may be discarded until enough
 120 * memory is free
 121 */
 122#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
 123         __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
 124
 125static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
 126                               unsigned long ip, bool *pfmemalloc)
 127{
 128        void *obj;
 129        bool ret_pfmemalloc = false;
 130
 131        /*
 132         * Try a regular allocation, when that fails and we're not entitled
 133         * to the reserves, fail.
 134         */
 135        obj = kmalloc_node_track_caller(size,
 136                                        flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
 137                                        node);
 138        if (obj || !(gfp_pfmemalloc_allowed(flags)))
 139                goto out;
 140
 141        /* Try again but now we are using pfmemalloc reserves */
 142        ret_pfmemalloc = true;
 143        obj = kmalloc_node_track_caller(size, flags, node);
 144
 145out:
 146        if (pfmemalloc)
 147                *pfmemalloc = ret_pfmemalloc;
 148
 149        return obj;
 150}
 151
 152/*      Allocate a new skbuff. We do this ourselves so we can fill in a few
 153 *      'private' fields and also do memory statistics to find all the
 154 *      [BEEP] leaks.
 155 *
 156 */
 157
 158struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
 159{
 160        struct sk_buff *skb;
 161
 162        /* Get the HEAD */
 163        skb = kmem_cache_alloc_node(skbuff_head_cache,
 164                                    gfp_mask & ~__GFP_DMA, node);
 165        if (!skb)
 166                goto out;
 167
 168        /*
 169         * Only clear those fields we need to clear, not those that we will
 170         * actually initialise below. Hence, don't put any more fields after
 171         * the tail pointer in struct sk_buff!
 172         */
 173        memset(skb, 0, offsetof(struct sk_buff, tail));
 174        skb->head = NULL;
 175        skb->truesize = sizeof(struct sk_buff);
 176        atomic_set(&skb->users, 1);
 177
 178        skb->mac_header = (typeof(skb->mac_header))~0U;
 179out:
 180        return skb;
 181}
 182
 183/**
 184 *      __alloc_skb     -       allocate a network buffer
 185 *      @size: size to allocate
 186 *      @gfp_mask: allocation mask
 187 *      @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
 188 *              instead of head cache and allocate a cloned (child) skb.
 189 *              If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
 190 *              allocations in case the data is required for writeback
 191 *      @node: numa node to allocate memory on
 192 *
 193 *      Allocate a new &sk_buff. The returned buffer has no headroom and a
 194 *      tail room of at least size bytes. The object has a reference count
 195 *      of one. The return is the buffer. On a failure the return is %NULL.
 196 *
 197 *      Buffers may only be allocated from interrupts using a @gfp_mask of
 198 *      %GFP_ATOMIC.
 199 */
 200struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
 201                            int flags, int node)
 202{
 203        struct kmem_cache *cache;
 204        struct skb_shared_info *shinfo;
 205        struct sk_buff *skb;
 206        u8 *data;
 207        bool pfmemalloc;
 208
 209        cache = (flags & SKB_ALLOC_FCLONE)
 210                ? skbuff_fclone_cache : skbuff_head_cache;
 211
 212        if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
 213                gfp_mask |= __GFP_MEMALLOC;
 214
 215        /* Get the HEAD */
 216        skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
 217        if (!skb)
 218                goto out;
 219        prefetchw(skb);
 220
 221        /* We do our best to align skb_shared_info on a separate cache
 222         * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
 223         * aligned memory blocks, unless SLUB/SLAB debug is enabled.
 224         * Both skb->head and skb_shared_info are cache line aligned.
 225         */
 226        size = SKB_DATA_ALIGN(size);
 227        size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 228        data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
 229        if (!data)
 230                goto nodata;
 231        /* kmalloc(size) might give us more room than requested.
 232         * Put skb_shared_info exactly at the end of allocated zone,
 233         * to allow max possible filling before reallocation.
 234         */
 235        size = SKB_WITH_OVERHEAD(ksize(data));
 236        prefetchw(data + size);
 237
 238        /*
 239         * Only clear those fields we need to clear, not those that we will
 240         * actually initialise below. Hence, don't put any more fields after
 241         * the tail pointer in struct sk_buff!
 242         */
 243        memset(skb, 0, offsetof(struct sk_buff, tail));
 244        /* Account for allocated memory : skb + skb->head */
 245        skb->truesize = SKB_TRUESIZE(size);
 246        skb->pfmemalloc = pfmemalloc;
 247        atomic_set(&skb->users, 1);
 248        skb->head = data;
 249        skb->data = data;
 250        skb_reset_tail_pointer(skb);
 251        skb->end = skb->tail + size;
 252        skb->mac_header = (typeof(skb->mac_header))~0U;
 253        skb->transport_header = (typeof(skb->transport_header))~0U;
 254
 255        /* make sure we initialize shinfo sequentially */
 256        shinfo = skb_shinfo(skb);
 257        memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 258        atomic_set(&shinfo->dataref, 1);
 259        kmemcheck_annotate_variable(shinfo->destructor_arg);
 260
 261        if (flags & SKB_ALLOC_FCLONE) {
 262                struct sk_buff_fclones *fclones;
 263
 264                fclones = container_of(skb, struct sk_buff_fclones, skb1);
 265
 266                kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
 267                skb->fclone = SKB_FCLONE_ORIG;
 268                atomic_set(&fclones->fclone_ref, 1);
 269
 270                fclones->skb2.fclone = SKB_FCLONE_CLONE;
 271                fclones->skb2.pfmemalloc = pfmemalloc;
 272        }
 273out:
 274        return skb;
 275nodata:
 276        kmem_cache_free(cache, skb);
 277        skb = NULL;
 278        goto out;
 279}
 280EXPORT_SYMBOL(__alloc_skb);
 281
 282/**
 283 * __build_skb - build a network buffer
 284 * @data: data buffer provided by caller
 285 * @frag_size: size of data, or 0 if head was kmalloced
 286 *
 287 * Allocate a new &sk_buff. Caller provides space holding head and
 288 * skb_shared_info. @data must have been allocated by kmalloc() only if
 289 * @frag_size is 0, otherwise data should come from the page allocator
 290 *  or vmalloc()
 291 * The return is the new skb buffer.
 292 * On a failure the return is %NULL, and @data is not freed.
 293 * Notes :
 294 *  Before IO, driver allocates only data buffer where NIC put incoming frame
 295 *  Driver should add room at head (NET_SKB_PAD) and
 296 *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
 297 *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
 298 *  before giving packet to stack.
 299 *  RX rings only contains data buffers, not full skbs.
 300 */
 301struct sk_buff *__build_skb(void *data, unsigned int frag_size)
 302{
 303        struct skb_shared_info *shinfo;
 304        struct sk_buff *skb;
 305        unsigned int size = frag_size ? : ksize(data);
 306
 307        skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
 308        if (!skb)
 309                return NULL;
 310
 311        size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 312
 313        memset(skb, 0, offsetof(struct sk_buff, tail));
 314        skb->truesize = SKB_TRUESIZE(size);
 315        atomic_set(&skb->users, 1);
 316        skb->head = data;
 317        skb->data = data;
 318        skb_reset_tail_pointer(skb);
 319        skb->end = skb->tail + size;
 320        skb->mac_header = (typeof(skb->mac_header))~0U;
 321        skb->transport_header = (typeof(skb->transport_header))~0U;
 322
 323        /* make sure we initialize shinfo sequentially */
 324        shinfo = skb_shinfo(skb);
 325        memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 326        atomic_set(&shinfo->dataref, 1);
 327        kmemcheck_annotate_variable(shinfo->destructor_arg);
 328
 329        return skb;
 330}
 331
 332/* build_skb() is wrapper over __build_skb(), that specifically
 333 * takes care of skb->head and skb->pfmemalloc
 334 * This means that if @frag_size is not zero, then @data must be backed
 335 * by a page fragment, not kmalloc() or vmalloc()
 336 */
 337struct sk_buff *build_skb(void *data, unsigned int frag_size)
 338{
 339        struct sk_buff *skb = __build_skb(data, frag_size);
 340
 341        if (skb && frag_size) {
 342                skb->head_frag = 1;
 343                if (virt_to_head_page(data)->pfmemalloc)
 344                        skb->pfmemalloc = 1;
 345        }
 346        return skb;
 347}
 348EXPORT_SYMBOL(build_skb);
 349
 350struct netdev_alloc_cache {
 351        struct page_frag        frag;
 352        /* we maintain a pagecount bias, so that we dont dirty cache line
 353         * containing page->_count every time we allocate a fragment.
 354         */
 355        unsigned int            pagecnt_bias;
 356};
 357static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
 358static DEFINE_PER_CPU(struct netdev_alloc_cache, napi_alloc_cache);
 359
 360static struct page *__page_frag_refill(struct netdev_alloc_cache *nc,
 361                                       gfp_t gfp_mask)
 362{
 363        const unsigned int order = NETDEV_FRAG_PAGE_MAX_ORDER;
 364        struct page *page = NULL;
 365        gfp_t gfp = gfp_mask;
 366
 367        if (order) {
 368                gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
 369                            __GFP_NOMEMALLOC;
 370                page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
 371                nc->frag.size = PAGE_SIZE << (page ? order : 0);
 372        }
 373
 374        if (unlikely(!page))
 375                page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
 376
 377        nc->frag.page = page;
 378
 379        return page;
 380}
 381
 382static void *__alloc_page_frag(struct netdev_alloc_cache __percpu *cache,
 383                               unsigned int fragsz, gfp_t gfp_mask)
 384{
 385        struct netdev_alloc_cache *nc = this_cpu_ptr(cache);
 386        struct page *page = nc->frag.page;
 387        unsigned int size;
 388        int offset;
 389
 390        if (unlikely(!page)) {
 391refill:
 392                page = __page_frag_refill(nc, gfp_mask);
 393                if (!page)
 394                        return NULL;
 395
 396                /* if size can vary use frag.size else just use PAGE_SIZE */
 397                size = NETDEV_FRAG_PAGE_MAX_ORDER ? nc->frag.size : PAGE_SIZE;
 398
 399                /* Even if we own the page, we do not use atomic_set().
 400                 * This would break get_page_unless_zero() users.
 401                 */
 402                atomic_add(size - 1, &page->_count);
 403
 404                /* reset page count bias and offset to start of new frag */
 405                nc->pagecnt_bias = size;
 406                nc->frag.offset = size;
 407        }
 408
 409        offset = nc->frag.offset - fragsz;
 410        if (unlikely(offset < 0)) {
 411                if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
 412                        goto refill;
 413
 414                /* if size can vary use frag.size else just use PAGE_SIZE */
 415                size = NETDEV_FRAG_PAGE_MAX_ORDER ? nc->frag.size : PAGE_SIZE;
 416
 417                /* OK, page count is 0, we can safely set it */
 418                atomic_set(&page->_count, size);
 419
 420                /* reset page count bias and offset to start of new frag */
 421                nc->pagecnt_bias = size;
 422                offset = size - fragsz;
 423        }
 424
 425        nc->pagecnt_bias--;
 426        nc->frag.offset = offset;
 427
 428        return page_address(page) + offset;
 429}
 430
 431static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
 432{
 433        unsigned long flags;
 434        void *data;
 435
 436        local_irq_save(flags);
 437        data = __alloc_page_frag(&netdev_alloc_cache, fragsz, gfp_mask);
 438        local_irq_restore(flags);
 439        return data;
 440}
 441
 442/**
 443 * netdev_alloc_frag - allocate a page fragment
 444 * @fragsz: fragment size
 445 *
 446 * Allocates a frag from a page for receive buffer.
 447 * Uses GFP_ATOMIC allocations.
 448 */
 449void *netdev_alloc_frag(unsigned int fragsz)
 450{
 451        return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
 452}
 453EXPORT_SYMBOL(netdev_alloc_frag);
 454
 455static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
 456{
 457        return __alloc_page_frag(&napi_alloc_cache, fragsz, gfp_mask);
 458}
 459
 460void *napi_alloc_frag(unsigned int fragsz)
 461{
 462        return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
 463}
 464EXPORT_SYMBOL(napi_alloc_frag);
 465
 466/**
 467 *      __alloc_rx_skb - allocate an skbuff for rx
 468 *      @length: length to allocate
 469 *      @gfp_mask: get_free_pages mask, passed to alloc_skb
 470 *      @flags: If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
 471 *              allocations in case we have to fallback to __alloc_skb()
 472 *              If SKB_ALLOC_NAPI is set, page fragment will be allocated
 473 *              from napi_cache instead of netdev_cache.
 474 *
 475 *      Allocate a new &sk_buff and assign it a usage count of one. The
 476 *      buffer has unspecified headroom built in. Users should allocate
 477 *      the headroom they think they need without accounting for the
 478 *      built in space. The built in space is used for optimisations.
 479 *
 480 *      %NULL is returned if there is no free memory.
 481 */
 482static struct sk_buff *__alloc_rx_skb(unsigned int length, gfp_t gfp_mask,
 483                                      int flags)
 484{
 485        struct sk_buff *skb = NULL;
 486        unsigned int fragsz = SKB_DATA_ALIGN(length) +
 487                              SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 488
 489        if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
 490                void *data;
 491
 492                if (sk_memalloc_socks())
 493                        gfp_mask |= __GFP_MEMALLOC;
 494
 495                data = (flags & SKB_ALLOC_NAPI) ?
 496                        __napi_alloc_frag(fragsz, gfp_mask) :
 497                        __netdev_alloc_frag(fragsz, gfp_mask);
 498
 499                if (likely(data)) {
 500                        skb = build_skb(data, fragsz);
 501                        if (unlikely(!skb))
 502                                put_page(virt_to_head_page(data));
 503                }
 504        } else {
 505                skb = __alloc_skb(length, gfp_mask,
 506                                  SKB_ALLOC_RX, NUMA_NO_NODE);
 507        }
 508        return skb;
 509}
 510
 511/**
 512 *      __netdev_alloc_skb - allocate an skbuff for rx on a specific device
 513 *      @dev: network device to receive on
 514 *      @length: length to allocate
 515 *      @gfp_mask: get_free_pages mask, passed to alloc_skb
 516 *
 517 *      Allocate a new &sk_buff and assign it a usage count of one. The
 518 *      buffer has NET_SKB_PAD headroom built in. Users should allocate
 519 *      the headroom they think they need without accounting for the
 520 *      built in space. The built in space is used for optimisations.
 521 *
 522 *      %NULL is returned if there is no free memory.
 523 */
 524struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
 525                                   unsigned int length, gfp_t gfp_mask)
 526{
 527        struct sk_buff *skb;
 528
 529        length += NET_SKB_PAD;
 530        skb = __alloc_rx_skb(length, gfp_mask, 0);
 531
 532        if (likely(skb)) {
 533                skb_reserve(skb, NET_SKB_PAD);
 534                skb->dev = dev;
 535        }
 536
 537        return skb;
 538}
 539EXPORT_SYMBOL(__netdev_alloc_skb);
 540
 541/**
 542 *      __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
 543 *      @napi: napi instance this buffer was allocated for
 544 *      @length: length to allocate
 545 *      @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
 546 *
 547 *      Allocate a new sk_buff for use in NAPI receive.  This buffer will
 548 *      attempt to allocate the head from a special reserved region used
 549 *      only for NAPI Rx allocation.  By doing this we can save several
 550 *      CPU cycles by avoiding having to disable and re-enable IRQs.
 551 *
 552 *      %NULL is returned if there is no free memory.
 553 */
 554struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
 555                                 unsigned int length, gfp_t gfp_mask)
 556{
 557        struct sk_buff *skb;
 558
 559        length += NET_SKB_PAD + NET_IP_ALIGN;
 560        skb = __alloc_rx_skb(length, gfp_mask, SKB_ALLOC_NAPI);
 561
 562        if (likely(skb)) {
 563                skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
 564                skb->dev = napi->dev;
 565        }
 566
 567        return skb;
 568}
 569EXPORT_SYMBOL(__napi_alloc_skb);
 570
 571void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
 572                     int size, unsigned int truesize)
 573{
 574        skb_fill_page_desc(skb, i, page, off, size);
 575        skb->len += size;
 576        skb->data_len += size;
 577        skb->truesize += truesize;
 578}
 579EXPORT_SYMBOL(skb_add_rx_frag);
 580
 581void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
 582                          unsigned int truesize)
 583{
 584        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 585
 586        skb_frag_size_add(frag, size);
 587        skb->len += size;
 588        skb->data_len += size;
 589        skb->truesize += truesize;
 590}
 591EXPORT_SYMBOL(skb_coalesce_rx_frag);
 592
 593static void skb_drop_list(struct sk_buff **listp)
 594{
 595        kfree_skb_list(*listp);
 596        *listp = NULL;
 597}
 598
 599static inline void skb_drop_fraglist(struct sk_buff *skb)
 600{
 601        skb_drop_list(&skb_shinfo(skb)->frag_list);
 602}
 603
 604static void skb_clone_fraglist(struct sk_buff *skb)
 605{
 606        struct sk_buff *list;
 607
 608        skb_walk_frags(skb, list)
 609                skb_get(list);
 610}
 611
 612static void skb_free_head(struct sk_buff *skb)
 613{
 614        if (skb->head_frag)
 615                put_page(virt_to_head_page(skb->head));
 616        else
 617                kfree(skb->head);
 618}
 619
 620static void skb_release_data(struct sk_buff *skb)
 621{
 622        struct skb_shared_info *shinfo = skb_shinfo(skb);
 623        int i;
 624
 625        if (skb->cloned &&
 626            atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
 627                              &shinfo->dataref))
 628                return;
 629
 630        for (i = 0; i < shinfo->nr_frags; i++)
 631                __skb_frag_unref(&shinfo->frags[i]);
 632
 633        /*
 634         * If skb buf is from userspace, we need to notify the caller
 635         * the lower device DMA has done;
 636         */
 637        if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
 638                struct ubuf_info *uarg;
 639
 640                uarg = shinfo->destructor_arg;
 641                if (uarg->callback)
 642                        uarg->callback(uarg, true);
 643        }
 644
 645        if (shinfo->frag_list)
 646                kfree_skb_list(shinfo->frag_list);
 647
 648        skb_free_head(skb);
 649}
 650
 651/*
 652 *      Free an skbuff by memory without cleaning the state.
