linux/net/sunrpc/cache.c
<<
>>
Prefs
   1/*
   2 * net/sunrpc/cache.c
   3 *
   4 * Generic code for various authentication-related caches
   5 * used by sunrpc clients and servers.
   6 *
   7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
   8 *
   9 * Released under terms in GPL version 2.  See COPYING.
  10 *
  11 */
  12
  13#include <linux/types.h>
  14#include <linux/fs.h>
  15#include <linux/file.h>
  16#include <linux/slab.h>
  17#include <linux/signal.h>
  18#include <linux/sched.h>
  19#include <linux/kmod.h>
  20#include <linux/list.h>
  21#include <linux/module.h>
  22#include <linux/ctype.h>
  23#include <linux/string_helpers.h>
  24#include <asm/uaccess.h>
  25#include <linux/poll.h>
  26#include <linux/seq_file.h>
  27#include <linux/proc_fs.h>
  28#include <linux/net.h>
  29#include <linux/workqueue.h>
  30#include <linux/mutex.h>
  31#include <linux/pagemap.h>
  32#include <asm/ioctls.h>
  33#include <linux/sunrpc/types.h>
  34#include <linux/sunrpc/cache.h>
  35#include <linux/sunrpc/stats.h>
  36#include <linux/sunrpc/rpc_pipe_fs.h>
  37#include "netns.h"
  38
  39#define  RPCDBG_FACILITY RPCDBG_CACHE
  40
  41static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
  42static void cache_revisit_request(struct cache_head *item);
  43
  44static void cache_init(struct cache_head *h)
  45{
  46        time_t now = seconds_since_boot();
  47        h->next = NULL;
  48        h->flags = 0;
  49        kref_init(&h->ref);
  50        h->expiry_time = now + CACHE_NEW_EXPIRY;
  51        h->last_refresh = now;
  52}
  53
  54struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
  55                                       struct cache_head *key, int hash)
  56{
  57        struct cache_head **head,  **hp;
  58        struct cache_head *new = NULL, *freeme = NULL;
  59
  60        head = &detail->hash_table[hash];
  61
  62        read_lock(&detail->hash_lock);
  63
  64        for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
  65                struct cache_head *tmp = *hp;
  66                if (detail->match(tmp, key)) {
  67                        if (cache_is_expired(detail, tmp))
  68                                /* This entry is expired, we will discard it. */
  69                                break;
  70                        cache_get(tmp);
  71                        read_unlock(&detail->hash_lock);
  72                        return tmp;
  73                }
  74        }
  75        read_unlock(&detail->hash_lock);
  76        /* Didn't find anything, insert an empty entry */
  77
  78        new = detail->alloc();
  79        if (!new)
  80                return NULL;
  81        /* must fully initialise 'new', else
  82         * we might get lose if we need to
  83         * cache_put it soon.
  84         */
  85        cache_init(new);
  86        detail->init(new, key);
  87
  88        write_lock(&detail->hash_lock);
  89
  90        /* check if entry appeared while we slept */
  91        for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
  92                struct cache_head *tmp = *hp;
  93                if (detail->match(tmp, key)) {
  94                        if (cache_is_expired(detail, tmp)) {
  95                                *hp = tmp->next;
  96                                tmp->next = NULL;
  97                                detail->entries --;
  98                                freeme = tmp;
  99                                break;
 100                        }
 101                        cache_get(tmp);
 102                        write_unlock(&detail->hash_lock);
 103                        cache_put(new, detail);
 104                        return tmp;
 105                }
 106        }
 107        new->next = *head;
 108        *head = new;
 109        detail->entries++;
 110        cache_get(new);
 111        write_unlock(&detail->hash_lock);
 112
 113        if (freeme)
 114                cache_put(freeme, detail);
 115        return new;
 116}
 117EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
 118
 119
 120static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
 121
 122static void cache_fresh_locked(struct cache_head *head, time_t expiry)
 123{
 124        head->expiry_time = expiry;
 125        head->last_refresh = seconds_since_boot();
 126        smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
 127        set_bit(CACHE_VALID, &head->flags);
 128}
 129
 130static void cache_fresh_unlocked(struct cache_head *head,
 131                                 struct cache_detail *detail)
 132{
 133        if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
 134                cache_revisit_request(head);
 135                cache_dequeue(detail, head);
 136        }
 137}
 138
 139struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
 140                                       struct cache_head *new, struct cache_head *old, int hash)
 141{
 142        /* The 'old' entry is to be replaced by 'new'.
