linux/net/socket.c
<<
>>
Prefs
   1/*
   2 * NET          An implementation of the SOCKET network access protocol.
   3 *
   4 * Version:     @(#)socket.c    1.1.93  18/02/95
   5 *
   6 * Authors:     Orest Zborowski, <obz@Kodak.COM>
   7 *              Ross Biro
   8 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   9 *
  10 * Fixes:
  11 *              Anonymous       :       NOTSOCK/BADF cleanup. Error fix in
  12 *                                      shutdown()
  13 *              Alan Cox        :       verify_area() fixes
  14 *              Alan Cox        :       Removed DDI
  15 *              Jonathan Kamens :       SOCK_DGRAM reconnect bug
  16 *              Alan Cox        :       Moved a load of checks to the very
  17 *                                      top level.
  18 *              Alan Cox        :       Move address structures to/from user
  19 *                                      mode above the protocol layers.
  20 *              Rob Janssen     :       Allow 0 length sends.
  21 *              Alan Cox        :       Asynchronous I/O support (cribbed from the
  22 *                                      tty drivers).
  23 *              Niibe Yutaka    :       Asynchronous I/O for writes (4.4BSD style)
  24 *              Jeff Uphoff     :       Made max number of sockets command-line
  25 *                                      configurable.
  26 *              Matti Aarnio    :       Made the number of sockets dynamic,
  27 *                                      to be allocated when needed, and mr.
  28 *                                      Uphoff's max is used as max to be
  29 *                                      allowed to allocate.
  30 *              Linus           :       Argh. removed all the socket allocation
  31 *                                      altogether: it's in the inode now.
  32 *              Alan Cox        :       Made sock_alloc()/sock_release() public
  33 *                                      for NetROM and future kernel nfsd type
  34 *                                      stuff.
  35 *              Alan Cox        :       sendmsg/recvmsg basics.
  36 *              Tom Dyas        :       Export net symbols.
  37 *              Marcin Dalecki  :       Fixed problems with CONFIG_NET="n".
  38 *              Alan Cox        :       Added thread locking to sys_* calls
  39 *                                      for sockets. May have errors at the
  40 *                                      moment.
  41 *              Kevin Buhr      :       Fixed the dumb errors in the above.
  42 *              Andi Kleen      :       Some small cleanups, optimizations,
  43 *                                      and fixed a copy_from_user() bug.
  44 *              Tigran Aivazian :       sys_send(args) calls sys_sendto(args, NULL, 0)
  45 *              Tigran Aivazian :       Made listen(2) backlog sanity checks
  46 *                                      protocol-independent
  47 *
  48 *
  49 *              This program is free software; you can redistribute it and/or
  50 *              modify it under the terms of the GNU General Public License
  51 *              as published by the Free Software Foundation; either version
  52 *              2 of the License, or (at your option) any later version.
  53 *
  54 *
  55 *      This module is effectively the top level interface to the BSD socket
  56 *      paradigm.
  57 *
  58 *      Based upon Swansea University Computer Society NET3.039
  59 */
  60
  61#include <linux/mm.h>
  62#include <linux/socket.h>
  63#include <linux/file.h>
  64#include <linux/net.h>
  65#include <linux/interrupt.h>
  66#include <linux/thread_info.h>
  67#include <linux/rcupdate.h>
  68#include <linux/netdevice.h>
  69#include <linux/proc_fs.h>
  70#include <linux/seq_file.h>
  71#include <linux/mutex.h>
  72#include <linux/if_bridge.h>
  73#include <linux/if_frad.h>
  74#include <linux/if_vlan.h>
  75#include <linux/ptp_classify.h>
  76#include <linux/init.h>
  77#include <linux/poll.h>
  78#include <linux/cache.h>
  79#include <linux/module.h>
  80#include <linux/highmem.h>
  81#include <linux/mount.h>
  82#include <linux/security.h>
  83#include <linux/syscalls.h>
  84#include <linux/compat.h>
  85#include <linux/kmod.h>
  86#include <linux/audit.h>
  87#include <linux/wireless.h>
  88#include <linux/nsproxy.h>
  89#include <linux/magic.h>
  90#include <linux/slab.h>
  91#include <linux/xattr.h>
  92
  93#include <asm/uaccess.h>
  94#include <asm/unistd.h>
  95
  96#include <net/compat.h>
  97#include <net/wext.h>
  98#include <net/cls_cgroup.h>
  99
 100#include <net/sock.h>
 101#include <linux/netfilter.h>
 102
 103#include <linux/if_tun.h>
 104#include <linux/ipv6_route.h>
 105#include <linux/route.h>
 106#include <linux/sockios.h>
 107#include <linux/atalk.h>
 108#include <net/busy_poll.h>
 109#include <linux/errqueue.h>
 110
 111#ifdef CONFIG_NET_RX_BUSY_POLL
 112unsigned int sysctl_net_busy_read __read_mostly;
 113unsigned int sysctl_net_busy_poll __read_mostly;
 114#endif
 115
 116static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 117static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 118static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 119
 120static int sock_close(struct inode *inode, struct file *file);
 121static unsigned int sock_poll(struct file *file,
 122                              struct poll_table_struct *wait);
 123static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 124#ifdef CONFIG_COMPAT
 125static long compat_sock_ioctl(struct file *file,
 126                              unsigned int cmd, unsigned long arg);
 127#endif
 128static int sock_fasync(int fd, struct file *filp, int on);
 129static ssize_t sock_sendpage(struct file *file, struct page *page,
 130                             int offset, size_t size, loff_t *ppos, int more);
 131static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 132                                struct pipe_inode_info *pipe, size_t len,
 133                                unsigned int flags);
 134
 135/*
 136 *      Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 137 *      in the operation structures but are done directly via the socketcall() multiplexor.
 138 */
 139
 140static const struct file_operations socket_file_ops = {
 141        .owner =        THIS_MODULE,
 142        .llseek =       no_llseek,
 143        .read_iter =    sock_read_iter,
 144        .write_iter =   sock_write_iter,
 145        .poll =         sock_poll,
 146        .unlocked_ioctl = sock_ioctl,
 147#ifdef CONFIG_COMPAT
 148        .compat_ioctl = compat_sock_ioctl,
 149#endif
 150        .mmap =         sock_mmap,
 151        .release =      sock_close,
 152        .fasync =       sock_fasync,
 153        .sendpage =     sock_sendpage,
 154        .splice_write = generic_splice_sendpage,
 155        .splice_read =  sock_splice_read,
 156};
 157
 158/*
 159 *      The protocol list. Each protocol is registered in here.
 160 */
 161
 162static DEFINE_SPINLOCK(net_family_lock);
 163static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 164
 165/*
 166 *      Statistics counters of the socket lists
 167 */
 168
 169static DEFINE_PER_CPU(int, sockets_in_use);
 170
 171/*
 172 * Support routines.
 173 * Move socket addresses back and forth across the kernel/user
 174 * divide and look after the messy bits.
 175 */
 176
 177/**
 178 *      move_addr_to_kernel     -       copy a socket address into kernel space
 179 *      @uaddr: Address in user space
 180 *      @kaddr: Address in kernel space
 181 *      @ulen: Length in user space
 182 *
 183 *      The address is copied into kernel space. If the provided address is
 184 *      too long an error code of -EINVAL is returned. If the copy gives
 185 *      invalid addresses -EFAULT is returned. On a success 0 is returned.
 186 */
 187
 188int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 189{
 190        if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 191                return -EINVAL;
 192        if (ulen == 0)
 193                return 0;
 194        if (copy_from_user(kaddr, uaddr, ulen))
 195                return -EFAULT;
 196        return audit_sockaddr(ulen, kaddr);
 197}
 198
 199/**
 200 *      move_addr_to_user       -       copy an address to user space
 201 *      @kaddr: kernel space address
 202 *      @klen: length of address in kernel
 203 *      @uaddr: user space address
 204 *      @ulen: pointer to user length field
 205 *
 206 *      The value pointed to by ulen on entry is the buffer length available.
 207 *      This is overwritten with the buffer space used. -EINVAL is returned
 208 *      if an overlong buffer is specified or a negative buffer size. -EFAULT
 209 *      is returned if either the buffer or the length field are not
 210 *      accessible.
 211 *      After copying the data up to the limit the user specifies, the true
 212 *      length of the data is written over the length limit the user
 213 *      specified. Zero is returned for a success.
 214 */
 215
 216static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 217                             void __user *uaddr, int __user *ulen)
 218{
 219        int err;
 220        int len;
 221
 222        BUG_ON(klen > sizeof(struct sockaddr_storage));
 223        err = get_user(len, ulen);
 224        if (err)
 225                return err;
 226        if (len > klen)
 227                len = klen;
 228        if (len < 0)
 229                return -EINVAL;
 230        if (len) {
 231                if (audit_sockaddr(klen, kaddr))
 232                        return -ENOMEM;
 233                if (copy_to_user(uaddr, kaddr, len))
 234                        return -EFAULT;
 235        }
 236        /*
 237         *      "fromlen shall refer to the value before truncation.."
 238         *                      1003.1g
 239         */
 240        return __put_user(klen, ulen);
 241}
 242
 243static struct kmem_cache *sock_inode_cachep __read_mostly;
 244
 245static struct inode *sock_alloc_inode(struct super_block *sb)
 246{
 247        struct socket_alloc *ei;
 248        struct socket_wq *wq;
 249
 250        ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 251        if (!ei)
 252                return NULL;
 253        wq = kmalloc(sizeof(*wq), GFP_KERNEL);
 254        if (!wq) {
 255                kmem_cache_free(sock_inode_cachep, ei);
 256                return NULL;
 257        }
 258        init_waitqueue_head(&wq->wait);
 259        wq->fasync_list = NULL;
 260        RCU_INIT_POINTER(ei->socket.wq, wq);
 261
 262        ei->socket.state = SS_UNCONNECTED;
 263        ei->socket.flags = 0;
 264        ei->socket.ops = NULL;
 265        ei->socket.sk = NULL;
 266        ei->socket.file = NULL;
 267
 268        return &ei->vfs_inode;
 269}
 270
 271static void sock_destroy_inode(struct inode *inode)
 272{
 273        struct socket_alloc *ei;
 274        struct socket_wq *wq;
 275
 276        ei = container_of(inode, struct socket_alloc, vfs_inode);
 277        wq = rcu_dereference_protected(ei->socket.wq, 1);
 278        kfree_rcu(wq, rcu);
 279        kmem_cache_free(sock_inode_cachep, ei);
 280}
 281
 282static void init_once(void *foo)
 283{
 284        struct socket_alloc *ei = (struct socket_alloc *)foo;
 285
 286        inode_init_once(&ei->vfs_inode);
 287}
 288
 289static int init_inodecache(void)
 290{
 291        sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 292                                              sizeof(struct socket_alloc),
 293                                              0,
 294                                              (SLAB_HWCACHE_ALIGN |
 295                                               SLAB_RECLAIM_ACCOUNT |
 296                                               SLAB_MEM_SPREAD),
 297                                              init_once);
 298        if (sock_inode_cachep == NULL)
 299                return -ENOMEM;
 300        return 0;
 301}
 302
 303static const struct super_operations sockfs_ops = {
 304        .alloc_inode    = sock_alloc_inode,
 305        .destroy_inode  = sock_destroy_inode,
 306        .statfs         = simple_statfs,
 307};
 308
 309/*
 310 * sockfs_dname() is called from d_path().
 311 */
 312static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 313{
 314        return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 315                                d_inode(dentry)->i_ino);
 316}
 317
 318static const struct dentry_operations sockfs_dentry_operations = {
 319        .d_dname  = sockfs_dname,
 320};
 321
 322static struct dentry *sockfs_mount(struct file_system_type *fs_type,
 323                         int flags, const char *dev_name, void *data)
 324{
 325        return mount_pseudo(fs_type, "socket:", &sockfs_ops,
 326                &sockfs_dentry_operations, SOCKFS_MAGIC);
 327}
 328
 329static struct vfsmount *sock_mnt __read_mostly;
 330
 331static struct file_system_type sock_fs_type = {
 332        .name =         "sockfs",
 333        .mount =        sockfs_mount,
 334        .kill_sb =      kill_anon_super,
 335};
 336
 337/*
 338 *      Obtains the first available file descriptor and sets it up for use.
 339 *
 340 *      These functions create file structures and maps them to fd space
 341 *      of the current process. On success it returns file descriptor
 342 *      and file struct implicitly stored in sock->file.
