linux/net/ipv4/fib_trie.c
<<
>>
Prefs
   1/*
   2 *   This program is free software; you can redistribute it and/or
   3 *   modify it under the terms of the GNU General Public License
   4 *   as published by the Free Software Foundation; either version
   5 *   2 of the License, or (at your option) any later version.
   6 *
   7 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
   8 *     & Swedish University of Agricultural Sciences.
   9 *
  10 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
  11 *     Agricultural Sciences.
  12 *
  13 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
  14 *
  15 * This work is based on the LPC-trie which is originally described in:
  16 *
  17 * An experimental study of compression methods for dynamic tries
  18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
  20 *
  21 *
  22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  24 *
  25 *
  26 * Code from fib_hash has been reused which includes the following header:
  27 *
  28 *
  29 * INET         An implementation of the TCP/IP protocol suite for the LINUX
  30 *              operating system.  INET is implemented using the  BSD Socket
  31 *              interface as the means of communication with the user level.
  32 *
  33 *              IPv4 FIB: lookup engine and maintenance routines.
  34 *
  35 *
  36 * Authors:     Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  37 *
  38 *              This program is free software; you can redistribute it and/or
  39 *              modify it under the terms of the GNU General Public License
  40 *              as published by the Free Software Foundation; either version
  41 *              2 of the License, or (at your option) any later version.
  42 *
  43 * Substantial contributions to this work comes from:
  44 *
  45 *              David S. Miller, <davem@davemloft.net>
  46 *              Stephen Hemminger <shemminger@osdl.org>
  47 *              Paul E. McKenney <paulmck@us.ibm.com>
  48 *              Patrick McHardy <kaber@trash.net>
  49 */
  50
  51#define VERSION "0.409"
  52
  53#include <asm/uaccess.h>
  54#include <linux/bitops.h>
  55#include <linux/types.h>
  56#include <linux/kernel.h>
  57#include <linux/mm.h>
  58#include <linux/string.h>
  59#include <linux/socket.h>
  60#include <linux/sockios.h>
  61#include <linux/errno.h>
  62#include <linux/in.h>
  63#include <linux/inet.h>
  64#include <linux/inetdevice.h>
  65#include <linux/netdevice.h>
  66#include <linux/if_arp.h>
  67#include <linux/proc_fs.h>
  68#include <linux/rcupdate.h>
  69#include <linux/skbuff.h>
  70#include <linux/netlink.h>
  71#include <linux/init.h>
  72#include <linux/list.h>
  73#include <linux/slab.h>
  74#include <linux/export.h>
  75#include <net/net_namespace.h>
  76#include <net/ip.h>
  77#include <net/protocol.h>
  78#include <net/route.h>
  79#include <net/tcp.h>
  80#include <net/sock.h>
  81#include <net/ip_fib.h>
  82#include <net/switchdev.h>
  83#include "fib_lookup.h"
  84
  85#define MAX_STAT_DEPTH 32
  86
  87#define KEYLENGTH       (8*sizeof(t_key))
  88#define KEY_MAX         ((t_key)~0)
  89
  90typedef unsigned int t_key;
  91
  92#define IS_TRIE(n)      ((n)->pos >= KEYLENGTH)
  93#define IS_TNODE(n)     ((n)->bits)
  94#define IS_LEAF(n)      (!(n)->bits)
  95
  96struct key_vector {
  97        t_key key;
  98        unsigned char pos;              /* 2log(KEYLENGTH) bits needed */
  99        unsigned char bits;             /* 2log(KEYLENGTH) bits needed */
 100        unsigned char slen;
 101        union {
 102                /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
 103                struct hlist_head leaf;
 104                /* This array is valid if (pos | bits) > 0 (TNODE) */
 105                struct key_vector __rcu *tnode[0];
 106        };
 107};
 108
 109struct tnode {
 110        struct rcu_head rcu;
 111        t_key empty_children;           /* KEYLENGTH bits needed */
 112        t_key full_children;            /* KEYLENGTH bits needed */
 113        struct key_vector __rcu *parent;
 114        struct key_vector kv[1];
 115#define tn_bits kv[0].bits
 116};
 117
 118#define TNODE_SIZE(n)   offsetof(struct tnode, kv[0].tnode[n])
 119#define LEAF_SIZE       TNODE_SIZE(1)
 120
 121#ifdef CONFIG_IP_FIB_TRIE_STATS
 122struct trie_use_stats {
 123        unsigned int gets;
 124        unsigned int backtrack;
 125        unsigned int semantic_match_passed;
 126        unsigned int semantic_match_miss;
 127        unsigned int null_node_hit;
 128        unsigned int resize_node_skipped;
 129};
 130#endif
 131
 132struct trie_stat {
 133        unsigned int totdepth;
 134        unsigned int maxdepth;
 135        unsigned int tnodes;
 136        unsigned int leaves;
 137        unsigned int nullpointers;
 138        unsigned int prefixes;
 139        unsigned int nodesizes[MAX_STAT_DEPTH];
 140};
 141
 142struct trie {
 143        struct key_vector kv[1];
 144#ifdef CONFIG_IP_FIB_TRIE_STATS
 145        struct trie_use_stats __percpu *stats;
 146#endif
 147};
 148
 149static struct key_vector *resize(struct trie *t, struct key_vector *tn);
 150static size_t tnode_free_size;
 151
 152/*
 153 * synchronize_rcu after call_rcu for that many pages; it should be especially
 154 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 155 * obtained experimentally, aiming to avoid visible slowdown.
 156 */
 157static const int sync_pages = 128;
 158
 159static struct kmem_cache *fn_alias_kmem __read_mostly;
 160static struct kmem_cache *trie_leaf_kmem __read_mostly;
 161
 162static inline struct tnode *tn_info(struct key_vector *kv)
 163{
 164        return container_of(kv, struct tnode, kv[0]);
 165}
 166
 167/* caller must hold RTNL */
 168#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
 169#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
 170
 171/* caller must hold RCU read lock or RTNL */
 172#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
 173#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
 174
 175/* wrapper for rcu_assign_pointer */
 176static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
 177{
 178        if (n)
 179                rcu_assign_pointer(tn_info(n)->parent, tp);
 180}
 181
 182#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
 183
 184/* This provides us with the number of children in this node, in the case of a
 185 * leaf this will return 0 meaning none of the children are accessible.
 186 */
 187static inline unsigned long child_length(const struct key_vector *tn)
 188{
 189        return (1ul << tn->bits) & ~(1ul);
 190}
 191
 192#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
 193
 194static inline unsigned long get_index(t_key key, struct key_vector *kv)
 195{
 196        unsigned long index = key ^ kv->key;
 197
 198        if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
 199                return 0;
 200
 201        return index >> kv->pos;
 202}
 203
 204/* To understand this stuff, an understanding of keys and all their bits is
 205 * necessary. Every node in the trie has a key associated with it, but not
 206 * all of the bits in that key are significant.
 207 *
 208 * Consider a node 'n' and its parent 'tp'.
 209 *
 210 * If n is a leaf, every bit in its key is significant. Its presence is
 211 * necessitated by path compression, since during a tree traversal (when
 212 * searching for a leaf - unless we are doing an insertion) we will completely
 213 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 214 * a potentially successful search, that we have indeed been walking the
 215 * correct key path.
 216 *
 217 * Note that we can never "miss" the correct key in the tree if present by
 218 * following the wrong path. Path compression ensures that segments of the key
 219 * that are the same for all keys with a given prefix are skipped, but the
 220 * skipped part *is* identical for each node in the subtrie below the skipped
 221 * bit! trie_insert() in this implementation takes care of that.
 222 *
 223 * if n is an internal node - a 'tnode' here, the various parts of its key
 224 * have many different meanings.
 225 *
 226 * Example:
 227 * _________________________________________________________________
 228 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 229 * -----------------------------------------------------------------
 230 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 231 *
 232 * _________________________________________________________________
 233 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 234 * -----------------------------------------------------------------
 235 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 236 *
 237 * tp->pos = 22
 238 * tp->bits = 3
 239 * n->pos = 13
 240 * n->bits = 4
 241 *
 242 * First, let's just ignore the bits that come before the parent tp, that is
 243 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 244 * point we do not use them for anything.
 245 *
 246 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 247 * index into the parent's child array. That is, they will be used to find
 248 * 'n' among tp's children.
 249 *
 250 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
 251 * for the node n.
 252 *
 253 * All the bits we have seen so far are significant to the node n. The rest
 254 * of the bits are really not needed or indeed known in n->key.
 255 *
 256 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 257 * n's child array, and will of course be different for each child.
 258 *
 259 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
 260 * at this point.