 653 */
 654static void kfree_skbmem(struct sk_buff *skb)
 655{
 656        struct sk_buff_fclones *fclones;
 657
 658        switch (skb->fclone) {
 659        case SKB_FCLONE_UNAVAILABLE:
 660                kmem_cache_free(skbuff_head_cache, skb);
 661                return;
 662
 663        case SKB_FCLONE_ORIG:
 664                fclones = container_of(skb, struct sk_buff_fclones, skb1);
 665
 666                /* We usually free the clone (TX completion) before original skb
 667                 * This test would have no chance to be true for the clone,
 668                 * while here, branch prediction will be good.
 669                 */
 670                if (atomic_read(&fclones->fclone_ref) == 1)
 671                        goto fastpath;
 672                break;
 673
 674        default: /* SKB_FCLONE_CLONE */
 675                fclones = container_of(skb, struct sk_buff_fclones, skb2);
 676                break;
 677        }
 678        if (!atomic_dec_and_test(&fclones->fclone_ref))
 679                return;
 680fastpath:
 681        kmem_cache_free(skbuff_fclone_cache, fclones);
 682}
 683
 684static void skb_release_head_state(struct sk_buff *skb)
 685{
 686        skb_dst_drop(skb);
 687#ifdef CONFIG_XFRM
 688        secpath_put(skb->sp);
 689#endif
 690        if (skb->destructor) {
 691                WARN_ON(in_irq());
 692                skb->destructor(skb);
 693        }
 694#if IS_ENABLED(CONFIG_NF_CONNTRACK)
 695        nf_conntrack_put(skb->nfct);
 696#endif
 697#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
 698        nf_bridge_put(skb->nf_bridge);
 699#endif
 700}
 701
 702/* Free everything but the sk_buff shell. */
 703static void skb_release_all(struct sk_buff *skb)
 704{
 705        skb_release_head_state(skb);
 706        if (likely(skb->head))
 707                skb_release_data(skb);
 708}
 709
 710/**
 711 *      __kfree_skb - private function
 712 *      @skb: buffer
 713 *
 714 *      Free an sk_buff. Release anything attached to the buffer.
 715 *      Clean the state. This is an internal helper function. Users should
 716 *      always call kfree_skb
 717 */
 718
 719void __kfree_skb(struct sk_buff *skb)
 720{
 721        skb_release_all(skb);
 722        kfree_skbmem(skb);
 723}
 724EXPORT_SYMBOL(__kfree_skb);
 725
 726/**
 727 *      kfree_skb - free an sk_buff
 728 *      @skb: buffer to free
 729 *
 730 *      Drop a reference to the buffer and free it if the usage count has
 731 *      hit zero.
 732 */
 733void kfree_skb(struct sk_buff *skb)
 734{
 735        if (unlikely(!skb))
 736                return;
 737        if (likely(atomic_read(&skb->users) == 1))
 738                smp_rmb();
 739        else if (likely(!atomic_dec_and_test(&skb->users)))
 740                return;
 741        trace_kfree_skb(skb, __builtin_return_address(0));
 742        __kfree_skb(skb);
 743}
 744EXPORT_SYMBOL(kfree_skb);
 745
 746void kfree_skb_list(struct sk_buff *segs)
 747{
 748        while (segs) {
 749                struct sk_buff *next = segs->next;
 750
 751                kfree_skb(segs);
 752                segs = next;
 753        }
 754}
 755EXPORT_SYMBOL(kfree_skb_list);
 756
 757/**
 758 *      skb_tx_error - report an sk_buff xmit error
 759 *      @skb: buffer that triggered an error
 760 *
 761 *      Report xmit error if a device callback is tracking this skb.
 762 *      skb must be freed afterwards.
 763 */
 764void skb_tx_error(struct sk_buff *skb)
 765{
 766        if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
 767                struct ubuf_info *uarg;
 768
 769                uarg = skb_shinfo(skb)->destructor_arg;
 770                if (uarg->callback)
 771                        uarg->callback(uarg, false);
 772                skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
 773        }
 774}
 775EXPORT_SYMBOL(skb_tx_error);
 776
 777/**
 778 *      consume_skb - free an skbuff
 779 *      @skb: buffer to free
 780 *
 781 *      Drop a ref to the buffer and free it if the usage count has hit zero
 782 *      Functions identically to kfree_skb, but kfree_skb assumes that the frame
 783 *      is being dropped after a failure and notes that
 784 */
 785void consume_skb(struct sk_buff *skb)
 786{
 787        if (unlikely(!skb))
 788                return;
 789        if (likely(atomic_read(&skb->users) == 1))
 790                smp_rmb();
 791        else if (likely(!atomic_dec_and_test(&skb->users)))
 792                return;
 793        trace_consume_skb(skb);
 794        __kfree_skb(skb);
 795}
 796EXPORT_SYMBOL(consume_skb);
 797
 798/* Make sure a field is enclosed inside headers_start/headers_end section */
 799#define CHECK_SKB_FIELD(field) \
 800        BUILD_BUG_ON(offsetof(struct sk_buff, field) <          \
 801                     offsetof(struct sk_buff, headers_start));  \
 802        BUILD_BUG_ON(offsetof(struct sk_buff, field) >          \
 803                     offsetof(struct sk_buff, headers_end));    \
 804
 805static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
 806{
 807        new->tstamp             = old->tstamp;
 808        /* We do not copy old->sk */
 809        new->dev                = old->dev;
 810        memcpy(new->cb, old->cb, sizeof(old->cb));
 811        skb_dst_copy(new, old);
 812#ifdef CONFIG_XFRM
 813        new->sp                 = secpath_get(old->sp);
 814#endif
 815        __nf_copy(new, old, false);
 816
 817        /* Note : this field could be in headers_start/headers_end section
 818         * It is not yet because we do not want to have a 16 bit hole
 819         */
 820        new->queue_mapping = old->queue_mapping;
 821
 822        memcpy(&new->headers_start, &old->headers_start,
 823               offsetof(struct sk_buff, headers_end) -
 824               offsetof(struct sk_buff, headers_start));
 825        CHECK_SKB_FIELD(protocol);
 826        CHECK_SKB_FIELD(csum);
 827        CHECK_SKB_FIELD(hash);
 828        CHECK_SKB_FIELD(priority);
 829        CHECK_SKB_FIELD(skb_iif);
 830        CHECK_SKB_FIELD(vlan_proto);
 831        CHECK_SKB_FIELD(vlan_tci);
 832        CHECK_SKB_FIELD(transport_header);
 833        CHECK_SKB_FIELD(network_header);
 834        CHECK_SKB_FIELD(mac_header);
 835        CHECK_SKB_FIELD(inner_protocol);
 836        CHECK_SKB_FIELD(inner_transport_header);
 837        CHECK_SKB_FIELD(inner_network_header);
 838        CHECK_SKB_FIELD(inner_mac_header);
 839        CHECK_SKB_FIELD(mark);
 840#ifdef CONFIG_NETWORK_SECMARK
 841        CHECK_SKB_FIELD(secmark);
 842#endif
 843#ifdef CONFIG_NET_RX_BUSY_POLL
 844        CHECK_SKB_FIELD(napi_id);
 845#endif
 846#ifdef CONFIG_XPS
 847        CHECK_SKB_FIELD(sender_cpu);
 848#endif
 849#ifdef CONFIG_NET_SCHED
 850        CHECK_SKB_FIELD(tc_index);
 851#ifdef CONFIG_NET_CLS_ACT
 852        CHECK_SKB_FIELD(tc_verd);
 853#endif
 854#endif
 855
 856}
 857
 858/*
 859 * You should not add any new code to this function.  Add it to
 860 * __copy_skb_header above instead.
 861 */
 862static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
 863{
 864#define C(x) n->x = skb->x
 865
 866        n->next = n->prev = NULL;
 867        n->sk = NULL;
 868        __copy_skb_header(n, skb);
 869
 870        C(len);
 871        C(data_len);
 872        C(mac_len);
 873        n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
 874        n->cloned = 1;
 875        n->nohdr = 0;
 876        n->destructor = NULL;
 877        C(tail);
 878        C(end);
 879        C(head);
 880        C(head_frag);
 881        C(data);
 882        C(truesize);
 883        atomic_set(&n->users, 1);
 884
 885        atomic_inc(&(skb_shinfo(skb)->dataref));
 886        skb->cloned = 1;
 887
 888        return n;
 889#undef C
 890}
 891
 892/**
 893 *      skb_morph       -       morph one skb into another
 894 *      @dst: the skb to receive the contents
 895 *      @src: the skb to supply the contents
 896 *
 897 *      This is identical to skb_clone except that the target skb is
 898 *      supplied by the user.
 899 *
 900 *      The target skb is returned upon exit.
 901 */
 902struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
 903{
 904        skb_release_all(dst);
 905        return __skb_clone(dst, src);
 906}
 907EXPORT_SYMBOL_GPL(skb_morph);
 908
 909/**
 910 *      skb_copy_ubufs  -       copy userspace skb frags buffers to kernel
 911 *      @skb: the skb to modify
 912 *      @gfp_mask: allocation priority
 913 *
 914 *      This must be called on SKBTX_DEV_ZEROCOPY skb.
 915 *      It will copy all frags into kernel and drop the reference
 916 *      to userspace pages.
 917 *
 918 *      If this function is called from an interrupt gfp_mask() must be
 919 *      %GFP_ATOMIC.
 920 *
 921 *      Returns 0 on success or a negative error code on failure
 922 *      to allocate kernel memory to copy to.
 923 */
 924int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
 925{
 926        int i;
 927        int num_frags = skb_shinfo(skb)->nr_frags;
 928        struct page *page, *head = NULL;
 929        struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
 930
 931        for (i = 0; i < num_frags; i++) {
 932                u8 *vaddr;
 933                skb_frag_t *f = &skb_shinfo(skb)->frags[i];
 934
 935                page = alloc_page(gfp_mask);
 936                if (!page) {
 937                        while (head) {
 938                                struct page *next = (struct page *)page_private(head);
 939                                put_page(head);
 940                                head = next;
 941                        }
 942                        return -ENOMEM;
 943                }
 944                vaddr = kmap_atomic(skb_frag_page(f));
 945                memcpy(page_address(page),
 946                       vaddr + f->page_offset, skb_frag_size(f));
 947                kunmap_atomic(vaddr);
 948                set_page_private(page, (unsigned long)head);
 949                head = page;
 950        }
 951
 952        /* skb frags release userspace buffers */
 953        for (i = 0; i < num_frags; i++)
 954                skb_frag_unref(skb, i);
 955
 956        uarg->callback(uarg, false);
 957
 958        /* skb frags point to kernel buffers */
 959        for (i = num_frags - 1; i >= 0; i--) {
 960                __skb_fill_page_desc(skb, i, head, 0,
 961                                     skb_shinfo(skb)->frags[i].size);
 962                head = (struct page *)page_private(head);
 963        }
 964
 965        skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
 966        return 0;
 967}
 968EXPORT_SYMBOL_GPL(skb_copy_ubufs);
 969
 970/**
 971 *      skb_clone       -       duplicate an sk_buff
 972 *      @skb: buffer to clone
 973 *      @gfp_mask: allocation priority
 974 *
 975 *      Duplicate an &sk_buff. The new one is not owned by a socket. Both
 976 *      copies share the same packet data but not structure. The new
 977 *      buffer has a reference count of 1. If the allocation fails the
 978 *      function returns %NULL otherwise the new buffer is returned.
 979 *
 980 *      If this function is called from an interrupt gfp_mask() must be
 981 *      %GFP_ATOMIC.
 982 */
 983
 984struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
 985{
 986        struct sk_buff_fclones *fclones = container_of(skb,
 987                                                       struct sk_buff_fclones,
 988                                                       skb1);
 989        struct sk_buff *n;
 990
 991        if (skb_orphan_frags(skb, gfp_mask))
 992                return NULL;
 993
 994        if (skb->fclone == SKB_FCLONE_ORIG &&
 995            atomic_read(&fclones->fclone_ref) == 1) {
 996                n = &fclones->skb2;
 997                atomic_set(&fclones->fclone_ref, 2);
 998        } else {
 999                if (skb_pfmemalloc(skb))
1000                        gfp_mask |= __GFP_MEMALLOC;
1001
1002                n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1003                if (!n)
1004                        return NULL;
1005
1006                kmemcheck_annotate_bitfield(n, flags1);
1007                n->fclone = SKB_FCLONE_UNAVAILABLE;
1008        }
1009
1010        return __skb_clone(n, skb);
1011}
1012EXPORT_SYMBOL(skb_clone);
1013
1014static void skb_headers_offset_update(struct sk_buff *skb, int off)
1015{
1016        /* Only adjust this if it actually is csum_start rather than csum */
1017        if (skb->ip_summed == CHECKSUM_PARTIAL)
1018                skb->csum_start += off;
1019        /* {transport,network,mac}_header and tail are relative to skb->head */
1020        skb->transport_header += off;
1021        skb->network_header   += off;
1022        if (skb_mac_header_was_set(skb))
1023                skb->mac_header += off;
1024        skb->inner_transport_header += off;
1025        skb->inner_network_header += off;
1026        skb->inner_mac_header += off;
1027}
1028
1029static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1030{
1031        __copy_skb_header(new, old);
1032
1033        skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1034        skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1035        skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1036}
1037
1038static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1039{
1040        if (skb_pfmemalloc(skb))
1041                return SKB_ALLOC_RX;
1042        return 0;
1043}
1044
1045/**
1046 *      skb_copy        -       create private copy of an sk_buff
1047 *      @skb: buffer to copy
1048 *      @gfp_mask: allocation priority
1049 *
1050 *      Make a copy of both an &sk_buff and its data. This is used when the
1051 *      caller wishes to modify the data and needs a private copy of the
1052 *      data to alter. Returns %NULL on failure or the pointer to the buffer
1053 *      on success. The returned buffer has a reference count of 1.
1054 *
1055 *      As by-product this function converts non-linear &sk_buff to linear
1056 *      one, so that &sk_buff becomes completely private and caller is allowed
1057 *      to modify all the data of returned buffer. This means that this
1058 *      function is not recommended for use in circumstances when only
1059 *      header is going to be modified. Use pskb_copy() instead.
1060 */
1061
1062struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1063{
1064        int headerlen = skb_headroom(skb);
1065        unsigned int size = skb_end_offset(skb) + skb->data_len;
1066        struct sk_buff *n = __alloc_skb(size, gfp_mask,
1067                                        skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1068
1069        if (!n)
1070                return NULL;
1071
1072        /* Set the data pointer */
1073        skb_reserve(n, headerlen);
1074        /* Set the tail pointer and length */
1075        skb_put(n, skb->len);
1076
1077        if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1078                BUG();
1079
1080        copy_skb_header(n, skb);
1081        return n;
1082}
1083EXPORT_SYMBOL(skb_copy);
1084
1085/**
1086 *      __pskb_copy_fclone      -  create copy of an sk_buff with private head.
1087 *      @skb: buffer to copy
1088 *      @headroom: headroom of new skb
1089 *      @gfp_mask: allocation priority
1090 *      @fclone: if true allocate the copy of the skb from the fclone
1091 *      cache instead of the head cache; it is recommended to set this
1092 *      to true for the cases where the copy will likely be cloned
1093 *
1094 *      Make a copy of both an &sk_buff and part of its data, located
1095 *      in header. Fragmented data remain shared. This is used when
1096 *      the caller wishes to modify only header of &sk_buff and needs
1097 *      private copy of the header to alter. Returns %NULL on failure
1098 *      or the pointer to the buffer on success.
1099 *      The returned buffer has a reference count of 1.