 343 *      Note that another thread may close file descriptor before we return
 344 *      from this function. We use the fact that now we do not refer
 345 *      to socket after mapping. If one day we will need it, this
 346 *      function will increment ref. count on file by 1.
 347 *
 348 *      In any case returned fd MAY BE not valid!
 349 *      This race condition is unavoidable
 350 *      with shared fd spaces, we cannot solve it inside kernel,
 351 *      but we take care of internal coherence yet.
 352 */
 353
 354struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 355{
 356        struct qstr name = { .name = "" };
 357        struct path path;
 358        struct file *file;
 359
 360        if (dname) {
 361                name.name = dname;
 362                name.len = strlen(name.name);
 363        } else if (sock->sk) {
 364                name.name = sock->sk->sk_prot_creator->name;
 365                name.len = strlen(name.name);
 366        }
 367        path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
 368        if (unlikely(!path.dentry))
 369                return ERR_PTR(-ENOMEM);
 370        path.mnt = mntget(sock_mnt);
 371
 372        d_instantiate(path.dentry, SOCK_INODE(sock));
 373
 374        file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
 375                  &socket_file_ops);
 376        if (unlikely(IS_ERR(file))) {
 377                /* drop dentry, keep inode */
 378                ihold(d_inode(path.dentry));
 379                path_put(&path);
 380                return file;
 381        }
 382
 383        sock->file = file;
 384        file->f_flags = O_RDWR | (flags & O_NONBLOCK);
 385        file->private_data = sock;
 386        return file;
 387}
 388EXPORT_SYMBOL(sock_alloc_file);
 389
 390static int sock_map_fd(struct socket *sock, int flags)
 391{
 392        struct file *newfile;
 393        int fd = get_unused_fd_flags(flags);
 394        if (unlikely(fd < 0))
 395                return fd;
 396
 397        newfile = sock_alloc_file(sock, flags, NULL);
 398        if (likely(!IS_ERR(newfile))) {
 399                fd_install(fd, newfile);
 400                return fd;
 401        }
 402
 403        put_unused_fd(fd);
 404        return PTR_ERR(newfile);
 405}
 406
 407struct socket *sock_from_file(struct file *file, int *err)
 408{
 409        if (file->f_op == &socket_file_ops)
 410                return file->private_data;      /* set in sock_map_fd */
 411
 412        *err = -ENOTSOCK;
 413        return NULL;
 414}
 415EXPORT_SYMBOL(sock_from_file);
 416
 417/**
 418 *      sockfd_lookup - Go from a file number to its socket slot
 419 *      @fd: file handle
 420 *      @err: pointer to an error code return
 421 *
 422 *      The file handle passed in is locked and the socket it is bound
 423 *      too is returned. If an error occurs the err pointer is overwritten
 424 *      with a negative errno code and NULL is returned. The function checks
 425 *      for both invalid handles and passing a handle which is not a socket.
 426 *
 427 *      On a success the socket object pointer is returned.
 428 */
 429
 430struct socket *sockfd_lookup(int fd, int *err)
 431{
 432        struct file *file;
 433        struct socket *sock;
 434
 435        file = fget(fd);
 436        if (!file) {
 437                *err = -EBADF;
 438                return NULL;
 439        }
 440
 441        sock = sock_from_file(file, err);
 442        if (!sock)
 443                fput(file);
 444        return sock;
 445}
 446EXPORT_SYMBOL(sockfd_lookup);
 447
 448static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 449{
 450        struct fd f = fdget(fd);
 451        struct socket *sock;
 452
 453        *err = -EBADF;
 454        if (f.file) {
 455                sock = sock_from_file(f.file, err);
 456                if (likely(sock)) {
 457                        *fput_needed = f.flags;
 458                        return sock;
 459                }
 460                fdput(f);
 461        }
 462        return NULL;
 463}
 464
 465#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 466#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 467#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 468static ssize_t sockfs_getxattr(struct dentry *dentry,
 469                               const char *name, void *value, size_t size)
 470{
 471        const char *proto_name;
 472        size_t proto_size;
 473        int error;
 474
 475        error = -ENODATA;
 476        if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
 477                proto_name = dentry->d_name.name;
 478                proto_size = strlen(proto_name);
 479
 480                if (value) {
 481                        error = -ERANGE;
 482                        if (proto_size + 1 > size)
 483                                goto out;
 484
 485                        strncpy(value, proto_name, proto_size + 1);
 486                }
 487                error = proto_size + 1;
 488        }
 489
 490out:
 491        return error;
 492}
 493
 494static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 495                                size_t size)
 496{
 497        ssize_t len;
 498        ssize_t used = 0;
 499
 500        len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 501        if (len < 0)
 502                return len;
 503        used += len;
 504        if (buffer) {
 505                if (size < used)
 506                        return -ERANGE;
 507                buffer += len;
 508        }
 509
 510        len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 511        used += len;
 512        if (buffer) {
 513                if (size < used)
 514                        return -ERANGE;
 515                memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 516                buffer += len;
 517        }
 518
 519        return used;
 520}
 521
 522static const struct inode_operations sockfs_inode_ops = {
 523        .getxattr = sockfs_getxattr,
 524        .listxattr = sockfs_listxattr,
 525};
 526
 527/**
 528 *      sock_alloc      -       allocate a socket
 529 *
 530 *      Allocate a new inode and socket object. The two are bound together
 531 *      and initialised. The socket is then returned. If we are out of inodes
 532 *      NULL is returned.
 533 */
 534
 535static struct socket *sock_alloc(void)
 536{
 537        struct inode *inode;
 538        struct socket *sock;
 539
 540        inode = new_inode_pseudo(sock_mnt->mnt_sb);
 541        if (!inode)
 542                return NULL;
 543
 544        sock = SOCKET_I(inode);
 545
 546        kmemcheck_annotate_bitfield(sock, type);
 547        inode->i_ino = get_next_ino();
 548        inode->i_mode = S_IFSOCK | S_IRWXUGO;
 549        inode->i_uid = current_fsuid();
 550        inode->i_gid = current_fsgid();
 551        inode->i_op = &sockfs_inode_ops;
 552
 553        this_cpu_add(sockets_in_use, 1);
 554        return sock;
 555}
 556
 557/**
 558 *      sock_release    -       close a socket
 559 *      @sock: socket to close
 560 *
 561 *      The socket is released from the protocol stack if it has a release
 562 *      callback, and the inode is then released if the socket is bound to
 563 *      an inode not a file.
 564 */
 565
 566void sock_release(struct socket *sock)
 567{
 568        if (sock->ops) {
 569                struct module *owner = sock->ops->owner;
 570
 571                sock->ops->release(sock);
 572                sock->ops = NULL;
 573                module_put(owner);
 574        }
 575
 576        if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
 577                pr_err("%s: fasync list not empty!\n", __func__);
 578
 579        if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
 580                return;
 581
 582        this_cpu_sub(sockets_in_use, 1);
 583        if (!sock->file) {
 584                iput(SOCK_INODE(sock));
 585                return;
 586        }
 587        sock->file = NULL;
 588}
 589EXPORT_SYMBOL(sock_release);
 590
 591void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
 592{
 593        u8 flags = *tx_flags;
 594
 595        if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
 596                flags |= SKBTX_HW_TSTAMP;
 597
 598        if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 599                flags |= SKBTX_SW_TSTAMP;
 600
 601        if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
 602                flags |= SKBTX_SCHED_TSTAMP;
 603
 604        if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
 605                flags |= SKBTX_ACK_TSTAMP;
 606
 607        *tx_flags = flags;
 608}
 609EXPORT_SYMBOL(__sock_tx_timestamp);
 610
 611static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 612{
 613        int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
 614        BUG_ON(ret == -EIOCBQUEUED);
 615        return ret;
 616}
 617
 618int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 619{
 620        int err = security_socket_sendmsg(sock, msg,
 621                                          msg_data_left(msg));
 622
 623        return err ?: sock_sendmsg_nosec(sock, msg);
 624}
 625EXPORT_SYMBOL(sock_sendmsg);
 626
 627int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 628                   struct kvec *vec, size_t num, size_t size)
 629{
 630        iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
 631        return sock_sendmsg(sock, msg);
 632}
 633EXPORT_SYMBOL(kernel_sendmsg);
 634
 635/*
 636 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 637 */
 638void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 639        struct sk_buff *skb)
 640{
 641        int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 642        struct scm_timestamping tss;
 643        int empty = 1;
 644        struct skb_shared_hwtstamps *shhwtstamps =
 645                skb_hwtstamps(skb);
 646
 647        /* Race occurred between timestamp enabling and packet
 648           receiving.  Fill in the current time for now. */
 649        if (need_software_tstamp && skb->tstamp.tv64 == 0)
 650                __net_timestamp(skb);
 651
 652        if (need_software_tstamp) {
 653                if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 654                        struct timeval tv;
 655                        skb_get_timestamp(skb, &tv);
 656                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
 657                                 sizeof(tv), &tv);
 658                } else {
 659                        struct timespec ts;
 660                        skb_get_timestampns(skb, &ts);
 661                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
 662                                 sizeof(ts), &ts);
 663                }
 664        }
 665
 666        memset(&tss, 0, sizeof(tss));
 667        if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 668            ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
 669                empty = 0;
 670        if (shhwtstamps &&
 671            (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 672            ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
 673                empty = 0;
 674        if (!empty)
 675                put_cmsg(msg, SOL_SOCKET,
 676                         SCM_TIMESTAMPING, sizeof(tss), &tss);
 677}
 678EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 679
 680void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 681        struct sk_buff *skb)
 682{
 683        int ack;
 684
 685        if (!sock_flag(sk, SOCK_WIFI_STATUS))
 686                return;
 687        if (!skb->wifi_acked_valid)
 688                return;
 689
 690        ack = skb->wifi_acked;
 691
 692        put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 693}
 694EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 695
 696static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 697                                   struct sk_buff *skb)
 698{
 699        if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 700                put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 701                        sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 702}
 703
 704void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 705        struct sk_buff *skb)
 706{
 707        sock_recv_timestamp(msg, sk, skb);
 708        sock_recv_drops(msg, sk, skb);
 709}
 710EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 711
 712static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 713                                     size_t size, int flags)
 714{
 715        return sock->ops->recvmsg(sock, msg, size, flags);
 716}
 717
 718int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
 719                 int flags)
 720{
 721        int err = security_socket_recvmsg(sock, msg, size, flags);
 722
 723        return err ?: sock_recvmsg_nosec(sock, msg, size, flags);
 724}
 725EXPORT_SYMBOL(sock_recvmsg);
 726
 727/**
 728 * kernel_recvmsg - Receive a message from a socket (kernel space)
 729 * @sock:       The socket to receive the message from
 730 * @msg:        Received message
 731 * @vec:        Input s/g array for message data
 732 * @num:        Size of input s/g array
 733 * @size:       Number of bytes to read
 734 * @flags:      Message flags (MSG_DONTWAIT, etc...)
 735 *
 736 * On return the msg structure contains the scatter/gather array passed in the
 737 * vec argument. The array is modified so that it consists of the unfilled
 738 * portion of the original array.
 739 *
 740 * The returned value is the total number of bytes received, or an error.