 261 */
 262
 263static const int halve_threshold = 25;
 264static const int inflate_threshold = 50;
 265static const int halve_threshold_root = 15;
 266static const int inflate_threshold_root = 30;
 267
 268static void __alias_free_mem(struct rcu_head *head)
 269{
 270        struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
 271        kmem_cache_free(fn_alias_kmem, fa);
 272}
 273
 274static inline void alias_free_mem_rcu(struct fib_alias *fa)
 275{
 276        call_rcu(&fa->rcu, __alias_free_mem);
 277}
 278
 279#define TNODE_KMALLOC_MAX \
 280        ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 281#define TNODE_VMALLOC_MAX \
 282        ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 283
 284static void __node_free_rcu(struct rcu_head *head)
 285{
 286        struct tnode *n = container_of(head, struct tnode, rcu);
 287
 288        if (!n->tn_bits)
 289                kmem_cache_free(trie_leaf_kmem, n);
 290        else if (n->tn_bits <= TNODE_KMALLOC_MAX)
 291                kfree(n);
 292        else
 293                vfree(n);
 294}
 295
 296#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
 297
 298static struct tnode *tnode_alloc(int bits)
 299{
 300        size_t size;
 301
 302        /* verify bits is within bounds */
 303        if (bits > TNODE_VMALLOC_MAX)
 304                return NULL;
 305
 306        /* determine size and verify it is non-zero and didn't overflow */
 307        size = TNODE_SIZE(1ul << bits);
 308
 309        if (size <= PAGE_SIZE)
 310                return kzalloc(size, GFP_KERNEL);
 311        else
 312                return vzalloc(size);
 313}
 314
 315static inline void empty_child_inc(struct key_vector *n)
 316{
 317        ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
 318}
 319
 320static inline void empty_child_dec(struct key_vector *n)
 321{
 322        tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
 323}
 324
 325static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
 326{
 327        struct tnode *kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
 328        struct key_vector *l = kv->kv;
 329
 330        if (!kv)
 331                return NULL;
 332
 333        /* initialize key vector */
 334        l->key = key;
 335        l->pos = 0;
 336        l->bits = 0;
 337        l->slen = fa->fa_slen;
 338
 339        /* link leaf to fib alias */
 340        INIT_HLIST_HEAD(&l->leaf);
 341        hlist_add_head(&fa->fa_list, &l->leaf);
 342
 343        return l;
 344}
 345
 346static struct key_vector *tnode_new(t_key key, int pos, int bits)
 347{
 348        struct tnode *tnode = tnode_alloc(bits);
 349        unsigned int shift = pos + bits;
 350        struct key_vector *tn = tnode->kv;
 351
 352        /* verify bits and pos their msb bits clear and values are valid */
 353        BUG_ON(!bits || (shift > KEYLENGTH));
 354
 355        pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
 356                 sizeof(struct key_vector *) << bits);
 357
 358        if (!tnode)
 359                return NULL;
 360
 361        if (bits == KEYLENGTH)
 362                tnode->full_children = 1;
 363        else
 364                tnode->empty_children = 1ul << bits;
 365
 366        tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
 367        tn->pos = pos;
 368        tn->bits = bits;
 369        tn->slen = pos;
 370
 371        return tn;
 372}
 373
 374/* Check whether a tnode 'n' is "full", i.e. it is an internal node
 375 * and no bits are skipped. See discussion in dyntree paper p. 6
 376 */
 377static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
 378{
 379        return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
 380}
 381
 382/* Add a child at position i overwriting the old value.
 383 * Update the value of full_children and empty_children.
 384 */
 385static void put_child(struct key_vector *tn, unsigned long i,
 386                      struct key_vector *n)
 387{
 388        struct key_vector *chi = get_child(tn, i);
 389        int isfull, wasfull;
 390
 391        BUG_ON(i >= child_length(tn));
 392
 393        /* update emptyChildren, overflow into fullChildren */
 394        if (!n && chi)
 395                empty_child_inc(tn);
 396        if (n && !chi)
 397                empty_child_dec(tn);
 398
 399        /* update fullChildren */
 400        wasfull = tnode_full(tn, chi);
 401        isfull = tnode_full(tn, n);
 402
 403        if (wasfull && !isfull)
 404                tn_info(tn)->full_children--;
 405        else if (!wasfull && isfull)
 406                tn_info(tn)->full_children++;
 407
 408        if (n && (tn->slen < n->slen))
 409                tn->slen = n->slen;
 410
 411        rcu_assign_pointer(tn->tnode[i], n);
 412}
 413
 414static void update_children(struct key_vector *tn)
 415{
 416        unsigned long i;
 417
 418        /* update all of the child parent pointers */
 419        for (i = child_length(tn); i;) {
 420                struct key_vector *inode = get_child(tn, --i);
 421
 422                if (!inode)
 423                        continue;
 424
 425                /* Either update the children of a tnode that
 426                 * already belongs to us or update the child
 427                 * to point to ourselves.
 428                 */
 429                if (node_parent(inode) == tn)
 430                        update_children(inode);
 431                else
 432                        node_set_parent(inode, tn);
 433        }
 434}
 435
 436static inline void put_child_root(struct key_vector *tp, t_key key,
 437                                  struct key_vector *n)
 438{
 439        if (IS_TRIE(tp))
 440                rcu_assign_pointer(tp->tnode[0], n);
 441        else
 442                put_child(tp, get_index(key, tp), n);
 443}
 444
 445static inline void tnode_free_init(struct key_vector *tn)
 446{
 447        tn_info(tn)->rcu.next = NULL;
 448}
 449
 450static inline void tnode_free_append(struct key_vector *tn,
 451                                     struct key_vector *n)
 452{
 453        tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
 454        tn_info(tn)->rcu.next = &tn_info(n)->rcu;
 455}
 456
 457static void tnode_free(struct key_vector *tn)
 458{
 459        struct callback_head *head = &tn_info(tn)->rcu;
 460
 461        while (head) {
 462                head = head->next;
 463                tnode_free_size += TNODE_SIZE(1ul << tn->bits);
 464                node_free(tn);
 465
 466                tn = container_of(head, struct tnode, rcu)->kv;
 467        }
 468
 469        if (tnode_free_size >= PAGE_SIZE * sync_pages) {
 470                tnode_free_size = 0;
 471                synchronize_rcu();
 472        }
 473}
 474
 475static struct key_vector *replace(struct trie *t,
 476                                  struct key_vector *oldtnode,
 477                                  struct key_vector *tn)
 478{
 479        struct key_vector *tp = node_parent(oldtnode);
 480        unsigned long i;
 481
 482        /* setup the parent pointer out of and back into this node */
 483        NODE_INIT_PARENT(tn, tp);
 484        put_child_root(tp, tn->key, tn);
 485
 486        /* update all of the child parent pointers */
 487        update_children(tn);
 488
 489        /* all pointers should be clean so we are done */
 490        tnode_free(oldtnode);
 491
 492        /* resize children now that oldtnode is freed */
 493        for (i = child_length(tn); i;) {
 494                struct key_vector *inode = get_child(tn, --i);
 495
 496                /* resize child node */
 497                if (tnode_full(tn, inode))
 498                        tn = resize(t, inode);
 499        }
 500
 501        return tp;
 502}
 503
 504static struct key_vector *inflate(struct trie *t,
 505                                  struct key_vector *oldtnode)
 506{
 507        struct key_vector *tn;
 508        unsigned long i;
 509        t_key m;
 510
 511        pr_debug("In inflate\n");
 512
 513        tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
 514        if (!tn)
 515                goto notnode;
 516
 517        /* prepare oldtnode to be freed */
 518        tnode_free_init(oldtnode);
 519
 520        /* Assemble all of the pointers in our cluster, in this case that
 521         * represents all of the pointers out of our allocated nodes that
 522         * point to existing tnodes and the links between our allocated
 523         * nodes.
 524         */
 525        for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
 526                struct key_vector *inode = get_child(oldtnode, --i);
 527                struct key_vector *node0, *node1;
 528                unsigned long j, k;
 529
 530                /* An empty child */
 531                if (!inode)
 532                        continue;
 533
 534                /* A leaf or an internal node with skipped bits */
 535                if (!tnode_full(oldtnode, inode)) {
 536                        put_child(tn, get_index(inode->key, tn), inode);
 537                        continue;
 538                }
 539
 540                /* drop the node in the old tnode free list */
 541                tnode_free_append(oldtnode, inode);
 542
 543                /* An internal node with two children */
 544                if (inode->bits == 1) {
 545                        put_child(tn, 2 * i + 1, get_child(inode, 1));
 546                        put_child(tn, 2 * i, get_child(inode, 0));
 547                        continue;
 548                }
 549
 550                /* We will replace this node 'inode' with two new
 551                 * ones, 'node0' and 'node1', each with half of the
 552                 * original children. The two new nodes will have
 553                 * a position one bit further down the key and this
 554                 * means that the "significant" part of their keys
 555                 * (see the discussion near the top of this file)
 556                 * will differ by one bit, which will be "0" in
 557                 * node0's key and "1" in node1's key. Since we are
 558                 * moving the key position by one step, the bit that
 559                 * we are moving away from - the bit at position
 560                 * (tn->pos) - is the one that will differ between
 561                 * node0 and node1. So... we synthesize that bit in the
 562                 * two new keys.
 563                 */
 564                node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
 565                if (!node1)
 566                        goto nomem;
 567                node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
 568
 569                tnode_free_append(tn, node1);
 570                if (!node0)
 571                        goto nomem;
 572                tnode_free_append(tn, node0);
 573
 574                /* populate child pointers in new nodes */
 575                for (k = child_length(inode), j = k / 2; j;) {
 576                        put_child(node1, --j, get_child(inode, --k));
 577                        put_child(node0, j, get_child(inode, j));
 578                        put_child(node1, --j, get_child(inode, --k));
 579                        put_child(node0, j, get_child(inode, j));
 580                }
 581
 582                /* link new nodes to parent */
 583                NODE_INIT_PARENT(node1, tn);
 584                NODE_INIT_PARENT(node0, tn);
 585
 586                /* link parent to nodes */
 587                put_child(tn, 2 * i + 1, node1);
 588                put_child(tn, 2 * i, node0);
 589        }
 590
 591        /* setup the parent pointers into and out of this node */
 592        return replace(t, oldtnode, tn);
 593nomem:
 594        /* all pointers should be clean so we are done */
 595        tnode_free(tn);
 596notnode:
 597        return NULL;
 598}
 599
 600static struct key_vector *halve(struct trie *t,
 601                                struct key_vector *oldtnode)
 602{
 603        struct key_vector *tn;
 604        unsigned long i;
 605
 606        pr_debug("In halve\n");
 607
 608        tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
 609        if (!tn)
 610                goto notnode;
 611
 612        /* prepare oldtnode to be freed */
 613        tnode_free_init(oldtnode);
 614
 615        /* Assemble all of the pointers in our cluster, in this case that
 616         * represents all of the pointers out of our allocated nodes that
 617         * point to existing tnodes and the links between our allocated
 618         * nodes.
