linux/net/ipv6/ip6_fib.c
<<
>>
Prefs
   1/*
   2 *      Linux INET6 implementation
   3 *      Forwarding Information Database
   4 *
   5 *      Authors:
   6 *      Pedro Roque             <roque@di.fc.ul.pt>
   7 *
   8 *      This program is free software; you can redistribute it and/or
   9 *      modify it under the terms of the GNU General Public License
  10 *      as published by the Free Software Foundation; either version
  11 *      2 of the License, or (at your option) any later version.
  12 *
  13 *      Changes:
  14 *      Yuji SEKIYA @USAGI:     Support default route on router node;
  15 *                              remove ip6_null_entry from the top of
  16 *                              routing table.
  17 *      Ville Nuorvala:         Fixed routing subtrees.
  18 */
  19
  20#define pr_fmt(fmt) "IPv6: " fmt
  21
  22#include <linux/errno.h>
  23#include <linux/types.h>
  24#include <linux/net.h>
  25#include <linux/route.h>
  26#include <linux/netdevice.h>
  27#include <linux/in6.h>
  28#include <linux/init.h>
  29#include <linux/list.h>
  30#include <linux/slab.h>
  31
  32#include <net/ipv6.h>
  33#include <net/ndisc.h>
  34#include <net/addrconf.h>
  35
  36#include <net/ip6_fib.h>
  37#include <net/ip6_route.h>
  38
  39#define RT6_DEBUG 2
  40
  41#if RT6_DEBUG >= 3
  42#define RT6_TRACE(x...) pr_debug(x)
  43#else
  44#define RT6_TRACE(x...) do { ; } while (0)
  45#endif
  46
  47static struct kmem_cache *fib6_node_kmem __read_mostly;
  48
  49struct fib6_cleaner {
  50        struct fib6_walker w;
  51        struct net *net;
  52        int (*func)(struct rt6_info *, void *arg);
  53        int sernum;
  54        void *arg;
  55};
  56
  57static DEFINE_RWLOCK(fib6_walker_lock);
  58
  59#ifdef CONFIG_IPV6_SUBTREES
  60#define FWS_INIT FWS_S
  61#else
  62#define FWS_INIT FWS_L
  63#endif
  64
  65static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
  66static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
  67static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
  68static int fib6_walk(struct fib6_walker *w);
  69static int fib6_walk_continue(struct fib6_walker *w);
  70
  71/*
  72 *      A routing update causes an increase of the serial number on the
  73 *      affected subtree. This allows for cached routes to be asynchronously
  74 *      tested when modifications are made to the destination cache as a
  75 *      result of redirects, path MTU changes, etc.
  76 */
  77
  78static void fib6_gc_timer_cb(unsigned long arg);
  79
  80static LIST_HEAD(fib6_walkers);
  81#define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
  82
  83static void fib6_walker_link(struct fib6_walker *w)
  84{
  85        write_lock_bh(&fib6_walker_lock);
  86        list_add(&w->lh, &fib6_walkers);
  87        write_unlock_bh(&fib6_walker_lock);
  88}
  89
  90static void fib6_walker_unlink(struct fib6_walker *w)
  91{
  92        write_lock_bh(&fib6_walker_lock);
  93        list_del(&w->lh);
  94        write_unlock_bh(&fib6_walker_lock);
  95}
  96
  97static int fib6_new_sernum(struct net *net)
  98{
  99        int new, old;
 100
 101        do {
 102                old = atomic_read(&net->ipv6.fib6_sernum);
 103                new = old < INT_MAX ? old + 1 : 1;
 104        } while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
 105                                old, new) != old);
 106        return new;
 107}
 108
 109enum {
 110        FIB6_NO_SERNUM_CHANGE = 0,
 111};
 112
 113/*
 114 *      Auxiliary address test functions for the radix tree.
 115 *
 116 *      These assume a 32bit processor (although it will work on
 117 *      64bit processors)
 118 */
 119
 120/*
 121 *      test bit
 122 */
 123#if defined(__LITTLE_ENDIAN)
 124# define BITOP_BE32_SWIZZLE     (0x1F & ~7)
 125#else
 126# define BITOP_BE32_SWIZZLE     0
 127#endif
 128
 129static __be32 addr_bit_set(const void *token, int fn_bit)
 130{
 131        const __be32 *addr = token;
 132        /*
 133         * Here,
 134         *      1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
 135         * is optimized version of
 136         *      htonl(1 << ((~fn_bit)&0x1F))
 137         * See include/asm-generic/bitops/le.h.
 138         */
 139        return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
 140               addr[fn_bit >> 5];
 141}
 142
 143static struct fib6_node *node_alloc(void)
 144{
 145        struct fib6_node *fn;
 146
 147        fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
 148
 149        return fn;
 150}
 151
 152static void node_free(struct fib6_node *fn)
 153{
 154        kmem_cache_free(fib6_node_kmem, fn);
 155}
 156
 157static void rt6_release(struct rt6_info *rt)
 158{
 159        if (atomic_dec_and_test(&rt->rt6i_ref))
 160                dst_free(&rt->dst);
 161}
 162
 163static void fib6_link_table(struct net *net, struct fib6_table *tb)
 164{
 165        unsigned int h;
 166
 167        /*
 168         * Initialize table lock at a single place to give lockdep a key,
 169         * tables aren't visible prior to being linked to the list.
 170         */
 171        rwlock_init(&tb->tb6_lock);
 172
 173        h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
 174
 175        /*
 176         * No protection necessary, this is the only list mutatation
 177         * operation, tables never disappear once they exist.