 741 */
 742int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 743                   struct kvec *vec, size_t num, size_t size, int flags)
 744{
 745        mm_segment_t oldfs = get_fs();
 746        int result;
 747
 748        iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
 749        set_fs(KERNEL_DS);
 750        result = sock_recvmsg(sock, msg, size, flags);
 751        set_fs(oldfs);
 752        return result;
 753}
 754EXPORT_SYMBOL(kernel_recvmsg);
 755
 756static ssize_t sock_sendpage(struct file *file, struct page *page,
 757                             int offset, size_t size, loff_t *ppos, int more)
 758{
 759        struct socket *sock;
 760        int flags;
 761
 762        sock = file->private_data;
 763
 764        flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 765        /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 766        flags |= more;
 767
 768        return kernel_sendpage(sock, page, offset, size, flags);
 769}
 770
 771static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 772                                struct pipe_inode_info *pipe, size_t len,
 773                                unsigned int flags)
 774{
 775        struct socket *sock = file->private_data;
 776
 777        if (unlikely(!sock->ops->splice_read))
 778                return -EINVAL;
 779
 780        return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 781}
 782
 783static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
 784{
 785        struct file *file = iocb->ki_filp;
 786        struct socket *sock = file->private_data;
 787        struct msghdr msg = {.msg_iter = *to,
 788                             .msg_iocb = iocb};
 789        ssize_t res;
 790
 791        if (file->f_flags & O_NONBLOCK)
 792                msg.msg_flags = MSG_DONTWAIT;
 793
 794        if (iocb->ki_pos != 0)
 795                return -ESPIPE;
 796
 797        if (!iov_iter_count(to))        /* Match SYS5 behaviour */
 798                return 0;
 799
 800        res = sock_recvmsg(sock, &msg, iov_iter_count(to), msg.msg_flags);
 801        *to = msg.msg_iter;
 802        return res;
 803}
 804
 805static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
 806{
 807        struct file *file = iocb->ki_filp;
 808        struct socket *sock = file->private_data;
 809        struct msghdr msg = {.msg_iter = *from,
 810                             .msg_iocb = iocb};
 811        ssize_t res;
 812
 813        if (iocb->ki_pos != 0)
 814                return -ESPIPE;
 815
 816        if (file->f_flags & O_NONBLOCK)
 817                msg.msg_flags = MSG_DONTWAIT;
 818
 819        if (sock->type == SOCK_SEQPACKET)
 820                msg.msg_flags |= MSG_EOR;
 821
 822        res = sock_sendmsg(sock, &msg);
 823        *from = msg.msg_iter;
 824        return res;
 825}
 826
 827/*
 828 * Atomic setting of ioctl hooks to avoid race
 829 * with module unload.
 830 */
 831
 832static DEFINE_MUTEX(br_ioctl_mutex);
 833static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
 834
 835void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
 836{
 837        mutex_lock(&br_ioctl_mutex);
 838        br_ioctl_hook = hook;
 839        mutex_unlock(&br_ioctl_mutex);
 840}
 841EXPORT_SYMBOL(brioctl_set);
 842
 843static DEFINE_MUTEX(vlan_ioctl_mutex);
 844static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
 845
 846void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
 847{
 848        mutex_lock(&vlan_ioctl_mutex);
 849        vlan_ioctl_hook = hook;
 850        mutex_unlock(&vlan_ioctl_mutex);
 851}
 852EXPORT_SYMBOL(vlan_ioctl_set);
 853
 854static DEFINE_MUTEX(dlci_ioctl_mutex);
 855static int (*dlci_ioctl_hook) (unsigned int, void __user *);
 856
 857void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
 858{
 859        mutex_lock(&dlci_ioctl_mutex);
 860        dlci_ioctl_hook = hook;
 861        mutex_unlock(&dlci_ioctl_mutex);
 862}
 863EXPORT_SYMBOL(dlci_ioctl_set);
 864
 865static long sock_do_ioctl(struct net *net, struct socket *sock,
 866                                 unsigned int cmd, unsigned long arg)
 867{
 868        int err;
 869        void __user *argp = (void __user *)arg;
 870
 871        err = sock->ops->ioctl(sock, cmd, arg);
 872
 873        /*
 874         * If this ioctl is unknown try to hand it down
 875         * to the NIC driver.
 876         */
 877        if (err == -ENOIOCTLCMD)
 878                err = dev_ioctl(net, cmd, argp);
 879
 880        return err;
 881}
 882
 883/*
 884 *      With an ioctl, arg may well be a user mode pointer, but we don't know
 885 *      what to do with it - that's up to the protocol still.
 886 */
 887
 888static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
 889{
 890        struct socket *sock;
 891        struct sock *sk;
 892        void __user *argp = (void __user *)arg;
 893        int pid, err;
 894        struct net *net;
 895
 896        sock = file->private_data;
 897        sk = sock->sk;
 898        net = sock_net(sk);
 899        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
 900                err = dev_ioctl(net, cmd, argp);
 901        } else
 902#ifdef CONFIG_WEXT_CORE
 903        if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
 904                err = dev_ioctl(net, cmd, argp);
 905        } else
 906#endif
 907                switch (cmd) {
 908                case FIOSETOWN:
 909                case SIOCSPGRP:
 910                        err = -EFAULT;
 911                        if (get_user(pid, (int __user *)argp))
 912                                break;
 913                        f_setown(sock->file, pid, 1);
 914                        err = 0;
 915                        break;
 916                case FIOGETOWN:
 917                case SIOCGPGRP:
 918                        err = put_user(f_getown(sock->file),
 919                                       (int __user *)argp);
 920                        break;
 921                case SIOCGIFBR:
 922                case SIOCSIFBR:
 923                case SIOCBRADDBR:
 924                case SIOCBRDELBR:
 925                        err = -ENOPKG;
 926                        if (!br_ioctl_hook)
 927                                request_module("bridge");
 928
 929                        mutex_lock(&br_ioctl_mutex);
 930                        if (br_ioctl_hook)
 931                                err = br_ioctl_hook(net, cmd, argp);
 932                        mutex_unlock(&br_ioctl_mutex);
 933                        break;
 934                case SIOCGIFVLAN:
 935                case SIOCSIFVLAN:
 936                        err = -ENOPKG;
 937                        if (!vlan_ioctl_hook)
 938                                request_module("8021q");
 939
 940                        mutex_lock(&vlan_ioctl_mutex);
 941                        if (vlan_ioctl_hook)
 942                                err = vlan_ioctl_hook(net, argp);
 943                        mutex_unlock(&vlan_ioctl_mutex);
 944                        break;
 945                case SIOCADDDLCI:
 946                case SIOCDELDLCI:
 947                        err = -ENOPKG;
 948                        if (!dlci_ioctl_hook)
 949                                request_module("dlci");
 950
 951                        mutex_lock(&dlci_ioctl_mutex);
 952                        if (dlci_ioctl_hook)
 953                                err = dlci_ioctl_hook(cmd, argp);
 954                        mutex_unlock(&dlci_ioctl_mutex);
 955                        break;
 956                default:
 957                        err = sock_do_ioctl(net, sock, cmd, arg);
 958                        break;
 959                }
 960        return err;
 961}
 962
 963int sock_create_lite(int family, int type, int protocol, struct socket **res)
 964{
 965        int err;
 966        struct socket *sock = NULL;
 967
 968        err = security_socket_create(family, type, protocol, 1);
 969        if (err)
 970                goto out;
 971
 972        sock = sock_alloc();
 973        if (!sock) {
 974                err = -ENOMEM;
 975                goto out;
 976        }
 977
 978        sock->type = type;
 979        err = security_socket_post_create(sock, family, type, protocol, 1);
 980        if (err)
 981                goto out_release;
 982
 983out:
 984        *res = sock;
 985        return err;
 986out_release:
 987        sock_release(sock);
 988        sock = NULL;
 989        goto out;
 990}
 991EXPORT_SYMBOL(sock_create_lite);
 992
 993/* No kernel lock held - perfect */
 994static unsigned int sock_poll(struct file *file, poll_table *wait)
 995{
 996        unsigned int busy_flag = 0;
 997        struct socket *sock;
 998
 999        /*
1000         *      We can't return errors to poll, so it's either yes or no.
1001         */
1002        sock = file->private_data;
1003
1004        if (sk_can_busy_loop(sock->sk)) {
1005                /* this socket can poll_ll so tell the system call */
1006                busy_flag = POLL_BUSY_LOOP;
1007
1008                /* once, only if requested by syscall */
1009                if (wait && (wait->_key & POLL_BUSY_LOOP))
1010                        sk_busy_loop(sock->sk, 1);
1011        }
1012
1013        return busy_flag | sock->ops->poll(file, sock, wait);
1014}
1015
1016static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1017{
1018        struct socket *sock = file->private_data;
1019
1020        return sock->ops->mmap(file, sock, vma);
1021}
1022
1023static int sock_close(struct inode *inode, struct file *filp)
1024{
1025        sock_release(SOCKET_I(inode));
1026        return 0;
1027}
1028
1029/*
1030 *      Update the socket async list
1031 *
1032 *      Fasync_list locking strategy.
1033 *
1034 *      1. fasync_list is modified only under process context socket lock
1035 *         i.e. under semaphore.
1036 *      2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1037 *         or under socket lock
1038 */
1039
1040static int sock_fasync(int fd, struct file *filp, int on)
1041{
1042        struct socket *sock = filp->private_data;
1043        struct sock *sk = sock->sk;
1044        struct socket_wq *wq;
1045
1046        if (sk == NULL)
1047                return -EINVAL;
1048
1049        lock_sock(sk);
1050        wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1051        fasync_helper(fd, filp, on, &wq->fasync_list);
1052
1053        if (!wq->fasync_list)
1054                sock_reset_flag(sk, SOCK_FASYNC);
1055        else
1056                sock_set_flag(sk, SOCK_FASYNC);
1057
1058        release_sock(sk);
1059        return 0;
1060}
1061
1062/* This function may be called only under socket lock or callback_lock or rcu_lock */
1063
1064int sock_wake_async(struct socket *sock, int how, int band)
1065{
1066        struct socket_wq *wq;
1067
1068        if (!sock)
1069                return -1;
1070        rcu_read_lock();
1071        wq = rcu_dereference(sock->wq);
1072        if (!wq || !wq->fasync_list) {
1073                rcu_read_unlock();
1074                return -1;
1075        }
1076        switch (how) {
1077        case SOCK_WAKE_WAITD:
1078                if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1079                        break;
1080                goto call_kill;
1081        case SOCK_WAKE_SPACE:
1082                if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1083                        break;
1084                /* fall through */
1085        case SOCK_WAKE_IO:
1086call_kill:
1087                kill_fasync(&wq->fasync_list, SIGIO, band);
1088                break;
1089        case SOCK_WAKE_URG:
1090                kill_fasync(&wq->fasync_list, SIGURG, band);
1091        }
1092        rcu_read_unlock();
1093        return 0;
1094}
1095EXPORT_SYMBOL(sock_wake_async);
1096
1097int __sock_create(struct net *net, int family, int type, int protocol,
1098                         struct socket **res, int kern)
1099{
1100        int err;
1101        struct socket *sock;
1102        const struct net_proto_family *pf;
1103
1104        /*
1105         *      Check protocol is in range
1106         */
1107        if (family < 0 || family >= NPROTO)
1108                return -EAFNOSUPPORT;
1109        if (type < 0 || type >= SOCK_MAX)
1110                return -EINVAL;
1111
1112        /* Compatibility.
1113
1114           This uglymoron is moved from INET layer to here to avoid
1115           deadlock in module load.
1116         */
1117        if (family == PF_INET && type == SOCK_PACKET) {
1118                static int warned;
1119                if (!warned) {
1120                        warned = 1;
1121                        pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1122                                current->comm);
1123                }
1124                family = PF_PACKET;
1125        }
1126
1127        err = security_socket_create(family, type, protocol, kern);
1128        if (err)
1129                return err;
1130
1131        /*
1132         *      Allocate the socket and allow the family to set things up. if
1133         *      the protocol is 0, the family is instructed to select an appropriate
1134         *      default.
1135         */
1136        sock = sock_alloc();
1137        if (!sock) {
1138                net_warn_ratelimited("socket: no more sockets\n");
1139                return -ENFILE; /* Not exactly a match, but its the
1140                                   closest posix thing */
1141        }
1142
1143        sock->type = type;
1144
1145#ifdef CONFIG_MODULES
1146        /* Attempt to load a protocol module if the find failed.
1147         *
1148         * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1149         * requested real, full-featured networking support upon configuration.
1150         * Otherwise module support will break!
1151         */
1152        if (rcu_access_pointer(net_families[family]) == NULL)
1153                request_module("net-pf-%d", family);
1154#endif
1155
1156        rcu_read_lock();
1157        pf = rcu_dereference(net_families[family]);
1158        err = -EAFNOSUPPORT;
1159        if (!pf)
1160                goto out_release;
1161
1162        /*
1163         * We will call the ->create function, that possibly is in a loadable
1164         * module, so we have to bump that loadable module refcnt first.
1165         */
1166        if (!try_module_get(pf->owner))
1167                goto out_release;
1168
1169        /* Now protected by module ref count */
1170        rcu_read_unlock();
1171
1172        err = pf->create(net, sock, protocol, kern);
1173        if (err < 0)
1174                goto out_module_put;
1175
1176        /*
1177         * Now to bump the refcnt of the [loadable] module that owns this
1178         * socket at sock_release time we decrement its refcnt.