 619         */
 620        for (i = child_length(oldtnode); i;) {
 621                struct key_vector *node1 = get_child(oldtnode, --i);
 622                struct key_vector *node0 = get_child(oldtnode, --i);
 623                struct key_vector *inode;
 624
 625                /* At least one of the children is empty */
 626                if (!node1 || !node0) {
 627                        put_child(tn, i / 2, node1 ? : node0);
 628                        continue;
 629                }
 630
 631                /* Two nonempty children */
 632                inode = tnode_new(node0->key, oldtnode->pos, 1);
 633                if (!inode)
 634                        goto nomem;
 635                tnode_free_append(tn, inode);
 636
 637                /* initialize pointers out of node */
 638                put_child(inode, 1, node1);
 639                put_child(inode, 0, node0);
 640                NODE_INIT_PARENT(inode, tn);
 641
 642                /* link parent to node */
 643                put_child(tn, i / 2, inode);
 644        }
 645
 646        /* setup the parent pointers into and out of this node */
 647        return replace(t, oldtnode, tn);
 648nomem:
 649        /* all pointers should be clean so we are done */
 650        tnode_free(tn);
 651notnode:
 652        return NULL;
 653}
 654
 655static struct key_vector *collapse(struct trie *t,
 656                                   struct key_vector *oldtnode)
 657{
 658        struct key_vector *n, *tp;
 659        unsigned long i;
 660
 661        /* scan the tnode looking for that one child that might still exist */
 662        for (n = NULL, i = child_length(oldtnode); !n && i;)
 663                n = get_child(oldtnode, --i);
 664
 665        /* compress one level */
 666        tp = node_parent(oldtnode);
 667        put_child_root(tp, oldtnode->key, n);
 668        node_set_parent(n, tp);
 669
 670        /* drop dead node */
 671        node_free(oldtnode);
 672
 673        return tp;
 674}
 675
 676static unsigned char update_suffix(struct key_vector *tn)
 677{
 678        unsigned char slen = tn->pos;
 679        unsigned long stride, i;
 680
 681        /* search though the list of children looking for nodes that might
 682         * have a suffix greater than the one we currently have.  This is
 683         * why we start with a stride of 2 since a stride of 1 would
 684         * represent the nodes with suffix length equal to tn->pos
 685         */
 686        for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
 687                struct key_vector *n = get_child(tn, i);
 688
 689                if (!n || (n->slen <= slen))
 690                        continue;
 691
 692                /* update stride and slen based on new value */
 693                stride <<= (n->slen - slen);
 694                slen = n->slen;
 695                i &= ~(stride - 1);
 696
 697                /* if slen covers all but the last bit we can stop here
 698                 * there will be nothing longer than that since only node
 699                 * 0 and 1 << (bits - 1) could have that as their suffix
 700                 * length.
 701                 */
 702                if ((slen + 1) >= (tn->pos + tn->bits))
 703                        break;
 704        }
 705
 706        tn->slen = slen;
 707
 708        return slen;
 709}
 710
 711/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 712 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 713 * Telecommunications, page 6:
 714 * "A node is doubled if the ratio of non-empty children to all
 715 * children in the *doubled* node is at least 'high'."
 716 *
 717 * 'high' in this instance is the variable 'inflate_threshold'. It
 718 * is expressed as a percentage, so we multiply it with
 719 * child_length() and instead of multiplying by 2 (since the
 720 * child array will be doubled by inflate()) and multiplying
 721 * the left-hand side by 100 (to handle the percentage thing) we
 722 * multiply the left-hand side by 50.
 723 *
 724 * The left-hand side may look a bit weird: child_length(tn)
 725 * - tn->empty_children is of course the number of non-null children
 726 * in the current node. tn->full_children is the number of "full"
 727 * children, that is non-null tnodes with a skip value of 0.
 728 * All of those will be doubled in the resulting inflated tnode, so
 729 * we just count them one extra time here.
 730 *
 731 * A clearer way to write this would be:
 732 *
 733 * to_be_doubled = tn->full_children;
 734 * not_to_be_doubled = child_length(tn) - tn->empty_children -
 735 *     tn->full_children;
 736 *
 737 * new_child_length = child_length(tn) * 2;
 738 *
 739 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 740 *      new_child_length;
 741 * if (new_fill_factor >= inflate_threshold)
 742 *
 743 * ...and so on, tho it would mess up the while () loop.
 744 *
 745 * anyway,
 746 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 747 *      inflate_threshold
 748 *
 749 * avoid a division:
 750 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 751 *      inflate_threshold * new_child_length
 752 *
 753 * expand not_to_be_doubled and to_be_doubled, and shorten:
 754 * 100 * (child_length(tn) - tn->empty_children +
 755 *    tn->full_children) >= inflate_threshold * new_child_length
 756 *
 757 * expand new_child_length:
 758 * 100 * (child_length(tn) - tn->empty_children +
 759 *    tn->full_children) >=
 760 *      inflate_threshold * child_length(tn) * 2
 761 *
 762 * shorten again:
 763 * 50 * (tn->full_children + child_length(tn) -
 764 *    tn->empty_children) >= inflate_threshold *
 765 *    child_length(tn)
 766 *
 767 */
 768static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
 769{
 770        unsigned long used = child_length(tn);
 771        unsigned long threshold = used;
 772
 773        /* Keep root node larger */
 774        threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
 775        used -= tn_info(tn)->empty_children;
 776        used += tn_info(tn)->full_children;
 777
 778        /* if bits == KEYLENGTH then pos = 0, and will fail below */
 779
 780        return (used > 1) && tn->pos && ((50 * used) >= threshold);
 781}
 782
 783static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
 784{
 785        unsigned long used = child_length(tn);
 786        unsigned long threshold = used;
 787
 788        /* Keep root node larger */
 789        threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
 790        used -= tn_info(tn)->empty_children;
 791
 792        /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
 793
 794        return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
 795}
 796
 797static inline bool should_collapse(struct key_vector *tn)
 798{
 799        unsigned long used = child_length(tn);
 800
 801        used -= tn_info(tn)->empty_children;
 802
 803        /* account for bits == KEYLENGTH case */
 804        if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
 805                used -= KEY_MAX;
 806
 807        /* One child or none, time to drop us from the trie */
 808        return used < 2;
 809}
 810
 811#define MAX_WORK 10
 812static struct key_vector *resize(struct trie *t, struct key_vector *tn)
 813{
 814#ifdef CONFIG_IP_FIB_TRIE_STATS
 815        struct trie_use_stats __percpu *stats = t->stats;
 816#endif
 817        struct key_vector *tp = node_parent(tn);
 818        unsigned long cindex = get_index(tn->key, tp);
 819        int max_work = MAX_WORK;
 820
 821        pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
 822                 tn, inflate_threshold, halve_threshold);
 823
 824        /* track the tnode via the pointer from the parent instead of
 825         * doing it ourselves.  This way we can let RCU fully do its
 826         * thing without us interfering
 827         */
 828        BUG_ON(tn != get_child(tp, cindex));
 829
 830        /* Double as long as the resulting node has a number of
 831         * nonempty nodes that are above the threshold.
 832         */
 833        while (should_inflate(tp, tn) && max_work) {
 834                tp = inflate(t, tn);
 835                if (!tp) {
 836#ifdef CONFIG_IP_FIB_TRIE_STATS
 837                        this_cpu_inc(stats->resize_node_skipped);
 838#endif
 839                        break;
 840                }
 841
 842                max_work--;
 843                tn = get_child(tp, cindex);
 844        }
 845
 846        /* update parent in case inflate failed */
 847        tp = node_parent(tn);
 848
 849        /* Return if at least one inflate is run */
 850        if (max_work != MAX_WORK)
 851                return tp;
 852
 853        /* Halve as long as the number of empty children in this
 854         * node is above threshold.
 855         */
 856        while (should_halve(tp, tn) && max_work) {
 857                tp = halve(t, tn);
 858                if (!tp) {
 859#ifdef CONFIG_IP_FIB_TRIE_STATS
 860                        this_cpu_inc(stats->resize_node_skipped);
 861#endif
 862                        break;
 863                }
 864
 865                max_work--;
 866                tn = get_child(tp, cindex);
 867        }
 868
 869        /* Only one child remains */
 870        if (should_collapse(tn))
 871                return collapse(t, tn);
 872
 873        /* update parent in case halve failed */
 874        tp = node_parent(tn);
 875
 876        /* Return if at least one deflate was run */
 877        if (max_work != MAX_WORK)
 878                return tp;
 879
 880        /* push the suffix length to the parent node */
 881        if (tn->slen > tn->pos) {
 882                unsigned char slen = update_suffix(tn);
 883
 884                if (slen > tp->slen)
 885                        tp->slen = slen;
 886        }
 887
 888        return tp;
 889}
 890
 891static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
 892{
 893        while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
 894                if (update_suffix(tp) > l->slen)
 895                        break;
 896                tp = node_parent(tp);
 897        }
 898}
 899
 900static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
 901{
 902        /* if this is a new leaf then tn will be NULL and we can sort
 903         * out parent suffix lengths as a part of trie_rebalance
 904         */
 905        while (tn->slen < l->slen) {
 906                tn->slen = l->slen;
 907                tn = node_parent(tn);
 908        }
 909}
 910
 911/* rcu_read_lock needs to be hold by caller from readside */
 912static struct key_vector *fib_find_node(struct trie *t,
 913                                        struct key_vector **tp, u32 key)
 914{
 915        struct key_vector *pn, *n = t->kv;
 916        unsigned long index = 0;
 917
 918        do {
 919                pn = n;
 920                n = get_child_rcu(n, index);
 921
 922                if (!n)
 923                        break;
 924
 925                index = get_cindex(key, n);
 926
 927                /* This bit of code is a bit tricky but it combines multiple
 928                 * checks into a single check.  The prefix consists of the
 929                 * prefix plus zeros for the bits in the cindex. The index
 930                 * is the difference between the key and this value.  From
 931                 * this we can actually derive several pieces of data.
 932                 *   if (index >= (1ul << bits))
 933                 *     we have a mismatch in skip bits and failed
 934                 *   else
 935                 *     we know the value is cindex
 936                 *
 937                 * This check is safe even if bits == KEYLENGTH due to the
 938                 * fact that we can only allocate a node with 32 bits if a
 939                 * long is greater than 32 bits.
 940                 */
 941                if (index >= (1ul << n->bits)) {
 942                        n = NULL;
 943                        break;
 944                }
 945
 946                /* keep searching until we find a perfect match leaf or NULL */
 947        } while (IS_TNODE(n));
 948
 949        *tp = pn;
 950
 951        return n;
 952}
 953
 954/* Return the first fib alias matching TOS with
 955 * priority less than or equal to PRIO.