 178         */
 179        hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
 180}
 181
 182#ifdef CONFIG_IPV6_MULTIPLE_TABLES
 183
 184static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
 185{
 186        struct fib6_table *table;
 187
 188        table = kzalloc(sizeof(*table), GFP_ATOMIC);
 189        if (table) {
 190                table->tb6_id = id;
 191                table->tb6_root.leaf = net->ipv6.ip6_null_entry;
 192                table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
 193                inet_peer_base_init(&table->tb6_peers);
 194        }
 195
 196        return table;
 197}
 198
 199struct fib6_table *fib6_new_table(struct net *net, u32 id)
 200{
 201        struct fib6_table *tb;
 202
 203        if (id == 0)
 204                id = RT6_TABLE_MAIN;
 205        tb = fib6_get_table(net, id);
 206        if (tb)
 207                return tb;
 208
 209        tb = fib6_alloc_table(net, id);
 210        if (tb)
 211                fib6_link_table(net, tb);
 212
 213        return tb;
 214}
 215
 216struct fib6_table *fib6_get_table(struct net *net, u32 id)
 217{
 218        struct fib6_table *tb;
 219        struct hlist_head *head;
 220        unsigned int h;
 221
 222        if (id == 0)
 223                id = RT6_TABLE_MAIN;
 224        h = id & (FIB6_TABLE_HASHSZ - 1);
 225        rcu_read_lock();
 226        head = &net->ipv6.fib_table_hash[h];
 227        hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
 228                if (tb->tb6_id == id) {
 229                        rcu_read_unlock();
 230                        return tb;
 231                }
 232        }
 233        rcu_read_unlock();
 234
 235        return NULL;
 236}
 237
 238static void __net_init fib6_tables_init(struct net *net)
 239{
 240        fib6_link_table(net, net->ipv6.fib6_main_tbl);
 241        fib6_link_table(net, net->ipv6.fib6_local_tbl);
 242}
 243#else
 244
 245struct fib6_table *fib6_new_table(struct net *net, u32 id)
 246{
 247        return fib6_get_table(net, id);
 248}
 249
 250struct fib6_table *fib6_get_table(struct net *net, u32 id)
 251{
 252          return net->ipv6.fib6_main_tbl;
 253}
 254
 255struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
 256                                   int flags, pol_lookup_t lookup)
 257{
 258        return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
 259}
 260
 261static void __net_init fib6_tables_init(struct net *net)
 262{
 263        fib6_link_table(net, net->ipv6.fib6_main_tbl);
 264}
 265
 266#endif
 267
 268static int fib6_dump_node(struct fib6_walker *w)
 269{
 270        int res;
 271        struct rt6_info *rt;
 272
 273        for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
 274                res = rt6_dump_route(rt, w->args);
 275                if (res < 0) {
 276                        /* Frame is full, suspend walking */
 277                        w->leaf = rt;
 278                        return 1;
 279                }
 280        }
 281        w->leaf = NULL;
 282        return 0;
 283}
 284
 285static void fib6_dump_end(struct netlink_callback *cb)
 286{
 287        struct fib6_walker *w = (void *)cb->args[2];
 288
 289        if (w) {
 290                if (cb->args[4]) {
 291                        cb->args[4] = 0;
 292                        fib6_walker_unlink(w);
 293                }
 294                cb->args[2] = 0;
 295                kfree(w);
 296        }
 297        cb->done = (void *)cb->args[3];
 298        cb->args[1] = 3;
 299}
 300
 301static int fib6_dump_done(struct netlink_callback *cb)
 302{
 303        fib6_dump_end(cb);
 304        return cb->done ? cb->done(cb) : 0;
 305}
 306
 307static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
 308                           struct netlink_callback *cb)
 309{
 310        struct fib6_walker *w;
 311        int res;
 312
 313        w = (void *)cb->args[2];
 314        w->root = &table->tb6_root;
 315
 316        if (cb->args[4] == 0) {
 317                w->count = 0;
 318                w->skip = 0;
 319
 320                read_lock_bh(&table->tb6_lock);
 321                res = fib6_walk(w);
 322                read_unlock_bh(&table->tb6_lock);
 323                if (res > 0) {
 324                        cb->args[4] = 1;
 325                        cb->args[5] = w->root->fn_sernum;
 326                }
 327        } else {
 328                if (cb->args[5] != w->root->fn_sernum) {
 329                        /* Begin at the root if the tree changed */
 330                        cb->args[5] = w->root->fn_sernum;
 331                        w->state = FWS_INIT;
 332                        w->node = w->root;
 333                        w->skip = w->count;
 334                } else
 335                        w->skip = 0;
 336
 337                read_lock_bh(&table->tb6_lock);
 338                res = fib6_walk_continue(w);
 339                read_unlock_bh(&table->tb6_lock);
 340                if (res <= 0) {
 341                        fib6_walker_unlink(w);
 342                        cb->args[4] = 0;
 343                }
 344        }
 345
 346        return res;
 347}
 348
 349static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
 350{
 351        struct net *net = sock_net(skb->sk);
 352        unsigned int h, s_h;
 353        unsigned int e = 0, s_e;
 354        struct rt6_rtnl_dump_arg arg;
 355        struct fib6_walker *w;
 356        struct fib6_table *tb;
 357        struct hlist_head *head;
 358        int res = 0;
 359
 360        s_h = cb->args[0];
 361        s_e = cb->args[1];
 362
 363        w = (void *)cb->args[2];
 364        if (!w) {
 365                /* New dump:
 366                 *
 367                 * 1. hook callback destructor.
 368                 */
 369                cb->args[3] = (long)cb->done;
 370                cb->done = fib6_dump_done;
 371
 372                /*
 373                 * 2. allocate and initialize walker.
 374                 */
 375                w = kzalloc(sizeof(*w), GFP_ATOMIC);
 376                if (!w)
 377                        return -ENOMEM;
 378                w->func = fib6_dump_node;
 379                cb->args[2] = (long)w;
 380        }
 381
 382        arg.skb = skb;
 383        arg.cb = cb;
 384        arg.net = net;
 385        w->args = &arg;
 386
 387        rcu_read_lock();
 388        for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
 389                e = 0;
 390                head = &net->ipv6.fib_table_hash[h];
 391                hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
 392                        if (e < s_e)
 393                                goto next;
 394                        res = fib6_dump_table(tb, skb, cb);
 395                        if (res != 0)
 396                                goto out;
 397next:
 398                        e++;
 399                }
 400        }
 401out:
 402        rcu_read_unlock();
 403        cb->args[1] = e;
 404        cb->args[0] = h;
 405
 406        res = res < 0 ? res : skb->len;
 407        if (res <= 0)
 408                fib6_dump_end(cb);
 409        return res;
 410}
 411
 412/*
 413 *      Routing Table
 414 *
 415 *      return the appropriate node for a routing tree "add" operation
 416 *      by either creating and inserting or by returning an existing
 417 *      node.
 418 */
 419
 420static struct fib6_node *fib6_add_1(struct fib6_node *root,
 421                                     struct in6_addr *addr, int plen,
 422                                     int offset, int allow_create,
 423                                     int replace_required, int sernum)
 424{
 425        struct fib6_node *fn, *in, *ln;
 426        struct fib6_node *pn = NULL;
 427        struct rt6key *key;
 428        int     bit;
 429        __be32  dir = 0;
 430
 431        RT6_TRACE("fib6_add_1\n");
 432
 433        /* insert node in tree */
 434
 435        fn = root;
 436
 437        do {
 438                key = (struct rt6key *)((u8 *)fn->leaf + offset);
 439
 440                /*
 441                 *      Prefix match
 442                 */
 443                if (plen < fn->fn_bit ||
 444                    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
 445                        if (!allow_create) {
 446                                if (replace_required) {
 447                                        pr_warn("Can't replace route, no match found\n");
 448                                        return ERR_PTR(-ENOENT);
 449                                }
 450                                pr_warn("NLM_F_CREATE should be set when creating new route\n");
 451                        }
 452                        goto insert_above;
 453                }
 454
 455                /*
 456                 *      Exact match ?
 457                 */
 458
 459                if (plen == fn->fn_bit) {
 460                        /* clean up an intermediate node */
 461                        if (!(fn->fn_flags & RTN_RTINFO)) {
 462                                rt6_release(fn->leaf);
 463                                fn->leaf = NULL;
 464                        }
 465
 466                        fn->fn_sernum = sernum;
 467
 468                        return fn;
 469                }
 470
 471                /*
 472                 *      We have more bits to go
 473                 */
 474
 475                /* Try to walk down on tree. */
 476                fn->fn_sernum = sernum;
 477                dir = addr_bit_set(addr, fn->fn_bit);
 478                pn = fn;
 479                fn = dir ? fn->right : fn->left;
 480        } while (fn);
 481
 482        if (!allow_create) {
 483                /* We should not create new node because
 484                 * NLM_F_REPLACE was specified without NLM_F_CREATE
 485                 * I assume it is safe to require NLM_F_CREATE when
 486                 * REPLACE flag is used! Later we may want to remove the
 487                 * check for replace_required, because according
 488                 * to netlink specification, NLM_F_CREATE
 489                 * MUST be specified if new route is created.
 490                 * That would keep IPv6 consistent with IPv4
 491                 */
 492                if (replace_required) {
 493                        pr_warn("Can't replace route, no match found\n");
 494                        return ERR_PTR(-ENOENT);
 495                }
 496                pr_warn("NLM_F_CREATE should be set when creating new route\n");
 497        }
 498        /*
 499         *      We walked to the bottom of tree.
 500         *      Create new leaf node without children.
 501         */
 502
 503        ln = node_alloc();
 504
 505        if (!ln)
 506                return ERR_PTR(-ENOMEM);
 507        ln->fn_bit = plen;
 508
 509        ln->parent = pn;
 510        ln->fn_sernum = sernum;
 511
 512        if (dir)
 513                pn->right = ln;
 514        else
 515                pn->left  = ln;
 516
 517        return ln;
 518
 519
 520insert_above:
 521        /*
 522         * split since we don't have a common prefix anymore or
 523         * we have a less significant route.