1179         */
1180        if (!try_module_get(sock->ops->owner))
1181                goto out_module_busy;
1182
1183        /*
1184         * Now that we're done with the ->create function, the [loadable]
1185         * module can have its refcnt decremented
1186         */
1187        module_put(pf->owner);
1188        err = security_socket_post_create(sock, family, type, protocol, kern);
1189        if (err)
1190                goto out_sock_release;
1191        *res = sock;
1192
1193        return 0;
1194
1195out_module_busy:
1196        err = -EAFNOSUPPORT;
1197out_module_put:
1198        sock->ops = NULL;
1199        module_put(pf->owner);
1200out_sock_release:
1201        sock_release(sock);
1202        return err;
1203
1204out_release:
1205        rcu_read_unlock();
1206        goto out_sock_release;
1207}
1208EXPORT_SYMBOL(__sock_create);
1209
1210int sock_create(int family, int type, int protocol, struct socket **res)
1211{
1212        return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1213}
1214EXPORT_SYMBOL(sock_create);
1215
1216int sock_create_kern(int family, int type, int protocol, struct socket **res)
1217{
1218        return __sock_create(&init_net, family, type, protocol, res, 1);
1219}
1220EXPORT_SYMBOL(sock_create_kern);
1221
1222SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1223{
1224        int retval;
1225        struct socket *sock;
1226        int flags;
1227
1228        /* Check the SOCK_* constants for consistency.  */
1229        BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1230        BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1231        BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1232        BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1233
1234        flags = type & ~SOCK_TYPE_MASK;
1235        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1236                return -EINVAL;
1237        type &= SOCK_TYPE_MASK;
1238
1239        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1240                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1241
1242        retval = sock_create(family, type, protocol, &sock);
1243        if (retval < 0)
1244                goto out;
1245
1246        retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1247        if (retval < 0)
1248                goto out_release;
1249
1250out:
1251        /* It may be already another descriptor 8) Not kernel problem. */
1252        return retval;
1253
1254out_release:
1255        sock_release(sock);
1256        return retval;
1257}
1258
1259/*
1260 *      Create a pair of connected sockets.
1261 */
1262
1263SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1264                int __user *, usockvec)
1265{
1266        struct socket *sock1, *sock2;
1267        int fd1, fd2, err;
1268        struct file *newfile1, *newfile2;
1269        int flags;
1270
1271        flags = type & ~SOCK_TYPE_MASK;
1272        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1273                return -EINVAL;
1274        type &= SOCK_TYPE_MASK;
1275
1276        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1277                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1278
1279        /*
1280         * Obtain the first socket and check if the underlying protocol
1281         * supports the socketpair call.
1282         */
1283
1284        err = sock_create(family, type, protocol, &sock1);
1285        if (err < 0)
1286                goto out;
1287
1288        err = sock_create(family, type, protocol, &sock2);
1289        if (err < 0)
1290                goto out_release_1;
1291
1292        err = sock1->ops->socketpair(sock1, sock2);
1293        if (err < 0)
1294                goto out_release_both;
1295
1296        fd1 = get_unused_fd_flags(flags);
1297        if (unlikely(fd1 < 0)) {
1298                err = fd1;
1299                goto out_release_both;
1300        }
1301
1302        fd2 = get_unused_fd_flags(flags);
1303        if (unlikely(fd2 < 0)) {
1304                err = fd2;
1305                goto out_put_unused_1;
1306        }
1307
1308        newfile1 = sock_alloc_file(sock1, flags, NULL);
1309        if (unlikely(IS_ERR(newfile1))) {
1310                err = PTR_ERR(newfile1);
1311                goto out_put_unused_both;
1312        }
1313
1314        newfile2 = sock_alloc_file(sock2, flags, NULL);
1315        if (IS_ERR(newfile2)) {
1316                err = PTR_ERR(newfile2);
1317                goto out_fput_1;
1318        }
1319
1320        err = put_user(fd1, &usockvec[0]);
1321        if (err)
1322                goto out_fput_both;
1323
1324        err = put_user(fd2, &usockvec[1]);
1325        if (err)
1326                goto out_fput_both;
1327
1328        audit_fd_pair(fd1, fd2);
1329
1330        fd_install(fd1, newfile1);
1331        fd_install(fd2, newfile2);
1332        /* fd1 and fd2 may be already another descriptors.
1333         * Not kernel problem.
1334         */
1335
1336        return 0;
1337
1338out_fput_both:
1339        fput(newfile2);
1340        fput(newfile1);
1341        put_unused_fd(fd2);
1342        put_unused_fd(fd1);
1343        goto out;
1344
1345out_fput_1:
1346        fput(newfile1);
1347        put_unused_fd(fd2);
1348        put_unused_fd(fd1);
1349        sock_release(sock2);
1350        goto out;
1351
1352out_put_unused_both:
1353        put_unused_fd(fd2);
1354out_put_unused_1:
1355        put_unused_fd(fd1);
1356out_release_both:
1357        sock_release(sock2);
1358out_release_1:
1359        sock_release(sock1);
1360out:
1361        return err;
1362}
1363
1364/*
1365 *      Bind a name to a socket. Nothing much to do here since it's
1366 *      the protocol's responsibility to handle the local address.
1367 *
1368 *      We move the socket address to kernel space before we call
1369 *      the protocol layer (having also checked the address is ok).
1370 */
1371
1372SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1373{
1374        struct socket *sock;
1375        struct sockaddr_storage address;
1376        int err, fput_needed;
1377
1378        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1379        if (sock) {
1380                err = move_addr_to_kernel(umyaddr, addrlen, &address);
1381                if (err >= 0) {
1382                        err = security_socket_bind(sock,
1383                                                   (struct sockaddr *)&address,
1384                                                   addrlen);
1385                        if (!err)
1386                                err = sock->ops->bind(sock,
1387                                                      (struct sockaddr *)
1388                                                      &address, addrlen);
1389                }
1390                fput_light(sock->file, fput_needed);
1391        }
1392        return err;
1393}
1394
1395/*
1396 *      Perform a listen. Basically, we allow the protocol to do anything
1397 *      necessary for a listen, and if that works, we mark the socket as
1398 *      ready for listening.
1399 */
1400
1401SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1402{
1403        struct socket *sock;
1404        int err, fput_needed;
1405        int somaxconn;
1406
1407        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1408        if (sock) {
1409                somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1410                if ((unsigned int)backlog > somaxconn)
1411                        backlog = somaxconn;
1412
1413                err = security_socket_listen(sock, backlog);
1414                if (!err)
1415                        err = sock->ops->listen(sock, backlog);
1416
1417                fput_light(sock->file, fput_needed);
1418        }
1419        return err;
1420}
1421
1422/*
1423 *      For accept, we attempt to create a new socket, set up the link
1424 *      with the client, wake up the client, then return the new
1425 *      connected fd. We collect the address of the connector in kernel
1426 *      space and move it to user at the very end. This is unclean because
1427 *      we open the socket then return an error.
1428 *
1429 *      1003.1g adds the ability to recvmsg() to query connection pending
1430 *      status to recvmsg. We need to add that support in a way thats
1431 *      clean when we restucture accept also.
1432 */
1433
1434SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1435                int __user *, upeer_addrlen, int, flags)
1436{
1437        struct socket *sock, *newsock;
1438        struct file *newfile;
1439        int err, len, newfd, fput_needed;
1440        struct sockaddr_storage address;
1441
1442        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1443                return -EINVAL;
1444
1445        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1446                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1447
1448        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1449        if (!sock)
1450                goto out;
1451
1452        err = -ENFILE;
1453        newsock = sock_alloc();
1454        if (!newsock)
1455                goto out_put;
1456
1457        newsock->type = sock->type;
1458        newsock->ops = sock->ops;
1459
1460        /*
1461         * We don't need try_module_get here, as the listening socket (sock)
1462         * has the protocol module (sock->ops->owner) held.
1463         */
1464        __module_get(newsock->ops->owner);
1465
1466        newfd = get_unused_fd_flags(flags);
1467        if (unlikely(newfd < 0)) {
1468                err = newfd;
1469                sock_release(newsock);
1470                goto out_put;
1471        }
1472        newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1473        if (unlikely(IS_ERR(newfile))) {
1474                err = PTR_ERR(newfile);
1475                put_unused_fd(newfd);
1476                sock_release(newsock);
1477                goto out_put;
1478        }
1479
1480        err = security_socket_accept(sock, newsock);
1481        if (err)
1482                goto out_fd;
1483
1484        err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1485        if (err < 0)
1486                goto out_fd;
1487
1488        if (upeer_sockaddr) {
1489                if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1490                                          &len, 2) < 0) {
1491                        err = -ECONNABORTED;
1492                        goto out_fd;
1493                }
1494                err = move_addr_to_user(&address,
1495                                        len, upeer_sockaddr, upeer_addrlen);
1496                if (err < 0)
1497                        goto out_fd;
1498        }
1499
1500        /* File flags are not inherited via accept() unlike another OSes. */
1501
1502        fd_install(newfd, newfile);
1503        err = newfd;
1504
1505out_put:
1506        fput_light(sock->file, fput_needed);
1507out:
1508        return err;
1509out_fd:
1510        fput(newfile);
1511        put_unused_fd(newfd);
1512        goto out_put;
1513}
1514
1515SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1516                int __user *, upeer_addrlen)
1517{
1518        return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1519}
1520
1521/*
1522 *      Attempt to connect to a socket with the server address.  The address
1523 *      is in user space so we verify it is OK and move it to kernel space.
1524 *
1525 *      For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1526 *      break bindings
1527 *
1528 *      NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1529 *      other SEQPACKET protocols that take time to connect() as it doesn't
1530 *      include the -EINPROGRESS status for such sockets.
1531 */
1532
1533SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1534                int, addrlen)
1535{
1536        struct socket *sock;
1537        struct sockaddr_storage address;
1538        int err, fput_needed;
1539
1540        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1541        if (!sock)
1542                goto out;
1543        err = move_addr_to_kernel(uservaddr, addrlen, &address);
1544        if (err < 0)
1545                goto out_put;
1546
1547        err =
1548            security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1549        if (err)
1550                goto out_put;
1551
1552        err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1553                                 sock->file->f_flags);
1554out_put:
1555        fput_light(sock->file, fput_needed);
1556out:
1557        return err;
1558}
1559
1560/*
1561 *      Get the local address ('name') of a socket object. Move the obtained
1562 *      name to user space.
1563 */
1564
1565SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1566                int __user *, usockaddr_len)
1567{
1568        struct socket *sock;
1569        struct sockaddr_storage address;
1570        int len, err, fput_needed;
1571
1572        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1573        if (!sock)
1574                goto out;
1575
1576        err = security_socket_getsockname(sock);
1577        if (err)
1578                goto out_put;
1579
1580        err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1581        if (err)
1582                goto out_put;
1583        err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1584
1585out_put:
1586        fput_light(sock->file, fput_needed);
1587out:
1588        return err;
1589}
1590
1591/*
1592 *      Get the remote address ('name') of a socket object. Move the obtained
1593 *      name to user space.
1594 */
1595
1596SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1597                int __user *, usockaddr_len)
1598{
1599        struct socket *sock;
1600        struct sockaddr_storage address;
1601        int len, err, fput_needed;
1602
1603        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1604        if (sock != NULL) {
1605                err = security_socket_getpeername(sock);
1606                if (err) {
1607                        fput_light(sock->file, fput_needed);
1608                        return err;
1609                }
1610
1611                err =
1612                    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1613                                       1);
1614                if (!err)
1615                        err = move_addr_to_user(&address, len, usockaddr,
1616                                                usockaddr_len);
1617                fput_light(sock->file, fput_needed);
1618        }
1619        return err;
1620}
1621
1622/*
1623 *      Send a datagram to a given address. We move the address into kernel
1624 *      space and check the user space data area is readable before invoking
1625 *      the protocol.