 956 */
 957static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
 958                                        u8 tos, u32 prio, u32 tb_id)
 959{
 960        struct fib_alias *fa;
 961
 962        if (!fah)
 963                return NULL;
 964
 965        hlist_for_each_entry(fa, fah, fa_list) {
 966                if (fa->fa_slen < slen)
 967                        continue;
 968                if (fa->fa_slen != slen)
 969                        break;
 970                if (fa->tb_id > tb_id)
 971                        continue;
 972                if (fa->tb_id != tb_id)
 973                        break;
 974                if (fa->fa_tos > tos)
 975                        continue;
 976                if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
 977                        return fa;
 978        }
 979
 980        return NULL;
 981}
 982
 983static void trie_rebalance(struct trie *t, struct key_vector *tn)
 984{
 985        while (!IS_TRIE(tn))
 986                tn = resize(t, tn);
 987}
 988
 989static int fib_insert_node(struct trie *t, struct key_vector *tp,
 990                           struct fib_alias *new, t_key key)
 991{
 992        struct key_vector *n, *l;
 993
 994        l = leaf_new(key, new);
 995        if (!l)
 996                goto noleaf;
 997
 998        /* retrieve child from parent node */
 999        n = get_child(tp, get_index(key, tp));
1000
1001        /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1002         *
1003         *  Add a new tnode here
1004         *  first tnode need some special handling
1005         *  leaves us in position for handling as case 3
1006         */
1007        if (n) {
1008                struct key_vector *tn;
1009
1010                tn = tnode_new(key, __fls(key ^ n->key), 1);
1011                if (!tn)
1012                        goto notnode;
1013
1014                /* initialize routes out of node */
1015                NODE_INIT_PARENT(tn, tp);
1016                put_child(tn, get_index(key, tn) ^ 1, n);
1017
1018                /* start adding routes into the node */
1019                put_child_root(tp, key, tn);
1020                node_set_parent(n, tn);
1021
1022                /* parent now has a NULL spot where the leaf can go */
1023                tp = tn;
1024        }
1025
1026        /* Case 3: n is NULL, and will just insert a new leaf */
1027        NODE_INIT_PARENT(l, tp);
1028        put_child_root(tp, key, l);
1029        trie_rebalance(t, tp);
1030
1031        return 0;
1032notnode:
1033        node_free(l);
1034noleaf:
1035        return -ENOMEM;
1036}
1037
1038static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1039                            struct key_vector *l, struct fib_alias *new,
1040                            struct fib_alias *fa, t_key key)
1041{
1042        if (!l)
1043                return fib_insert_node(t, tp, new, key);
1044
1045        if (fa) {
1046                hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1047        } else {
1048                struct fib_alias *last;
1049
1050                hlist_for_each_entry(last, &l->leaf, fa_list) {
1051                        if (new->fa_slen < last->fa_slen)
1052                                break;
1053                        if ((new->fa_slen == last->fa_slen) &&
1054                            (new->tb_id > last->tb_id))
1055                                break;
1056                        fa = last;
1057                }
1058
1059                if (fa)
1060                        hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1061                else
1062                        hlist_add_head_rcu(&new->fa_list, &l->leaf);
1063        }
1064
1065        /* if we added to the tail node then we need to update slen */
1066        if (l->slen < new->fa_slen) {
1067                l->slen = new->fa_slen;
1068                leaf_push_suffix(tp, l);
1069        }
1070
1071        return 0;
1072}
1073
1074/* Caller must hold RTNL. */
1075int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1076{
1077        struct trie *t = (struct trie *)tb->tb_data;
1078        struct fib_alias *fa, *new_fa;
1079        struct key_vector *l, *tp;
1080        struct fib_info *fi;
1081        u8 plen = cfg->fc_dst_len;
1082        u8 slen = KEYLENGTH - plen;
1083        u8 tos = cfg->fc_tos;
1084        u32 key;
1085        int err;
1086
1087        if (plen > KEYLENGTH)
1088                return -EINVAL;
1089
1090        key = ntohl(cfg->fc_dst);
1091
1092        pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1093
1094        if ((plen < KEYLENGTH) && (key << plen))
1095                return -EINVAL;
1096
1097        fi = fib_create_info(cfg);
1098        if (IS_ERR(fi)) {
1099                err = PTR_ERR(fi);
1100                goto err;
1101        }
1102
1103        l = fib_find_node(t, &tp, key);
1104        fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1105                                tb->tb_id) : NULL;
1106
1107        /* Now fa, if non-NULL, points to the first fib alias
1108         * with the same keys [prefix,tos,priority], if such key already
1109         * exists or to the node before which we will insert new one.
1110         *
1111         * If fa is NULL, we will need to allocate a new one and
1112         * insert to the tail of the section matching the suffix length
1113         * of the new alias.
1114         */
1115
1116        if (fa && fa->fa_tos == tos &&
1117            fa->fa_info->fib_priority == fi->fib_priority) {
1118                struct fib_alias *fa_first, *fa_match;
1119
1120                err = -EEXIST;
1121                if (cfg->fc_nlflags & NLM_F_EXCL)
1122                        goto out;
1123
1124                /* We have 2 goals:
1125                 * 1. Find exact match for type, scope, fib_info to avoid
1126                 * duplicate routes
1127                 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1128                 */
1129                fa_match = NULL;
1130                fa_first = fa;
1131                hlist_for_each_entry_from(fa, fa_list) {
1132                        if ((fa->fa_slen != slen) ||
1133                            (fa->tb_id != tb->tb_id) ||
1134                            (fa->fa_tos != tos))
1135                                break;
1136                        if (fa->fa_info->fib_priority != fi->fib_priority)
1137                                break;
1138                        if (fa->fa_type == cfg->fc_type &&
1139                            fa->fa_info == fi) {
1140                                fa_match = fa;
1141                                break;
1142                        }
1143                }
1144
1145                if (cfg->fc_nlflags & NLM_F_REPLACE) {
1146                        struct fib_info *fi_drop;
1147                        u8 state;
1148
1149                        fa = fa_first;
1150                        if (fa_match) {
1151                                if (fa == fa_match)
1152                                        err = 0;
1153                                goto out;
1154                        }
1155                        err = -ENOBUFS;
1156                        new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1157                        if (!new_fa)
1158                                goto out;
1159
1160                        fi_drop = fa->fa_info;
1161                        new_fa->fa_tos = fa->fa_tos;
1162                        new_fa->fa_info = fi;
1163                        new_fa->fa_type = cfg->fc_type;
1164                        state = fa->fa_state;
1165                        new_fa->fa_state = state & ~FA_S_ACCESSED;
1166                        new_fa->fa_slen = fa->fa_slen;
1167                        new_fa->tb_id = tb->tb_id;
1168
1169                        err = netdev_switch_fib_ipv4_add(key, plen, fi,
1170                                                         new_fa->fa_tos,
1171                                                         cfg->fc_type,
1172                                                         cfg->fc_nlflags,
1173                                                         tb->tb_id);
1174                        if (err) {
1175                                netdev_switch_fib_ipv4_abort(fi);
1176                                kmem_cache_free(fn_alias_kmem, new_fa);
1177                                goto out;
1178                        }
1179
1180                        hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1181
1182                        alias_free_mem_rcu(fa);
1183
1184                        fib_release_info(fi_drop);
1185                        if (state & FA_S_ACCESSED)
1186                                rt_cache_flush(cfg->fc_nlinfo.nl_net);
1187                        rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1188                                tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1189
1190                        goto succeeded;
1191                }
1192                /* Error if we find a perfect match which
1193                 * uses the same scope, type, and nexthop
1194                 * information.
1195                 */
1196                if (fa_match)
1197                        goto out;
1198
1199                if (!(cfg->fc_nlflags & NLM_F_APPEND))
1200                        fa = fa_first;
1201        }
1202        err = -ENOENT;
1203        if (!(cfg->fc_nlflags & NLM_F_CREATE))
1204                goto out;
1205
1206        err = -ENOBUFS;
1207        new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1208        if (!new_fa)
1209                goto out;
1210
1211        new_fa->fa_info = fi;
1212        new_fa->fa_tos = tos;
1213        new_fa->fa_type = cfg->fc_type;
1214        new_fa->fa_state = 0;
1215        new_fa->fa_slen = slen;
1216        new_fa->tb_id = tb->tb_id;
1217
1218        /* (Optionally) offload fib entry to switch hardware. */
1219        err = netdev_switch_fib_ipv4_add(key, plen, fi, tos,
1220                                         cfg->fc_type,
1221                                         cfg->fc_nlflags,
1222                                         tb->tb_id);
1223        if (err) {
1224                netdev_switch_fib_ipv4_abort(fi);
1225                goto out_free_new_fa;
1226        }
1227
1228        /* Insert new entry to the list. */
1229        err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1230        if (err)
1231                goto out_sw_fib_del;
1232
1233        if (!plen)
1234                tb->tb_num_default++;
1235
1236        rt_cache_flush(cfg->fc_nlinfo.nl_net);
1237        rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1238                  &cfg->fc_nlinfo, 0);
1239succeeded:
1240        return 0;
1241
1242out_sw_fib_del:
1243        netdev_switch_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
1244out_free_new_fa:
1245        kmem_cache_free(fn_alias_kmem, new_fa);
1246out:
1247        fib_release_info(fi);
1248err:
1249        return err;
1250}
1251
1252static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1253{
1254        t_key prefix = n->key;
1255
1256        return (key ^ prefix) & (prefix | -prefix);
1257}
1258
1259/* should be called with rcu_read_lock */
1260int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1261                     struct fib_result *res, int fib_flags)
1262{
1263        struct trie *t = (struct trie *) tb->tb_data;
1264#ifdef CONFIG_IP_FIB_TRIE_STATS
1265        struct trie_use_stats __percpu *stats = t->stats;
1266#endif
1267        const t_key key = ntohl(flp->daddr);
1268        struct key_vector *n, *pn;
1269        struct fib_alias *fa;
1270        unsigned long index;
1271        t_key cindex;
1272
1273        pn = t->kv;
1274        cindex = 0;
1275
1276        n = get_child_rcu(pn, cindex);
1277        if (!n)
1278                return -EAGAIN;
1279
1280#ifdef CONFIG_IP_FIB_TRIE_STATS
1281        this_cpu_inc(stats->gets);
1282#endif
1283
1284        /* Step 1: Travel to the longest prefix match in the trie */
1285        for (;;) {
1286                index = get_cindex(key, n);
1287
1288                /* This bit of code is a bit tricky but it combines multiple
1289                 * checks into a single check.  The prefix consists of the
1290                 * prefix plus zeros for the "bits" in the prefix. The index
1291                 * is the difference between the key and this value.  From
1292                 * this we can actually derive several pieces of data.