 524         * we've to insert an intermediate node on the list
 525         * this new node will point to the one we need to create
 526         * and the current
 527         */
 528
 529        pn = fn->parent;
 530
 531        /* find 1st bit in difference between the 2 addrs.
 532
 533           See comment in __ipv6_addr_diff: bit may be an invalid value,
 534           but if it is >= plen, the value is ignored in any case.
 535         */
 536
 537        bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
 538
 539        /*
 540         *              (intermediate)[in]
 541         *                /        \
 542         *      (new leaf node)[ln] (old node)[fn]
 543         */
 544        if (plen > bit) {
 545                in = node_alloc();
 546                ln = node_alloc();
 547
 548                if (!in || !ln) {
 549                        if (in)
 550                                node_free(in);
 551                        if (ln)
 552                                node_free(ln);
 553                        return ERR_PTR(-ENOMEM);
 554                }
 555
 556                /*
 557                 * new intermediate node.
 558                 * RTN_RTINFO will
 559                 * be off since that an address that chooses one of
 560                 * the branches would not match less specific routes
 561                 * in the other branch
 562                 */
 563
 564                in->fn_bit = bit;
 565
 566                in->parent = pn;
 567                in->leaf = fn->leaf;
 568                atomic_inc(&in->leaf->rt6i_ref);
 569
 570                in->fn_sernum = sernum;
 571
 572                /* update parent pointer */
 573                if (dir)
 574                        pn->right = in;
 575                else
 576                        pn->left  = in;
 577
 578                ln->fn_bit = plen;
 579
 580                ln->parent = in;
 581                fn->parent = in;
 582
 583                ln->fn_sernum = sernum;
 584
 585                if (addr_bit_set(addr, bit)) {
 586                        in->right = ln;
 587                        in->left  = fn;
 588                } else {
 589                        in->left  = ln;
 590                        in->right = fn;
 591                }
 592        } else { /* plen <= bit */
 593
 594                /*
 595                 *              (new leaf node)[ln]
 596                 *                /        \
 597                 *           (old node)[fn] NULL
 598                 */
 599
 600                ln = node_alloc();
 601
 602                if (!ln)
 603                        return ERR_PTR(-ENOMEM);
 604
 605                ln->fn_bit = plen;
 606
 607                ln->parent = pn;
 608
 609                ln->fn_sernum = sernum;
 610
 611                if (dir)
 612                        pn->right = ln;
 613                else
 614                        pn->left  = ln;
 615
 616                if (addr_bit_set(&key->addr, plen))
 617                        ln->right = fn;
 618                else
 619                        ln->left  = fn;
 620
 621                fn->parent = ln;
 622        }
 623        return ln;
 624}
 625
 626static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
 627{
 628        return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
 629               RTF_GATEWAY;
 630}
 631
 632static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
 633{
 634        int i;
 635
 636        for (i = 0; i < RTAX_MAX; i++) {
 637                if (test_bit(i, mxc->mx_valid))
 638                        mp[i] = mxc->mx[i];
 639        }
 640}
 641
 642static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
 643{
 644        if (!mxc->mx)
 645                return 0;
 646
 647        if (dst->flags & DST_HOST) {
 648                u32 *mp = dst_metrics_write_ptr(dst);
 649
 650                if (unlikely(!mp))
 651                        return -ENOMEM;
 652
 653                fib6_copy_metrics(mp, mxc);
 654        } else {
 655                dst_init_metrics(dst, mxc->mx, false);
 656
 657                /* We've stolen mx now. */
 658                mxc->mx = NULL;
 659        }
 660
 661        return 0;
 662}
 663
 664static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
 665                          struct net *net)
 666{
 667        if (atomic_read(&rt->rt6i_ref) != 1) {
 668                /* This route is used as dummy address holder in some split
 669                 * nodes. It is not leaked, but it still holds other resources,
 670                 * which must be released in time. So, scan ascendant nodes
 671                 * and replace dummy references to this route with references
 672                 * to still alive ones.
 673                 */
 674                while (fn) {
 675                        if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
 676                                fn->leaf = fib6_find_prefix(net, fn);
 677                                atomic_inc(&fn->leaf->rt6i_ref);
 678                                rt6_release(rt);
 679                        }
 680                        fn = fn->parent;
 681                }
 682                /* No more references are possible at this point. */
 683                BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
 684        }
 685}
 686
 687/*
 688 *      Insert routing information in a node.
 689 */
 690
 691static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
 692                            struct nl_info *info, struct mx6_config *mxc)
 693{
 694        struct rt6_info *iter = NULL;
 695        struct rt6_info **ins;
 696        struct rt6_info **fallback_ins = NULL;
 697        int replace = (info->nlh &&
 698                       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
 699        int add = (!info->nlh ||
 700                   (info->nlh->nlmsg_flags & NLM_F_CREATE));
 701        int found = 0;
 702        bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
 703        int err;
 704
 705        ins = &fn->leaf;
 706
 707        for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
 708                /*
 709                 *      Search for duplicates
 710                 */
 711
 712                if (iter->rt6i_metric == rt->rt6i_metric) {
 713                        /*
 714                         *      Same priority level
 715                         */
 716                        if (info->nlh &&
 717                            (info->nlh->nlmsg_flags & NLM_F_EXCL))
 718                                return -EEXIST;
 719                        if (replace) {
 720                                if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
 721                                        found++;
 722                                        break;
 723                                }
 724                                if (rt_can_ecmp)
 725                                        fallback_ins = fallback_ins ?: ins;
 726                                goto next_iter;
 727                        }
 728
 729                        if (iter->dst.dev == rt->dst.dev &&
 730                            iter->rt6i_idev == rt->rt6i_idev &&
 731                            ipv6_addr_equal(&iter->rt6i_gateway,
 732                                            &rt->rt6i_gateway)) {
 733                                if (rt->rt6i_nsiblings)
 734                                        rt->rt6i_nsiblings = 0;
 735                                if (!(iter->rt6i_flags & RTF_EXPIRES))
 736                                        return -EEXIST;
 737                                if (!(rt->rt6i_flags & RTF_EXPIRES))
 738                                        rt6_clean_expires(iter);
 739                                else
 740                                        rt6_set_expires(iter, rt->dst.expires);
 741                                return -EEXIST;
 742                        }
 743                        /* If we have the same destination and the same metric,
 744                         * but not the same gateway, then the route we try to
 745                         * add is sibling to this route, increment our counter
 746                         * of siblings, and later we will add our route to the
 747                         * list.
 748                         * Only static routes (which don't have flag
 749                         * RTF_EXPIRES) are used for ECMPv6.
 750                         *
 751                         * To avoid long list, we only had siblings if the
 752                         * route have a gateway.
 753                         */
 754                        if (rt_can_ecmp &&
 755                            rt6_qualify_for_ecmp(iter))
 756                                rt->rt6i_nsiblings++;
 757                }
 758
 759                if (iter->rt6i_metric > rt->rt6i_metric)
 760                        break;
 761
 762next_iter:
 763                ins = &iter->dst.rt6_next;
 764        }
 765
 766        if (fallback_ins && !found) {
 767                /* No ECMP-able route found, replace first non-ECMP one */
 768                ins = fallback_ins;
 769                iter = *ins;
 770                found++;
 771        }
 772
 773        /* Reset round-robin state, if necessary */
 774        if (ins == &fn->leaf)
 775                fn->rr_ptr = NULL;
 776
 777        /* Link this route to others same route. */
 778        if (rt->rt6i_nsiblings) {
 779                unsigned int rt6i_nsiblings;
 780                struct rt6_info *sibling, *temp_sibling;
 781
 782                /* Find the first route that have the same metric */
 783                sibling = fn->leaf;
 784                while (sibling) {
 785                        if (sibling->rt6i_metric == rt->rt6i_metric &&
 786                            rt6_qualify_for_ecmp(sibling)) {
 787                                list_add_tail(&rt->rt6i_siblings,
 788                                              &sibling->rt6i_siblings);
 789                                break;
 790                        }
 791                        sibling = sibling->dst.rt6_next;
 792                }
 793                /* For each sibling in the list, increment the counter of
 794                 * siblings. BUG() if counters does not match, list of siblings
 795                 * is broken!