1626 */
1627
1628SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1629                unsigned int, flags, struct sockaddr __user *, addr,
1630                int, addr_len)
1631{
1632        struct socket *sock;
1633        struct sockaddr_storage address;
1634        int err;
1635        struct msghdr msg;
1636        struct iovec iov;
1637        int fput_needed;
1638
1639        err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1640        if (unlikely(err))
1641                return err;
1642        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1643        if (!sock)
1644                goto out;
1645
1646        msg.msg_name = NULL;
1647        msg.msg_control = NULL;
1648        msg.msg_controllen = 0;
1649        msg.msg_namelen = 0;
1650        if (addr) {
1651                err = move_addr_to_kernel(addr, addr_len, &address);
1652                if (err < 0)
1653                        goto out_put;
1654                msg.msg_name = (struct sockaddr *)&address;
1655                msg.msg_namelen = addr_len;
1656        }
1657        if (sock->file->f_flags & O_NONBLOCK)
1658                flags |= MSG_DONTWAIT;
1659        msg.msg_flags = flags;
1660        err = sock_sendmsg(sock, &msg);
1661
1662out_put:
1663        fput_light(sock->file, fput_needed);
1664out:
1665        return err;
1666}
1667
1668/*
1669 *      Send a datagram down a socket.
1670 */
1671
1672SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1673                unsigned int, flags)
1674{
1675        return sys_sendto(fd, buff, len, flags, NULL, 0);
1676}
1677
1678/*
1679 *      Receive a frame from the socket and optionally record the address of the
1680 *      sender. We verify the buffers are writable and if needed move the
1681 *      sender address from kernel to user space.
1682 */
1683
1684SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1685                unsigned int, flags, struct sockaddr __user *, addr,
1686                int __user *, addr_len)
1687{
1688        struct socket *sock;
1689        struct iovec iov;
1690        struct msghdr msg;
1691        struct sockaddr_storage address;
1692        int err, err2;
1693        int fput_needed;
1694
1695        err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1696        if (unlikely(err))
1697                return err;
1698        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1699        if (!sock)
1700                goto out;
1701
1702        msg.msg_control = NULL;
1703        msg.msg_controllen = 0;
1704        /* Save some cycles and don't copy the address if not needed */
1705        msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1706        /* We assume all kernel code knows the size of sockaddr_storage */
1707        msg.msg_namelen = 0;
1708        if (sock->file->f_flags & O_NONBLOCK)
1709                flags |= MSG_DONTWAIT;
1710        err = sock_recvmsg(sock, &msg, iov_iter_count(&msg.msg_iter), flags);
1711
1712        if (err >= 0 && addr != NULL) {
1713                err2 = move_addr_to_user(&address,
1714                                         msg.msg_namelen, addr, addr_len);
1715                if (err2 < 0)
1716                        err = err2;
1717        }
1718
1719        fput_light(sock->file, fput_needed);
1720out:
1721        return err;
1722}
1723
1724/*
1725 *      Receive a datagram from a socket.
1726 */
1727
1728SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1729                unsigned int, flags)
1730{
1731        return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1732}
1733
1734/*
1735 *      Set a socket option. Because we don't know the option lengths we have
1736 *      to pass the user mode parameter for the protocols to sort out.
1737 */
1738
1739SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1740                char __user *, optval, int, optlen)
1741{
1742        int err, fput_needed;
1743        struct socket *sock;
1744
1745        if (optlen < 0)
1746                return -EINVAL;
1747
1748        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1749        if (sock != NULL) {
1750                err = security_socket_setsockopt(sock, level, optname);
1751                if (err)
1752                        goto out_put;
1753
1754                if (level == SOL_SOCKET)
1755                        err =
1756                            sock_setsockopt(sock, level, optname, optval,
1757                                            optlen);
1758                else
1759                        err =
1760                            sock->ops->setsockopt(sock, level, optname, optval,
1761                                                  optlen);
1762out_put:
1763                fput_light(sock->file, fput_needed);
1764        }
1765        return err;
1766}
1767
1768/*
1769 *      Get a socket option. Because we don't know the option lengths we have
1770 *      to pass a user mode parameter for the protocols to sort out.
1771 */
1772
1773SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1774                char __user *, optval, int __user *, optlen)
1775{
1776        int err, fput_needed;
1777        struct socket *sock;
1778
1779        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1780        if (sock != NULL) {
1781                err = security_socket_getsockopt(sock, level, optname);
1782                if (err)
1783                        goto out_put;
1784
1785                if (level == SOL_SOCKET)
1786                        err =
1787                            sock_getsockopt(sock, level, optname, optval,
1788                                            optlen);
1789                else
1790                        err =
1791                            sock->ops->getsockopt(sock, level, optname, optval,
1792                                                  optlen);
1793out_put:
1794                fput_light(sock->file, fput_needed);
1795        }
1796        return err;
1797}
1798
1799/*
1800 *      Shutdown a socket.
1801 */
1802
1803SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1804{
1805        int err, fput_needed;
1806        struct socket *sock;
1807
1808        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1809        if (sock != NULL) {
1810                err = security_socket_shutdown(sock, how);
1811                if (!err)
1812                        err = sock->ops->shutdown(sock, how);
1813                fput_light(sock->file, fput_needed);
1814        }
1815        return err;
1816}
1817
1818/* A couple of helpful macros for getting the address of the 32/64 bit
1819 * fields which are the same type (int / unsigned) on our platforms.
1820 */
1821#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1822#define COMPAT_NAMELEN(msg)     COMPAT_MSG(msg, msg_namelen)
1823#define COMPAT_FLAGS(msg)       COMPAT_MSG(msg, msg_flags)
1824
1825struct used_address {
1826        struct sockaddr_storage name;
1827        unsigned int name_len;
1828};
1829
1830static int copy_msghdr_from_user(struct msghdr *kmsg,
1831                                 struct user_msghdr __user *umsg,
1832                                 struct sockaddr __user **save_addr,
1833                                 struct iovec **iov)
1834{
1835        struct sockaddr __user *uaddr;
1836        struct iovec __user *uiov;
1837        size_t nr_segs;
1838        ssize_t err;
1839
1840        if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1841            __get_user(uaddr, &umsg->msg_name) ||
1842            __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1843            __get_user(uiov, &umsg->msg_iov) ||
1844            __get_user(nr_segs, &umsg->msg_iovlen) ||
1845            __get_user(kmsg->msg_control, &umsg->msg_control) ||
1846            __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1847            __get_user(kmsg->msg_flags, &umsg->msg_flags))
1848                return -EFAULT;
1849
1850        if (!uaddr)
1851                kmsg->msg_namelen = 0;
1852
1853        if (kmsg->msg_namelen < 0)
1854                return -EINVAL;
1855
1856        if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1857                kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1858
1859        if (save_addr)
1860                *save_addr = uaddr;
1861
1862        if (uaddr && kmsg->msg_namelen) {
1863                if (!save_addr) {
1864                        err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1865                                                  kmsg->msg_name);
1866                        if (err < 0)
1867                                return err;
1868                }
1869        } else {
1870                kmsg->msg_name = NULL;
1871                kmsg->msg_namelen = 0;
1872        }
1873
1874        if (nr_segs > UIO_MAXIOV)
1875                return -EMSGSIZE;
1876
1877        kmsg->msg_iocb = NULL;
1878
1879        return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1880                            UIO_FASTIOV, iov, &kmsg->msg_iter);
1881}
1882
1883static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1884                         struct msghdr *msg_sys, unsigned int flags,
1885                         struct used_address *used_address)
1886{
1887        struct compat_msghdr __user *msg_compat =
1888            (struct compat_msghdr __user *)msg;
1889        struct sockaddr_storage address;
1890        struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1891        unsigned char ctl[sizeof(struct cmsghdr) + 20]
1892            __attribute__ ((aligned(sizeof(__kernel_size_t))));
1893        /* 20 is size of ipv6_pktinfo */
1894        unsigned char *ctl_buf = ctl;
1895        int ctl_len;
1896        ssize_t err;
1897
1898        msg_sys->msg_name = &address;
1899
1900        if (MSG_CMSG_COMPAT & flags)
1901                err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1902        else
1903                err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1904        if (err < 0)
1905                return err;
1906
1907        err = -ENOBUFS;
1908
1909        if (msg_sys->msg_controllen > INT_MAX)
1910                goto out_freeiov;
1911        ctl_len = msg_sys->msg_controllen;
1912        if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1913                err =
1914                    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1915                                                     sizeof(ctl));
1916                if (err)
1917                        goto out_freeiov;
1918                ctl_buf = msg_sys->msg_control;
1919                ctl_len = msg_sys->msg_controllen;
1920        } else if (ctl_len) {
1921                if (ctl_len > sizeof(ctl)) {
1922                        ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1923                        if (ctl_buf == NULL)
1924                                goto out_freeiov;
1925                }
1926                err = -EFAULT;
1927                /*
1928                 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1929                 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1930                 * checking falls down on this.
1931                 */
1932                if (copy_from_user(ctl_buf,
1933                                   (void __user __force *)msg_sys->msg_control,
1934                                   ctl_len))
1935                        goto out_freectl;
1936                msg_sys->msg_control = ctl_buf;
1937        }
1938        msg_sys->msg_flags = flags;
1939
1940        if (sock->file->f_flags & O_NONBLOCK)
1941                msg_sys->msg_flags |= MSG_DONTWAIT;
1942        /*
1943         * If this is sendmmsg() and current destination address is same as
1944         * previously succeeded address, omit asking LSM's decision.
1945         * used_address->name_len is initialized to UINT_MAX so that the first
1946         * destination address never matches.
1947         */
1948        if (used_address && msg_sys->msg_name &&
1949            used_address->name_len == msg_sys->msg_namelen &&
1950            !memcmp(&used_address->name, msg_sys->msg_name,
1951                    used_address->name_len)) {
1952                err = sock_sendmsg_nosec(sock, msg_sys);
1953                goto out_freectl;
1954        }
1955        err = sock_sendmsg(sock, msg_sys);
1956        /*
1957         * If this is sendmmsg() and sending to current destination address was
1958         * successful, remember it.