1100 */
1101
1102struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1103                                   gfp_t gfp_mask, bool fclone)
1104{
1105        unsigned int size = skb_headlen(skb) + headroom;
1106        int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1107        struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1108
1109        if (!n)
1110                goto out;
1111
1112        /* Set the data pointer */
1113        skb_reserve(n, headroom);
1114        /* Set the tail pointer and length */
1115        skb_put(n, skb_headlen(skb));
1116        /* Copy the bytes */
1117        skb_copy_from_linear_data(skb, n->data, n->len);
1118
1119        n->truesize += skb->data_len;
1120        n->data_len  = skb->data_len;
1121        n->len       = skb->len;
1122
1123        if (skb_shinfo(skb)->nr_frags) {
1124                int i;
1125
1126                if (skb_orphan_frags(skb, gfp_mask)) {
1127                        kfree_skb(n);
1128                        n = NULL;
1129                        goto out;
1130                }
1131                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1132                        skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1133                        skb_frag_ref(skb, i);
1134                }
1135                skb_shinfo(n)->nr_frags = i;
1136        }
1137
1138        if (skb_has_frag_list(skb)) {
1139                skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1140                skb_clone_fraglist(n);
1141        }
1142
1143        copy_skb_header(n, skb);
1144out:
1145        return n;
1146}
1147EXPORT_SYMBOL(__pskb_copy_fclone);
1148
1149/**
1150 *      pskb_expand_head - reallocate header of &sk_buff
1151 *      @skb: buffer to reallocate
1152 *      @nhead: room to add at head
1153 *      @ntail: room to add at tail
1154 *      @gfp_mask: allocation priority
1155 *
1156 *      Expands (or creates identical copy, if @nhead and @ntail are zero)
1157 *      header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1158 *      reference count of 1. Returns zero in the case of success or error,
1159 *      if expansion failed. In the last case, &sk_buff is not changed.
1160 *
1161 *      All the pointers pointing into skb header may change and must be
1162 *      reloaded after call to this function.
1163 */
1164
1165int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1166                     gfp_t gfp_mask)
1167{
1168        int i;
1169        u8 *data;
1170        int size = nhead + skb_end_offset(skb) + ntail;
1171        long off;
1172
1173        BUG_ON(nhead < 0);
1174
1175        if (skb_shared(skb))
1176                BUG();
1177
1178        size = SKB_DATA_ALIGN(size);
1179
1180        if (skb_pfmemalloc(skb))
1181                gfp_mask |= __GFP_MEMALLOC;
1182        data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1183                               gfp_mask, NUMA_NO_NODE, NULL);
1184        if (!data)
1185                goto nodata;
1186        size = SKB_WITH_OVERHEAD(ksize(data));
1187
1188        /* Copy only real data... and, alas, header. This should be
1189         * optimized for the cases when header is void.
1190         */
1191        memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1192
1193        memcpy((struct skb_shared_info *)(data + size),
1194               skb_shinfo(skb),
1195               offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1196
1197        /*
1198         * if shinfo is shared we must drop the old head gracefully, but if it
1199         * is not we can just drop the old head and let the existing refcount
1200         * be since all we did is relocate the values
1201         */
1202        if (skb_cloned(skb)) {
1203                /* copy this zero copy skb frags */
1204                if (skb_orphan_frags(skb, gfp_mask))
1205                        goto nofrags;
1206                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1207                        skb_frag_ref(skb, i);
1208
1209                if (skb_has_frag_list(skb))
1210                        skb_clone_fraglist(skb);
1211
1212                skb_release_data(skb);
1213        } else {
1214                skb_free_head(skb);
1215        }
1216        off = (data + nhead) - skb->head;
1217
1218        skb->head     = data;
1219        skb->head_frag = 0;
1220        skb->data    += off;
1221#ifdef NET_SKBUFF_DATA_USES_OFFSET
1222        skb->end      = size;
1223        off           = nhead;
1224#else
1225        skb->end      = skb->head + size;
1226#endif
1227        skb->tail             += off;
1228        skb_headers_offset_update(skb, nhead);
1229        skb->cloned   = 0;
1230        skb->hdr_len  = 0;
1231        skb->nohdr    = 0;
1232        atomic_set(&skb_shinfo(skb)->dataref, 1);
1233        return 0;
1234
1235nofrags:
1236        kfree(data);
1237nodata:
1238        return -ENOMEM;
1239}
1240EXPORT_SYMBOL(pskb_expand_head);
1241
1242/* Make private copy of skb with writable head and some headroom */
1243
1244struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1245{
1246        struct sk_buff *skb2;
1247        int delta = headroom - skb_headroom(skb);
1248
1249        if (delta <= 0)
1250                skb2 = pskb_copy(skb, GFP_ATOMIC);
1251        else {
1252                skb2 = skb_clone(skb, GFP_ATOMIC);
1253                if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1254                                             GFP_ATOMIC)) {
1255                        kfree_skb(skb2);
1256                        skb2 = NULL;
1257                }
1258        }
1259        return skb2;
1260}
1261EXPORT_SYMBOL(skb_realloc_headroom);
1262
1263/**
1264 *      skb_copy_expand -       copy and expand sk_buff
1265 *      @skb: buffer to copy
1266 *      @newheadroom: new free bytes at head
1267 *      @newtailroom: new free bytes at tail
1268 *      @gfp_mask: allocation priority
1269 *
1270 *      Make a copy of both an &sk_buff and its data and while doing so
1271 *      allocate additional space.
1272 *
1273 *      This is used when the caller wishes to modify the data and needs a
1274 *      private copy of the data to alter as well as more space for new fields.
1275 *      Returns %NULL on failure or the pointer to the buffer
1276 *      on success. The returned buffer has a reference count of 1.
1277 *
1278 *      You must pass %GFP_ATOMIC as the allocation priority if this function
1279 *      is called from an interrupt.
1280 */
1281struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1282                                int newheadroom, int newtailroom,
1283                                gfp_t gfp_mask)
1284{
1285        /*
1286         *      Allocate the copy buffer
1287         */
1288        struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1289                                        gfp_mask, skb_alloc_rx_flag(skb),
1290                                        NUMA_NO_NODE);
1291        int oldheadroom = skb_headroom(skb);
1292        int head_copy_len, head_copy_off;
1293
1294        if (!n)
1295                return NULL;
1296
1297        skb_reserve(n, newheadroom);
1298
1299        /* Set the tail pointer and length */
1300        skb_put(n, skb->len);
1301
1302        head_copy_len = oldheadroom;
1303        head_copy_off = 0;
1304        if (newheadroom <= head_copy_len)
1305                head_copy_len = newheadroom;
1306        else
1307                head_copy_off = newheadroom - head_copy_len;
1308
1309        /* Copy the linear header and data. */
1310        if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1311                          skb->len + head_copy_len))
1312                BUG();
1313
1314        copy_skb_header(n, skb);
1315
1316        skb_headers_offset_update(n, newheadroom - oldheadroom);
1317
1318        return n;
1319}
1320EXPORT_SYMBOL(skb_copy_expand);
1321
1322/**
1323 *      skb_pad                 -       zero pad the tail of an skb
1324 *      @skb: buffer to pad
1325 *      @pad: space to pad
1326 *
1327 *      Ensure that a buffer is followed by a padding area that is zero
1328 *      filled. Used by network drivers which may DMA or transfer data
1329 *      beyond the buffer end onto the wire.
1330 *
1331 *      May return error in out of memory cases. The skb is freed on error.
1332 */
1333
1334int skb_pad(struct sk_buff *skb, int pad)
1335{
1336        int err;
1337        int ntail;
1338
1339        /* If the skbuff is non linear tailroom is always zero.. */
1340        if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1341                memset(skb->data+skb->len, 0, pad);
1342                return 0;
1343        }
1344
1345        ntail = skb->data_len + pad - (skb->end - skb->tail);
1346        if (likely(skb_cloned(skb) || ntail > 0)) {
1347                err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1348                if (unlikely(err))
1349                        goto free_skb;
1350        }
1351
1352        /* FIXME: The use of this function with non-linear skb's really needs
1353         * to be audited.
1354         */
1355        err = skb_linearize(skb);
1356        if (unlikely(err))
1357                goto free_skb;
1358
1359        memset(skb->data + skb->len, 0, pad);
1360        return 0;
1361
1362free_skb:
1363        kfree_skb(skb);
1364        return err;
1365}
1366EXPORT_SYMBOL(skb_pad);
1367
1368/**
1369 *      pskb_put - add data to the tail of a potentially fragmented buffer
1370 *      @skb: start of the buffer to use
1371 *      @tail: tail fragment of the buffer to use
1372 *      @len: amount of data to add
1373 *
1374 *      This function extends the used data area of the potentially
1375 *      fragmented buffer. @tail must be the last fragment of @skb -- or
1376 *      @skb itself. If this would exceed the total buffer size the kernel
1377 *      will panic. A pointer to the first byte of the extra data is
1378 *      returned.
1379 */
1380
1381unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1382{
1383        if (tail != skb) {
1384                skb->data_len += len;
1385                skb->len += len;
1386        }
1387        return skb_put(tail, len);
1388}
1389EXPORT_SYMBOL_GPL(pskb_put);
1390
1391/**
1392 *      skb_put - add data to a buffer
1393 *      @skb: buffer to use
1394 *      @len: amount of data to add
1395 *
1396 *      This function extends the used data area of the buffer. If this would
1397 *      exceed the total buffer size the kernel will panic. A pointer to the
1398 *      first byte of the extra data is returned.
1399 */
1400unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1401{
1402        unsigned char *tmp = skb_tail_pointer(skb);
1403        SKB_LINEAR_ASSERT(skb);
1404        skb->tail += len;
1405        skb->len  += len;
1406        if (unlikely(skb->tail > skb->end))
1407                skb_over_panic(skb, len, __builtin_return_address(0));
1408        return tmp;
1409}
1410EXPORT_SYMBOL(skb_put);
1411
1412/**
1413 *      skb_push - add data to the start of a buffer
1414 *      @skb: buffer to use
1415 *      @len: amount of data to add
1416 *
1417 *      This function extends the used data area of the buffer at the buffer
1418 *      start. If this would exceed the total buffer headroom the kernel will
1419 *      panic. A pointer to the first byte of the extra data is returned.
1420 */
1421unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1422{
1423        skb->data -= len;
1424        skb->len  += len;
1425        if (unlikely(skb->data<skb->head))
1426                skb_under_panic(skb, len, __builtin_return_address(0));
1427        return skb->data;
1428}
1429EXPORT_SYMBOL(skb_push);
1430
1431/**
1432 *      skb_pull - remove data from the start of a buffer
1433 *      @skb: buffer to use
1434 *      @len: amount of data to remove
1435 *
1436 *      This function removes data from the start of a buffer, returning
1437 *      the memory to the headroom. A pointer to the next data in the buffer
1438 *      is returned. Once the data has been pulled future pushes will overwrite
1439 *      the old data.
1440 */
1441unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1442{
1443        return skb_pull_inline(skb, len);
1444}
1445EXPORT_SYMBOL(skb_pull);
1446
1447/**
1448 *      skb_trim - remove end from a buffer
1449 *      @skb: buffer to alter
1450 *      @len: new length
1451 *
1452 *      Cut the length of a buffer down by removing data from the tail. If
1453 *      the buffer is already under the length specified it is not modified.
1454 *      The skb must be linear.
1455 */
1456void skb_trim(struct sk_buff *skb, unsigned int len)
1457{
1458        if (skb->len > len)
1459                __skb_trim(skb, len);
1460}
1461EXPORT_SYMBOL(skb_trim);
1462
1463/* Trims skb to length len. It can change skb pointers.
1464 */
1465
1466int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1467{
1468        struct sk_buff **fragp;
1469        struct sk_buff *frag;
1470        int offset = skb_headlen(skb);
1471        int nfrags = skb_shinfo(skb)->nr_frags;
1472        int i;
1473        int err;
1474
1475        if (skb_cloned(skb) &&
1476            unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1477                return err;
1478
1479        i = 0;
1480        if (offset >= len)
1481                goto drop_pages;
1482
1483        for (; i < nfrags; i++) {
1484                int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1485
1486                if (end < len) {
1487                        offset = end;
1488                        continue;
1489                }
1490
1491                skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1492
1493drop_pages:
1494                skb_shinfo(skb)->nr_frags = i;
1495
1496                for (; i < nfrags; i++)
1497                        skb_frag_unref(skb, i);
1498
1499                if (skb_has_frag_list(skb))
1500                        skb_drop_fraglist(skb);
1501                goto done;
1502        }
1503
1504        for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1505             fragp = &frag->next) {
1506                int end = offset + frag->len;
1507
1508                if (skb_shared(frag)) {
1509                        struct sk_buff *nfrag;
1510
1511                        nfrag = skb_clone(frag, GFP_ATOMIC);
1512                        if (unlikely(!nfrag))
1513                                return -ENOMEM;
1514
1515                        nfrag->next = frag->next;
1516                        consume_skb(frag);
1517                        frag = nfrag;
1518                        *fragp = frag;
1519                }
1520
1521                if (end < len) {
1522                        offset = end;
1523                        continue;
1524                }
1525
1526                if (end > len &&
1527                    unlikely((err = pskb_trim(frag, len - offset))))
1528                        return err;
1529
1530                if (frag->next)
1531                        skb_drop_list(&frag->next);
1532                break;
1533        }
1534
1535done:
1536        if (len > skb_headlen(skb)) {
1537                skb->data_len -= skb->len - len;
1538                skb->len       = len;
1539        } else {
1540                skb->len       = len;
1541                skb->data_len  = 0;
1542                skb_set_tail_pointer(skb, len);
1543        }
1544
1545        return 0;
1546}
1547EXPORT_SYMBOL(___pskb_trim);
1548
1549/**
1550 *      __pskb_pull_tail - advance tail of skb header
1551 *      @skb: buffer to reallocate
1552 *      @delta: number of bytes to advance tail
1553 *
1554 *      The function makes a sense only on a fragmented &sk_buff,
1555 *      it expands header moving its tail forward and copying necessary
1556 *      data from fragmented part.
1557 *
1558 *      &sk_buff MUST have reference count of 1.
1559 *
1560 *      Returns %NULL (and &sk_buff does not change) if pull failed
1561 *      or value of new tail of skb in the case of success.
1562 *
1563 *      All the pointers pointing into skb header may change and must be
1564 *      reloaded after call to this function.
1565 */
1566
1567/* Moves tail of skb head forward, copying data from fragmented part,
1568 * when it is necessary.
1569 * 1. It may fail due to malloc failure.
1570 * 2. It may change skb pointers.
1571 *
1572 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1573 */
1574unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1575{
1576        /* If skb has not enough free space at tail, get new one
1577         * plus 128 bytes for future expansions. If we have enough
1578         * room at tail, reallocate without expansion only if skb is cloned.
1579         */
1580        int i, k, eat = (skb->tail + delta) - skb->end;
1581
1582        if (eat > 0 || skb_cloned(skb)) {
1583                if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1584                                     GFP_ATOMIC))
1585                        return NULL;
1586        }
1587
1588        if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1589                BUG();
1590
1591        /* Optimization: no fragments, no reasons to preestimate
1592         * size of pulled pages. Superb.
1593         */
1594        if (!skb_has_frag_list(skb))
1595                goto pull_pages;
1596
1597        /* Estimate size of pulled pages. */
1598        eat = delta;
1599        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1600                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1601
1602                if (size >= eat)
1603                        goto pull_pages;
1604                eat -= size;
1605        }
1606
1607        /* If we need update frag list, we are in troubles.
1608         * Certainly, it possible to add an offset to skb data,
1609         * but taking into account that pulling is expected to
1610         * be very rare operation, it is worth to fight against
1611         * further bloating skb head and crucify ourselves here instead.
1612         * Pure masohism, indeed. 8)8)
1613         */
1614        if (eat) {
1615                struct sk_buff *list = skb_shinfo(skb)->frag_list;
1616                struct sk_buff *clone = NULL;
1617                struct sk_buff *insp = NULL;
1618
1619                do {
1620                        BUG_ON(!list);
1621
1622                        if (list->len <= eat) {
1623                                /* Eaten as whole. */
1624                                eat -= list->len;
1625                                list = list->next;
1626                                insp = list;
1627                        } else {
1628                                /* Eaten partially. */
1629
1630                                if (skb_shared(list)) {
1631                                        /* Sucks! We need to fork list. :-( */
1632                                        clone = skb_clone(list, GFP_ATOMIC);
1633                                        if (!clone)
1634                                                return NULL;
1635                                        insp = list->next;
1636                                        list = clone;
1637                                } else {
1638                                        /* This may be pulled without
1639                                         * problems. */
1640                                        insp = list;
1641                                }
1642                                if (!pskb_pull(list, eat)) {
1643                                        kfree_skb(clone);
1644                                        return NULL;
1645                                }
1646                                break;
1647                        }
1648                } while (eat);
1649
1650                /* Free pulled out fragments. */
1651                while ((list = skb_shinfo(skb)->frag_list) != insp) {
1652                        skb_shinfo(skb)->frag_list = list->next;
1653                        kfree_skb(list);
1654                }
1655                /* And insert new clone at head. */
1656                if (clone) {
1657                        clone->next = list;
1658                        skb_shinfo(skb)->frag_list = clone;
1659                }
1660        }
1661        /* Success! Now we may commit changes to skb data. */
1662
1663pull_pages:
1664        eat = delta;
1665        k = 0;
1666        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1667                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1668
1669                if (size <= eat) {
1670                        skb_frag_unref(skb, i);
1671                        eat -= size;
1672                } else {
1673                        skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1674                        if (eat) {
1675                                skb_shinfo(skb)->frags[k].page_offset += eat;
1676                                skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1677                                eat = 0;
1678                        }
1679                        k++;
1680                }
1681        }
1682        skb_shinfo(skb)->nr_frags = k;
1683
1684        skb->tail     += delta;
1685        skb->data_len -= delta;
1686
1687        return skb_tail_pointer(skb);
1688}
1689EXPORT_SYMBOL(__pskb_pull_tail);
1690
1691/**
1692 *      skb_copy_bits - copy bits from skb to kernel buffer
1693 *      @skb: source skb
1694 *      @offset: offset in source
1695 *      @to: destination buffer
1696 *      @len: number of bytes to copy
1697 *
1698 *      Copy the specified number of bytes from the source skb to the
1699 *      destination buffer.