 796                 */
 797                rt6i_nsiblings = 0;
 798                list_for_each_entry_safe(sibling, temp_sibling,
 799                                         &rt->rt6i_siblings, rt6i_siblings) {
 800                        sibling->rt6i_nsiblings++;
 801                        BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
 802                        rt6i_nsiblings++;
 803                }
 804                BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
 805        }
 806
 807        /*
 808         *      insert node
 809         */
 810        if (!replace) {
 811                if (!add)
 812                        pr_warn("NLM_F_CREATE should be set when creating new route\n");
 813
 814add:
 815                err = fib6_commit_metrics(&rt->dst, mxc);
 816                if (err)
 817                        return err;
 818
 819                rt->dst.rt6_next = iter;
 820                *ins = rt;
 821                rt->rt6i_node = fn;
 822                atomic_inc(&rt->rt6i_ref);
 823                inet6_rt_notify(RTM_NEWROUTE, rt, info);
 824                info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
 825
 826                if (!(fn->fn_flags & RTN_RTINFO)) {
 827                        info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
 828                        fn->fn_flags |= RTN_RTINFO;
 829                }
 830
 831        } else {
 832                int nsiblings;
 833
 834                if (!found) {
 835                        if (add)
 836                                goto add;
 837                        pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
 838                        return -ENOENT;
 839                }
 840
 841                err = fib6_commit_metrics(&rt->dst, mxc);
 842                if (err)
 843                        return err;
 844
 845                *ins = rt;
 846                rt->rt6i_node = fn;
 847                rt->dst.rt6_next = iter->dst.rt6_next;
 848                atomic_inc(&rt->rt6i_ref);
 849                inet6_rt_notify(RTM_NEWROUTE, rt, info);
 850                if (!(fn->fn_flags & RTN_RTINFO)) {
 851                        info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
 852                        fn->fn_flags |= RTN_RTINFO;
 853                }
 854                nsiblings = iter->rt6i_nsiblings;
 855                fib6_purge_rt(iter, fn, info->nl_net);
 856                rt6_release(iter);
 857
 858                if (nsiblings) {
 859                        /* Replacing an ECMP route, remove all siblings */
 860                        ins = &rt->dst.rt6_next;
 861                        iter = *ins;
 862                        while (iter) {
 863                                if (rt6_qualify_for_ecmp(iter)) {
 864                                        *ins = iter->dst.rt6_next;
 865                                        fib6_purge_rt(iter, fn, info->nl_net);
 866                                        rt6_release(iter);
 867                                        nsiblings--;
 868                                } else {
 869                                        ins = &iter->dst.rt6_next;
 870                                }
 871                                iter = *ins;
 872                        }
 873                        WARN_ON(nsiblings != 0);
 874                }
 875        }
 876
 877        return 0;
 878}
 879
 880static void fib6_start_gc(struct net *net, struct rt6_info *rt)
 881{
 882        if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
 883            (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
 884                mod_timer(&net->ipv6.ip6_fib_timer,
 885                          jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
 886}
 887
 888void fib6_force_start_gc(struct net *net)
 889{
 890        if (!timer_pending(&net->ipv6.ip6_fib_timer))
 891                mod_timer(&net->ipv6.ip6_fib_timer,
 892                          jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
 893}
 894
 895/*
 896 *      Add routing information to the routing tree.
 897 *      <destination addr>/<source addr>
 898 *      with source addr info in sub-trees
 899 */
 900
 901int fib6_add(struct fib6_node *root, struct rt6_info *rt,
 902             struct nl_info *info, struct mx6_config *mxc)
 903{
 904        struct fib6_node *fn, *pn = NULL;
 905        int err = -ENOMEM;
 906        int allow_create = 1;
 907        int replace_required = 0;
 908        int sernum = fib6_new_sernum(info->nl_net);
 909
 910        if (info->nlh) {
 911                if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
 912                        allow_create = 0;
 913                if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
 914                        replace_required = 1;
 915        }
 916        if (!allow_create && !replace_required)
 917                pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
 918
 919        fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
 920                        offsetof(struct rt6_info, rt6i_dst), allow_create,
 921                        replace_required, sernum);
 922        if (IS_ERR(fn)) {
 923                err = PTR_ERR(fn);
 924                fn = NULL;
 925                goto out;
 926        }
 927
 928        pn = fn;
 929
 930#ifdef CONFIG_IPV6_SUBTREES
 931        if (rt->rt6i_src.plen) {
 932                struct fib6_node *sn;
 933
 934                if (!fn->subtree) {
 935                        struct fib6_node *sfn;
 936
 937                        /*
 938                         * Create subtree.
 939                         *
 940                         *              fn[main tree]
 941                         *              |
 942                         *              sfn[subtree root]
 943                         *                 \
 944                         *                  sn[new leaf node]
 945                         */
 946
 947                        /* Create subtree root node */
 948                        sfn = node_alloc();
 949                        if (!sfn)
 950                                goto st_failure;
 951
 952                        sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
 953                        atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
 954                        sfn->fn_flags = RTN_ROOT;
 955                        sfn->fn_sernum = sernum;
 956
 957                        /* Now add the first leaf node to new subtree */
 958
 959                        sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
 960                                        rt->rt6i_src.plen,
 961                                        offsetof(struct rt6_info, rt6i_src),
 962                                        allow_create, replace_required, sernum);
 963
 964                        if (IS_ERR(sn)) {
 965                                /* If it is failed, discard just allocated
 966                                   root, and then (in st_failure) stale node
 967                                   in main tree.
 968                                 */
 969                                node_free(sfn);
 970                                err = PTR_ERR(sn);
 971                                goto st_failure;
 972                        }
 973
 974                        /* Now link new subtree to main tree */
 975                        sfn->parent = fn;
 976                        fn->subtree = sfn;
 977                } else {
 978                        sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
 979                                        rt->rt6i_src.plen,
 980                                        offsetof(struct rt6_info, rt6i_src),
 981                                        allow_create, replace_required, sernum);
 982
 983                        if (IS_ERR(sn)) {
 984                                err = PTR_ERR(sn);
 985                                goto st_failure;
 986                        }
 987                }
 988
 989                if (!fn->leaf) {
 990                        fn->leaf = rt;
 991                        atomic_inc(&rt->rt6i_ref);
 992                }
 993                fn = sn;
 994        }
 995#endif
 996
 997        err = fib6_add_rt2node(fn, rt, info, mxc);
 998        if (!err) {
 999                fib6_start_gc(info->nl_net, rt);
1000                if (!(rt->rt6i_flags & RTF_CACHE))
1001                        fib6_prune_clones(info->nl_net, pn);
1002        }
1003
1004out:
1005        if (err) {
1006#ifdef CONFIG_IPV6_SUBTREES
1007                /*
1008                 * If fib6_add_1 has cleared the old leaf pointer in the
1009                 * super-tree leaf node we have to find a new one for it.