1959         */
1960        if (used_address && err >= 0) {
1961                used_address->name_len = msg_sys->msg_namelen;
1962                if (msg_sys->msg_name)
1963                        memcpy(&used_address->name, msg_sys->msg_name,
1964                               used_address->name_len);
1965        }
1966
1967out_freectl:
1968        if (ctl_buf != ctl)
1969                sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1970out_freeiov:
1971        kfree(iov);
1972        return err;
1973}
1974
1975/*
1976 *      BSD sendmsg interface
1977 */
1978
1979long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1980{
1981        int fput_needed, err;
1982        struct msghdr msg_sys;
1983        struct socket *sock;
1984
1985        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1986        if (!sock)
1987                goto out;
1988
1989        err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
1990
1991        fput_light(sock->file, fput_needed);
1992out:
1993        return err;
1994}
1995
1996SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
1997{
1998        if (flags & MSG_CMSG_COMPAT)
1999                return -EINVAL;
2000        return __sys_sendmsg(fd, msg, flags);
2001}
2002
2003/*
2004 *      Linux sendmmsg interface
2005 */
2006
2007int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2008                   unsigned int flags)
2009{
2010        int fput_needed, err, datagrams;
2011        struct socket *sock;
2012        struct mmsghdr __user *entry;
2013        struct compat_mmsghdr __user *compat_entry;
2014        struct msghdr msg_sys;
2015        struct used_address used_address;
2016
2017        if (vlen > UIO_MAXIOV)
2018                vlen = UIO_MAXIOV;
2019
2020        datagrams = 0;
2021
2022        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2023        if (!sock)
2024                return err;
2025
2026        used_address.name_len = UINT_MAX;
2027        entry = mmsg;
2028        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2029        err = 0;
2030
2031        while (datagrams < vlen) {
2032                if (MSG_CMSG_COMPAT & flags) {
2033                        err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2034                                             &msg_sys, flags, &used_address);
2035                        if (err < 0)
2036                                break;
2037                        err = __put_user(err, &compat_entry->msg_len);
2038                        ++compat_entry;
2039                } else {
2040                        err = ___sys_sendmsg(sock,
2041                                             (struct user_msghdr __user *)entry,
2042                                             &msg_sys, flags, &used_address);
2043                        if (err < 0)
2044                                break;
2045                        err = put_user(err, &entry->msg_len);
2046                        ++entry;
2047                }
2048
2049                if (err)
2050                        break;
2051                ++datagrams;
2052        }
2053
2054        fput_light(sock->file, fput_needed);
2055
2056        /* We only return an error if no datagrams were able to be sent */
2057        if (datagrams != 0)
2058                return datagrams;
2059
2060        return err;
2061}
2062
2063SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2064                unsigned int, vlen, unsigned int, flags)
2065{
2066        if (flags & MSG_CMSG_COMPAT)
2067                return -EINVAL;
2068        return __sys_sendmmsg(fd, mmsg, vlen, flags);
2069}
2070
2071static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2072                         struct msghdr *msg_sys, unsigned int flags, int nosec)
2073{
2074        struct compat_msghdr __user *msg_compat =
2075            (struct compat_msghdr __user *)msg;
2076        struct iovec iovstack[UIO_FASTIOV];
2077        struct iovec *iov = iovstack;
2078        unsigned long cmsg_ptr;
2079        int total_len, len;
2080        ssize_t err;
2081
2082        /* kernel mode address */
2083        struct sockaddr_storage addr;
2084
2085        /* user mode address pointers */
2086        struct sockaddr __user *uaddr;
2087        int __user *uaddr_len = COMPAT_NAMELEN(msg);
2088
2089        msg_sys->msg_name = &addr;
2090
2091        if (MSG_CMSG_COMPAT & flags)
2092                err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2093        else
2094                err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2095        if (err < 0)
2096                return err;
2097        total_len = iov_iter_count(&msg_sys->msg_iter);
2098
2099        cmsg_ptr = (unsigned long)msg_sys->msg_control;
2100        msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2101
2102        /* We assume all kernel code knows the size of sockaddr_storage */
2103        msg_sys->msg_namelen = 0;
2104
2105        if (sock->file->f_flags & O_NONBLOCK)
2106                flags |= MSG_DONTWAIT;
2107        err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2108                                                          total_len, flags);
2109        if (err < 0)
2110                goto out_freeiov;
2111        len = err;
2112
2113        if (uaddr != NULL) {
2114                err = move_addr_to_user(&addr,
2115                                        msg_sys->msg_namelen, uaddr,
2116                                        uaddr_len);
2117                if (err < 0)
2118                        goto out_freeiov;
2119        }
2120        err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2121                         COMPAT_FLAGS(msg));
2122        if (err)
2123                goto out_freeiov;
2124        if (MSG_CMSG_COMPAT & flags)
2125                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2126                                 &msg_compat->msg_controllen);
2127        else
2128                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2129                                 &msg->msg_controllen);
2130        if (err)
2131                goto out_freeiov;
2132        err = len;
2133
2134out_freeiov:
2135        kfree(iov);
2136        return err;
2137}
2138
2139/*
2140 *      BSD recvmsg interface
2141 */
2142
2143long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2144{
2145        int fput_needed, err;
2146        struct msghdr msg_sys;
2147        struct socket *sock;
2148
2149        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2150        if (!sock)
2151                goto out;
2152
2153        err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2154
2155        fput_light(sock->file, fput_needed);
2156out:
2157        return err;
2158}
2159
2160SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2161                unsigned int, flags)
2162{
2163        if (flags & MSG_CMSG_COMPAT)
2164                return -EINVAL;
2165        return __sys_recvmsg(fd, msg, flags);
2166}
2167
2168/*
2169 *     Linux recvmmsg interface
2170 */
2171
2172int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2173                   unsigned int flags, struct timespec *timeout)
2174{
2175        int fput_needed, err, datagrams;
2176        struct socket *sock;
2177        struct mmsghdr __user *entry;
2178        struct compat_mmsghdr __user *compat_entry;
2179        struct msghdr msg_sys;
2180        struct timespec end_time;
2181
2182        if (timeout &&
2183            poll_select_set_timeout(&end_time, timeout->tv_sec,
2184                                    timeout->tv_nsec))
2185                return -EINVAL;
2186
2187        datagrams = 0;
2188
2189        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2190        if (!sock)
2191                return err;
2192
2193        err = sock_error(sock->sk);
2194        if (err)
2195                goto out_put;
2196
2197        entry = mmsg;
2198        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2199
2200        while (datagrams < vlen) {
2201                /*
2202                 * No need to ask LSM for more than the first datagram.
2203                 */
2204                if (MSG_CMSG_COMPAT & flags) {
2205                        err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2206                                             &msg_sys, flags & ~MSG_WAITFORONE,
2207                                             datagrams);
2208                        if (err < 0)
2209                                break;
2210                        err = __put_user(err, &compat_entry->msg_len);
2211                        ++compat_entry;
2212                } else {
2213                        err = ___sys_recvmsg(sock,
2214                                             (struct user_msghdr __user *)entry,
2215                                             &msg_sys, flags & ~MSG_WAITFORONE,
2216                                             datagrams);
2217                        if (err < 0)
2218                                break;
2219                        err = put_user(err, &entry->msg_len);
2220                        ++entry;
2221                }
2222
2223                if (err)
2224                        break;
2225                ++datagrams;
2226
2227                /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2228                if (flags & MSG_WAITFORONE)
2229                        flags |= MSG_DONTWAIT;
2230
2231                if (timeout) {
2232                        ktime_get_ts(timeout);
2233                        *timeout = timespec_sub(end_time, *timeout);
2234                        if (timeout->tv_sec < 0) {
2235                                timeout->tv_sec = timeout->tv_nsec = 0;
2236                                break;
2237                        }
2238
2239                        /* Timeout, return less than vlen datagrams */
2240                        if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2241                                break;
2242                }
2243
2244                /* Out of band data, return right away */
2245                if (msg_sys.msg_flags & MSG_OOB)
2246                        break;
2247        }
2248
2249out_put:
2250        fput_light(sock->file, fput_needed);
2251
2252        if (err == 0)
2253                return datagrams;
2254
2255        if (datagrams != 0) {
2256                /*
2257                 * We may return less entries than requested (vlen) if the
2258                 * sock is non block and there aren't enough datagrams...
2259                 */
2260                if (err != -EAGAIN) {
2261                        /*
2262                         * ... or  if recvmsg returns an error after we
2263                         * received some datagrams, where we record the
2264                         * error to return on the next call or if the
2265                         * app asks about it using getsockopt(SO_ERROR).
2266                         */
2267                        sock->sk->sk_err = -err;
2268                }
2269
2270                return datagrams;
2271        }
2272
2273        return err;
2274}
2275
2276SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2277                unsigned int, vlen, unsigned int, flags,
2278                struct timespec __user *, timeout)
2279{
2280        int datagrams;
2281        struct timespec timeout_sys;
2282
2283        if (flags & MSG_CMSG_COMPAT)
2284                return -EINVAL;
2285
2286        if (!timeout)
2287                return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2288
2289        if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2290                return -EFAULT;
2291
2292        datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2293
2294        if (datagrams > 0 &&
2295            copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2296                datagrams = -EFAULT;
2297
2298        return datagrams;
2299}
2300
2301#ifdef __ARCH_WANT_SYS_SOCKETCALL
2302/* Argument list sizes for sys_socketcall */
2303#define AL(x) ((x) * sizeof(unsigned long))
2304static const unsigned char nargs[21] = {
2305        AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2306        AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2307        AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2308        AL(4), AL(5), AL(4)
2309};
2310
2311#undef AL
2312
2313/*
2314 *      System call vectors.
2315 *
2316 *      Argument checking cleaned up. Saved 20% in size.
2317 *  This function doesn't need to set the kernel lock because
2318 *  it is set by the callees.
2319 */
2320
2321SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2322{
2323        unsigned long a[AUDITSC_ARGS];
2324        unsigned long a0, a1;
2325        int err;
2326        unsigned int len;
2327
2328        if (call < 1 || call > SYS_SENDMMSG)
2329                return -EINVAL;
2330
2331        len = nargs[call];
2332        if (len > sizeof(a))
2333                return -EINVAL;
2334
2335        /* copy_from_user should be SMP safe. */
2336        if (copy_from_user(a, args, len))
2337                return -EFAULT;
2338
2339        err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2340        if (err)
2341                return err;
2342
2343        a0 = a[0];
2344        a1 = a[1];
2345
2346        switch (call) {
2347        case SYS_SOCKET:
2348                err = sys_socket(a0, a1, a[2]);
2349                break;
2350        case SYS_BIND:
2351                err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2352                break;
2353        case SYS_CONNECT:
2354                err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2355                break;
2356        case SYS_LISTEN:
2357                err = sys_listen(a0, a1);
2358                break;
2359        case SYS_ACCEPT:
2360                err = sys_accept4(a0, (struct sockaddr __user *)a1,
2361                                  (int __user *)a[2], 0);
2362                break;
2363        case SYS_GETSOCKNAME:
2364                err =
2365                    sys_getsockname(a0, (struct sockaddr __user *)a1,
2366                                    (int __user *)a[2]);
2367                break;
2368        case SYS_GETPEERNAME:
2369                err =
2370                    sys_getpeername(a0, (struct sockaddr __user *)a1,
2371                                    (int __user *)a[2]);
2372                break;
2373        case SYS_SOCKETPAIR:
2374                err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2375                break;
2376        case SYS_SEND:
2377                err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2378                break;
2379        case SYS_SENDTO:
2380                err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2381                                 (struct sockaddr __user *)a[4], a[5]);
2382                break;
2383        case SYS_RECV:
2384                err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2385                break;
2386        case SYS_RECVFROM:
2387                err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2388                                   (struct sockaddr __user *)a[4],
2389                                   (int __user *)a[5]);
2390                break;
2391        case SYS_SHUTDOWN:
2392                err = sys_shutdown(a0, a1);
2393                break;
2394        case SYS_SETSOCKOPT:
2395                err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2396                break;
2397        case SYS_GETSOCKOPT:
2398                err =
2399                    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2400                                   (int __user *)a[4]);
2401                break;
2402        case SYS_SENDMSG:
2403                err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2404                break;
2405        case SYS_SENDMMSG:
2406                err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2407                break;
2408        case SYS_RECVMSG:
2409                err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2410                break;
2411        case SYS_RECVMMSG:
2412                err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2413                                   (struct timespec __user *)a[4]);
2414                break;
2415        case SYS_ACCEPT4:
2416                err = sys_accept4(a0, (struct sockaddr __user *)a1,
2417                                  (int __user *)a[2], a[3]);
2418                break;
2419        default:
2420                err = -EINVAL;
2421                break;
2422        }
2423        return err;
2424}
2425
2426#endif                          /* __ARCH_WANT_SYS_SOCKETCALL */
2427
2428/**
2429 *      sock_register - add a socket protocol handler
2430 *      @ops: description of protocol
2431 *
2432 *      This function is called by a protocol handler that wants to
2433 *      advertise its address family, and have it linked into the
2434 *      socket interface. The value ops->family corresponds to the
2435 *      socket system call protocol family.
2436 */
2437int sock_register(const struct net_proto_family *ops)
2438{
2439        int err;
2440
2441        if (ops->family >= NPROTO) {
2442                pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2443                return -ENOBUFS;
2444        }
2445
2446        spin_lock(&net_family_lock);
2447        if (rcu_dereference_protected(net_families[ops->family],
2448                                      lockdep_is_held(&net_family_lock)))
2449                err = -EEXIST;
2450        else {
2451                rcu_assign_pointer(net_families[ops->family], ops);
2452                err = 0;
2453        }
2454        spin_unlock(&net_family_lock);
2455
2456        pr_info("NET: Registered protocol family %d\n", ops->family);
2457        return err;
2458}
2459EXPORT_SYMBOL(sock_register);
2460
2461/**
2462 *      sock_unregister - remove a protocol handler
2463 *      @family: protocol family to remove
2464 *
2465 *      This function is called by a protocol handler that wants to
2466 *      remove its address family, and have it unlinked from the
2467 *      new socket creation.
2468 *
2469 *      If protocol handler is a module, then it can use module reference
2470 *      counts to protect against new references. If protocol handler is not
2471 *      a module then it needs to provide its own protection in
2472 *      the ops->create routine.
2473 */
2474void sock_unregister(int family)
2475{
2476        BUG_ON(family < 0 || family >= NPROTO);
2477
2478        spin_lock(&net_family_lock);
2479        RCU_INIT_POINTER(net_families[family], NULL);
2480        spin_unlock(&net_family_lock);
2481
2482        synchronize_rcu();
2483
2484        pr_info("NET: Unregistered protocol family %d\n", family);
2485}
2486EXPORT_SYMBOL(sock_unregister);
2487
2488static int __init sock_init(void)
2489{
2490        int err;
2491        /*
2492         *      Initialize the network sysctl infrastructure.
2493         */
2494        err = net_sysctl_init();
2495        if (err)
2496                goto out;
2497
2498        /*
2499         *      Initialize skbuff SLAB cache
2500         */
2501        skb_init();
2502
2503        /*
2504         *      Initialize the protocols module.