1293                 *   if (index >= (1ul << bits))
1294                 *     we have a mismatch in skip bits and failed
1295                 *   else
1296                 *     we know the value is cindex
1297                 *
1298                 * This check is safe even if bits == KEYLENGTH due to the
1299                 * fact that we can only allocate a node with 32 bits if a
1300                 * long is greater than 32 bits.
1301                 */
1302                if (index >= (1ul << n->bits))
1303                        break;
1304
1305                /* we have found a leaf. Prefixes have already been compared */
1306                if (IS_LEAF(n))
1307                        goto found;
1308
1309                /* only record pn and cindex if we are going to be chopping
1310                 * bits later.  Otherwise we are just wasting cycles.
1311                 */
1312                if (n->slen > n->pos) {
1313                        pn = n;
1314                        cindex = index;
1315                }
1316
1317                n = get_child_rcu(n, index);
1318                if (unlikely(!n))
1319                        goto backtrace;
1320        }
1321
1322        /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1323        for (;;) {
1324                /* record the pointer where our next node pointer is stored */
1325                struct key_vector __rcu **cptr = n->tnode;
1326
1327                /* This test verifies that none of the bits that differ
1328                 * between the key and the prefix exist in the region of
1329                 * the lsb and higher in the prefix.
1330                 */
1331                if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1332                        goto backtrace;
1333
1334                /* exit out and process leaf */
1335                if (unlikely(IS_LEAF(n)))
1336                        break;
1337
1338                /* Don't bother recording parent info.  Since we are in
1339                 * prefix match mode we will have to come back to wherever
1340                 * we started this traversal anyway
1341                 */
1342
1343                while ((n = rcu_dereference(*cptr)) == NULL) {
1344backtrace:
1345#ifdef CONFIG_IP_FIB_TRIE_STATS
1346                        if (!n)
1347                                this_cpu_inc(stats->null_node_hit);
1348#endif
1349                        /* If we are at cindex 0 there are no more bits for
1350                         * us to strip at this level so we must ascend back
1351                         * up one level to see if there are any more bits to
1352                         * be stripped there.
1353                         */
1354                        while (!cindex) {
1355                                t_key pkey = pn->key;
1356
1357                                /* If we don't have a parent then there is
1358                                 * nothing for us to do as we do not have any
1359                                 * further nodes to parse.
1360                                 */
1361                                if (IS_TRIE(pn))
1362                                        return -EAGAIN;
1363#ifdef CONFIG_IP_FIB_TRIE_STATS
1364                                this_cpu_inc(stats->backtrack);
1365#endif
1366                                /* Get Child's index */
1367                                pn = node_parent_rcu(pn);
1368                                cindex = get_index(pkey, pn);
1369                        }
1370
1371                        /* strip the least significant bit from the cindex */
1372                        cindex &= cindex - 1;
1373
1374                        /* grab pointer for next child node */
1375                        cptr = &pn->tnode[cindex];
1376                }
1377        }
1378
1379found:
1380        /* this line carries forward the xor from earlier in the function */
1381        index = key ^ n->key;
1382
1383        /* Step 3: Process the leaf, if that fails fall back to backtracing */
1384        hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1385                struct fib_info *fi = fa->fa_info;
1386                int nhsel, err;
1387
1388                if ((index >= (1ul << fa->fa_slen)) &&
1389                    ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
1390                        continue;
1391                if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1392                        continue;
1393                if (fi->fib_dead)
1394                        continue;
1395                if (fa->fa_info->fib_scope < flp->flowi4_scope)
1396                        continue;
1397                fib_alias_accessed(fa);
1398                err = fib_props[fa->fa_type].error;
1399                if (unlikely(err < 0)) {
1400#ifdef CONFIG_IP_FIB_TRIE_STATS
1401                        this_cpu_inc(stats->semantic_match_passed);
1402#endif
1403                        return err;
1404                }
1405                if (fi->fib_flags & RTNH_F_DEAD)
1406                        continue;
1407                for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1408                        const struct fib_nh *nh = &fi->fib_nh[nhsel];
1409
1410                        if (nh->nh_flags & RTNH_F_DEAD)
1411                                continue;
1412                        if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1413                                continue;
1414
1415                        if (!(fib_flags & FIB_LOOKUP_NOREF))
1416                                atomic_inc(&fi->fib_clntref);
1417
1418                        res->prefixlen = KEYLENGTH - fa->fa_slen;
1419                        res->nh_sel = nhsel;
1420                        res->type = fa->fa_type;
1421                        res->scope = fi->fib_scope;
1422                        res->fi = fi;
1423                        res->table = tb;
1424                        res->fa_head = &n->leaf;
1425#ifdef CONFIG_IP_FIB_TRIE_STATS
1426                        this_cpu_inc(stats->semantic_match_passed);
1427#endif
1428                        return err;
1429                }
1430        }
1431#ifdef CONFIG_IP_FIB_TRIE_STATS
1432        this_cpu_inc(stats->semantic_match_miss);
1433#endif
1434        goto backtrace;
1435}
1436EXPORT_SYMBOL_GPL(fib_table_lookup);
1437
1438static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1439                             struct key_vector *l, struct fib_alias *old)
1440{
1441        /* record the location of the previous list_info entry */
1442        struct hlist_node **pprev = old->fa_list.pprev;
1443        struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1444
1445        /* remove the fib_alias from the list */
1446        hlist_del_rcu(&old->fa_list);
1447
1448        /* if we emptied the list this leaf will be freed and we can sort
1449         * out parent suffix lengths as a part of trie_rebalance
1450         */
1451        if (hlist_empty(&l->leaf)) {
1452                put_child_root(tp, l->key, NULL);
1453                node_free(l);
1454                trie_rebalance(t, tp);
1455                return;
1456        }
1457
1458        /* only access fa if it is pointing at the last valid hlist_node */
1459        if (*pprev)
1460                return;
1461
1462        /* update the trie with the latest suffix length */
1463        l->slen = fa->fa_slen;
1464        leaf_pull_suffix(tp, l);
1465}
1466
1467/* Caller must hold RTNL. */
1468int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1469{
1470        struct trie *t = (struct trie *) tb->tb_data;
1471        struct fib_alias *fa, *fa_to_delete;
1472        struct key_vector *l, *tp;
1473        u8 plen = cfg->fc_dst_len;
1474        u8 slen = KEYLENGTH - plen;
1475        u8 tos = cfg->fc_tos;
1476        u32 key;
1477
1478        if (plen > KEYLENGTH)
1479                return -EINVAL;
1480
1481        key = ntohl(cfg->fc_dst);
1482
1483        if ((plen < KEYLENGTH) && (key << plen))
1484                return -EINVAL;
1485
1486        l = fib_find_node(t, &tp, key);
1487        if (!l)
1488                return -ESRCH;
1489
1490        fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1491        if (!fa)
1492                return -ESRCH;
1493
1494        pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1495
1496        fa_to_delete = NULL;
1497        hlist_for_each_entry_from(fa, fa_list) {
1498                struct fib_info *fi = fa->fa_info;
1499
1500                if ((fa->fa_slen != slen) ||
1501                    (fa->tb_id != tb->tb_id) ||
1502                    (fa->fa_tos != tos))
1503                        break;
1504
1505                if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1506                    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1507                     fa->fa_info->fib_scope == cfg->fc_scope) &&
1508                    (!cfg->fc_prefsrc ||
1509                     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1510                    (!cfg->fc_protocol ||
1511                     fi->fib_protocol == cfg->fc_protocol) &&
1512                    fib_nh_match(cfg, fi) == 0) {
1513                        fa_to_delete = fa;
1514                        break;
1515                }
1516        }
1517
1518        if (!fa_to_delete)
1519                return -ESRCH;
1520
1521        netdev_switch_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
1522                                   cfg->fc_type, tb->tb_id);
1523
1524        rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1525                  &cfg->fc_nlinfo, 0);
1526
1527        if (!plen)
1528                tb->tb_num_default--;
1529
1530        fib_remove_alias(t, tp, l, fa_to_delete);
1531
1532        if (fa_to_delete->fa_state & FA_S_ACCESSED)
1533                rt_cache_flush(cfg->fc_nlinfo.nl_net);
1534
1535        fib_release_info(fa_to_delete->fa_info);
1536        alias_free_mem_rcu(fa_to_delete);
1537        return 0;
1538}
1539
1540/* Scan for the next leaf starting at the provided key value */
1541static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1542{
1543        struct key_vector *pn, *n = *tn;
1544        unsigned long cindex;
1545
1546        /* this loop is meant to try and find the key in the trie */
1547        do {
1548                /* record parent and next child index */
1549                pn = n;
1550                cindex = key ? get_index(key, pn) : 0;
1551
1552                if (cindex >> pn->bits)
1553                        break;
1554
1555                /* descend into the next child */
1556                n = get_child_rcu(pn, cindex++);
1557                if (!n)
1558                        break;
1559
1560                /* guarantee forward progress on the keys */
1561                if (IS_LEAF(n) && (n->key >= key))
1562                        goto found;
1563        } while (IS_TNODE(n));
1564
1565        /* this loop will search for the next leaf with a greater key */
1566        while (!IS_TRIE(pn)) {
1567                /* if we exhausted the parent node we will need to climb */
1568                if (cindex >= (1ul << pn->bits)) {
1569                        t_key pkey = pn->key;
1570
1571                        pn = node_parent_rcu(pn);
1572                        cindex = get_index(pkey, pn) + 1;
1573                        continue;
1574                }
1575
1576                /* grab the next available node */
1577                n = get_child_rcu(pn, cindex++);
1578                if (!n)
1579                        continue;
1580
1581                /* no need to compare keys since we bumped the index */
1582                if (IS_LEAF(n))
1583                        goto found;
1584
1585                /* Rescan start scanning in new node */
1586                pn = n;
1587                cindex = 0;
1588        }
1589
1590        *tn = pn;