1010                 */
1011                if (pn != fn && pn->leaf == rt) {
1012                        pn->leaf = NULL;
1013                        atomic_dec(&rt->rt6i_ref);
1014                }
1015                if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
1016                        pn->leaf = fib6_find_prefix(info->nl_net, pn);
1017#if RT6_DEBUG >= 2
1018                        if (!pn->leaf) {
1019                                WARN_ON(pn->leaf == NULL);
1020                                pn->leaf = info->nl_net->ipv6.ip6_null_entry;
1021                        }
1022#endif
1023                        atomic_inc(&pn->leaf->rt6i_ref);
1024                }
1025#endif
1026                dst_free(&rt->dst);
1027        }
1028        return err;
1029
1030#ifdef CONFIG_IPV6_SUBTREES
1031        /* Subtree creation failed, probably main tree node
1032           is orphan. If it is, shoot it.
1033         */
1034st_failure:
1035        if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1036                fib6_repair_tree(info->nl_net, fn);
1037        dst_free(&rt->dst);
1038        return err;
1039#endif
1040}
1041
1042/*
1043 *      Routing tree lookup
1044 *
1045 */
1046
1047struct lookup_args {
1048        int                     offset;         /* key offset on rt6_info       */
1049        const struct in6_addr   *addr;          /* search key                   */
1050};
1051
1052static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1053                                       struct lookup_args *args)
1054{
1055        struct fib6_node *fn;
1056        __be32 dir;
1057
1058        if (unlikely(args->offset == 0))
1059                return NULL;
1060
1061        /*
1062         *      Descend on a tree
1063         */
1064
1065        fn = root;
1066
1067        for (;;) {
1068                struct fib6_node *next;
1069
1070                dir = addr_bit_set(args->addr, fn->fn_bit);
1071
1072                next = dir ? fn->right : fn->left;
1073
1074                if (next) {
1075                        fn = next;
1076                        continue;
1077                }
1078                break;
1079        }
1080
1081        while (fn) {
1082                if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1083                        struct rt6key *key;
1084
1085                        key = (struct rt6key *) ((u8 *) fn->leaf +
1086                                                 args->offset);
1087
1088                        if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1089#ifdef CONFIG_IPV6_SUBTREES
1090                                if (fn->subtree) {
1091                                        struct fib6_node *sfn;
1092                                        sfn = fib6_lookup_1(fn->subtree,
1093                                                            args + 1);
1094                                        if (!sfn)
1095                                                goto backtrack;
1096                                        fn = sfn;
1097                                }
1098#endif
1099                                if (fn->fn_flags & RTN_RTINFO)
1100                                        return fn;
1101                        }
1102                }
1103#ifdef CONFIG_IPV6_SUBTREES
1104backtrack:
1105#endif
1106                if (fn->fn_flags & RTN_ROOT)
1107                        break;
1108
1109                fn = fn->parent;
1110        }
1111
1112        return NULL;
1113}
1114
1115struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1116                              const struct in6_addr *saddr)
1117{
1118        struct fib6_node *fn;
1119        struct lookup_args args[] = {
1120                {
1121                        .offset = offsetof(struct rt6_info, rt6i_dst),
1122                        .addr = daddr,
1123                },
1124#ifdef CONFIG_IPV6_SUBTREES
1125                {
1126                        .offset = offsetof(struct rt6_info, rt6i_src),
1127                        .addr = saddr,
1128                },
1129#endif
1130                {
1131                        .offset = 0,    /* sentinel */
1132                }
1133        };
1134
1135        fn = fib6_lookup_1(root, daddr ? args : args + 1);
1136        if (!fn || fn->fn_flags & RTN_TL_ROOT)
1137                fn = root;
1138
1139        return fn;
1140}
1141
1142/*
1143 *      Get node with specified destination prefix (and source prefix,
1144 *      if subtrees are used)
1145 */
1146
1147
1148static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1149                                       const struct in6_addr *addr,
1150                                       int plen, int offset)
1151{
1152        struct fib6_node *fn;
1153
1154        for (fn = root; fn ; ) {
1155                struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1156
1157                /*
1158                 *      Prefix match
1159                 */
1160                if (plen < fn->fn_bit ||
1161                    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1162                        return NULL;
1163
1164                if (plen == fn->fn_bit)
1165                        return fn;
1166
1167                /*
1168                 *      We have more bits to go
1169                 */
1170                if (addr_bit_set(addr, fn->fn_bit))
1171                        fn = fn->right;
1172                else
1173                        fn = fn->left;
1174        }
1175        return NULL;
1176}
1177
1178struct fib6_node *fib6_locate(struct fib6_node *root,
1179                              const struct in6_addr *daddr, int dst_len,
1180                              const struct in6_addr *saddr, int src_len)
1181{
1182        struct fib6_node *fn;
1183
1184        fn = fib6_locate_1(root, daddr, dst_len,
1185                           offsetof(struct rt6_info, rt6i_dst));
1186
1187#ifdef CONFIG_IPV6_SUBTREES
1188        if (src_len) {
1189                WARN_ON(saddr == NULL);
1190                if (fn && fn->subtree)
1191                        fn = fib6_locate_1(fn->subtree, saddr, src_len,
1192                                           offsetof(struct rt6_info, rt6i_src));
1193        }
1194#endif
1195
1196        if (fn && fn->fn_flags & RTN_RTINFO)
1197                return fn;
1198
1199        return NULL;
1200}
1201
1202
1203/*
1204 *      Deletion
1205 *
1206 */
1207
1208static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1209{
1210        if (fn->fn_flags & RTN_ROOT)
1211                return net->ipv6.ip6_null_entry;
1212
1213        while (fn) {
1214                if (fn->left)
1215                        return fn->left->leaf;
1216                if (fn->right)
1217                        return fn->right->leaf;
1218
1219                fn = FIB6_SUBTREE(fn);
1220        }
1221        return NULL;
1222}
1223
1224/*
1225 *      Called to trim the tree of intermediate nodes when possible. "fn"
1226 *      is the node we want to try and remove.