1700 *
1701 *      CAUTION ! :
1702 *              If its prototype is ever changed,
1703 *              check arch/{*}/net/{*}.S files,
1704 *              since it is called from BPF assembly code.
1705 */
1706int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1707{
1708        int start = skb_headlen(skb);
1709        struct sk_buff *frag_iter;
1710        int i, copy;
1711
1712        if (offset > (int)skb->len - len)
1713                goto fault;
1714
1715        /* Copy header. */
1716        if ((copy = start - offset) > 0) {
1717                if (copy > len)
1718                        copy = len;
1719                skb_copy_from_linear_data_offset(skb, offset, to, copy);
1720                if ((len -= copy) == 0)
1721                        return 0;
1722                offset += copy;
1723                to     += copy;
1724        }
1725
1726        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1727                int end;
1728                skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1729
1730                WARN_ON(start > offset + len);
1731
1732                end = start + skb_frag_size(f);
1733                if ((copy = end - offset) > 0) {
1734                        u8 *vaddr;
1735
1736                        if (copy > len)
1737                                copy = len;
1738
1739                        vaddr = kmap_atomic(skb_frag_page(f));
1740                        memcpy(to,
1741                               vaddr + f->page_offset + offset - start,
1742                               copy);
1743                        kunmap_atomic(vaddr);
1744
1745                        if ((len -= copy) == 0)
1746                                return 0;
1747                        offset += copy;
1748                        to     += copy;
1749                }
1750                start = end;
1751        }
1752
1753        skb_walk_frags(skb, frag_iter) {
1754                int end;
1755
1756                WARN_ON(start > offset + len);
1757
1758                end = start + frag_iter->len;
1759                if ((copy = end - offset) > 0) {
1760                        if (copy > len)
1761                                copy = len;
1762                        if (skb_copy_bits(frag_iter, offset - start, to, copy))
1763                                goto fault;
1764                        if ((len -= copy) == 0)
1765                                return 0;
1766                        offset += copy;
1767                        to     += copy;
1768                }
1769                start = end;
1770        }
1771
1772        if (!len)
1773                return 0;
1774
1775fault:
1776        return -EFAULT;
1777}
1778EXPORT_SYMBOL(skb_copy_bits);
1779
1780/*
1781 * Callback from splice_to_pipe(), if we need to release some pages
1782 * at the end of the spd in case we error'ed out in filling the pipe.
1783 */
1784static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1785{
1786        put_page(spd->pages[i]);
1787}
1788
1789static struct page *linear_to_page(struct page *page, unsigned int *len,
1790                                   unsigned int *offset,
1791                                   struct sock *sk)
1792{
1793        struct page_frag *pfrag = sk_page_frag(sk);
1794
1795        if (!sk_page_frag_refill(sk, pfrag))
1796                return NULL;
1797
1798        *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1799
1800        memcpy(page_address(pfrag->page) + pfrag->offset,
1801               page_address(page) + *offset, *len);
1802        *offset = pfrag->offset;
1803        pfrag->offset += *len;
1804
1805        return pfrag->page;
1806}
1807
1808static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1809                             struct page *page,
1810                             unsigned int offset)
1811{
1812        return  spd->nr_pages &&
1813                spd->pages[spd->nr_pages - 1] == page &&
1814                (spd->partial[spd->nr_pages - 1].offset +
1815                 spd->partial[spd->nr_pages - 1].len == offset);
1816}
1817
1818/*
1819 * Fill page/offset/length into spd, if it can hold more pages.
1820 */
1821static bool spd_fill_page(struct splice_pipe_desc *spd,
1822                          struct pipe_inode_info *pipe, struct page *page,
1823                          unsigned int *len, unsigned int offset,
1824                          bool linear,
1825                          struct sock *sk)
1826{
1827        if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1828                return true;
1829
1830        if (linear) {
1831                page = linear_to_page(page, len, &offset, sk);
1832                if (!page)
1833                        return true;
1834        }
1835        if (spd_can_coalesce(spd, page, offset)) {
1836                spd->partial[spd->nr_pages - 1].len += *len;
1837                return false;
1838        }
1839        get_page(page);
1840        spd->pages[spd->nr_pages] = page;
1841        spd->partial[spd->nr_pages].len = *len;
1842        spd->partial[spd->nr_pages].offset = offset;
1843        spd->nr_pages++;
1844
1845        return false;
1846}
1847
1848static bool __splice_segment(struct page *page, unsigned int poff,
1849                             unsigned int plen, unsigned int *off,
1850                             unsigned int *len,
1851                             struct splice_pipe_desc *spd, bool linear,
1852                             struct sock *sk,
1853                             struct pipe_inode_info *pipe)
1854{
1855        if (!*len)
1856                return true;
1857
1858        /* skip this segment if already processed */
1859        if (*off >= plen) {
1860                *off -= plen;
1861                return false;
1862        }
1863
1864        /* ignore any bits we already processed */
1865        poff += *off;
1866        plen -= *off;
1867        *off = 0;
1868
1869        do {
1870                unsigned int flen = min(*len, plen);
1871
1872                if (spd_fill_page(spd, pipe, page, &flen, poff,
1873                                  linear, sk))
1874                        return true;
1875                poff += flen;
1876                plen -= flen;
1877                *len -= flen;
1878        } while (*len && plen);
1879
1880        return false;
1881}
1882
1883/*
1884 * Map linear and fragment data from the skb to spd. It reports true if the
1885 * pipe is full or if we already spliced the requested length.
1886 */
1887static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1888                              unsigned int *offset, unsigned int *len,
1889                              struct splice_pipe_desc *spd, struct sock *sk)
1890{
1891        int seg;
1892
1893        /* map the linear part :
1894         * If skb->head_frag is set, this 'linear' part is backed by a
1895         * fragment, and if the head is not shared with any clones then
1896         * we can avoid a copy since we own the head portion of this page.
1897         */
1898        if (__splice_segment(virt_to_page(skb->data),
1899                             (unsigned long) skb->data & (PAGE_SIZE - 1),
1900                             skb_headlen(skb),
1901                             offset, len, spd,
1902                             skb_head_is_locked(skb),
1903                             sk, pipe))
1904                return true;
1905
1906        /*
1907         * then map the fragments
1908         */
1909        for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1910                const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1911
1912                if (__splice_segment(skb_frag_page(f),
1913                                     f->page_offset, skb_frag_size(f),
1914                                     offset, len, spd, false, sk, pipe))
1915                        return true;
1916        }
1917
1918        return false;
1919}
1920
1921/*
1922 * Map data from the skb to a pipe. Should handle both the linear part,
1923 * the fragments, and the frag list. It does NOT handle frag lists within
1924 * the frag list, if such a thing exists. We'd probably need to recurse to
1925 * handle that cleanly.
1926 */
1927int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1928                    struct pipe_inode_info *pipe, unsigned int tlen,
1929                    unsigned int flags)
1930{
1931        struct partial_page partial[MAX_SKB_FRAGS];
1932        struct page *pages[MAX_SKB_FRAGS];
1933        struct splice_pipe_desc spd = {
1934                .pages = pages,
1935                .partial = partial,
1936                .nr_pages_max = MAX_SKB_FRAGS,
1937                .flags = flags,
1938                .ops = &nosteal_pipe_buf_ops,
1939                .spd_release = sock_spd_release,
1940        };
1941        struct sk_buff *frag_iter;
1942        struct sock *sk = skb->sk;
1943        int ret = 0;
1944
1945        /*
1946         * __skb_splice_bits() only fails if the output has no room left,
1947         * so no point in going over the frag_list for the error case.
1948         */
1949        if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1950                goto done;
1951        else if (!tlen)
1952                goto done;
1953
1954        /*
1955         * now see if we have a frag_list to map
1956         */
1957        skb_walk_frags(skb, frag_iter) {
1958                if (!tlen)
1959                        break;
1960                if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1961                        break;
1962        }
1963
1964done:
1965        if (spd.nr_pages) {
1966                /*
1967                 * Drop the socket lock, otherwise we have reverse
1968                 * locking dependencies between sk_lock and i_mutex
1969                 * here as compared to sendfile(). We enter here
1970                 * with the socket lock held, and splice_to_pipe() will
1971                 * grab the pipe inode lock. For sendfile() emulation,
1972                 * we call into ->sendpage() with the i_mutex lock held
1973                 * and networking will grab the socket lock.
1974                 */
1975                release_sock(sk);
1976                ret = splice_to_pipe(pipe, &spd);
1977                lock_sock(sk);
1978        }
1979
1980        return ret;
1981}
1982
1983/**
1984 *      skb_store_bits - store bits from kernel buffer to skb
1985 *      @skb: destination buffer
1986 *      @offset: offset in destination
1987 *      @from: source buffer
1988 *      @len: number of bytes to copy
1989 *
1990 *      Copy the specified number of bytes from the source buffer to the
1991 *      destination skb.  This function handles all the messy bits of
1992 *      traversing fragment lists and such.
1993 */
1994
1995int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1996{
1997        int start = skb_headlen(skb);
1998        struct sk_buff *frag_iter;
1999        int i, copy;
2000
2001        if (offset > (int)skb->len - len)
2002                goto fault;
2003
2004        if ((copy = start - offset) > 0) {
2005                if (copy > len)
2006                        copy = len;
2007                skb_copy_to_linear_data_offset(skb, offset, from, copy);
2008                if ((len -= copy) == 0)
2009                        return 0;
2010                offset += copy;
2011                from += copy;
2012        }
2013
2014        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2015                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2016                int end;
2017
2018                WARN_ON(start > offset + len);
2019
2020                end = start + skb_frag_size(frag);
2021                if ((copy = end - offset) > 0) {
2022                        u8 *vaddr;
2023
2024                        if (copy > len)
2025                                copy = len;
2026
2027                        vaddr = kmap_atomic(skb_frag_page(frag));
2028                        memcpy(vaddr + frag->page_offset + offset - start,
2029                               from, copy);
2030                        kunmap_atomic(vaddr);
2031
2032                        if ((len -= copy) == 0)
2033                                return 0;
2034                        offset += copy;
2035                        from += copy;
2036                }
2037                start = end;
2038        }
2039
2040        skb_walk_frags(skb, frag_iter) {
2041                int end;
2042
2043                WARN_ON(start > offset + len);
2044
2045                end = start + frag_iter->len;
2046                if ((copy = end - offset) > 0) {
2047                        if (copy > len)
2048                                copy = len;
2049                        if (skb_store_bits(frag_iter, offset - start,
2050                                           from, copy))
2051                                goto fault;
2052                        if ((len -= copy) == 0)
2053                                return 0;
2054                        offset += copy;
2055                        from += copy;
2056                }
2057                start = end;
2058        }
2059        if (!len)
2060                return 0;
2061
2062fault:
2063        return -EFAULT;
2064}
2065EXPORT_SYMBOL(skb_store_bits);
2066
2067/* Checksum skb data. */
2068__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2069                      __wsum csum, const struct skb_checksum_ops *ops)
2070{
2071        int start = skb_headlen(skb);
2072        int i, copy = start - offset;
2073        struct sk_buff *frag_iter;
2074        int pos = 0;
2075
2076        /* Checksum header. */
2077        if (copy > 0) {
2078                if (copy > len)
2079                        copy = len;
2080                csum = ops->update(skb->data + offset, copy, csum);
2081                if ((len -= copy) == 0)
2082                        return csum;
2083                offset += copy;
2084                pos     = copy;
2085        }
2086
2087        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2088                int end;
2089                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2090
2091                WARN_ON(start > offset + len);
2092
2093                end = start + skb_frag_size(frag);
2094                if ((copy = end - offset) > 0) {
2095                        __wsum csum2;
2096                        u8 *vaddr;
2097
2098                        if (copy > len)
2099                                copy = len;
2100                        vaddr = kmap_atomic(skb_frag_page(frag));
2101                        csum2 = ops->update(vaddr + frag->page_offset +
2102                                            offset - start, copy, 0);
2103                        kunmap_atomic(vaddr);
2104                        csum = ops->combine(csum, csum2, pos, copy);
2105                        if (!(len -= copy))
2106                                return csum;
2107                        offset += copy;
2108                        pos    += copy;
2109                }
2110                start = end;
2111        }
2112
2113        skb_walk_frags(skb, frag_iter) {
2114                int end;
2115
2116                WARN_ON(start > offset + len);
2117
2118                end = start + frag_iter->len;
2119                if ((copy = end - offset) > 0) {
2120                        __wsum csum2;
2121                        if (copy > len)
2122                                copy = len;
2123                        csum2 = __skb_checksum(frag_iter, offset - start,
2124                                               copy, 0, ops);
2125                        csum = ops->combine(csum, csum2, pos, copy);
2126                        if ((len -= copy) == 0)
2127                                return csum;
2128                        offset += copy;
2129                        pos    += copy;
2130                }
2131                start = end;
2132        }
2133        BUG_ON(len);
2134
2135        return csum;
2136}
2137EXPORT_SYMBOL(__skb_checksum);
2138
2139__wsum skb_checksum(const struct sk_buff *skb, int offset,
2140                    int len, __wsum csum)
2141{
2142        const struct skb_checksum_ops ops = {
2143                .update  = csum_partial_ext,
2144                .combine = csum_block_add_ext,
2145        };
2146
2147        return __skb_checksum(skb, offset, len, csum, &ops);
2148}
2149EXPORT_SYMBOL(skb_checksum);
2150
2151/* Both of above in one bottle. */
2152
2153__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2154                                    u8 *to, int len, __wsum csum)
2155{
2156        int start = skb_headlen(skb);
2157        int i, copy = start - offset;
2158        struct sk_buff *frag_iter;
2159        int pos = 0;
2160
2161        /* Copy header. */
2162        if (copy > 0) {
2163                if (copy > len)
2164                        copy = len;
2165                csum = csum_partial_copy_nocheck(skb->data + offset, to,
2166                                                 copy, csum);
2167                if ((len -= copy) == 0)
2168                        return csum;
2169                offset += copy;
2170                to     += copy;
2171                pos     = copy;
2172        }
2173
2174        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2175                int end;
2176
2177                WARN_ON(start > offset + len);
2178
2179                end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2180                if ((copy = end - offset) > 0) {
2181                        __wsum csum2;
2182                        u8 *vaddr;
2183                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2184
2185                        if (copy > len)
2186                                copy = len;
2187                        vaddr = kmap_atomic(skb_frag_page(frag));
2188                        csum2 = csum_partial_copy_nocheck(vaddr +
2189                                                          frag->page_offset +
2190                                                          offset - start, to,
2191                                                          copy, 0);
2192                        kunmap_atomic(vaddr);
2193                        csum = csum_block_add(csum, csum2, pos);
2194                        if (!(len -= copy))
2195                                return csum;
2196                        offset += copy;
2197                        to     += copy;
2198                        pos    += copy;
2199                }
2200                start = end;
2201        }
2202
2203        skb_walk_frags(skb, frag_iter) {
2204                __wsum csum2;
2205                int end;
2206
2207                WARN_ON(start > offset + len);
2208
2209                end = start + frag_iter->len;
2210                if ((copy = end - offset) > 0) {
2211                        if (copy > len)
2212                                copy = len;
2213                        csum2 = skb_copy_and_csum_bits(frag_iter,
2214                                                       offset - start,
2215                                                       to, copy, 0);
2216                        csum = csum_block_add(csum, csum2, pos);
2217                        if ((len -= copy) == 0)
2218                                return csum;
2219                        offset += copy;
2220                        to     += copy;
2221                        pos    += copy;
2222                }
2223                start = end;
2224        }
2225        BUG_ON(len);
2226        return csum;
2227}
2228EXPORT_SYMBOL(skb_copy_and_csum_bits);
2229
2230 /**
2231 *      skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2232 *      @from: source buffer
2233 *
2234 *      Calculates the amount of linear headroom needed in the 'to' skb passed
2235 *      into skb_zerocopy().