1591        return NULL; /* Root of trie */
1592found:
1593        /* if we are at the limit for keys just return NULL for the tnode */
1594        *tn = pn;
1595        return n;
1596}
1597
1598static void fib_trie_free(struct fib_table *tb)
1599{
1600        struct trie *t = (struct trie *)tb->tb_data;
1601        struct key_vector *pn = t->kv;
1602        unsigned long cindex = 1;
1603        struct hlist_node *tmp;
1604        struct fib_alias *fa;
1605
1606        /* walk trie in reverse order and free everything */
1607        for (;;) {
1608                struct key_vector *n;
1609
1610                if (!(cindex--)) {
1611                        t_key pkey = pn->key;
1612
1613                        if (IS_TRIE(pn))
1614                                break;
1615
1616                        n = pn;
1617                        pn = node_parent(pn);
1618
1619                        /* drop emptied tnode */
1620                        put_child_root(pn, n->key, NULL);
1621                        node_free(n);
1622
1623                        cindex = get_index(pkey, pn);
1624
1625                        continue;
1626                }
1627
1628                /* grab the next available node */
1629                n = get_child(pn, cindex);
1630                if (!n)
1631                        continue;
1632
1633                if (IS_TNODE(n)) {
1634                        /* record pn and cindex for leaf walking */
1635                        pn = n;
1636                        cindex = 1ul << n->bits;
1637
1638                        continue;
1639                }
1640
1641                hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1642                        hlist_del_rcu(&fa->fa_list);
1643                        alias_free_mem_rcu(fa);
1644                }
1645
1646                put_child_root(pn, n->key, NULL);
1647                node_free(n);
1648        }
1649
1650#ifdef CONFIG_IP_FIB_TRIE_STATS
1651        free_percpu(t->stats);
1652#endif
1653        kfree(tb);
1654}
1655
1656struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1657{
1658        struct trie *ot = (struct trie *)oldtb->tb_data;
1659        struct key_vector *l, *tp = ot->kv;
1660        struct fib_table *local_tb;
1661        struct fib_alias *fa;
1662        struct trie *lt;
1663        t_key key = 0;
1664
1665        if (oldtb->tb_data == oldtb->__data)
1666                return oldtb;
1667
1668        local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1669        if (!local_tb)
1670                return NULL;
1671
1672        lt = (struct trie *)local_tb->tb_data;
1673
1674        while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1675                struct key_vector *local_l = NULL, *local_tp;
1676
1677                hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1678                        struct fib_alias *new_fa;
1679
1680                        if (local_tb->tb_id != fa->tb_id)
1681                                continue;
1682
1683                        /* clone fa for new local table */
1684                        new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1685                        if (!new_fa)
1686                                goto out;
1687
1688                        memcpy(new_fa, fa, sizeof(*fa));
1689
1690                        /* insert clone into table */
1691                        if (!local_l)
1692                                local_l = fib_find_node(lt, &local_tp, l->key);
1693
1694                        if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1695                                             NULL, l->key))
1696                                goto out;
1697                }
1698
1699                /* stop loop if key wrapped back to 0 */
1700                key = l->key + 1;
1701                if (key < l->key)
1702                        break;
1703        }
1704
1705        return local_tb;
1706out:
1707        fib_trie_free(local_tb);
1708
1709        return NULL;
1710}
1711
1712/* Caller must hold RTNL */
1713void fib_table_flush_external(struct fib_table *tb)
1714{
1715        struct trie *t = (struct trie *)tb->tb_data;
1716        struct key_vector *pn = t->kv;
1717        unsigned long cindex = 1;
1718        struct hlist_node *tmp;
1719        struct fib_alias *fa;
1720
1721        /* walk trie in reverse order */
1722        for (;;) {
1723                unsigned char slen = 0;
1724                struct key_vector *n;
1725
1726                if (!(cindex--)) {
1727                        t_key pkey = pn->key;
1728
1729                        /* cannot resize the trie vector */
1730                        if (IS_TRIE(pn))
1731                                break;
1732
1733                        /* resize completed node */
1734                        pn = resize(t, pn);
1735                        cindex = get_index(pkey, pn);
1736
1737                        continue;
1738                }
1739
1740                /* grab the next available node */
1741                n = get_child(pn, cindex);
1742                if (!n)
1743                        continue;
1744
1745                if (IS_TNODE(n)) {
1746                        /* record pn and cindex for leaf walking */
1747                        pn = n;
1748                        cindex = 1ul << n->bits;
1749
1750                        continue;
1751                }
1752
1753                hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1754                        struct fib_info *fi = fa->fa_info;
1755
1756                        /* if alias was cloned to local then we just
1757                         * need to remove the local copy from main
1758                         */
1759                        if (tb->tb_id != fa->tb_id) {
1760                                hlist_del_rcu(&fa->fa_list);
1761                                alias_free_mem_rcu(fa);
1762                                continue;
1763                        }
1764
1765                        /* record local slen */
1766                        slen = fa->fa_slen;
1767
1768                        if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD))
1769                                continue;
1770
1771                        netdev_switch_fib_ipv4_del(n->key,
1772                                                   KEYLENGTH - fa->fa_slen,
1773                                                   fi, fa->fa_tos,
1774                                                   fa->fa_type, tb->tb_id);
1775                }
1776
1777                /* update leaf slen */
1778                n->slen = slen;
1779
1780                if (hlist_empty(&n->leaf)) {
1781                        put_child_root(pn, n->key, NULL);
1782                        node_free(n);
1783                } else {
1784                        leaf_pull_suffix(pn, n);
1785                }
1786        }
1787}
1788
1789/* Caller must hold RTNL. */
1790int fib_table_flush(struct fib_table *tb)
1791{
1792        struct trie *t = (struct trie *)tb->tb_data;
1793        struct key_vector *pn = t->kv;
1794        unsigned long cindex = 1;
1795        struct hlist_node *tmp;
1796        struct fib_alias *fa;
1797        int found = 0;
1798
1799        /* walk trie in reverse order */
1800        for (;;) {
1801                unsigned char slen = 0;
1802                struct key_vector *n;
1803
1804                if (!(cindex--)) {
1805                        t_key pkey = pn->key;
1806
1807                        /* cannot resize the trie vector */
1808                        if (IS_TRIE(pn))
1809                                break;
1810
1811                        /* resize completed node */
1812                        pn = resize(t, pn);
1813                        cindex = get_index(pkey, pn);
1814
1815                        continue;
1816                }
1817
1818                /* grab the next available node */
1819                n = get_child(pn, cindex);
1820                if (!n)
1821                        continue;
1822
1823                if (IS_TNODE(n)) {
1824                        /* record pn and cindex for leaf walking */
1825                        pn = n;
1826                        cindex = 1ul << n->bits;
1827
1828                        continue;
1829                }
1830
1831                hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1832                        struct fib_info *fi = fa->fa_info;
1833
1834                        if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
1835                                slen = fa->fa_slen;
1836                                continue;
1837                        }
1838
1839                        netdev_switch_fib_ipv4_del(n->key,
1840                                                   KEYLENGTH - fa->fa_slen,
1841                                                   fi, fa->fa_tos,
1842                                                   fa->fa_type, tb->tb_id);
1843                        hlist_del_rcu(&fa->fa_list);
1844                        fib_release_info(fa->fa_info);
1845                        alias_free_mem_rcu(fa);
1846                        found++;
1847                }
1848
1849                /* update leaf slen */
1850                n->slen = slen;
1851
1852                if (hlist_empty(&n->leaf)) {
1853                        put_child_root(pn, n->key, NULL);
1854                        node_free(n);
1855                } else {
1856                        leaf_pull_suffix(pn, n);
1857                }
1858        }
1859
1860        pr_debug("trie_flush found=%d\n", found);
1861        return found;
1862}
1863
1864static void __trie_free_rcu(struct rcu_head *head)
1865{
1866        struct fib_table *tb = container_of(head, struct fib_table, rcu);
1867#ifdef CONFIG_IP_FIB_TRIE_STATS
1868        struct trie *t = (struct trie *)tb->tb_data;
1869
1870        if (tb->tb_data == tb->__data)
1871                free_percpu(t->stats);
1872#endif /* CONFIG_IP_FIB_TRIE_STATS */
1873        kfree(tb);
1874}
1875
1876void fib_free_table(struct fib_table *tb)
1877{
1878        call_rcu(&tb->rcu, __trie_free_rcu);
1879}
1880
1881static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
1882                             struct sk_buff *skb, struct netlink_callback *cb)
1883{
1884        __be32 xkey = htonl(l->key);
1885        struct fib_alias *fa;
1886        int i, s_i;
1887
1888        s_i = cb->args[4];
1889        i = 0;
1890
1891        /* rcu_read_lock is hold by caller */
1892        hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1893                if (i < s_i) {
1894                        i++;
1895                        continue;
1896                }
1897
1898                if (tb->tb_id != fa->tb_id) {
1899                        i++;
1900                        continue;
1901                }
1902
1903                if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1904                                  cb->nlh->nlmsg_seq,
1905                                  RTM_NEWROUTE,
1906                                  tb->tb_id,
1907                                  fa->fa_type,
1908                                  xkey,
1909                                  KEYLENGTH - fa->fa_slen,
1910                                  fa->fa_tos,
1911                                  fa->fa_info, NLM_F_MULTI) < 0) {
1912                        cb->args[4] = i;
1913                        return -1;
1914                }
1915                i++;
1916        }
1917
1918        cb->args[4] = i;
1919        return skb->len;
1920}
1921
1922/* rcu_read_lock needs to be hold by caller from readside */
1923int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1924                   struct netlink_callback *cb)
1925{
1926        struct trie *t = (struct trie *)tb->tb_data;
1927        struct key_vector *l, *tp = t->kv;
1928        /* Dump starting at last key.
1929         * Note: 0.0.0.0/0 (ie default) is first key.