1227 */
1228
1229static struct fib6_node *fib6_repair_tree(struct net *net,
1230                                           struct fib6_node *fn)
1231{
1232        int children;
1233        int nstate;
1234        struct fib6_node *child, *pn;
1235        struct fib6_walker *w;
1236        int iter = 0;
1237
1238        for (;;) {
1239                RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1240                iter++;
1241
1242                WARN_ON(fn->fn_flags & RTN_RTINFO);
1243                WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1244                WARN_ON(fn->leaf);
1245
1246                children = 0;
1247                child = NULL;
1248                if (fn->right)
1249                        child = fn->right, children |= 1;
1250                if (fn->left)
1251                        child = fn->left, children |= 2;
1252
1253                if (children == 3 || FIB6_SUBTREE(fn)
1254#ifdef CONFIG_IPV6_SUBTREES
1255                    /* Subtree root (i.e. fn) may have one child */
1256                    || (children && fn->fn_flags & RTN_ROOT)
1257#endif
1258                    ) {
1259                        fn->leaf = fib6_find_prefix(net, fn);
1260#if RT6_DEBUG >= 2
1261                        if (!fn->leaf) {
1262                                WARN_ON(!fn->leaf);
1263                                fn->leaf = net->ipv6.ip6_null_entry;
1264                        }
1265#endif
1266                        atomic_inc(&fn->leaf->rt6i_ref);
1267                        return fn->parent;
1268                }
1269
1270                pn = fn->parent;
1271#ifdef CONFIG_IPV6_SUBTREES
1272                if (FIB6_SUBTREE(pn) == fn) {
1273                        WARN_ON(!(fn->fn_flags & RTN_ROOT));
1274                        FIB6_SUBTREE(pn) = NULL;
1275                        nstate = FWS_L;
1276                } else {
1277                        WARN_ON(fn->fn_flags & RTN_ROOT);
1278#endif
1279                        if (pn->right == fn)
1280                                pn->right = child;
1281                        else if (pn->left == fn)
1282                                pn->left = child;
1283#if RT6_DEBUG >= 2
1284                        else
1285                                WARN_ON(1);
1286#endif
1287                        if (child)
1288                                child->parent = pn;
1289                        nstate = FWS_R;
1290#ifdef CONFIG_IPV6_SUBTREES
1291                }
1292#endif
1293
1294                read_lock(&fib6_walker_lock);
1295                FOR_WALKERS(w) {
1296                        if (!child) {
1297                                if (w->root == fn) {
1298                                        w->root = w->node = NULL;
1299                                        RT6_TRACE("W %p adjusted by delroot 1\n", w);
1300                                } else if (w->node == fn) {
1301                                        RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1302                                        w->node = pn;
1303                                        w->state = nstate;
1304                                }
1305                        } else {
1306                                if (w->root == fn) {
1307                                        w->root = child;
1308                                        RT6_TRACE("W %p adjusted by delroot 2\n", w);
1309                                }
1310                                if (w->node == fn) {
1311                                        w->node = child;
1312                                        if (children&2) {
1313                                                RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1314                                                w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1315                                        } else {
1316                                                RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1317                                                w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1318                                        }
1319                                }
1320                        }
1321                }
1322                read_unlock(&fib6_walker_lock);
1323
1324                node_free(fn);
1325                if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1326                        return pn;
1327
1328                rt6_release(pn->leaf);
1329                pn->leaf = NULL;
1330                fn = pn;
1331        }
1332}
1333
1334static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1335                           struct nl_info *info)
1336{
1337        struct fib6_walker *w;
1338        struct rt6_info *rt = *rtp;
1339        struct net *net = info->nl_net;
1340
1341        RT6_TRACE("fib6_del_route\n");
1342
1343        /* Unlink it */
1344        *rtp = rt->dst.rt6_next;
1345        rt->rt6i_node = NULL;
1346        net->ipv6.rt6_stats->fib_rt_entries--;
1347        net->ipv6.rt6_stats->fib_discarded_routes++;
1348
1349        /* Reset round-robin state, if necessary */
1350        if (fn->rr_ptr == rt)
1351                fn->rr_ptr = NULL;
1352
1353        /* Remove this entry from other siblings */
1354        if (rt->rt6i_nsiblings) {
1355                struct rt6_info *sibling, *next_sibling;
1356
1357                list_for_each_entry_safe(sibling, next_sibling,
1358                                         &rt->rt6i_siblings, rt6i_siblings)
1359                        sibling->rt6i_nsiblings--;
1360                rt->rt6i_nsiblings = 0;
1361                list_del_init(&rt->rt6i_siblings);
1362        }
1363
1364        /* Adjust walkers */
1365        read_lock(&fib6_walker_lock);
1366        FOR_WALKERS(w) {
1367                if (w->state == FWS_C && w->leaf == rt) {
1368                        RT6_TRACE("walker %p adjusted by delroute\n", w);
1369                        w->leaf = rt->dst.rt6_next;
1370                        if (!w->leaf)
1371                                w->state = FWS_U;
1372                }
1373        }
1374        read_unlock(&fib6_walker_lock);
1375
1376        rt->dst.rt6_next = NULL;
1377
1378        /* If it was last route, expunge its radix tree node */
1379        if (!fn->leaf) {
1380                fn->fn_flags &= ~RTN_RTINFO;
1381                net->ipv6.rt6_stats->fib_route_nodes--;
1382                fn = fib6_repair_tree(net, fn);
1383        }
1384
1385        fib6_purge_rt(rt, fn, net);
1386
1387        inet6_rt_notify(RTM_DELROUTE, rt, info);
1388        rt6_release(rt);
1389}
1390
1391int fib6_del(struct rt6_info *rt, struct nl_info *info)
1392{
1393        struct net *net = info->nl_net;
1394        struct fib6_node *fn = rt->rt6i_node;
1395        struct rt6_info **rtp;
1396
1397#if RT6_DEBUG >= 2
1398        if (rt->dst.obsolete > 0) {
1399                WARN_ON(fn);
1400                return -ENOENT;
1401        }
1402#endif
1403        if (!fn || rt == net->ipv6.ip6_null_entry)
1404                return -ENOENT;
1405
1406        WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1407
1408        if (!(rt->rt6i_flags & RTF_CACHE)) {
1409                struct fib6_node *pn = fn;
1410#ifdef CONFIG_IPV6_SUBTREES
1411                /* clones of this route might be in another subtree */
1412                if (rt->rt6i_src.plen) {
1413                        while (!(pn->fn_flags & RTN_ROOT))
1414                                pn = pn->parent;
1415                        pn = pn->parent;
1416                }
1417#endif
1418                fib6_prune_clones(info->nl_net, pn);
1419        }
1420
1421        /*
1422         *      Walk the leaf entries looking for ourself
1423         */
1424
1425        for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1426                if (*rtp == rt) {
1427                        fib6_del_route(fn, rtp, info);
1428                        return 0;
1429                }
1430        }
1431        return -ENOENT;
1432}
1433
1434/*
1435 *      Tree traversal function.
1436 *
1437 *      Certainly, it is not interrupt safe.
1438 *      However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1439 *      It means, that we can modify tree during walking
1440 *      and use this function for garbage collection, clone pruning,
1441 *      cleaning tree when a device goes down etc. etc.
1442 *
1443 *      It guarantees that every node will be traversed,
1444 *      and that it will be traversed only once.
1445 *
1446 *      Callback function w->func may return:
1447 *      0 -> continue walking.
1448 *      positive value -> walking is suspended (used by tree dumps,
1449 *      and probably by gc, if it will be split to several slices)
1450 *      negative value -> terminate walking.
1451 *
1452 *      The function itself returns:
1453 *      0   -> walk is complete.
1454 *      >0  -> walk is incomplete (i.e. suspended)
1455 *      <0  -> walk is terminated by an error.
1456 */
1457
1458static int fib6_walk_continue(struct fib6_walker *w)
1459{
1460        struct fib6_node *fn, *pn;
1461
1462        for (;;) {
1463                fn = w->node;
1464                if (!fn)
1465                        return 0;
1466
1467                if (w->prune && fn != w->root &&
1468                    fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1469                        w->state = FWS_C;
1470                        w->leaf = fn->leaf;
1471                }
1472                switch (w->state) {
1473#ifdef CONFIG_IPV6_SUBTREES
1474                case FWS_S:
1475                        if (FIB6_SUBTREE(fn)) {
1476                                w->node = FIB6_SUBTREE(fn);
1477                                continue;
1478                        }
1479                        w->state = FWS_L;
1480#endif
1481                case FWS_L:
1482                        if (fn->left) {
1483                                w->node = fn->left;
1484                                w->state = FWS_INIT;
1485                                continue;
1486                        }
1487                        w->state = FWS_R;
1488                case FWS_R:
1489                        if (fn->right) {
1490                                w->node = fn->right;
1491                                w->state = FWS_INIT;
1492                                continue;
1493                        }
1494                        w->state = FWS_C;
1495                        w->leaf = fn->leaf;
1496                case FWS_C:
1497                        if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1498                                int err;
1499
1500                                if (w->skip) {
1501                                        w->skip--;
1502                                        goto skip;
1503                                }
1504
1505                                err = w->func(w);
1506                                if (err)
1507                                        return err;
1508
1509                                w->count++;
1510                                continue;
1511                        }
1512skip:
1513                        w->state = FWS_U;
1514                case FWS_U:
1515                        if (fn == w->root)
1516                                return 0;
1517                        pn = fn->parent;
1518                        w->node = pn;
1519#ifdef CONFIG_IPV6_SUBTREES
1520                        if (FIB6_SUBTREE(pn) == fn) {
1521                                WARN_ON(!(fn->fn_flags & RTN_ROOT));
1522                                w->state = FWS_L;
1523                                continue;
1524                        }
1525#endif
1526                        if (pn->left == fn) {
1527                                w->state = FWS_R;
1528                                continue;
1529                        }
1530                        if (pn->right == fn) {
1531                                w->state = FWS_C;
1532                                w->leaf = w->node->leaf;
1533                                continue;
1534                        }
1535#if RT6_DEBUG >= 2
1536                        WARN_ON(1);
1537#endif
1538                }
1539        }
1540}
1541
1542static int fib6_walk(struct fib6_walker *w)
1543{
1544        int res;
1545
1546        w->state = FWS_INIT;
1547        w->node = w->root;
1548
1549        fib6_walker_link(w);
1550        res = fib6_walk_continue(w);
1551        if (res <= 0)
1552                fib6_walker_unlink(w);
1553        return res;
1554}
1555
1556static int fib6_clean_node(struct fib6_walker *w)
1557{
1558        int res;
1559        struct rt6_info *rt;
1560        struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1561        struct nl_info info = {
1562                .nl_net = c->net,
1563        };
1564
1565        if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1566            w->node->fn_sernum != c->sernum)
1567                w->node->fn_sernum = c->sernum;
1568
1569        if (!c->func) {
1570                WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1571                w->leaf = NULL;
1572                return 0;
1573        }
1574
1575        for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1576                res = c->func(rt, c->arg);
1577                if (res < 0) {
1578                        w->leaf = rt;
1579                        res = fib6_del(rt, &info);
1580                        if (res) {
1581#if RT6_DEBUG >= 2
1582                                pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1583                                         __func__, rt, rt->rt6i_node, res);
1584#endif
1585                                continue;
1586                        }
1587                        return 0;
1588                }
1589                WARN_ON(res != 0);
1590        }
1591        w->leaf = rt;
1592        return 0;
1593}
1594
1595/*
1596 *      Convenient frontend to tree walker.