2236 */
2237unsigned int
2238skb_zerocopy_headlen(const struct sk_buff *from)
2239{
2240        unsigned int hlen = 0;
2241
2242        if (!from->head_frag ||
2243            skb_headlen(from) < L1_CACHE_BYTES ||
2244            skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2245                hlen = skb_headlen(from);
2246
2247        if (skb_has_frag_list(from))
2248                hlen = from->len;
2249
2250        return hlen;
2251}
2252EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2253
2254/**
2255 *      skb_zerocopy - Zero copy skb to skb
2256 *      @to: destination buffer
2257 *      @from: source buffer
2258 *      @len: number of bytes to copy from source buffer
2259 *      @hlen: size of linear headroom in destination buffer
2260 *
2261 *      Copies up to `len` bytes from `from` to `to` by creating references
2262 *      to the frags in the source buffer.
2263 *
2264 *      The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2265 *      headroom in the `to` buffer.
2266 *
2267 *      Return value:
2268 *      0: everything is OK
2269 *      -ENOMEM: couldn't orphan frags of @from due to lack of memory
2270 *      -EFAULT: skb_copy_bits() found some problem with skb geometry
2271 */
2272int
2273skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2274{
2275        int i, j = 0;
2276        int plen = 0; /* length of skb->head fragment */
2277        int ret;
2278        struct page *page;
2279        unsigned int offset;
2280
2281        BUG_ON(!from->head_frag && !hlen);
2282
2283        /* dont bother with small payloads */
2284        if (len <= skb_tailroom(to))
2285                return skb_copy_bits(from, 0, skb_put(to, len), len);
2286
2287        if (hlen) {
2288                ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2289                if (unlikely(ret))
2290                        return ret;
2291                len -= hlen;
2292        } else {
2293                plen = min_t(int, skb_headlen(from), len);
2294                if (plen) {
2295                        page = virt_to_head_page(from->head);
2296                        offset = from->data - (unsigned char *)page_address(page);
2297                        __skb_fill_page_desc(to, 0, page, offset, plen);
2298                        get_page(page);
2299                        j = 1;
2300                        len -= plen;
2301                }
2302        }
2303
2304        to->truesize += len + plen;
2305        to->len += len + plen;
2306        to->data_len += len + plen;
2307
2308        if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2309                skb_tx_error(from);
2310                return -ENOMEM;
2311        }
2312
2313        for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2314                if (!len)
2315                        break;
2316                skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2317                skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2318                len -= skb_shinfo(to)->frags[j].size;
2319                skb_frag_ref(to, j);
2320                j++;
2321        }
2322        skb_shinfo(to)->nr_frags = j;
2323
2324        return 0;
2325}
2326EXPORT_SYMBOL_GPL(skb_zerocopy);
2327
2328void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2329{
2330        __wsum csum;
2331        long csstart;
2332
2333        if (skb->ip_summed == CHECKSUM_PARTIAL)
2334                csstart = skb_checksum_start_offset(skb);
2335        else
2336                csstart = skb_headlen(skb);
2337
2338        BUG_ON(csstart > skb_headlen(skb));
2339
2340        skb_copy_from_linear_data(skb, to, csstart);
2341
2342        csum = 0;
2343        if (csstart != skb->len)
2344                csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2345                                              skb->len - csstart, 0);
2346
2347        if (skb->ip_summed == CHECKSUM_PARTIAL) {
2348                long csstuff = csstart + skb->csum_offset;
2349
2350                *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2351        }
2352}
2353EXPORT_SYMBOL(skb_copy_and_csum_dev);
2354
2355/**
2356 *      skb_dequeue - remove from the head of the queue
2357 *      @list: list to dequeue from
2358 *
2359 *      Remove the head of the list. The list lock is taken so the function
2360 *      may be used safely with other locking list functions. The head item is
2361 *      returned or %NULL if the list is empty.
2362 */
2363
2364struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2365{
2366        unsigned long flags;
2367        struct sk_buff *result;
2368
2369        spin_lock_irqsave(&list->lock, flags);
2370        result = __skb_dequeue(list);
2371        spin_unlock_irqrestore(&list->lock, flags);
2372        return result;
2373}
2374EXPORT_SYMBOL(skb_dequeue);
2375
2376/**
2377 *      skb_dequeue_tail - remove from the tail of the queue
2378 *      @list: list to dequeue from
2379 *
2380 *      Remove the tail of the list. The list lock is taken so the function
2381 *      may be used safely with other locking list functions. The tail item is
2382 *      returned or %NULL if the list is empty.
2383 */
2384struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2385{
2386        unsigned long flags;
2387        struct sk_buff *result;
2388
2389        spin_lock_irqsave(&list->lock, flags);
2390        result = __skb_dequeue_tail(list);
2391        spin_unlock_irqrestore(&list->lock, flags);
2392        return result;
2393}
2394EXPORT_SYMBOL(skb_dequeue_tail);
2395
2396/**
2397 *      skb_queue_purge - empty a list
2398 *      @list: list to empty
2399 *
2400 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
2401 *      the list and one reference dropped. This function takes the list
2402 *      lock and is atomic with respect to other list locking functions.
2403 */
2404void skb_queue_purge(struct sk_buff_head *list)
2405{
2406        struct sk_buff *skb;
2407        while ((skb = skb_dequeue(list)) != NULL)
2408                kfree_skb(skb);
2409}
2410EXPORT_SYMBOL(skb_queue_purge);
2411
2412/**
2413 *      skb_queue_head - queue a buffer at the list head
2414 *      @list: list to use
2415 *      @newsk: buffer to queue
2416 *
2417 *      Queue a buffer at the start of the list. This function takes the
2418 *      list lock and can be used safely with other locking &sk_buff functions
2419 *      safely.
2420 *
2421 *      A buffer cannot be placed on two lists at the same time.
2422 */
2423void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2424{
2425        unsigned long flags;
2426
2427        spin_lock_irqsave(&list->lock, flags);
2428        __skb_queue_head(list, newsk);
2429        spin_unlock_irqrestore(&list->lock, flags);
2430}
2431EXPORT_SYMBOL(skb_queue_head);
2432
2433/**
2434 *      skb_queue_tail - queue a buffer at the list tail
2435 *      @list: list to use
2436 *      @newsk: buffer to queue
2437 *
2438 *      Queue a buffer at the tail of the list. This function takes the
2439 *      list lock and can be used safely with other locking &sk_buff functions
2440 *      safely.
2441 *
2442 *      A buffer cannot be placed on two lists at the same time.
2443 */
2444void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2445{
2446        unsigned long flags;
2447
2448        spin_lock_irqsave(&list->lock, flags);
2449        __skb_queue_tail(list, newsk);
2450        spin_unlock_irqrestore(&list->lock, flags);
2451}
2452EXPORT_SYMBOL(skb_queue_tail);
2453
2454/**
2455 *      skb_unlink      -       remove a buffer from a list
2456 *      @skb: buffer to remove
2457 *      @list: list to use
2458 *
2459 *      Remove a packet from a list. The list locks are taken and this
2460 *      function is atomic with respect to other list locked calls
2461 *
2462 *      You must know what list the SKB is on.
2463 */
2464void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2465{
2466        unsigned long flags;
2467
2468        spin_lock_irqsave(&list->lock, flags);
2469        __skb_unlink(skb, list);
2470        spin_unlock_irqrestore(&list->lock, flags);
2471}
2472EXPORT_SYMBOL(skb_unlink);
2473
2474/**
2475 *      skb_append      -       append a buffer
2476 *      @old: buffer to insert after
2477 *      @newsk: buffer to insert
2478 *      @list: list to use
2479 *
2480 *      Place a packet after a given packet in a list. The list locks are taken
2481 *      and this function is atomic with respect to other list locked calls.
2482 *      A buffer cannot be placed on two lists at the same time.
2483 */
2484void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2485{
2486        unsigned long flags;
2487
2488        spin_lock_irqsave(&list->lock, flags);
2489        __skb_queue_after(list, old, newsk);
2490        spin_unlock_irqrestore(&list->lock, flags);
2491}
2492EXPORT_SYMBOL(skb_append);
2493
2494/**
2495 *      skb_insert      -       insert a buffer
2496 *      @old: buffer to insert before
2497 *      @newsk: buffer to insert
2498 *      @list: list to use
2499 *
2500 *      Place a packet before a given packet in a list. The list locks are
2501 *      taken and this function is atomic with respect to other list locked
2502 *      calls.
2503 *
2504 *      A buffer cannot be placed on two lists at the same time.
2505 */
2506void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2507{
2508        unsigned long flags;
2509
2510        spin_lock_irqsave(&list->lock, flags);
2511        __skb_insert(newsk, old->prev, old, list);
2512        spin_unlock_irqrestore(&list->lock, flags);
2513}
2514EXPORT_SYMBOL(skb_insert);
2515
2516static inline void skb_split_inside_header(struct sk_buff *skb,
2517                                           struct sk_buff* skb1,
2518                                           const u32 len, const int pos)
2519{
2520        int i;
2521
2522        skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2523                                         pos - len);
2524        /* And move data appendix as is. */
2525        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2526                skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2527
2528        skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2529        skb_shinfo(skb)->nr_frags  = 0;
2530        skb1->data_len             = skb->data_len;
2531        skb1->len                  += skb1->data_len;
2532        skb->data_len              = 0;
2533        skb->len                   = len;
2534        skb_set_tail_pointer(skb, len);
2535}
2536
2537static inline void skb_split_no_header(struct sk_buff *skb,
2538                                       struct sk_buff* skb1,
2539                                       const u32 len, int pos)
2540{
2541        int i, k = 0;
2542        const int nfrags = skb_shinfo(skb)->nr_frags;
2543
2544        skb_shinfo(skb)->nr_frags = 0;
2545        skb1->len                 = skb1->data_len = skb->len - len;
2546        skb->len                  = len;
2547        skb->data_len             = len - pos;
2548
2549        for (i = 0; i < nfrags; i++) {
2550                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2551
2552                if (pos + size > len) {
2553                        skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2554
2555                        if (pos < len) {
2556                                /* Split frag.
2557                                 * We have two variants in this case:
2558                                 * 1. Move all the frag to the second
2559                                 *    part, if it is possible. F.e.
2560                                 *    this approach is mandatory for TUX,
2561                                 *    where splitting is expensive.
2562                                 * 2. Split is accurately. We make this.
2563                                 */
2564                                skb_frag_ref(skb, i);
2565                                skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2566                                skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2567                                skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2568                                skb_shinfo(skb)->nr_frags++;
2569                        }
2570                        k++;
2571                } else
2572                        skb_shinfo(skb)->nr_frags++;
2573                pos += size;
2574        }
2575        skb_shinfo(skb1)->nr_frags = k;
2576}
2577
2578/**
2579 * skb_split - Split fragmented skb to two parts at length len.
2580 * @skb: the buffer to split
2581 * @skb1: the buffer to receive the second part
2582 * @len: new length for skb
2583 */
2584void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2585{
2586        int pos = skb_headlen(skb);
2587
2588        skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2589        if (len < pos)  /* Split line is inside header. */
2590                skb_split_inside_header(skb, skb1, len, pos);
2591        else            /* Second chunk has no header, nothing to copy. */
2592                skb_split_no_header(skb, skb1, len, pos);
2593}
2594EXPORT_SYMBOL(skb_split);
2595
2596/* Shifting from/to a cloned skb is a no-go.
2597 *
2598 * Caller cannot keep skb_shinfo related pointers past calling here!
2599 */
2600static int skb_prepare_for_shift(struct sk_buff *skb)
2601{
2602        return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2603}
2604
2605/**
2606 * skb_shift - Shifts paged data partially from skb to another
2607 * @tgt: buffer into which tail data gets added
2608 * @skb: buffer from which the paged data comes from
2609 * @shiftlen: shift up to this many bytes
2610 *
2611 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2612 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2613 * It's up to caller to free skb if everything was shifted.
2614 *
2615 * If @tgt runs out of frags, the whole operation is aborted.
2616 *
2617 * Skb cannot include anything else but paged data while tgt is allowed
2618 * to have non-paged data as well.
2619 *
2620 * TODO: full sized shift could be optimized but that would need
2621 * specialized skb free'er to handle frags without up-to-date nr_frags.
2622 */
2623int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2624{
2625        int from, to, merge, todo;
2626        struct skb_frag_struct *fragfrom, *fragto;
2627
2628        BUG_ON(shiftlen > skb->len);
2629        BUG_ON(skb_headlen(skb));       /* Would corrupt stream */
2630
2631        todo = shiftlen;
2632        from = 0;
2633        to = skb_shinfo(tgt)->nr_frags;
2634        fragfrom = &skb_shinfo(skb)->frags[from];
2635
2636        /* Actual merge is delayed until the point when we know we can
2637         * commit all, so that we don't have to undo partial changes
2638         */
2639        if (!to ||
2640            !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2641                              fragfrom->page_offset)) {
2642                merge = -1;
2643        } else {
2644                merge = to - 1;
2645
2646                todo -= skb_frag_size(fragfrom);
2647                if (todo < 0) {
2648                        if (skb_prepare_for_shift(skb) ||
2649                            skb_prepare_for_shift(tgt))
2650                                return 0;
2651
2652                        /* All previous frag pointers might be stale! */
2653                        fragfrom = &skb_shinfo(skb)->frags[from];
2654                        fragto = &skb_shinfo(tgt)->frags[merge];
2655
2656                        skb_frag_size_add(fragto, shiftlen);
2657                        skb_frag_size_sub(fragfrom, shiftlen);
2658                        fragfrom->page_offset += shiftlen;
2659
2660                        goto onlymerged;
2661                }
2662
2663                from++;
2664        }
2665
2666        /* Skip full, not-fitting skb to avoid expensive operations */
2667        if ((shiftlen == skb->len) &&
2668            (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2669                return 0;
2670
2671        if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2672                return 0;
2673
2674        while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2675                if (to == MAX_SKB_FRAGS)
2676                        return 0;
2677
2678                fragfrom = &skb_shinfo(skb)->frags[from];
2679                fragto = &skb_shinfo(tgt)->frags[to];
2680
2681                if (todo >= skb_frag_size(fragfrom)) {
2682                        *fragto = *fragfrom;
2683                        todo -= skb_frag_size(fragfrom);
2684                        from++;
2685                        to++;
2686
2687                } else {
2688                        __skb_frag_ref(fragfrom);
2689                        fragto->page = fragfrom->page;
2690                        fragto->page_offset = fragfrom->page_offset;
2691                        skb_frag_size_set(fragto, todo);
2692
2693                        fragfrom->page_offset += todo;
2694                        skb_frag_size_sub(fragfrom, todo);
2695                        todo = 0;
2696
2697                        to++;
2698                        break;
2699                }
2700        }
2701
2702        /* Ready to "commit" this state change to tgt */
2703        skb_shinfo(tgt)->nr_frags = to;
2704
2705        if (merge >= 0) {
2706                fragfrom = &skb_shinfo(skb)->frags[0];
2707                fragto = &skb_shinfo(tgt)->frags[merge];
2708
2709                skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2710                __skb_frag_unref(fragfrom);
2711        }
2712
2713        /* Reposition in the original skb */
2714        to = 0;
2715        while (from < skb_shinfo(skb)->nr_frags)
2716                skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2717        skb_shinfo(skb)->nr_frags = to;
2718
2719        BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2720
2721onlymerged:
2722        /* Most likely the tgt won't ever need its checksum anymore, skb on
2723         * the other hand might need it if it needs to be resent
2724         */
2725        tgt->ip_summed = CHECKSUM_PARTIAL;
2726        skb->ip_summed = CHECKSUM_PARTIAL;
2727
2728        /* Yak, is it really working this way? Some helper please? */
2729        skb->len -= shiftlen;
2730        skb->data_len -= shiftlen;
2731        skb->truesize -= shiftlen;
2732        tgt->len += shiftlen;
2733        tgt->data_len += shiftlen;
2734        tgt->truesize += shiftlen;
2735
2736        return shiftlen;
2737}
2738
2739/**
2740 * skb_prepare_seq_read - Prepare a sequential read of skb data
2741 * @skb: the buffer to read
2742 * @from: lower offset of data to be read
2743 * @to: upper offset of data to be read
2744 * @st: state variable
2745 *
2746 * Initializes the specified state variable. Must be called before
2747 * invoking skb_seq_read() for the first time.
2748 */
2749void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2750                          unsigned int to, struct skb_seq_state *st)
2751{
2752        st->lower_offset = from;
2753        st->upper_offset = to;
2754        st->root_skb = st->cur_skb = skb;
2755        st->frag_idx = st->stepped_offset = 0;
2756        st->frag_data = NULL;
2757}
2758EXPORT_SYMBOL(skb_prepare_seq_read);
2759
2760/**
2761 * skb_seq_read - Sequentially read skb data
2762 * @consumed: number of bytes consumed by the caller so far
2763 * @data: destination pointer for data to be returned
2764 * @st: state variable
2765 *
2766 * Reads a block of skb data at @consumed relative to the
2767 * lower offset specified to skb_prepare_seq_read(). Assigns
2768 * the head of the data block to @data and returns the length
2769 * of the block or 0 if the end of the skb data or the upper
2770 * offset has been reached.