1930         */
1931        int count = cb->args[2];
1932        t_key key = cb->args[3];
1933
1934        while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1935                if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1936                        cb->args[3] = key;
1937                        cb->args[2] = count;
1938                        return -1;
1939                }
1940
1941                ++count;
1942                key = l->key + 1;
1943
1944                memset(&cb->args[4], 0,
1945                       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1946
1947                /* stop loop if key wrapped back to 0 */
1948                if (key < l->key)
1949                        break;
1950        }
1951
1952        cb->args[3] = key;
1953        cb->args[2] = count;
1954
1955        return skb->len;
1956}
1957
1958void __init fib_trie_init(void)
1959{
1960        fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1961                                          sizeof(struct fib_alias),
1962                                          0, SLAB_PANIC, NULL);
1963
1964        trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1965                                           LEAF_SIZE,
1966                                           0, SLAB_PANIC, NULL);
1967}
1968
1969struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
1970{
1971        struct fib_table *tb;
1972        struct trie *t;
1973        size_t sz = sizeof(*tb);
1974
1975        if (!alias)
1976                sz += sizeof(struct trie);
1977
1978        tb = kzalloc(sz, GFP_KERNEL);
1979        if (!tb)
1980                return NULL;
1981
1982        tb->tb_id = id;
1983        tb->tb_default = -1;
1984        tb->tb_num_default = 0;
1985        tb->tb_data = (alias ? alias->__data : tb->__data);
1986
1987        if (alias)
1988                return tb;
1989
1990        t = (struct trie *) tb->tb_data;
1991        t->kv[0].pos = KEYLENGTH;
1992        t->kv[0].slen = KEYLENGTH;
1993#ifdef CONFIG_IP_FIB_TRIE_STATS
1994        t->stats = alloc_percpu(struct trie_use_stats);
1995        if (!t->stats) {
1996                kfree(tb);
1997                tb = NULL;
1998        }
1999#endif
2000
2001        return tb;
2002}
2003
2004#ifdef CONFIG_PROC_FS
2005/* Depth first Trie walk iterator */
2006struct fib_trie_iter {
2007        struct seq_net_private p;
2008        struct fib_table *tb;
2009        struct key_vector *tnode;
2010        unsigned int index;
2011        unsigned int depth;
2012};
2013
2014static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2015{
2016        unsigned long cindex = iter->index;
2017        struct key_vector *pn = iter->tnode;
2018        t_key pkey;
2019
2020        pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2021                 iter->tnode, iter->index, iter->depth);
2022
2023        while (!IS_TRIE(pn)) {
2024                while (cindex < child_length(pn)) {
2025                        struct key_vector *n = get_child_rcu(pn, cindex++);
2026
2027                        if (!n)
2028                                continue;
2029
2030                        if (IS_LEAF(n)) {
2031                                iter->tnode = pn;
2032                                iter->index = cindex;
2033                        } else {
2034                                /* push down one level */
2035                                iter->tnode = n;
2036                                iter->index = 0;
2037                                ++iter->depth;
2038                        }
2039
2040                        return n;
2041                }
2042
2043                /* Current node exhausted, pop back up */
2044                pkey = pn->key;
2045                pn = node_parent_rcu(pn);
2046                cindex = get_index(pkey, pn) + 1;
2047                --iter->depth;
2048        }
2049
2050        /* record root node so further searches know we are done */
2051        iter->tnode = pn;
2052        iter->index = 0;
2053
2054        return NULL;
2055}
2056
2057static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2058                                             struct trie *t)
2059{
2060        struct key_vector *n, *pn = t->kv;
2061
2062        if (!t)
2063                return NULL;
2064
2065        n = rcu_dereference(pn->tnode[0]);
2066        if (!n)
2067                return NULL;
2068
2069        if (IS_TNODE(n)) {
2070                iter->tnode = n;
2071                iter->index = 0;
2072                iter->depth = 1;
2073        } else {
2074                iter->tnode = pn;
2075                iter->index = 0;
2076                iter->depth = 0;
2077        }
2078
2079        return n;
2080}
2081
2082static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2083{
2084        struct key_vector *n;
2085        struct fib_trie_iter iter;
2086
2087        memset(s, 0, sizeof(*s));
2088
2089        rcu_read_lock();
2090        for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2091                if (IS_LEAF(n)) {
2092                        struct fib_alias *fa;
2093
2094                        s->leaves++;
2095                        s->totdepth += iter.depth;
2096                        if (iter.depth > s->maxdepth)
2097                                s->maxdepth = iter.depth;
2098
2099                        hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2100                                ++s->prefixes;
2101                } else {
2102                        s->tnodes++;
2103                        if (n->bits < MAX_STAT_DEPTH)
2104                                s->nodesizes[n->bits]++;
2105                        s->nullpointers += tn_info(n)->empty_children;
2106                }
2107        }
2108        rcu_read_unlock();
2109}
2110
2111/*
2112 *      This outputs /proc/net/fib_triestats
2113 */
2114static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2115{
2116        unsigned int i, max, pointers, bytes, avdepth;
2117
2118        if (stat->leaves)
2119                avdepth = stat->totdepth*100 / stat->leaves;
2120        else
2121                avdepth = 0;
2122
2123        seq_printf(seq, "\tAver depth:     %u.%02d\n",
2124                   avdepth / 100, avdepth % 100);
2125        seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2126
2127        seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2128        bytes = LEAF_SIZE * stat->leaves;
2129
2130        seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2131        bytes += sizeof(struct fib_alias) * stat->prefixes;
2132
2133        seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2134        bytes += TNODE_SIZE(0) * stat->tnodes;
2135
2136        max = MAX_STAT_DEPTH;
2137        while (max > 0 && stat->nodesizes[max-1] == 0)
2138                max--;
2139
2140        pointers = 0;
2141        for (i = 1; i < max; i++)
2142                if (stat->nodesizes[i] != 0) {
2143                        seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2144                        pointers += (1<<i) * stat->nodesizes[i];
2145                }
2146        seq_putc(seq, '\n');
2147        seq_printf(seq, "\tPointers: %u\n", pointers);
2148
2149        bytes += sizeof(struct key_vector *) * pointers;
2150        seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2151        seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2152}
2153
2154#ifdef CONFIG_IP_FIB_TRIE_STATS
2155static void trie_show_usage(struct seq_file *seq,
2156                            const struct trie_use_stats __percpu *stats)
2157{
2158        struct trie_use_stats s = { 0 };
2159        int cpu;
2160
2161        /* loop through all of the CPUs and gather up the stats */
2162        for_each_possible_cpu(cpu) {
2163                const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2164
2165                s.gets += pcpu->gets;
2166                s.backtrack += pcpu->backtrack;
2167                s.semantic_match_passed += pcpu->semantic_match_passed;
2168                s.semantic_match_miss += pcpu->semantic_match_miss;
2169                s.null_node_hit += pcpu->null_node_hit;
2170                s.resize_node_skipped += pcpu->resize_node_skipped;
2171        }
2172
2173        seq_printf(seq, "\nCounters:\n---------\n");
2174        seq_printf(seq, "gets = %u\n", s.gets);
2175        seq_printf(seq, "backtracks = %u\n", s.backtrack);
2176        seq_printf(seq, "semantic match passed = %u\n",
2177                   s.semantic_match_passed);
2178        seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2179        seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2180        seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2181}
2182#endif /*  CONFIG_IP_FIB_TRIE_STATS */
2183
2184static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2185{
2186        if (tb->tb_id == RT_TABLE_LOCAL)
2187                seq_puts(seq, "Local:\n");
2188        else if (tb->tb_id == RT_TABLE_MAIN)
2189                seq_puts(seq, "Main:\n");
2190        else
2191                seq_printf(seq, "Id %d:\n", tb->tb_id);
2192}
2193
2194
2195static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2196{
2197        struct net *net = (struct net *)seq->private;
2198        unsigned int h;
2199
2200        seq_printf(seq,
2201                   "Basic info: size of leaf:"
2202                   " %Zd bytes, size of tnode: %Zd bytes.\n",
2203                   LEAF_SIZE, TNODE_SIZE(0));
2204
2205        for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2206                struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2207                struct fib_table *tb;
2208
2209                hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2210                        struct trie *t = (struct trie *) tb->tb_data;
2211                        struct trie_stat stat;
2212
2213                        if (!t)
2214                                continue;
2215
2216                        fib_table_print(seq, tb);
2217
2218                        trie_collect_stats(t, &stat);
2219                        trie_show_stats(seq, &stat);
2220#ifdef CONFIG_IP_FIB_TRIE_STATS
2221                        trie_show_usage(seq, t->stats);
2222#endif
2223                }
2224        }
2225
2226        return 0;
2227}
2228
2229static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2230{
2231        return single_open_net(inode, file, fib_triestat_seq_show);
2232}
2233
2234static const struct file_operations fib_triestat_fops = {
2235        .owner  = THIS_MODULE,
2236        .open   = fib_triestat_seq_open,
2237        .read   = seq_read,
2238        .llseek = seq_lseek,
2239        .release = single_release_net,
2240};
2241
2242static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2243{
2244        struct fib_trie_iter *iter = seq->private;
2245        struct net *net = seq_file_net(seq);
2246        loff_t idx = 0;
2247        unsigned int h;
2248
2249        for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2250                struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2251                struct fib_table *tb;
2252
2253                hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2254                        struct key_vector *n;
2255
2256                        for (n = fib_trie_get_first(iter,
2257                                                    (struct trie *) tb->tb_data);
2258                             n; n = fib_trie_get_next(iter))
2259                                if (pos == idx++) {
2260                                        iter->tb = tb;
2261                                        return n;
2262                                }
2263                }
2264        }
2265
2266        return NULL;
2267}
2268
2269static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2270        __acquires(RCU)
2271{
2272        rcu_read_lock();
2273        return fib_trie_get_idx(seq, *pos);
2274}
2275
2276static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2277{
2278        struct fib_trie_iter *iter = seq->private;
2279        struct net *net = seq_file_net(seq);
2280        struct fib_table *tb = iter->tb;
2281        struct hlist_node *tb_node;
2282        unsigned int h;
2283        struct key_vector *n;
2284
2285        ++*pos;
2286        /* next node in same table */
2287        n = fib_trie_get_next(iter);
2288        if (n)
2289                return n;
2290
2291        /* walk rest of this hash chain */