1597 *
1598 *      func is called on each route.
1599 *              It may return -1 -> delete this route.
1600 *                            0  -> continue walking
1601 *
1602 *      prune==1 -> only immediate children of node (certainly,
1603 *      ignoring pure split nodes) will be scanned.
1604 */
1605
1606static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1607                            int (*func)(struct rt6_info *, void *arg),
1608                            bool prune, int sernum, void *arg)
1609{
1610        struct fib6_cleaner c;
1611
1612        c.w.root = root;
1613        c.w.func = fib6_clean_node;
1614        c.w.prune = prune;
1615        c.w.count = 0;
1616        c.w.skip = 0;
1617        c.func = func;
1618        c.sernum = sernum;
1619        c.arg = arg;
1620        c.net = net;
1621
1622        fib6_walk(&c.w);
1623}
1624
1625static void __fib6_clean_all(struct net *net,
1626                             int (*func)(struct rt6_info *, void *),
1627                             int sernum, void *arg)
1628{
1629        struct fib6_table *table;
1630        struct hlist_head *head;
1631        unsigned int h;
1632
1633        rcu_read_lock();
1634        for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1635                head = &net->ipv6.fib_table_hash[h];
1636                hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1637                        write_lock_bh(&table->tb6_lock);
1638                        fib6_clean_tree(net, &table->tb6_root,
1639                                        func, false, sernum, arg);
1640                        write_unlock_bh(&table->tb6_lock);
1641                }
1642        }
1643        rcu_read_unlock();
1644}
1645
1646void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1647                    void *arg)
1648{
1649        __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1650}
1651
1652static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1653{
1654        if (rt->rt6i_flags & RTF_CACHE) {
1655                RT6_TRACE("pruning clone %p\n", rt);
1656                return -1;
1657        }
1658
1659        return 0;
1660}
1661
1662static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1663{
1664        fib6_clean_tree(net, fn, fib6_prune_clone, true,
1665                        FIB6_NO_SERNUM_CHANGE, NULL);
1666}
1667
1668static void fib6_flush_trees(struct net *net)
1669{
1670        int new_sernum = fib6_new_sernum(net);
1671
1672        __fib6_clean_all(net, NULL, new_sernum, NULL);
1673}
1674
1675/*
1676 *      Garbage collection
1677 */
1678
1679static struct fib6_gc_args
1680{
1681        int                     timeout;
1682        int                     more;
1683} gc_args;
1684
1685static int fib6_age(struct rt6_info *rt, void *arg)
1686{
1687        unsigned long now = jiffies;
1688
1689        /*
1690         *      check addrconf expiration here.
1691         *      Routes are expired even if they are in use.
1692         *
1693         *      Also age clones. Note, that clones are aged out
1694         *      only if they are not in use now.
1695         */
1696
1697        if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1698                if (time_after(now, rt->dst.expires)) {
1699                        RT6_TRACE("expiring %p\n", rt);
1700                        return -1;
1701                }
1702                gc_args.more++;
1703        } else if (rt->rt6i_flags & RTF_CACHE) {
1704                if (atomic_read(&rt->dst.__refcnt) == 0 &&
1705                    time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1706                        RT6_TRACE("aging clone %p\n", rt);
1707                        return -1;
1708                } else if (rt->rt6i_flags & RTF_GATEWAY) {
1709                        struct neighbour *neigh;
1710                        __u8 neigh_flags = 0;
1711
1712                        neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1713                        if (neigh) {
1714                                neigh_flags = neigh->flags;
1715                                neigh_release(neigh);
1716                        }
1717                        if (!(neigh_flags & NTF_ROUTER)) {
1718                                RT6_TRACE("purging route %p via non-router but gateway\n",
1719                                          rt);
1720                                return -1;
1721                        }
1722                }
1723                gc_args.more++;
1724        }
1725
1726        return 0;
1727}
1728
1729static DEFINE_SPINLOCK(fib6_gc_lock);
1730
1731void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1732{
1733        unsigned long now;
1734
1735        if (force) {
1736                spin_lock_bh(&fib6_gc_lock);
1737        } else if (!spin_trylock_bh(&fib6_gc_lock)) {
1738                mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1739                return;
1740        }
1741        gc_args.timeout = expires ? (int)expires :
1742                          net->ipv6.sysctl.ip6_rt_gc_interval;
1743
1744        gc_args.more = icmp6_dst_gc();
1745
1746        fib6_clean_all(net, fib6_age, NULL);
1747        now = jiffies;
1748        net->ipv6.ip6_rt_last_gc = now;
1749
1750        if (gc_args.more)
1751                mod_timer(&net->ipv6.ip6_fib_timer,
1752                          round_jiffies(now
1753                                        + net->ipv6.sysctl.ip6_rt_gc_interval));
1754        else
1755                del_timer(&net->ipv6.ip6_fib_timer);
1756        spin_unlock_bh(&fib6_gc_lock);
1757}
1758
1759static void fib6_gc_timer_cb(unsigned long arg)
1760{
1761        fib6_run_gc(0, (struct net *)arg, true);
1762}
1763
1764static int __net_init fib6_net_init(struct net *net)
1765{
1766        size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1767
1768        setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1769
1770        net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1771        if (!net->ipv6.rt6_stats)
1772                goto out_timer;
1773
1774        /* Avoid false sharing : Use at least a full cache line */
1775        size = max_t(size_t, size, L1_CACHE_BYTES);
1776
1777        net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1778        if (!net->ipv6.fib_table_hash)
1779                goto out_rt6_stats;
1780
1781        net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1782                                          GFP_KERNEL);
1783        if (!net->ipv6.fib6_main_tbl)
1784                goto out_fib_table_hash;
1785
1786        net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1787        net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1788        net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1789                RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1790        inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1791
1792#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1793        net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1794                                           GFP_KERNEL);
1795        if (!net->ipv6.fib6_local_tbl)
1796                goto out_fib6_main_tbl;
1797        net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1798        net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1799        net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1800                RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1801        inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1802#endif
1803        fib6_tables_init(net);
1804
1805        return 0;
1806
1807#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1808out_fib6_main_tbl:
1809        kfree(net->ipv6.fib6_main_tbl);
1810#endif
1811out_fib_table_hash:
1812        kfree(net->ipv6.fib_table_hash);
1813out_rt6_stats:
1814        kfree(net->ipv6.rt6_stats);