2505         */
2506
2507        init_inodecache();
2508
2509        err = register_filesystem(&sock_fs_type);
2510        if (err)
2511                goto out_fs;
2512        sock_mnt = kern_mount(&sock_fs_type);
2513        if (IS_ERR(sock_mnt)) {
2514                err = PTR_ERR(sock_mnt);
2515                goto out_mount;
2516        }
2517
2518        /* The real protocol initialization is performed in later initcalls.
2519         */
2520
2521#ifdef CONFIG_NETFILTER
2522        err = netfilter_init();
2523        if (err)
2524                goto out;
2525#endif
2526
2527        ptp_classifier_init();
2528
2529out:
2530        return err;
2531
2532out_mount:
2533        unregister_filesystem(&sock_fs_type);
2534out_fs:
2535        goto out;
2536}
2537
2538core_initcall(sock_init);       /* early initcall */
2539
2540#ifdef CONFIG_PROC_FS
2541void socket_seq_show(struct seq_file *seq)
2542{
2543        int cpu;
2544        int counter = 0;
2545
2546        for_each_possible_cpu(cpu)
2547            counter += per_cpu(sockets_in_use, cpu);
2548
2549        /* It can be negative, by the way. 8) */
2550        if (counter < 0)
2551                counter = 0;
2552
2553        seq_printf(seq, "sockets: used %d\n", counter);
2554}
2555#endif                          /* CONFIG_PROC_FS */
2556
2557#ifdef CONFIG_COMPAT
2558static int do_siocgstamp(struct net *net, struct socket *sock,
2559                         unsigned int cmd, void __user *up)
2560{
2561        mm_segment_t old_fs = get_fs();
2562        struct timeval ktv;
2563        int err;
2564
2565        set_fs(KERNEL_DS);
2566        err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2567        set_fs(old_fs);
2568        if (!err)
2569                err = compat_put_timeval(&ktv, up);
2570
2571        return err;
2572}
2573
2574static int do_siocgstampns(struct net *net, struct socket *sock,
2575                           unsigned int cmd, void __user *up)
2576{
2577        mm_segment_t old_fs = get_fs();
2578        struct timespec kts;
2579        int err;
2580
2581        set_fs(KERNEL_DS);
2582        err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2583        set_fs(old_fs);
2584        if (!err)
2585                err = compat_put_timespec(&kts, up);
2586
2587        return err;
2588}
2589
2590static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2591{
2592        struct ifreq __user *uifr;
2593        int err;
2594
2595        uifr = compat_alloc_user_space(sizeof(struct ifreq));
2596        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2597                return -EFAULT;
2598
2599        err = dev_ioctl(net, SIOCGIFNAME, uifr);
2600        if (err)
2601                return err;
2602
2603        if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2604                return -EFAULT;
2605
2606        return 0;
2607}
2608
2609static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2610{
2611        struct compat_ifconf ifc32;
2612        struct ifconf ifc;
2613        struct ifconf __user *uifc;
2614        struct compat_ifreq __user *ifr32;
2615        struct ifreq __user *ifr;
2616        unsigned int i, j;
2617        int err;
2618
2619        if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2620                return -EFAULT;
2621
2622        memset(&ifc, 0, sizeof(ifc));
2623        if (ifc32.ifcbuf == 0) {
2624                ifc32.ifc_len = 0;
2625                ifc.ifc_len = 0;
2626                ifc.ifc_req = NULL;
2627                uifc = compat_alloc_user_space(sizeof(struct ifconf));
2628        } else {
2629                size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2630                        sizeof(struct ifreq);
2631                uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2632                ifc.ifc_len = len;
2633                ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2634                ifr32 = compat_ptr(ifc32.ifcbuf);
2635                for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2636                        if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2637                                return -EFAULT;
2638                        ifr++;
2639                        ifr32++;
2640                }
2641        }
2642        if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2643                return -EFAULT;
2644
2645        err = dev_ioctl(net, SIOCGIFCONF, uifc);
2646        if (err)
2647                return err;
2648
2649        if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2650                return -EFAULT;
2651
2652        ifr = ifc.ifc_req;
2653        ifr32 = compat_ptr(ifc32.ifcbuf);
2654        for (i = 0, j = 0;
2655             i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2656             i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2657                if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2658                        return -EFAULT;
2659                ifr32++;
2660                ifr++;
2661        }
2662
2663        if (ifc32.ifcbuf == 0) {
2664                /* Translate from 64-bit structure multiple to
2665                 * a 32-bit one.
2666                 */
2667                i = ifc.ifc_len;
2668                i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2669                ifc32.ifc_len = i;
2670        } else {
2671                ifc32.ifc_len = i;
2672        }
2673        if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2674                return -EFAULT;
2675
2676        return 0;
2677}
2678
2679static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2680{
2681        struct compat_ethtool_rxnfc __user *compat_rxnfc;
2682        bool convert_in = false, convert_out = false;
2683        size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2684        struct ethtool_rxnfc __user *rxnfc;
2685        struct ifreq __user *ifr;
2686        u32 rule_cnt = 0, actual_rule_cnt;
2687        u32 ethcmd;
2688        u32 data;
2689        int ret;
2690
2691        if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2692                return -EFAULT;
2693
2694        compat_rxnfc = compat_ptr(data);
2695
2696        if (get_user(ethcmd, &compat_rxnfc->cmd))
2697                return -EFAULT;
2698
2699        /* Most ethtool structures are defined without padding.
2700         * Unfortunately struct ethtool_rxnfc is an exception.
2701         */
2702        switch (ethcmd) {
2703        default:
2704                break;
2705        case ETHTOOL_GRXCLSRLALL:
2706                /* Buffer size is variable */
2707                if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2708                        return -EFAULT;
2709                if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2710                        return -ENOMEM;
2711                buf_size += rule_cnt * sizeof(u32);
2712                /* fall through */
2713        case ETHTOOL_GRXRINGS:
2714        case ETHTOOL_GRXCLSRLCNT:
2715        case ETHTOOL_GRXCLSRULE:
2716        case ETHTOOL_SRXCLSRLINS:
2717                convert_out = true;
2718                /* fall through */
2719        case ETHTOOL_SRXCLSRLDEL:
2720                buf_size += sizeof(struct ethtool_rxnfc);
2721                convert_in = true;
2722                break;
2723        }
2724
2725        ifr = compat_alloc_user_space(buf_size);
2726        rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2727
2728        if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2729                return -EFAULT;
2730
2731        if (put_user(convert_in ? rxnfc : compat_ptr(data),
2732                     &ifr->ifr_ifru.ifru_data))
2733                return -EFAULT;
2734
2735        if (convert_in) {
2736                /* We expect there to be holes between fs.m_ext and
2737                 * fs.ring_cookie and at the end of fs, but nowhere else.
2738                 */
2739                BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2740                             sizeof(compat_rxnfc->fs.m_ext) !=
2741                             offsetof(struct ethtool_rxnfc, fs.m_ext) +
2742                             sizeof(rxnfc->fs.m_ext));
2743                BUILD_BUG_ON(
2744                        offsetof(struct compat_ethtool_rxnfc, fs.location) -
2745                        offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2746                        offsetof(struct ethtool_rxnfc, fs.location) -
2747                        offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2748
2749                if (copy_in_user(rxnfc, compat_rxnfc,
2750                                 (void __user *)(&rxnfc->fs.m_ext + 1) -
2751                                 (void __user *)rxnfc) ||
2752                    copy_in_user(&rxnfc->fs.ring_cookie,
2753                                 &compat_rxnfc->fs.ring_cookie,
2754                                 (void __user *)(&rxnfc->fs.location + 1) -
2755                                 (void __user *)&rxnfc->fs.ring_cookie) ||
2756                    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2757                                 sizeof(rxnfc->rule_cnt)))
2758                        return -EFAULT;
2759        }
2760
2761        ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2762        if (ret)
2763                return ret;
2764
2765        if (convert_out) {
2766                if (copy_in_user(compat_rxnfc, rxnfc,
2767                                 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2768                                 (const void __user *)rxnfc) ||
2769                    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2770                                 &rxnfc->fs.ring_cookie,
2771                                 (const void __user *)(&rxnfc->fs.location + 1) -
2772                                 (const void __user *)&rxnfc->fs.ring_cookie) ||
2773                    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2774                                 sizeof(rxnfc->rule_cnt)))
2775                        return -EFAULT;
2776
2777                if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2778                        /* As an optimisation, we only copy the actual
2779                         * number of rules that the underlying
2780                         * function returned.  Since Mallory might
2781                         * change the rule count in user memory, we
2782                         * check that it is less than the rule count
2783                         * originally given (as the user buffer size),
2784                         * which has been range-checked.