2292        h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2293        while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2294                tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2295                n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2296                if (n)
2297                        goto found;
2298        }
2299
2300        /* new hash chain */
2301        while (++h < FIB_TABLE_HASHSZ) {
2302                struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2303                hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2304                        n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2305                        if (n)
2306                                goto found;
2307                }
2308        }
2309        return NULL;
2310
2311found:
2312        iter->tb = tb;
2313        return n;
2314}
2315
2316static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2317        __releases(RCU)
2318{
2319        rcu_read_unlock();
2320}
2321
2322static void seq_indent(struct seq_file *seq, int n)
2323{
2324        while (n-- > 0)
2325                seq_puts(seq, "   ");
2326}
2327
2328static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2329{
2330        switch (s) {
2331        case RT_SCOPE_UNIVERSE: return "universe";
2332        case RT_SCOPE_SITE:     return "site";
2333        case RT_SCOPE_LINK:     return "link";
2334        case RT_SCOPE_HOST:     return "host";
2335        case RT_SCOPE_NOWHERE:  return "nowhere";
2336        default:
2337                snprintf(buf, len, "scope=%d", s);
2338                return buf;
2339        }
2340}
2341
2342static const char *const rtn_type_names[__RTN_MAX] = {
2343        [RTN_UNSPEC] = "UNSPEC",
2344        [RTN_UNICAST] = "UNICAST",
2345        [RTN_LOCAL] = "LOCAL",
2346        [RTN_BROADCAST] = "BROADCAST",
2347        [RTN_ANYCAST] = "ANYCAST",
2348        [RTN_MULTICAST] = "MULTICAST",
2349        [RTN_BLACKHOLE] = "BLACKHOLE",
2350        [RTN_UNREACHABLE] = "UNREACHABLE",
2351        [RTN_PROHIBIT] = "PROHIBIT",
2352        [RTN_THROW] = "THROW",
2353        [RTN_NAT] = "NAT",
2354        [RTN_XRESOLVE] = "XRESOLVE",
2355};
2356
2357static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2358{
2359        if (t < __RTN_MAX && rtn_type_names[t])
2360                return rtn_type_names[t];
2361        snprintf(buf, len, "type %u", t);
2362        return buf;
2363}
2364
2365/* Pretty print the trie */
2366static int fib_trie_seq_show(struct seq_file *seq, void *v)
2367{
2368        const struct fib_trie_iter *iter = seq->private;
2369        struct key_vector *n = v;
2370
2371        if (IS_TRIE(node_parent_rcu(n)))
2372                fib_table_print(seq, iter->tb);
2373
2374        if (IS_TNODE(n)) {
2375                __be32 prf = htonl(n->key);
2376
2377                seq_indent(seq, iter->depth-1);
2378                seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2379                           &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2380                           tn_info(n)->full_children,
2381                           tn_info(n)->empty_children);
2382        } else {
2383                __be32 val = htonl(n->key);
2384                struct fib_alias *fa;
2385
2386                seq_indent(seq, iter->depth);
2387                seq_printf(seq, "  |-- %pI4\n", &val);
2388
2389                hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2390                        char buf1[32], buf2[32];
2391
2392                        seq_indent(seq, iter->depth + 1);
2393                        seq_printf(seq, "  /%zu %s %s",
2394                                   KEYLENGTH - fa->fa_slen,
2395                                   rtn_scope(buf1, sizeof(buf1),
2396                                             fa->fa_info->fib_scope),
2397                                   rtn_type(buf2, sizeof(buf2),
2398                                            fa->fa_type));
2399                        if (fa->fa_tos)
2400                                seq_printf(seq, " tos=%d", fa->fa_tos);
2401                        seq_putc(seq, '\n');
2402                }
2403        }
2404
2405        return 0;
2406}
2407
2408static const struct seq_operations fib_trie_seq_ops = {
2409        .start  = fib_trie_seq_start,
2410        .next   = fib_trie_seq_next,
2411        .stop   = fib_trie_seq_stop,
2412        .show   = fib_trie_seq_show,
2413};
2414
2415static int fib_trie_seq_open(struct inode *inode, struct file *file)
2416{
2417        return seq_open_net(inode, file, &fib_trie_seq_ops,
2418                            sizeof(struct fib_trie_iter));
2419}
2420
2421static const struct file_operations fib_trie_fops = {
2422        .owner  = THIS_MODULE,
2423        .open   = fib_trie_seq_open,
2424        .read   = seq_read,
2425        .llseek = seq_lseek,
2426        .release = seq_release_net,
2427};
2428
2429struct fib_route_iter {
2430        struct seq_net_private p;
2431        struct fib_table *main_tb;
2432        struct key_vector *tnode;
2433        loff_t  pos;
2434        t_key   key;
2435};
2436
2437static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2438                                            loff_t pos)
2439{
2440        struct fib_table *tb = iter->main_tb;
2441        struct key_vector *l, **tp = &iter->tnode;
2442        struct trie *t;
2443        t_key key;
2444
2445        /* use cache location of next-to-find key */
2446        if (iter->pos > 0 && pos >= iter->pos) {
2447                pos -= iter->pos;
2448                key = iter->key;
2449        } else {
2450                t = (struct trie *)tb->tb_data;
2451                iter->tnode = t->kv;
2452                iter->pos = 0;
2453                key = 0;
2454        }
2455
2456        while ((l = leaf_walk_rcu(tp, key)) != NULL) {
2457                key = l->key + 1;
2458                iter->pos++;
2459
2460                if (pos-- <= 0)
2461                        break;
2462
2463                l = NULL;
2464
2465                /* handle unlikely case of a key wrap */
2466                if (!key)
2467                        break;
2468        }
2469
2470        if (l)
2471                iter->key = key;        /* remember it */
2472        else
2473                iter->pos = 0;          /* forget it */
2474
2475        return l;
2476}
2477
2478static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2479        __acquires(RCU)
2480{
2481        struct fib_route_iter *iter = seq->private;
2482        struct fib_table *tb;
2483        struct trie *t;
2484
2485        rcu_read_lock();
2486
2487        tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2488        if (!tb)
2489                return NULL;
2490
2491        iter->main_tb = tb;
2492
2493        if (*pos != 0)
2494                return fib_route_get_idx(iter, *pos);
2495
2496        t = (struct trie *)tb->tb_data;
2497        iter->tnode = t->kv;
2498        iter->pos = 0;
2499        iter->key = 0;
2500
2501        return SEQ_START_TOKEN;
2502}
2503
2504static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2505{
2506        struct fib_route_iter *iter = seq->private;
2507        struct key_vector *l = NULL;
2508        t_key key = iter->key;
2509
2510        ++*pos;
2511
2512        /* only allow key of 0 for start of sequence */
2513        if ((v == SEQ_START_TOKEN) || key)
2514                l = leaf_walk_rcu(&iter->tnode, key);
2515
2516        if (l) {
2517                iter->key = l->key + 1;
2518                iter->pos++;
2519        } else {
2520                iter->pos = 0;
2521        }
2522
2523        return l;
2524}
2525
2526static void fib_route_seq_stop(struct seq_file *seq, void *v)
2527        __releases(RCU)
2528{
2529        rcu_read_unlock();
2530}
2531
2532static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2533{
2534        unsigned int flags = 0;
2535
2536        if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2537                flags = RTF_REJECT;
2538        if (fi && fi->fib_nh->nh_gw)
2539                flags |= RTF_GATEWAY;
2540        if (mask == htonl(0xFFFFFFFF))
2541                flags |= RTF_HOST;
2542        flags |= RTF_UP;
2543        return flags;
2544}
2545
2546/*
2547 *      This outputs /proc/net/route.
2548 *      The format of the file is not supposed to be changed
2549 *      and needs to be same as fib_hash output to avoid breaking
2550 *      legacy utilities
2551 */
2552static int fib_route_seq_show(struct seq_file *seq, void *v)
2553{
2554        struct fib_route_iter *iter = seq->private;
2555        struct fib_table *tb = iter->main_tb;
2556        struct fib_alias *fa;
2557        struct key_vector *l = v;
2558        __be32 prefix;
2559
2560        if (v == SEQ_START_TOKEN) {
2561                seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2562                           "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2563                           "\tWindow\tIRTT");
2564                return 0;
2565        }
2566
2567        prefix = htonl(l->key);
2568
2569        hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2570                const struct fib_info *fi = fa->fa_info;
2571                __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2572                unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2573
2574                if ((fa->fa_type == RTN_BROADCAST) ||
2575                    (fa->fa_type == RTN_MULTICAST))
2576                        continue;
2577
2578                if (fa->tb_id != tb->tb_id)
2579                        continue;
2580
2581                seq_setwidth(seq, 127);
2582
2583                if (fi)
2584                        seq_printf(seq,
2585                                   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2586                                   "%d\t%08X\t%d\t%u\t%u",
2587                                   fi->fib_dev ? fi->fib_dev->name : "*",
2588                                   prefix,
2589                                   fi->fib_nh->nh_gw, flags, 0, 0,
2590                                   fi->fib_priority,
2591                                   mask,
2592                                   (fi->fib_advmss ?
2593                                    fi->fib_advmss + 40 : 0),
2594                                   fi->fib_window,
2595                                   fi->fib_rtt >> 3);
2596                else
2597                        seq_printf(seq,
2598                                   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2599                                   "%d\t%08X\t%d\t%u\t%u",
2600                                   prefix, 0, flags, 0, 0, 0,
2601                                   mask, 0, 0, 0);
2602
2603                seq_pad(seq, '\n');
2604        }
2605
2606        return 0;
2607}
2608
2609static const struct seq_operations fib_route_seq_ops = {
2610        .start  = fib_route_seq_start,
2611        .next   = fib_route_seq_next,
2612        .stop   = fib_route_seq_stop,
2613        .show   = fib_route_seq_show,
2614};
2615
2616static int fib_route_seq_open(struct inode *inode, struct file *file)
2617{
2618        return seq_open_net(inode, file, &fib_route_seq_ops,
2619                            sizeof(struct fib_route_iter));
2620}
2621
2622static const struct file_operations fib_route_fops = {
2623        .owner  = THIS_MODULE,
2624        .open   = fib_route_seq_open,
2625        .read   = seq_read,
2626        .llseek = seq_lseek,
2627        .release = seq_release_net,
2628};
2629
2630int __net_init fib_proc_init(struct net *net)
2631{
2632        if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2633                goto out1;
2634
2635        if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2636                         &fib_triestat_fops))
2637                goto out2;
2638
2639        if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2640                goto out3;
2641
2642        return 0;
2643
2644out3:
2645        remove_proc_entry("fib_triestat", net->proc_net);
2646out2:
2647        remove_proc_entry("fib_trie", net->proc_net);
2648out1:
2649        return -ENOMEM;
2650}
2651
2652void __net_exit fib_proc_exit(struct net *net)
2653{
2654        remove_proc_entry("fib_trie", net->proc_net);
2655        remove_proc_entry("fib_triestat", net->proc_net);
2656        remove_proc_entry("route", net->proc_net);
2657}
2658
2659#endif /* CONFIG_PROC_FS */
2660