2771 *
2772 * The caller is not required to consume all of the data
2773 * returned, i.e. @consumed is typically set to the number
2774 * of bytes already consumed and the next call to
2775 * skb_seq_read() will return the remaining part of the block.
2776 *
2777 * Note 1: The size of each block of data returned can be arbitrary,
2778 *       this limitation is the cost for zerocopy sequential
2779 *       reads of potentially non linear data.
2780 *
2781 * Note 2: Fragment lists within fragments are not implemented
2782 *       at the moment, state->root_skb could be replaced with
2783 *       a stack for this purpose.
2784 */
2785unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2786                          struct skb_seq_state *st)
2787{
2788        unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2789        skb_frag_t *frag;
2790
2791        if (unlikely(abs_offset >= st->upper_offset)) {
2792                if (st->frag_data) {
2793                        kunmap_atomic(st->frag_data);
2794                        st->frag_data = NULL;
2795                }
2796                return 0;
2797        }
2798
2799next_skb:
2800        block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2801
2802        if (abs_offset < block_limit && !st->frag_data) {
2803                *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2804                return block_limit - abs_offset;
2805        }
2806
2807        if (st->frag_idx == 0 && !st->frag_data)
2808                st->stepped_offset += skb_headlen(st->cur_skb);
2809
2810        while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2811                frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2812                block_limit = skb_frag_size(frag) + st->stepped_offset;
2813
2814                if (abs_offset < block_limit) {
2815                        if (!st->frag_data)
2816                                st->frag_data = kmap_atomic(skb_frag_page(frag));
2817
2818                        *data = (u8 *) st->frag_data + frag->page_offset +
2819                                (abs_offset - st->stepped_offset);
2820
2821                        return block_limit - abs_offset;
2822                }
2823
2824                if (st->frag_data) {
2825                        kunmap_atomic(st->frag_data);
2826                        st->frag_data = NULL;
2827                }
2828
2829                st->frag_idx++;
2830                st->stepped_offset += skb_frag_size(frag);
2831        }
2832
2833        if (st->frag_data) {
2834                kunmap_atomic(st->frag_data);
2835                st->frag_data = NULL;
2836        }
2837
2838        if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2839                st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2840                st->frag_idx = 0;
2841                goto next_skb;
2842        } else if (st->cur_skb->next) {
2843                st->cur_skb = st->cur_skb->next;
2844                st->frag_idx = 0;
2845                goto next_skb;
2846        }
2847
2848        return 0;
2849}
2850EXPORT_SYMBOL(skb_seq_read);
2851
2852/**
2853 * skb_abort_seq_read - Abort a sequential read of skb data
2854 * @st: state variable
2855 *
2856 * Must be called if skb_seq_read() was not called until it
2857 * returned 0.
2858 */
2859void skb_abort_seq_read(struct skb_seq_state *st)
2860{
2861        if (st->frag_data)
2862                kunmap_atomic(st->frag_data);
2863}
2864EXPORT_SYMBOL(skb_abort_seq_read);
2865
2866#define TS_SKB_CB(state)        ((struct skb_seq_state *) &((state)->cb))
2867
2868static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2869                                          struct ts_config *conf,
2870                                          struct ts_state *state)
2871{
2872        return skb_seq_read(offset, text, TS_SKB_CB(state));
2873}
2874
2875static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2876{
2877        skb_abort_seq_read(TS_SKB_CB(state));
2878}
2879
2880/**
2881 * skb_find_text - Find a text pattern in skb data
2882 * @skb: the buffer to look in
2883 * @from: search offset
2884 * @to: search limit
2885 * @config: textsearch configuration
2886 *
2887 * Finds a pattern in the skb data according to the specified
2888 * textsearch configuration. Use textsearch_next() to retrieve
2889 * subsequent occurrences of the pattern. Returns the offset
2890 * to the first occurrence or UINT_MAX if no match was found.
2891 */
2892unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2893                           unsigned int to, struct ts_config *config)
2894{
2895        struct ts_state state;
2896        unsigned int ret;
2897
2898        config->get_next_block = skb_ts_get_next_block;
2899        config->finish = skb_ts_finish;
2900
2901        skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2902
2903        ret = textsearch_find(config, &state);
2904        return (ret <= to - from ? ret : UINT_MAX);
2905}
2906EXPORT_SYMBOL(skb_find_text);
2907
2908/**
2909 * skb_append_datato_frags - append the user data to a skb
2910 * @sk: sock  structure
2911 * @skb: skb structure to be appended with user data.
2912 * @getfrag: call back function to be used for getting the user data
2913 * @from: pointer to user message iov
2914 * @length: length of the iov message
2915 *
2916 * Description: This procedure append the user data in the fragment part
2917 * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2918 */
2919int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2920                        int (*getfrag)(void *from, char *to, int offset,
2921                                        int len, int odd, struct sk_buff *skb),
2922                        void *from, int length)
2923{
2924        int frg_cnt = skb_shinfo(skb)->nr_frags;
2925        int copy;
2926        int offset = 0;
2927        int ret;
2928        struct page_frag *pfrag = &current->task_frag;
2929
2930        do {
2931                /* Return error if we don't have space for new frag */
2932                if (frg_cnt >= MAX_SKB_FRAGS)
2933                        return -EMSGSIZE;
2934
2935                if (!sk_page_frag_refill(sk, pfrag))
2936                        return -ENOMEM;
2937
2938                /* copy the user data to page */
2939                copy = min_t(int, length, pfrag->size - pfrag->offset);
2940
2941                ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2942                              offset, copy, 0, skb);
2943                if (ret < 0)
2944                        return -EFAULT;
2945
2946                /* copy was successful so update the size parameters */
2947                skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2948                                   copy);
2949                frg_cnt++;
2950                pfrag->offset += copy;
2951                get_page(pfrag->page);
2952
2953                skb->truesize += copy;
2954                atomic_add(copy, &sk->sk_wmem_alloc);
2955                skb->len += copy;
2956                skb->data_len += copy;
2957                offset += copy;
2958                length -= copy;
2959
2960        } while (length > 0);
2961
2962        return 0;
2963}
2964EXPORT_SYMBOL(skb_append_datato_frags);
2965
2966/**
2967 *      skb_pull_rcsum - pull skb and update receive checksum
2968 *      @skb: buffer to update
2969 *      @len: length of data pulled
2970 *
2971 *      This function performs an skb_pull on the packet and updates
2972 *      the CHECKSUM_COMPLETE checksum.  It should be used on
2973 *      receive path processing instead of skb_pull unless you know
2974 *      that the checksum difference is zero (e.g., a valid IP header)
2975 *      or you are setting ip_summed to CHECKSUM_NONE.
2976 */
2977unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2978{
2979        BUG_ON(len > skb->len);
2980        skb->len -= len;
2981        BUG_ON(skb->len < skb->data_len);
2982        skb_postpull_rcsum(skb, skb->data, len);
2983        return skb->data += len;
2984}
2985EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2986
2987/**
2988 *      skb_segment - Perform protocol segmentation on skb.
2989 *      @head_skb: buffer to segment
2990 *      @features: features for the output path (see dev->features)
2991 *
2992 *      This function performs segmentation on the given skb.  It returns
2993 *      a pointer to the first in a list of new skbs for the segments.
2994 *      In case of error it returns ERR_PTR(err).
2995 */
2996struct sk_buff *skb_segment(struct sk_buff *head_skb,
2997                            netdev_features_t features)
2998{
2999        struct sk_buff *segs = NULL;
3000        struct sk_buff *tail = NULL;
3001        struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3002        skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3003        unsigned int mss = skb_shinfo(head_skb)->gso_size;
3004        unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3005        struct sk_buff *frag_skb = head_skb;
3006        unsigned int offset = doffset;
3007        unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3008        unsigned int headroom;
3009        unsigned int len;
3010        __be16 proto;
3011        bool csum;
3012        int sg = !!(features & NETIF_F_SG);
3013        int nfrags = skb_shinfo(head_skb)->nr_frags;
3014        int err = -ENOMEM;
3015        int i = 0;
3016        int pos;
3017        int dummy;
3018
3019        __skb_push(head_skb, doffset);
3020        proto = skb_network_protocol(head_skb, &dummy);
3021        if (unlikely(!proto))
3022                return ERR_PTR(-EINVAL);
3023
3024        csum = !head_skb->encap_hdr_csum &&
3025            !!can_checksum_protocol(features, proto);
3026
3027        headroom = skb_headroom(head_skb);
3028        pos = skb_headlen(head_skb);
3029
3030        do {
3031                struct sk_buff *nskb;
3032                skb_frag_t *nskb_frag;
3033                int hsize;
3034                int size;
3035
3036                len = head_skb->len - offset;
3037                if (len > mss)
3038                        len = mss;
3039
3040                hsize = skb_headlen(head_skb) - offset;
3041                if (hsize < 0)
3042                        hsize = 0;
3043                if (hsize > len || !sg)
3044                        hsize = len;
3045
3046                if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3047                    (skb_headlen(list_skb) == len || sg)) {
3048                        BUG_ON(skb_headlen(list_skb) > len);
3049
3050                        i = 0;
3051                        nfrags = skb_shinfo(list_skb)->nr_frags;
3052                        frag = skb_shinfo(list_skb)->frags;
3053                        frag_skb = list_skb;
3054                        pos += skb_headlen(list_skb);
3055
3056                        while (pos < offset + len) {
3057                                BUG_ON(i >= nfrags);
3058
3059                                size = skb_frag_size(frag);
3060                                if (pos + size > offset + len)
3061                                        break;
3062
3063                                i++;
3064                                pos += size;
3065                                frag++;
3066                        }
3067
3068                        nskb = skb_clone(list_skb, GFP_ATOMIC);
3069                        list_skb = list_skb->next;
3070
3071                        if (unlikely(!nskb))
3072                                goto err;
3073
3074                        if (unlikely(pskb_trim(nskb, len))) {
3075                                kfree_skb(nskb);
3076                                goto err;
3077                        }
3078
3079                        hsize = skb_end_offset(nskb);
3080                        if (skb_cow_head(nskb, doffset + headroom)) {
3081                                kfree_skb(nskb);
3082                                goto err;
3083                        }
3084
3085                        nskb->truesize += skb_end_offset(nskb) - hsize;
3086                        skb_release_head_state(nskb);
3087                        __skb_push(nskb, doffset);
3088                } else {
3089                        nskb = __alloc_skb(hsize + doffset + headroom,
3090                                           GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3091                                           NUMA_NO_NODE);
3092
3093                        if (unlikely(!nskb))
3094                                goto err;
3095
3096                        skb_reserve(nskb, headroom);
3097                        __skb_put(nskb, doffset);
3098                }
3099
3100                if (segs)
3101                        tail->next = nskb;
3102                else
3103                        segs = nskb;
3104                tail = nskb;
3105
3106                __copy_skb_header(nskb, head_skb);
3107
3108                skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3109                skb_reset_mac_len(nskb);
3110
3111                skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3112                                                 nskb->data - tnl_hlen,
3113                                                 doffset + tnl_hlen);
3114
3115                if (nskb->len == len + doffset)
3116                        goto perform_csum_check;
3117
3118                if (!sg && !nskb->remcsum_offload) {
3119                        nskb->ip_summed = CHECKSUM_NONE;
3120                        nskb->csum = skb_copy_and_csum_bits(head_skb, offset,
3121                                                            skb_put(nskb, len),
3122                                                            len, 0);
3123                        SKB_GSO_CB(nskb)->csum_start =
3124                            skb_headroom(nskb) + doffset;
3125                        continue;
3126                }
3127
3128                nskb_frag = skb_shinfo(nskb)->frags;
3129
3130                skb_copy_from_linear_data_offset(head_skb, offset,
3131                                                 skb_put(nskb, hsize), hsize);
3132
3133                skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3134                        SKBTX_SHARED_FRAG;
3135
3136                while (pos < offset + len) {
3137                        if (i >= nfrags) {
3138                                BUG_ON(skb_headlen(list_skb));
3139
3140                                i = 0;
3141                                nfrags = skb_shinfo(list_skb)->nr_frags;
3142                                frag = skb_shinfo(list_skb)->frags;
3143                                frag_skb = list_skb;
3144
3145                                BUG_ON(!nfrags);
3146
3147                                list_skb = list_skb->next;
3148                        }
3149
3150                        if (unlikely(skb_shinfo(nskb)->nr_frags >=
3151                                     MAX_SKB_FRAGS)) {
3152                                net_warn_ratelimited(
3153                                        "skb_segment: too many frags: %u %u\n",
3154                                        pos, mss);
3155                                goto err;
3156                        }
3157
3158                        if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3159                                goto err;
3160
3161                        *nskb_frag = *frag;
3162                        __skb_frag_ref(nskb_frag);
3163                        size = skb_frag_size(nskb_frag);
3164
3165                        if (pos < offset) {
3166                                nskb_frag->page_offset += offset - pos;
3167                                skb_frag_size_sub(nskb_frag, offset - pos);
3168                        }
3169
3170                        skb_shinfo(nskb)->nr_frags++;
3171
3172                        if (pos + size <= offset + len) {
3173                                i++;
3174                                frag++;
3175                                pos += size;
3176                        } else {
3177                                skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3178                                goto skip_fraglist;
3179                        }
3180
3181                        nskb_frag++;
3182                }
3183
3184skip_fraglist:
3185                nskb->data_len = len - hsize;
3186                nskb->len += nskb->data_len;
3187                nskb->truesize += nskb->data_len;
3188
3189perform_csum_check:
3190                if (!csum && !nskb->remcsum_offload) {
3191                        nskb->csum = skb_checksum(nskb, doffset,
3192                                                  nskb->len - doffset, 0);
3193                        nskb->ip_summed = CHECKSUM_NONE;
3194                        SKB_GSO_CB(nskb)->csum_start =
3195                            skb_headroom(nskb) + doffset;
3196                }
3197        } while ((offset += len) < head_skb->len);
3198
3199        /* Some callers want to get the end of the list.
3200         * Put it in segs->prev to avoid walking the list.
3201         * (see validate_xmit_skb_list() for example)
3202         */
3203        segs->prev = tail;
3204
3205        /* Following permits correct backpressure, for protocols
3206         * using skb_set_owner_w().
3207         * Idea is to tranfert ownership from head_skb to last segment.
3208         */
3209        if (head_skb->destructor == sock_wfree) {
3210                swap(tail->truesize, head_skb->truesize);
3211                swap(tail->destructor, head_skb->destructor);
3212                swap(tail->sk, head_skb->sk);
3213        }
3214        return segs;
3215
3216err:
3217        kfree_skb_list(segs);
3218        return ERR_PTR(err);
3219}
3220EXPORT_SYMBOL_GPL(skb_segment);
3221
3222int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3223{
3224        struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3225        unsigned int offset = skb_gro_offset(skb);
3226        unsigned int headlen = skb_headlen(skb);
3227        unsigned int len = skb_gro_len(skb);
3228        struct sk_buff *lp, *p = *head;
3229        unsigned int delta_truesize;
3230
3231        if (unlikely(p->len + len >= 65536))
3232                return -E2BIG;
3233
3234        lp = NAPI_GRO_CB(p)->last;
3235        pinfo = skb_shinfo(lp);
3236
3237        if (headlen <= offset) {
3238                skb_frag_t *frag;
3239                skb_frag_t *frag2;
3240                int i = skbinfo->nr_frags;
3241                int nr_frags = pinfo->nr_frags + i;
3242
3243                if (nr_frags > MAX_SKB_FRAGS)
3244                        goto merge;
3245
3246                offset -= headlen;
3247                pinfo->nr_frags = nr_frags;
3248                skbinfo->nr_frags = 0;
3249
3250                frag = pinfo->frags + nr_frags;
3251                frag2 = skbinfo->frags + i;
3252                do {
3253                        *--frag = *--frag2;
3254                } while (--i);
3255
3256                frag->page_offset += offset;
3257                skb_frag_size_sub(frag, offset);
3258
3259                /* all fragments truesize : remove (head size + sk_buff) */
3260                delta_truesize = skb->truesize -
3261                                 SKB_TRUESIZE(skb_end_offset(skb));
3262
3263                skb->truesize -= skb->data_len;
3264                skb->len -= skb->data_len;
3265                skb->data_len = 0;
3266
3267                NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3268                goto done;
3269        } else if (skb->head_frag) {
3270                int nr_frags = pinfo->nr_frags;
3271                skb_frag_t *frag = pinfo->frags + nr_frags;
3272                struct page *page = virt_to_head_page(skb->head);
3273                unsigned int first_size = headlen - offset;
3274                unsigned int first_offset;
3275
3276                if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3277                        goto merge;
3278
3279                first_offset = skb->data -
3280                               (unsigned char *)page_address(page) +
3281                               offset;
3282
3283                pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3284
3285                frag->page.p      = page;
3286                frag->page_offset = first_offset;
3287                skb_frag_size_set(frag, first_size);
3288
3289                memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3290                /* We dont need to clear skbinfo->nr_frags here */
3291
3292                delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3293                NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3294                goto done;
3295        }
3296
3297merge:
3298        delta_truesize = skb->truesize;
3299        if (offset > headlen) {
3300                unsigned int eat = offset - headlen;
3301
3302                skbinfo->frags[0].page_offset += eat;
3303                skb_frag_size_sub(&skbinfo->frags[0], eat);
3304                skb->data_len -= eat;
3305                skb->len -= eat;
3306                offset = headlen;
3307        }
3308
3309        __skb_pull(skb, offset);
3310
3311        if (NAPI_GRO_CB(p)->last == p)
3312                skb_shinfo(p)->frag_list = skb;
3313        else
3314                NAPI_GRO_CB(p)->last->next = skb;
3315        NAPI_GRO_CB(p)->last = skb;
3316        __skb_header_release(skb);
3317        lp = p;
3318
3319done:
3320        NAPI_GRO_CB(p)->count++;
3321        p->data_len += len;
3322        p->truesize += delta_truesize;
3323        p->len += len;
3324        if (lp != p) {
3325                lp->data_len += len;
3326                lp->truesize += delta_truesize;
3327                lp->len += len;
3328        }
3329        NAPI_GRO_CB(skb)->same_flow = 1;
3330        return 0;
3331}
3332
3333void __init skb_init(void)
3334{
3335        skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3336                                              sizeof(struct sk_buff),
3337                                              0,
3338                                              SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3339                                              NULL);
3340        skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3341                                                sizeof(struct sk_buff_fclones),
3342                                                0,
3343                                                SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3344                                                NULL);
3345}
3346
3347/**
3348 *      skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3349 *      @skb: Socket buffer containing the buffers to be mapped
3350 *      @sg: The scatter-gather list to map into
3351 *      @offset: The offset into the buffer's contents to start mapping
3352 *      @len: Length of buffer space to be mapped
3353 *
3354 *      Fill the specified scatter-gather list with mappings/pointers into a
3355 *      region of the buffer space attached to a socket buffer.