2785                         */
2786                        if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2787                                return -EFAULT;
2788                        if (actual_rule_cnt < rule_cnt)
2789                                rule_cnt = actual_rule_cnt;
2790                        if (copy_in_user(&compat_rxnfc->rule_locs[0],
2791                                         &rxnfc->rule_locs[0],
2792                                         rule_cnt * sizeof(u32)))
2793                                return -EFAULT;
2794                }
2795        }
2796
2797        return 0;
2798}
2799
2800static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2801{
2802        void __user *uptr;
2803        compat_uptr_t uptr32;
2804        struct ifreq __user *uifr;
2805
2806        uifr = compat_alloc_user_space(sizeof(*uifr));
2807        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2808                return -EFAULT;
2809
2810        if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2811                return -EFAULT;
2812
2813        uptr = compat_ptr(uptr32);
2814
2815        if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2816                return -EFAULT;
2817
2818        return dev_ioctl(net, SIOCWANDEV, uifr);
2819}
2820
2821static int bond_ioctl(struct net *net, unsigned int cmd,
2822                         struct compat_ifreq __user *ifr32)
2823{
2824        struct ifreq kifr;
2825        mm_segment_t old_fs;
2826        int err;
2827
2828        switch (cmd) {
2829        case SIOCBONDENSLAVE:
2830        case SIOCBONDRELEASE:
2831        case SIOCBONDSETHWADDR:
2832        case SIOCBONDCHANGEACTIVE:
2833                if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2834                        return -EFAULT;
2835
2836                old_fs = get_fs();
2837                set_fs(KERNEL_DS);
2838                err = dev_ioctl(net, cmd,
2839                                (struct ifreq __user __force *) &kifr);
2840                set_fs(old_fs);
2841
2842                return err;
2843        default:
2844                return -ENOIOCTLCMD;
2845        }
2846}
2847
2848/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2849static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2850                                 struct compat_ifreq __user *u_ifreq32)
2851{
2852        struct ifreq __user *u_ifreq64;
2853        char tmp_buf[IFNAMSIZ];
2854        void __user *data64;
2855        u32 data32;
2856
2857        if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2858                           IFNAMSIZ))
2859                return -EFAULT;
2860        if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2861                return -EFAULT;
2862        data64 = compat_ptr(data32);
2863
2864        u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2865
2866        if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2867                         IFNAMSIZ))
2868                return -EFAULT;
2869        if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2870                return -EFAULT;
2871
2872        return dev_ioctl(net, cmd, u_ifreq64);
2873}
2874
2875static int dev_ifsioc(struct net *net, struct socket *sock,
2876                         unsigned int cmd, struct compat_ifreq __user *uifr32)
2877{
2878        struct ifreq __user *uifr;
2879        int err;
2880
2881        uifr = compat_alloc_user_space(sizeof(*uifr));
2882        if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2883                return -EFAULT;
2884
2885        err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2886
2887        if (!err) {
2888                switch (cmd) {
2889                case SIOCGIFFLAGS:
2890                case SIOCGIFMETRIC:
2891                case SIOCGIFMTU:
2892                case SIOCGIFMEM:
2893                case SIOCGIFHWADDR:
2894                case SIOCGIFINDEX:
2895                case SIOCGIFADDR:
2896                case SIOCGIFBRDADDR:
2897                case SIOCGIFDSTADDR:
2898                case SIOCGIFNETMASK:
2899                case SIOCGIFPFLAGS:
2900                case SIOCGIFTXQLEN:
2901                case SIOCGMIIPHY:
2902                case SIOCGMIIREG:
2903                        if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2904                                err = -EFAULT;
2905                        break;
2906                }
2907        }
2908        return err;
2909}
2910
2911static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2912                        struct compat_ifreq __user *uifr32)
2913{
2914        struct ifreq ifr;
2915        struct compat_ifmap __user *uifmap32;
2916        mm_segment_t old_fs;
2917        int err;
2918
2919        uifmap32 = &uifr32->ifr_ifru.ifru_map;
2920        err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2921        err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2922        err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2923        err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2924        err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2925        err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2926        err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2927        if (err)
2928                return -EFAULT;
2929
2930        old_fs = get_fs();
2931        set_fs(KERNEL_DS);
2932        err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2933        set_fs(old_fs);
2934
2935        if (cmd == SIOCGIFMAP && !err) {
2936                err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2937                err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2938                err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2939                err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2940                err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2941                err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2942                err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2943                if (err)
2944                        err = -EFAULT;
2945        }
2946        return err;
2947}
2948
2949struct rtentry32 {
2950        u32             rt_pad1;
2951        struct sockaddr rt_dst;         /* target address               */
2952        struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2953        struct sockaddr rt_genmask;     /* target network mask (IP)     */
2954        unsigned short  rt_flags;
2955        short           rt_pad2;
2956        u32             rt_pad3;
2957        unsigned char   rt_tos;
2958        unsigned char   rt_class;
2959        short           rt_pad4;
2960        short           rt_metric;      /* +1 for binary compatibility! */
2961        /* char * */ u32 rt_dev;        /* forcing the device at add    */
2962        u32             rt_mtu;         /* per route MTU/Window         */
2963        u32             rt_window;      /* Window clamping              */
2964        unsigned short  rt_irtt;        /* Initial RTT                  */
2965};
2966
2967struct in6_rtmsg32 {
2968        struct in6_addr         rtmsg_dst;
2969        struct in6_addr         rtmsg_src;
2970        struct in6_addr         rtmsg_gateway;
2971        u32                     rtmsg_type;
2972        u16                     rtmsg_dst_len;
2973        u16                     rtmsg_src_len;
2974        u32                     rtmsg_metric;
2975        u32                     rtmsg_info;
2976        u32                     rtmsg_flags;
2977        s32                     rtmsg_ifindex;
2978};
2979
2980static int routing_ioctl(struct net *net, struct socket *sock,
2981                         unsigned int cmd, void __user *argp)
2982{
2983        int ret;
2984        void *r = NULL;
2985        struct in6_rtmsg r6;
2986        struct rtentry r4;
2987        char devname[16];
2988        u32 rtdev;
2989        mm_segment_t old_fs = get_fs();
2990
2991        if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2992                struct in6_rtmsg32 __user *ur6 = argp;
2993                ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2994                        3 * sizeof(struct in6_addr));
2995                ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2996                ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2997                ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2998                ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2999                ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3000                ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3001                ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3002
3003                r = (void *) &r6;
3004        } else { /* ipv4 */
3005                struct rtentry32 __user *ur4 = argp;
3006                ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3007                                        3 * sizeof(struct sockaddr));
3008                ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3009                ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3010                ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3011                ret |= get_user(r4.rt_window, &(ur4->rt_window));
3012                ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3013                ret |= get_user(rtdev, &(ur4->rt_dev));
3014                if (rtdev) {
3015                        ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3016                        r4.rt_dev = (char __user __force *)devname;
3017                        devname[15] = 0;
3018                } else
3019                        r4.rt_dev = NULL;
3020
3021                r = (void *) &r4;
3022        }
3023
3024        if (ret) {
3025                ret = -EFAULT;
3026                goto out;
3027        }
3028
3029        set_fs(KERNEL_DS);
3030        ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3031        set_fs(old_fs);
3032
3033out:
3034        return ret;
3035}
3036
3037/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3038 * for some operations; this forces use of the newer bridge-utils that
3039 * use compatible ioctls
3040 */
3041static int old_bridge_ioctl(compat_ulong_t __user *argp)
3042{
3043        compat_ulong_t tmp;
3044
3045        if (get_user(tmp, argp))
3046                return -EFAULT;
3047        if (tmp == BRCTL_GET_VERSION)
3048                return BRCTL_VERSION + 1;
3049        return -EINVAL;
3050}
3051
3052static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3053                         unsigned int cmd, unsigned long arg)
3054{
3055        void __user *argp = compat_ptr(arg);
3056        struct sock *sk = sock->sk;
3057        struct net *net = sock_net(sk);
3058
3059        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3060                return compat_ifr_data_ioctl(net, cmd, argp);
3061
3062        switch (cmd) {
3063        case SIOCSIFBR:
3064        case SIOCGIFBR:
3065                return old_bridge_ioctl(argp);
3066        case SIOCGIFNAME:
3067                return dev_ifname32(net, argp);
3068        case SIOCGIFCONF:
3069                return dev_ifconf(net, argp);
3070        case SIOCETHTOOL:
3071                return ethtool_ioctl(net, argp);
3072        case SIOCWANDEV:
3073                return compat_siocwandev(net, argp);
3074        case SIOCGIFMAP:
3075        case SIOCSIFMAP:
3076                return compat_sioc_ifmap(net, cmd, argp);
3077        case SIOCBONDENSLAVE:
3078        case SIOCBONDRELEASE:
3079        case SIOCBONDSETHWADDR:
3080        case SIOCBONDCHANGEACTIVE:
3081                return bond_ioctl(net, cmd, argp);
3082        case SIOCADDRT:
3083        case SIOCDELRT:
3084                return routing_ioctl(net, sock, cmd, argp);
3085        case SIOCGSTAMP:
3086                return do_siocgstamp(net, sock, cmd, argp);
3087        case SIOCGSTAMPNS:
3088                return do_siocgstampns(net, sock, cmd, argp);
3089        case SIOCBONDSLAVEINFOQUERY:
3090        case SIOCBONDINFOQUERY:
3091        case SIOCSHWTSTAMP:
3092        case SIOCGHWTSTAMP:
3093                return compat_ifr_data_ioctl(net, cmd, argp);
3094
3095        case FIOSETOWN:
3096        case SIOCSPGRP:
3097        case FIOGETOWN:
3098        case SIOCGPGRP:
3099        case SIOCBRADDBR:
3100        case SIOCBRDELBR:
3101        case SIOCGIFVLAN:
3102        case SIOCSIFVLAN:
3103        case SIOCADDDLCI:
3104        case SIOCDELDLCI:
3105                return sock_ioctl(file, cmd, arg);
3106
3107        case SIOCGIFFLAGS:
3108        case SIOCSIFFLAGS:
3109        case SIOCGIFMETRIC:
3110        case SIOCSIFMETRIC:
3111        case SIOCGIFMTU:
3112        case SIOCSIFMTU:
3113        case SIOCGIFMEM:
3114        case SIOCSIFMEM:
3115        case SIOCGIFHWADDR:
3116        case SIOCSIFHWADDR:
3117        case SIOCADDMULTI:
3118        case SIOCDELMULTI:
3119        case SIOCGIFINDEX:
3120        case SIOCGIFADDR:
3121        case SIOCSIFADDR:
3122        case SIOCSIFHWBROADCAST:
3123        case SIOCDIFADDR:
3124        case SIOCGIFBRDADDR:
3125        case SIOCSIFBRDADDR:
3126        case SIOCGIFDSTADDR:
3127        case SIOCSIFDSTADDR:
3128        case SIOCGIFNETMASK:
3129        case SIOCSIFNETMASK:
3130        case SIOCSIFPFLAGS:
3131        case SIOCGIFPFLAGS:
3132        case SIOCGIFTXQLEN:
3133        case SIOCSIFTXQLEN:
3134        case SIOCBRADDIF:
3135        case SIOCBRDELIF:
3136        case SIOCSIFNAME:
3137        case SIOCGMIIPHY:
3138        case SIOCGMIIREG:
3139        case SIOCSMIIREG:
3140                return dev_ifsioc(net, sock, cmd, argp);
3141
3142        case SIOCSARP:
3143        case SIOCGARP:
3144        case SIOCDARP:
3145        case SIOCATMARK:
3146                return sock_do_ioctl(net, sock, cmd, arg);
3147        }
3148
3149        return -ENOIOCTLCMD;
3150}
3151
3152static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3153                              unsigned long arg)
3154{
3155        struct socket *sock = file->private_data;
3156        int ret = -ENOIOCTLCMD;
3157        struct sock *sk;
3158        struct net *net;
3159
3160        sk = sock->sk;
3161        net = sock_net(sk);
3162
3163        if (sock->ops->compat_ioctl)
3164                ret = sock->ops->compat_ioctl(sock, cmd, arg);
3165
3166        if (ret == -ENOIOCTLCMD &&
3167            (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3168                ret = compat_wext_handle_ioctl(net, cmd, arg);
3169
3170        if (ret == -ENOIOCTLCMD)
3171                ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3172
3173        return ret;
3174}
3175#endif
3176
3177int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3178{
3179        return sock->ops->bind(sock, addr, addrlen);
3180}
3181EXPORT_SYMBOL(kernel_bind);
3182
3183int kernel_listen(struct socket *sock, int backlog)
3184{
3185        return sock->ops->listen(sock, backlog);
3186}
3187EXPORT_SYMBOL(kernel_listen);
3188
3189int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3190{
3191        struct sock *sk = sock->sk;
3192        int err;
3193
3194        err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3195                               newsock);
3196        if (err < 0)
3197                goto done;
3198
3199        err = sock->ops->accept(sock, *newsock, flags);
3200        if (err < 0) {
3201                sock_release(*newsock);
3202                *newsock = NULL;
3203                goto done;
3204        }
3205
3206        (*newsock)->ops = sock->ops;
3207        __module_get((*newsock)->ops->owner);
3208
3209done:
3210        return err;
3211}
3212EXPORT_SYMBOL(kernel_accept);
3213
3214int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3215                   int flags)
3216{
3217        return sock->ops->connect(sock, addr, addrlen, flags);
3218}
3219EXPORT_SYMBOL(kernel_connect);
3220
3221int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3222                         int *addrlen)
3223{
3224        return sock->ops->getname(sock, addr, addrlen, 0);
3225}
3226EXPORT_SYMBOL(kernel_getsockname);
3227
3228int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3229                         int *addrlen)
3230{
3231        return sock->ops->getname(sock, addr, addrlen, 1);
3232}
3233EXPORT_SYMBOL(kernel_getpeername);
3234
3235int kernel_getsockopt(struct socket *sock, int level, int optname,
3236                        char *optval, int *optlen)
3237{
3238        mm_segment_t oldfs = get_fs();
3239        char __user *uoptval;
3240        int __user *uoptlen;
3241        int err;
3242
3243        uoptval = (char __user __force *) optval;
3244        uoptlen = (int __user __force *) optlen;
3245
3246        set_fs(KERNEL_DS);
3247        if (level == SOL_SOCKET)
3248                err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3249        else
3250                err = sock->ops->getsockopt(sock, level, optname, uoptval,
3251                                            uoptlen);
3252        set_fs(oldfs);
3253        return err;
3254}
3255EXPORT_SYMBOL(kernel_getsockopt);
3256
3257int kernel_setsockopt(struct socket *sock, int level, int optname,
3258                        char *optval, unsigned int optlen)
3259{
3260        mm_segment_t oldfs = get_fs();
3261        char __user *uoptval;
3262        int err;
3263
3264        uoptval = (char __user __force *) optval;
3265
3266        set_fs(KERNEL_DS);
3267        if (level == SOL_SOCKET)
3268                err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3269        else
3270                err = sock->ops->setsockopt(sock, level, optname, uoptval,
3271                                            optlen);
3272        set_fs(oldfs);
3273        return err;
3274}
3275EXPORT_SYMBOL(kernel_setsockopt);
3276
3277int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3278                    size_t size, int flags)
3279{
3280        if (sock->ops->sendpage)
3281                return sock->ops->sendpage(sock, page, offset, size, flags);
3282
3283        return sock_no_sendpage(sock, page, offset, size, flags);
3284}
3285EXPORT_SYMBOL(kernel_sendpage);
3286
3287int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3288{
3289        mm_segment_t oldfs = get_fs();
3290        int err;
3291
3292        set_fs(KERNEL_DS);
3293        err = sock->ops->ioctl(sock, cmd, arg);
3294        set_fs(oldfs);
3295
3296        return err;
3297}
3298EXPORT_SYMBOL(kernel_sock_ioctl);
3299
3300int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3301{
3302        return sock->ops->shutdown(sock, how);
3303}
3304EXPORT_SYMBOL(kernel_sock_shutdown);
3305