1815out_timer:
1816        return -ENOMEM;
1817}
1818
1819static void fib6_net_exit(struct net *net)
1820{
1821        rt6_ifdown(net, NULL);
1822        del_timer_sync(&net->ipv6.ip6_fib_timer);
1823
1824#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1825        inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1826        kfree(net->ipv6.fib6_local_tbl);
1827#endif
1828        inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1829        kfree(net->ipv6.fib6_main_tbl);
1830        kfree(net->ipv6.fib_table_hash);
1831        kfree(net->ipv6.rt6_stats);
1832}
1833
1834static struct pernet_operations fib6_net_ops = {
1835        .init = fib6_net_init,
1836        .exit = fib6_net_exit,
1837};
1838
1839int __init fib6_init(void)
1840{
1841        int ret = -ENOMEM;
1842
1843        fib6_node_kmem = kmem_cache_create("fib6_nodes",
1844                                           sizeof(struct fib6_node),
1845                                           0, SLAB_HWCACHE_ALIGN,
1846                                           NULL);
1847        if (!fib6_node_kmem)
1848                goto out;
1849
1850        ret = register_pernet_subsys(&fib6_net_ops);
1851        if (ret)
1852                goto out_kmem_cache_create;
1853
1854        ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1855                              NULL);
1856        if (ret)
1857                goto out_unregister_subsys;
1858
1859        __fib6_flush_trees = fib6_flush_trees;
1860out:
1861        return ret;
1862
1863out_unregister_subsys:
1864        unregister_pernet_subsys(&fib6_net_ops);
1865out_kmem_cache_create:
1866        kmem_cache_destroy(fib6_node_kmem);
1867        goto out;
1868}
1869
1870void fib6_gc_cleanup(void)
1871{
1872        unregister_pernet_subsys(&fib6_net_ops);
1873        kmem_cache_destroy(fib6_node_kmem);
1874}
1875
1876#ifdef CONFIG_PROC_FS
1877
1878struct ipv6_route_iter {
1879        struct seq_net_private p;
1880        struct fib6_walker w;
1881        loff_t skip;
1882        struct fib6_table *tbl;
1883        int sernum;
1884};
1885
1886static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1887{
1888        struct rt6_info *rt = v;
1889        struct ipv6_route_iter *iter = seq->private;
1890
1891        seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1892
1893#ifdef CONFIG_IPV6_SUBTREES
1894        seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1895#else
1896        seq_puts(seq, "00000000000000000000000000000000 00 ");
1897#endif
1898        if (rt->rt6i_flags & RTF_GATEWAY)
1899                seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1900        else
1901                seq_puts(seq, "00000000000000000000000000000000");
1902
1903        seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1904                   rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1905                   rt->dst.__use, rt->rt6i_flags,
1906                   rt->dst.dev ? rt->dst.dev->name : "");
1907        iter->w.leaf = NULL;
1908        return 0;
1909}
1910
1911static int ipv6_route_yield(struct fib6_walker *w)
1912{
1913        struct ipv6_route_iter *iter = w->args;
1914
1915        if (!iter->skip)
1916                return 1;
1917
1918        do {
1919                iter->w.leaf = iter->w.leaf->dst.rt6_next;
1920                iter->skip--;
1921                if (!iter->skip && iter->w.leaf)
1922                        return 1;
1923        } while (iter->w.leaf);
1924
1925        return 0;
1926}
1927
1928static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter)
1929{
1930        memset(&iter->w, 0, sizeof(iter->w));
1931        iter->w.func = ipv6_route_yield;
1932        iter->w.root = &iter->tbl->tb6_root;
1933        iter->w.state = FWS_INIT;
1934        iter->w.node = iter->w.root;
1935        iter->w.args = iter;
1936        iter->sernum = iter->w.root->fn_sernum;
1937        INIT_LIST_HEAD(&iter->w.lh);
1938        fib6_walker_link(&iter->w);
1939}
1940
1941static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
1942                                                    struct net *net)
1943{
1944        unsigned int h;
1945        struct hlist_node *node;
1946
1947        if (tbl) {
1948                h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
1949                node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
1950        } else {
1951                h = 0;
1952                node = NULL;
1953        }
1954
1955        while (!node && h < FIB6_TABLE_HASHSZ) {
1956                node = rcu_dereference_bh(
1957                        hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
1958        }
1959        return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
1960}
1961
1962static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
1963{
1964        if (iter->sernum != iter->w.root->fn_sernum) {
1965                iter->sernum = iter->w.root->fn_sernum;
1966                iter->w.state = FWS_INIT;
1967                iter->w.node = iter->w.root;
1968                WARN_ON(iter->w.skip);
1969                iter->w.skip = iter->w.count;
1970        }
1971}
1972
1973static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1974{
1975        int r;
1976        struct rt6_info *n;
1977        struct net *net = seq_file_net(seq);
1978        struct ipv6_route_iter *iter = seq->private;
1979
1980        if (!v)
1981                goto iter_table;
1982
1983        n = ((struct rt6_info *)v)->dst.rt6_next;
1984        if (n) {
1985                ++*pos;
1986                return n;
1987        }
1988
1989iter_table:
1990        ipv6_route_check_sernum(iter);
1991        read_lock(&iter->tbl->tb6_lock);
1992        r = fib6_walk_continue(&iter->w);
1993        read_unlock(&iter->tbl->tb6_lock);
1994        if (r > 0) {
1995                if (v)
1996                        ++*pos;
1997                return iter->w.leaf;
1998        } else if (r < 0) {
1999                fib6_walker_unlink(&iter->w);
2000                return NULL;
2001        }
2002        fib6_walker_unlink(&iter->w);
2003
2004        iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2005        if (!iter->tbl)
2006                return NULL;
2007
2008        ipv6_route_seq_setup_walk(iter);
2009        goto iter_table;
2010}
2011
2012static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2013        __acquires(RCU_BH)
2014{
2015        struct net *net = seq_file_net(seq);
2016        struct ipv6_route_iter *iter = seq->private;
2017
2018        rcu_read_lock_bh();
2019        iter->tbl = ipv6_route_seq_next_table(NULL, net);
2020        iter->skip = *pos;
2021
2022        if (iter->tbl) {
2023                ipv6_route_seq_setup_walk(iter);
2024                return ipv6_route_seq_next(seq, NULL, pos);
2025        } else {
2026                return NULL;
2027        }
2028}
2029
2030static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2031{
2032        struct fib6_walker *w = &iter->w;
2033        return w->node && !(w->state == FWS_U && w->node == w->root);
2034}
2035
2036static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2037        __releases(RCU_BH)
2038{
2039        struct ipv6_route_iter *iter = seq->private;
2040
2041        if (ipv6_route_iter_active(iter))
2042                fib6_walker_unlink(&iter->w);
2043
2044        rcu_read_unlock_bh();
2045}
2046
2047static const struct seq_operations ipv6_route_seq_ops = {
2048        .start  = ipv6_route_seq_start,
2049        .next   = ipv6_route_seq_next,
2050        .stop   = ipv6_route_seq_stop,
2051        .show   = ipv6_route_seq_show
2052};
2053
2054int ipv6_route_open(struct inode *inode, struct file *file)
2055{
2056        return seq_open_net(inode, file, &ipv6_route_seq_ops,
2057                            sizeof(struct ipv6_route_iter));
2058}
2059
2060#endif /* CONFIG_PROC_FS */
2061