3356 */
3357static int
3358__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3359{
3360        int start = skb_headlen(skb);
3361        int i, copy = start - offset;
3362        struct sk_buff *frag_iter;
3363        int elt = 0;
3364
3365        if (copy > 0) {
3366                if (copy > len)
3367                        copy = len;
3368                sg_set_buf(sg, skb->data + offset, copy);
3369                elt++;
3370                if ((len -= copy) == 0)
3371                        return elt;
3372                offset += copy;
3373        }
3374
3375        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3376                int end;
3377
3378                WARN_ON(start > offset + len);
3379
3380                end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3381                if ((copy = end - offset) > 0) {
3382                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3383
3384                        if (copy > len)
3385                                copy = len;
3386                        sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3387                                        frag->page_offset+offset-start);
3388                        elt++;
3389                        if (!(len -= copy))
3390                                return elt;
3391                        offset += copy;
3392                }
3393                start = end;
3394        }
3395
3396        skb_walk_frags(skb, frag_iter) {
3397                int end;
3398
3399                WARN_ON(start > offset + len);
3400
3401                end = start + frag_iter->len;
3402                if ((copy = end - offset) > 0) {
3403                        if (copy > len)
3404                                copy = len;
3405                        elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3406                                              copy);
3407                        if ((len -= copy) == 0)
3408                                return elt;
3409                        offset += copy;
3410                }
3411                start = end;
3412        }
3413        BUG_ON(len);
3414        return elt;
3415}
3416
3417/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3418 * sglist without mark the sg which contain last skb data as the end.
3419 * So the caller can mannipulate sg list as will when padding new data after
3420 * the first call without calling sg_unmark_end to expend sg list.
3421 *
3422 * Scenario to use skb_to_sgvec_nomark:
3423 * 1. sg_init_table
3424 * 2. skb_to_sgvec_nomark(payload1)
3425 * 3. skb_to_sgvec_nomark(payload2)
3426 *
3427 * This is equivalent to:
3428 * 1. sg_init_table
3429 * 2. skb_to_sgvec(payload1)
3430 * 3. sg_unmark_end
3431 * 4. skb_to_sgvec(payload2)
3432 *
3433 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3434 * is more preferable.
3435 */
3436int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3437                        int offset, int len)
3438{
3439        return __skb_to_sgvec(skb, sg, offset, len);
3440}
3441EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3442
3443int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3444{
3445        int nsg = __skb_to_sgvec(skb, sg, offset, len);
3446
3447        sg_mark_end(&sg[nsg - 1]);
3448
3449        return nsg;
3450}
3451EXPORT_SYMBOL_GPL(skb_to_sgvec);
3452
3453/**
3454 *      skb_cow_data - Check that a socket buffer's data buffers are writable
3455 *      @skb: The socket buffer to check.
3456 *      @tailbits: Amount of trailing space to be added
3457 *      @trailer: Returned pointer to the skb where the @tailbits space begins
3458 *
3459 *      Make sure that the data buffers attached to a socket buffer are
3460 *      writable. If they are not, private copies are made of the data buffers
3461 *      and the socket buffer is set to use these instead.
3462 *
3463 *      If @tailbits is given, make sure that there is space to write @tailbits
3464 *      bytes of data beyond current end of socket buffer.  @trailer will be
3465 *      set to point to the skb in which this space begins.
3466 *
3467 *      The number of scatterlist elements required to completely map the
3468 *      COW'd and extended socket buffer will be returned.
3469 */
3470int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3471{
3472        int copyflag;
3473        int elt;
3474        struct sk_buff *skb1, **skb_p;
3475
3476        /* If skb is cloned or its head is paged, reallocate
3477         * head pulling out all the pages (pages are considered not writable
3478         * at the moment even if they are anonymous).
3479         */
3480        if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3481            __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3482                return -ENOMEM;
3483
3484        /* Easy case. Most of packets will go this way. */
3485        if (!skb_has_frag_list(skb)) {
3486                /* A little of trouble, not enough of space for trailer.
3487                 * This should not happen, when stack is tuned to generate
3488                 * good frames. OK, on miss we reallocate and reserve even more
3489                 * space, 128 bytes is fair. */
3490
3491                if (skb_tailroom(skb) < tailbits &&
3492                    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3493                        return -ENOMEM;
3494
3495                /* Voila! */
3496                *trailer = skb;
3497                return 1;
3498        }
3499
3500        /* Misery. We are in troubles, going to mincer fragments... */
3501
3502        elt = 1;
3503        skb_p = &skb_shinfo(skb)->frag_list;
3504        copyflag = 0;
3505
3506        while ((skb1 = *skb_p) != NULL) {
3507                int ntail = 0;
3508
3509                /* The fragment is partially pulled by someone,
3510                 * this can happen on input. Copy it and everything
3511                 * after it. */
3512
3513                if (skb_shared(skb1))
3514                        copyflag = 1;
3515
3516                /* If the skb is the last, worry about trailer. */
3517
3518                if (skb1->next == NULL && tailbits) {
3519                        if (skb_shinfo(skb1)->nr_frags ||
3520                            skb_has_frag_list(skb1) ||
3521                            skb_tailroom(skb1) < tailbits)
3522                                ntail = tailbits + 128;
3523                }
3524
3525                if (copyflag ||
3526                    skb_cloned(skb1) ||
3527                    ntail ||
3528                    skb_shinfo(skb1)->nr_frags ||
3529                    skb_has_frag_list(skb1)) {
3530                        struct sk_buff *skb2;
3531
3532                        /* Fuck, we are miserable poor guys... */
3533                        if (ntail == 0)
3534                                skb2 = skb_copy(skb1, GFP_ATOMIC);
3535                        else
3536                                skb2 = skb_copy_expand(skb1,
3537                                                       skb_headroom(skb1),
3538                                                       ntail,
3539                                                       GFP_ATOMIC);
3540                        if (unlikely(skb2 == NULL))
3541                                return -ENOMEM;
3542
3543                        if (skb1->sk)
3544                                skb_set_owner_w(skb2, skb1->sk);
3545
3546                        /* Looking around. Are we still alive?
3547                         * OK, link new skb, drop old one */
3548
3549                        skb2->next = skb1->next;
3550                        *skb_p = skb2;
3551                        kfree_skb(skb1);
3552                        skb1 = skb2;
3553                }
3554                elt++;
3555                *trailer = skb1;
3556                skb_p = &skb1->next;
3557        }
3558
3559        return elt;
3560}
3561EXPORT_SYMBOL_GPL(skb_cow_data);
3562
3563static void sock_rmem_free(struct sk_buff *skb)
3564{
3565        struct sock *sk = skb->sk;
3566
3567        atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3568}
3569
3570/*
3571 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3572 */
3573int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3574{
3575        if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3576            (unsigned int)sk->sk_rcvbuf)
3577                return -ENOMEM;
3578
3579        skb_orphan(skb);
3580        skb->sk = sk;
3581        skb->destructor = sock_rmem_free;
3582        atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3583
3584        /* before exiting rcu section, make sure dst is refcounted */
3585        skb_dst_force(skb);
3586
3587        skb_queue_tail(&sk->sk_error_queue, skb);
3588        if (!sock_flag(sk, SOCK_DEAD))
3589                sk->sk_data_ready(sk);
3590        return 0;
3591}
3592EXPORT_SYMBOL(sock_queue_err_skb);
3593
3594struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3595{
3596        struct sk_buff_head *q = &sk->sk_error_queue;
3597        struct sk_buff *skb, *skb_next;
3598        unsigned long flags;
3599        int err = 0;
3600
3601        spin_lock_irqsave(&q->lock, flags);
3602        skb = __skb_dequeue(q);
3603        if (skb && (skb_next = skb_peek(q)))
3604                err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
3605        spin_unlock_irqrestore(&q->lock, flags);
3606
3607        sk->sk_err = err;
3608        if (err)
3609                sk->sk_error_report(sk);
3610
3611        return skb;
3612}
3613EXPORT_SYMBOL(sock_dequeue_err_skb);
3614
3615/**
3616 * skb_clone_sk - create clone of skb, and take reference to socket
3617 * @skb: the skb to clone
3618 *
3619 * This function creates a clone of a buffer that holds a reference on
3620 * sk_refcnt.  Buffers created via this function are meant to be
3621 * returned using sock_queue_err_skb, or free via kfree_skb.
3622 *
3623 * When passing buffers allocated with this function to sock_queue_err_skb
3624 * it is necessary to wrap the call with sock_hold/sock_put in order to
3625 * prevent the socket from being released prior to being enqueued on
3626 * the sk_error_queue.
3627 */
3628struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3629{
3630        struct sock *sk = skb->sk;
3631        struct sk_buff *clone;
3632
3633        if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3634                return NULL;
3635
3636        clone = skb_clone(skb, GFP_ATOMIC);
3637        if (!clone) {
3638                sock_put(sk);
3639                return NULL;
3640        }
3641
3642        clone->sk = sk;
3643        clone->destructor = sock_efree;
3644
3645        return clone;
3646}
3647EXPORT_SYMBOL(skb_clone_sk);
3648
3649static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3650                                        struct sock *sk,
3651                                        int tstype)
3652{
3653        struct sock_exterr_skb *serr;
3654        int err;
3655
3656        serr = SKB_EXT_ERR(skb);
3657        memset(serr, 0, sizeof(*serr));
3658        serr->ee.ee_errno = ENOMSG;
3659        serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3660        serr->ee.ee_info = tstype;
3661        if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3662                serr->ee.ee_data = skb_shinfo(skb)->tskey;
3663                if (sk->sk_protocol == IPPROTO_TCP)
3664                        serr->ee.ee_data -= sk->sk_tskey;
3665        }
3666
3667        err = sock_queue_err_skb(sk, skb);
3668
3669        if (err)
3670                kfree_skb(skb);
3671}
3672
3673static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3674{
3675        bool ret;
3676
3677        if (likely(sysctl_tstamp_allow_data || tsonly))
3678                return true;
3679
3680        read_lock_bh(&sk->sk_callback_lock);
3681        ret = sk->sk_socket && sk->sk_socket->file &&
3682              file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3683        read_unlock_bh(&sk->sk_callback_lock);
3684        return ret;
3685}
3686
3687void skb_complete_tx_timestamp(struct sk_buff *skb,
3688                               struct skb_shared_hwtstamps *hwtstamps)
3689{
3690        struct sock *sk = skb->sk;
3691
3692        if (!skb_may_tx_timestamp(sk, false))
3693                return;
3694
3695        /* take a reference to prevent skb_orphan() from freeing the socket */
3696        sock_hold(sk);
3697
3698        *skb_hwtstamps(skb) = *hwtstamps;
3699        __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
3700
3701        sock_put(sk);
3702}
3703EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3704
3705void __skb_tstamp_tx(struct sk_buff *orig_skb,
3706                     struct skb_shared_hwtstamps *hwtstamps,
3707                     struct sock *sk, int tstype)
3708{
3709        struct sk_buff *skb;
3710        bool tsonly;
3711
3712        if (!sk)
3713                return;
3714
3715        tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3716        if (!skb_may_tx_timestamp(sk, tsonly))
3717                return;
3718
3719        if (tsonly)
3720                skb = alloc_skb(0, GFP_ATOMIC);
3721        else
3722                skb = skb_clone(orig_skb, GFP_ATOMIC);
3723        if (!skb)
3724                return;
3725
3726        if (tsonly) {
3727                skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags;
3728                skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3729        }
3730
3731        if (hwtstamps)
3732                *skb_hwtstamps(skb) = *hwtstamps;
3733        else
3734                skb->tstamp = ktime_get_real();
3735
3736        __skb_complete_tx_timestamp(skb, sk, tstype);
3737}
3738EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3739
3740void skb_tstamp_tx(struct sk_buff *orig_skb,
3741                   struct skb_shared_hwtstamps *hwtstamps)
3742{
3743        return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3744                               SCM_TSTAMP_SND);
3745}
3746EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3747
3748void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3749{
3750        struct sock *sk = skb->sk;
3751        struct sock_exterr_skb *serr;
3752        int err;
3753
3754        skb->wifi_acked_valid = 1;
3755        skb->wifi_acked = acked;
3756
3757        serr = SKB_EXT_ERR(skb);
3758        memset(serr, 0, sizeof(*serr));
3759        serr->ee.ee_errno = ENOMSG;
3760        serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3761
3762        /* take a reference to prevent skb_orphan() from freeing the socket */
3763        sock_hold(sk);
3764
3765        err = sock_queue_err_skb(sk, skb);
3766        if (err)
3767                kfree_skb(skb);
3768
3769        sock_put(sk);
3770}
3771EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3772
3773/**
3774 * skb_partial_csum_set - set up and verify partial csum values for packet
3775 * @skb: the skb to set
3776 * @start: the number of bytes after skb->data to start checksumming.
3777 * @off: the offset from start to place the checksum.
3778 *
3779 * For untrusted partially-checksummed packets, we need to make sure the values
3780 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3781 *
3782 * This function checks and sets those values and skb->ip_summed: if this
3783 * returns false you should drop the packet.
3784 */
3785bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3786{
3787        if (unlikely(start > skb_headlen(skb)) ||
3788            unlikely((int)start + off > skb_headlen(skb) - 2)) {
3789                net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3790                                     start, off, skb_headlen(skb));
3791                return false;
3792        }
3793        skb->ip_summed = CHECKSUM_PARTIAL;
3794        skb->csum_start = skb_headroom(skb) + start;
3795        skb->csum_offset = off;
3796        skb_set_transport_header(skb, start);
3797        return true;
3798}
3799EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3800
3801static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3802                               unsigned int max)
3803{
3804        if (skb_headlen(skb) >= len)
3805                return 0;
3806
3807        /* If we need to pullup then pullup to the max, so we
3808         * won't need to do it again.
3809         */
3810        if (max > skb->len)
3811                max = skb->len;
3812
3813        if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3814                return -ENOMEM;
3815
3816        if (skb_headlen(skb) < len)
3817                return -EPROTO;
3818
3819        return 0;
3820}
3821
3822#define MAX_TCP_HDR_LEN (15 * 4)
3823
3824static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3825                                      typeof(IPPROTO_IP) proto,
3826                                      unsigned int off)
3827{
3828        switch (proto) {
3829                int err;
3830
3831        case IPPROTO_TCP:
3832                err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3833                                          off + MAX_TCP_HDR_LEN);
3834                if (!err && !skb_partial_csum_set(skb, off,
3835                                                  offsetof(struct tcphdr,
3836                                                           check)))
3837                        err = -EPROTO;
3838                return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3839
3840        case IPPROTO_UDP:
3841                err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3842                                          off + sizeof(struct udphdr));
3843                if (!err && !skb_partial_csum_set(skb, off,
3844                                                  offsetof(struct udphdr,
3845                                                           check)))
3846                        err = -EPROTO;
3847                return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3848        }
3849
3850        return ERR_PTR(-EPROTO);
3851}
3852
3853/* This value should be large enough to cover a tagged ethernet header plus
3854 * maximally sized IP and TCP or UDP headers.
3855 */
3856#define MAX_IP_HDR_LEN 128
3857
3858static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
3859{
3860        unsigned int off;
3861        bool fragment;
3862        __sum16 *csum;
3863        int err;
3864
3865        fragment = false;
3866
3867        err = skb_maybe_pull_tail(skb,
3868                                  sizeof(struct iphdr),
3869                                  MAX_IP_HDR_LEN);
3870        if (err < 0)
3871                goto out;
3872
3873        if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3874                fragment = true;
3875
3876        off = ip_hdrlen(skb);
3877
3878        err = -EPROTO;
3879
3880        if (fragment)
3881                goto out;
3882
3883        csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
3884        if (IS_ERR(csum))
3885                return PTR_ERR(csum);
3886
3887        if (recalculate)
3888                *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3889                                           ip_hdr(skb)->daddr,
3890                                           skb->len - off,
3891                                           ip_hdr(skb)->protocol, 0);
3892        err = 0;
3893
3894out:
3895        return err;
3896}
3897
3898/* This value should be large enough to cover a tagged ethernet header plus
3899 * an IPv6 header, all options, and a maximal TCP or UDP header.
3900 */
3901#define MAX_IPV6_HDR_LEN 256
3902
3903#define OPT_HDR(type, skb, off) \
3904        (type *)(skb_network_header(skb) + (off))
3905
3906static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
3907{
3908        int err;
3909        u8 nexthdr;
3910        unsigned int off;
3911        unsigned int len;
3912        bool fragment;
3913        bool done;
3914        __sum16 *csum;
3915
3916        fragment = false;
3917        done = false;
3918
3919        off = sizeof(struct ipv6hdr);
3920
3921        err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
3922        if (err < 0)
3923                goto out;
3924
3925        nexthdr = ipv6_hdr(skb)->nexthdr;
3926
3927        len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
3928        while (off <= len && !done) {
3929                switch (nexthdr) {
3930                case IPPROTO_DSTOPTS:
3931                case IPPROTO_HOPOPTS:
3932                case IPPROTO_ROUTING: {
3933                        struct ipv6_opt_hdr *hp;
3934
3935                        err = skb_maybe_pull_tail(skb,
3936                                                  off +
3937                                                  sizeof(struct ipv6_opt_hdr),
3938                                                  MAX_IPV6_HDR_LEN);
3939                        if (err < 0)
3940                                goto out;
3941
3942                        hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
3943                        nexthdr = hp->nexthdr;
3944                        off += ipv6_optlen(hp);
3945                        break;
3946                }
3947                case IPPROTO_AH: {
3948                        struct ip_auth_hdr *hp;
3949
3950                        err = skb_maybe_pull_tail(skb,
3951                                                  off +
3952                                                  sizeof(struct ip_auth_hdr),
3953                                                  MAX_IPV6_HDR_LEN);
3954                        if (err < 0)
3955                                goto out;
3956
3957                        hp = OPT_HDR(struct ip_auth_hdr, skb, off);
3958                        nexthdr = hp->nexthdr;
3959                        off += ipv6_authlen(hp);
3960                        break;
3961                }
3962                case IPPROTO_FRAGMENT: {
3963                        struct frag_hdr *hp;
3964
3965                        err = skb_maybe_pull_tail(skb,
3966                                                  off +
3967                                                  sizeof(struct frag_hdr),
3968                                                  MAX_IPV6_HDR_LEN);
3969                        if (err < 0)
3970                                goto out;
3971
3972                        hp = OPT_HDR(struct frag_hdr, skb, off);
3973
3974                        if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
3975                                fragment = true;
3976
3977                        nexthdr = hp->nexthdr;
3978                        off += sizeof(struct frag_hdr);
3979                        break;
3980                }
3981                default:
3982                        done = true;
3983                        break;
3984                }
3985        }
3986
3987        err = -EPROTO;
3988
3989        if (!done || fragment)
3990                goto out;
3991
3992        csum = skb_checksum_setup_ip(skb, nexthdr, off);
3993        if (IS_ERR(csum))
3994                return PTR_ERR(csum);
3995
3996        if (recalculate)
3997                *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3998                                         &ipv6_hdr(skb)->daddr,
3999                                         skb->len - off, nexthdr, 0);
4000        err = 0;
4001
4002out:
4003        return err;
4004}
4005
4006/**
4007 * skb_checksum_setup - set up partial checksum offset
4008 * @skb: the skb to set up
4009 * @recalculate: if true the pseudo-header checksum will be recalculated
4010 */
4011int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4012{
4013        int err;
4014
4015        switch (skb->protocol) {
4016        case htons(ETH_P_IP):
4017                err = skb_checksum_setup_ipv4(skb, recalculate);
4018                break;
4019
4020        case htons(ETH_P_IPV6):
4021                err = skb_checksum_setup_ipv6(skb, recalculate);
4022                break;
4023
4024        default:
4025                err = -EPROTO;
4026                break;
4027        }
4028
4029        return err;
4030}
4031EXPORT_SYMBOL(skb_checksum_setup);
4032
4033void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4034{
4035        net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4036                             skb->dev->name);
4037}
4038EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4039
4040void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4041{
4042        if (head_stolen) {
4043                skb_release_head_state(skb);
4044                kmem_cache_free(skbuff_head_cache, skb);
4045        } else {
4046                __kfree_skb(skb);
4047        }
4048}
4049EXPORT_SYMBOL(kfree_skb_partial);
4050
4051/**
4052 * skb_try_coalesce - try to merge skb to prior one
4053 * @to: prior buffer
4054 * @from: buffer to add
4055 * @fragstolen: pointer to boolean
4056 * @delta_truesize: how much more was allocated than was requested
4057 */
4058bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4059                      bool *fragstolen, int *delta_truesize)
4060{
4061        int i, delta, len = from->len;
4062
4063        *fragstolen = false;
4064
4065        if (skb_cloned(to))
4066                return false;
4067
4068        if (len <= skb_tailroom(to)) {
4069                if (len)
4070                        BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4071                *delta_truesize = 0;
4072                return true;
4073        }
4074
4075        if (skb_has_frag_list(to) || skb_has_frag_list(from))
4076                return false;
4077
4078        if (skb_headlen(from) != 0) {
4079                struct page *page;
4080                unsigned int offset;
4081
4082                if (skb_shinfo(to)->nr_frags +
4083                    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4084                        return false;
4085
4086                if (skb_head_is_locked(from))
4087                        return false;
4088
4089                delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4090
4091                page = virt_to_head_page(from->head);
4092                offset = from->data - (unsigned char *)page_address(page);
4093
4094                skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4095                                   page, offset, skb_headlen(from));
4096                *fragstolen = true;
4097        } else {
4098                if (skb_shinfo(to)->nr_frags +
4099                    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4100                        return false;
4101
4102                delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4103        }
4104
4105        WARN_ON_ONCE(delta < len);
4106
4107        memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4108               skb_shinfo(from)->frags,
4109               skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4110        skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4111
4112        if (!skb_cloned(from))
4113                skb_shinfo(from)->nr_frags = 0;
4114
4115        /* if the skb is not cloned this does nothing
4116         * since we set nr_frags to 0.
4117         */
4118        for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4119                skb_frag_ref(from, i);
4120
4121        to->truesize += delta;
4122        to->len += len;
4123        to->data_len += len;
4124
4125        *delta_truesize = delta;
4126        return true;
4127}
4128EXPORT_SYMBOL(skb_try_coalesce);
4129
4130/**
4131 * skb_scrub_packet - scrub an skb
4132 *
4133 * @skb: buffer to clean
4134 * @xnet: packet is crossing netns
4135 *
4136 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4137 * into/from a tunnel. Some information have to be cleared during these
4138 * operations.
4139 * skb_scrub_packet can also be used to clean a skb before injecting it in
4140 * another namespace (@xnet == true). We have to clear all information in the
4141 * skb that could impact namespace isolation.
4142 */
4143void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4144{
4145        skb->tstamp.tv64 = 0;
4146        skb->pkt_type = PACKET_HOST;
4147        skb->skb_iif = 0;
4148        skb->ignore_df = 0;
4149        skb_dst_drop(skb);
4150        skb_sender_cpu_clear(skb);
4151        secpath_reset(skb);
4152        nf_reset(skb);
4153        nf_reset_trace(skb);
4154
4155        if (!xnet)
4156                return;
4157
4158        skb_orphan(skb);
4159        skb->mark = 0;
4160}
4161EXPORT_SYMBOL_GPL(skb_scrub_packet);
4162
4163/**
4164 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4165 *
4166 * @skb: GSO skb
4167 *
4168 * skb_gso_transport_seglen is used to determine the real size of the
4169 * individual segments, including Layer4 headers (TCP/UDP).
4170 *
4171 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4172 */
4173unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4174{
4175        const struct skb_shared_info *shinfo = skb_shinfo(skb);
4176        unsigned int thlen = 0;
4177
4178        if (skb->encapsulation) {
4179                thlen = skb_inner_transport_header(skb) -
4180                        skb_transport_header(skb);
4181
4182                if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4183                        thlen += inner_tcp_hdrlen(skb);
4184        } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4185                thlen = tcp_hdrlen(skb);
4186        }
4187        /* UFO sets gso_size to the size of the fragmentation
4188         * payload, i.e. the size of the L4 (UDP) header is already
4189         * accounted for.
4190         */
4191        return thlen + shinfo->gso_size;
4192}
4193EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4194
4195static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4196{
4197        if (skb_cow(skb, skb_headroom(skb)) < 0) {
4198                kfree_skb(skb);
4199                return NULL;
4200        }
4201
4202        memmove(skb->data - ETH_HLEN, skb->data - VLAN_ETH_HLEN, 2 * ETH_ALEN);
4203        skb->mac_header += VLAN_HLEN;
4204        return skb;
4205}
4206
4207struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4208{
4209        struct vlan_hdr *vhdr;
4210        u16 vlan_tci;
4211
4212        if (unlikely(skb_vlan_tag_present(skb))) {
4213                /* vlan_tci is already set-up so leave this for another time */
4214                return skb;
4215        }
4216
4217        skb = skb_share_check(skb, GFP_ATOMIC);
4218        if (unlikely(!skb))
4219                goto err_free;
4220
4221        if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4222                goto err_free;
4223
4224        vhdr = (struct vlan_hdr *)skb->data;
4225        vlan_tci = ntohs(vhdr->h_vlan_TCI);
4226        __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4227
4228        skb_pull_rcsum(skb, VLAN_HLEN);
4229        vlan_set_encap_proto(skb, vhdr);
4230
4231        skb = skb_reorder_vlan_header(skb);
4232        if (unlikely(!skb))
4233                goto err_free;
4234
4235        skb_reset_network_header(skb);
4236        skb_reset_transport_header(skb);
4237        skb_reset_mac_len(skb);
4238
4239        return skb;
4240
4241err_free:
4242        kfree_skb(skb);
4243        return NULL;
4244}
4245EXPORT_SYMBOL(skb_vlan_untag);
4246
4247int skb_ensure_writable(struct sk_buff *skb, int write_len)
4248{
4249        if (!pskb_may_pull(skb, write_len))
4250                return -ENOMEM;
4251
4252        if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4253                return 0;
4254
4255        return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4256}
4257EXPORT_SYMBOL(skb_ensure_writable);
4258
4259/* remove VLAN header from packet and update csum accordingly. */
4260static int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4261{
4262        struct vlan_hdr *vhdr;
4263        unsigned int offset = skb->data - skb_mac_header(skb);
4264        int err;
4265
4266        __skb_push(skb, offset);
4267        err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4268        if (unlikely(err))
4269                goto pull;
4270
4271        skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4272
4273        vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4274        *vlan_tci = ntohs(vhdr->h_vlan_TCI);
4275
4276        memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4277        __skb_pull(skb, VLAN_HLEN);
4278
4279        vlan_set_encap_proto(skb, vhdr);
4280        skb->mac_header += VLAN_HLEN;
4281
4282        if (skb_network_offset(skb) < ETH_HLEN)
4283                skb_set_network_header(skb, ETH_HLEN);
4284
4285        skb_reset_mac_len(skb);
4286pull:
4287        __skb_pull(skb, offset);
4288
4289        return err;
4290}
4291
4292int skb_vlan_pop(struct sk_buff *skb)
4293{
4294        u16 vlan_tci;
4295        __be16 vlan_proto;
4296        int err;
4297
4298        if (likely(skb_vlan_tag_present(skb))) {
4299                skb->vlan_tci = 0;
4300        } else {
4301                if (unlikely((skb->protocol != htons(ETH_P_8021Q) &&
4302                              skb->protocol != htons(ETH_P_8021AD)) ||
4303                             skb->len < VLAN_ETH_HLEN))
4304                        return 0;
4305
4306                err = __skb_vlan_pop(skb, &vlan_tci);
4307                if (err)
4308                        return err;
4309        }
4310        /* move next vlan tag to hw accel tag */
4311        if (likely((skb->protocol != htons(ETH_P_8021Q) &&
4312                    skb->protocol != htons(ETH_P_8021AD)) ||
4313                   skb->len < VLAN_ETH_HLEN))
4314                return 0;
4315
4316        vlan_proto = skb->protocol;
4317        err = __skb_vlan_pop(skb, &vlan_tci);
4318        if (unlikely(err))
4319                return err;
4320
4321        __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4322        return 0;
4323}
4324EXPORT_SYMBOL(skb_vlan_pop);
4325
4326int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4327{
4328        if (skb_vlan_tag_present(skb)) {
4329                unsigned int offset = skb->data - skb_mac_header(skb);
4330                int err;
4331
4332                /* __vlan_insert_tag expect skb->data pointing to mac header.
4333                 * So change skb->data before calling it and change back to
4334                 * original position later
4335                 */
4336                __skb_push(skb, offset);
4337                err = __vlan_insert_tag(skb, skb->vlan_proto,
4338                                        skb_vlan_tag_get(skb));
4339                if (err)
4340                        return err;
4341                skb->protocol = skb->vlan_proto;
4342                skb->mac_len += VLAN_HLEN;
4343                __skb_pull(skb, offset);
4344
4345                if (skb->ip_summed == CHECKSUM_COMPLETE)
4346                        skb->csum = csum_add(skb->csum, csum_partial(skb->data
4347                                        + (2 * ETH_ALEN), VLAN_HLEN, 0));
4348        }
4349        __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4350        return 0;
4351}
4352EXPORT_SYMBOL(skb_vlan_push);
4353
4354/**
4355 * alloc_skb_with_frags - allocate skb with page frags
4356 *
4357 * @header_len: size of linear part
4358 * @data_len: needed length in frags
4359 * @max_page_order: max page order desired.
4360 * @errcode: pointer to error code if any
4361 * @gfp_mask: allocation mask
4362 *
4363 * This can be used to allocate a paged skb, given a maximal order for frags.
4364 */
4365struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4366                                     unsigned long data_len,
4367                                     int max_page_order,
4368                                     int *errcode,
4369                                     gfp_t gfp_mask)
4370{
4371        int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4372        unsigned long chunk;
4373        struct sk_buff *skb;
4374        struct page *page;
4375        gfp_t gfp_head;
4376        int i;
4377
4378        *errcode = -EMSGSIZE;
4379        /* Note this test could be relaxed, if we succeed to allocate
4380         * high order pages...
4381         */
4382        if (npages > MAX_SKB_FRAGS)
4383                return NULL;
4384
4385        gfp_head = gfp_mask;
4386        if (gfp_head & __GFP_WAIT)
4387                gfp_head |= __GFP_REPEAT;
4388
4389        *errcode = -ENOBUFS;
4390        skb = alloc_skb(header_len, gfp_head);
4391        if (!skb)
4392                return NULL;
4393
4394        skb->truesize += npages << PAGE_SHIFT;
4395
4396        for (i = 0; npages > 0; i++) {
4397                int order = max_page_order;
4398
4399                while (order) {
4400                        if (npages >= 1 << order) {
4401                                page = alloc_pages((gfp_mask & ~__GFP_WAIT) |
4402                                                   __GFP_COMP |
4403                                                   __GFP_NOWARN |
4404                                                   __GFP_NORETRY,
4405                                                   order);
4406                                if (page)
4407                                        goto fill_page;
4408                                /* Do not retry other high order allocations */
4409                                order = 1;
4410                                max_page_order = 0;
4411                        }
4412                        order--;
4413                }
4414                page = alloc_page(gfp_mask);
4415                if (!page)
4416                        goto failure;
4417fill_page:
4418                chunk = min_t(unsigned long, data_len,
4419                              PAGE_SIZE << order);
4420                skb_fill_page_desc(skb, i, page, 0, chunk);
4421                data_len -= chunk;
4422                npages -= 1 << order;
4423        }
4424        return skb;
4425
4426failure:
4427        kfree_skb(skb);
4428        return NULL;
4429}
4430EXPORT_SYMBOL(alloc_skb_with_frags);
4431