 143         * If 'old' is not VALID, we update it directly,
 144         * otherwise we need to replace it
 145         */
 146        struct cache_head **head;
 147        struct cache_head *tmp;
 148
 149        if (!test_bit(CACHE_VALID, &old->flags)) {
 150                write_lock(&detail->hash_lock);
 151                if (!test_bit(CACHE_VALID, &old->flags)) {
 152                        if (test_bit(CACHE_NEGATIVE, &new->flags))
 153                                set_bit(CACHE_NEGATIVE, &old->flags);
 154                        else
 155                                detail->update(old, new);
 156                        cache_fresh_locked(old, new->expiry_time);
 157                        write_unlock(&detail->hash_lock);
 158                        cache_fresh_unlocked(old, detail);
 159                        return old;
 160                }
 161                write_unlock(&detail->hash_lock);
 162        }
 163        /* We need to insert a new entry */
 164        tmp = detail->alloc();
 165        if (!tmp) {
 166                cache_put(old, detail);
 167                return NULL;
 168        }
 169        cache_init(tmp);
 170        detail->init(tmp, old);
 171        head = &detail->hash_table[hash];
 172
 173        write_lock(&detail->hash_lock);
 174        if (test_bit(CACHE_NEGATIVE, &new->flags))
 175                set_bit(CACHE_NEGATIVE, &tmp->flags);
 176        else
 177                detail->update(tmp, new);
 178        tmp->next = *head;
 179        *head = tmp;
 180        detail->entries++;
 181        cache_get(tmp);
 182        cache_fresh_locked(tmp, new->expiry_time);
 183        cache_fresh_locked(old, 0);
 184        write_unlock(&detail->hash_lock);
 185        cache_fresh_unlocked(tmp, detail);
 186        cache_fresh_unlocked(old, detail);
 187        cache_put(old, detail);
 188        return tmp;
 189}
 190EXPORT_SYMBOL_GPL(sunrpc_cache_update);
 191
 192static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
 193{
 194        if (cd->cache_upcall)
 195                return cd->cache_upcall(cd, h);
 196        return sunrpc_cache_pipe_upcall(cd, h);
 197}
 198
 199static inline int cache_is_valid(struct cache_head *h)
 200{
 201        if (!test_bit(CACHE_VALID, &h->flags))
 202                return -EAGAIN;
 203        else {
 204                /* entry is valid */
 205                if (test_bit(CACHE_NEGATIVE, &h->flags))
 206                        return -ENOENT;
 207                else {
 208                        /*
 209                         * In combination with write barrier in
 210                         * sunrpc_cache_update, ensures that anyone
 211                         * using the cache entry after this sees the
 212                         * updated contents:
 213                         */
 214                        smp_rmb();
 215                        return 0;
 216                }
 217        }
 218}
 219
 220static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
 221{
 222        int rv;
 223
 224        write_lock(&detail->hash_lock);
 225        rv = cache_is_valid(h);
 226        if (rv == -EAGAIN) {
 227                set_bit(CACHE_NEGATIVE, &h->flags);
 228                cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY);
 229                rv = -ENOENT;
 230        }
 231        write_unlock(&detail->hash_lock);
 232        cache_fresh_unlocked(h, detail);
 233        return rv;
 234}
 235
 236/*
 237 * This is the generic cache management routine for all
 238 * the authentication caches.
 239 * It checks the currency of a cache item and will (later)
 240 * initiate an upcall to fill it if needed.
 241 *
 242 *
 243 * Returns 0 if the cache_head can be used, or cache_puts it and returns
 244 * -EAGAIN if upcall is pending and request has been queued
 245 * -ETIMEDOUT if upcall failed or request could not be queue or
 246 *           upcall completed but item is still invalid (implying that
 247 *           the cache item has been replaced with a newer one).
 248 * -ENOENT if cache entry was negative
 249 */
 250int cache_check(struct cache_detail *detail,
 251                    struct cache_head *h, struct cache_req *rqstp)
 252{
 253        int rv;
 254        long refresh_age, age;
 255
 256        /* First decide return status as best we can */
 257        rv = cache_is_valid(h);
 258
 259        /* now see if we want to start an upcall */
 260        refresh_age = (h->expiry_time - h->last_refresh);
 261        age = seconds_since_boot() - h->last_refresh;
 262
 263        if (rqstp == NULL) {
 264                if (rv == -EAGAIN)
 265                        rv = -ENOENT;
 266        } else if (rv == -EAGAIN ||
 267                   (h->expiry_time != 0 && age > refresh_age/2)) {
 268                dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
 269                                refresh_age, age);
 270                if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
 271                        switch (cache_make_upcall(detail, h)) {
 272                        case -EINVAL:
 273                                rv = try_to_negate_entry(detail, h);
 274                                break;
 275                        case -EAGAIN:
 276                                cache_fresh_unlocked(h, detail);
 277                                break;
 278                        }
 279                }
 280        }
 281
 282        if (rv == -EAGAIN) {
 283                if (!cache_defer_req(rqstp, h)) {
 284                        /*
 285                         * Request was not deferred; handle it as best
 286                         * we can ourselves:
 287                         */
 288                        rv = cache_is_valid(h);
 289                        if (rv == -EAGAIN)
 290                                rv = -ETIMEDOUT;
 291                }
 292        }
 293        if (rv)
 294                cache_put(h, detail);
 295        return rv;
 296}
 297EXPORT_SYMBOL_GPL(cache_check);
 298
 299/*
 300 * caches need to be periodically cleaned.
 301 * For this we maintain a list of cache_detail and
 302 * a current pointer into that list and into the table
 303 * for that entry.
 304 *
 305 * Each time cache_clean is called it finds the next non-empty entry
 306 * in the current table and walks the list in that entry
 307 * looking for entries that can be removed.
 308 *
 309 * An entry gets removed if:
 310 * - The expiry is before current time
 311 * - The last_refresh time is before the flush_time for that cache
 312 *
 313 * later we might drop old entries with non-NEVER expiry if that table
 314 * is getting 'full' for some definition of 'full'
 315 *
 316 * The question of "how often to scan a table" is an interesting one
 317 * and is answered in part by the use of the "nextcheck" field in the
 318 * cache_detail.
 319 * When a scan of a table begins, the nextcheck field is set to a time
 320 * that is well into the future.
 321 * While scanning, if an expiry time is found that is earlier than the
 322 * current nextcheck time, nextcheck is set to that expiry time.
 323 * If the flush_time is ever set to a time earlier than the nextcheck
 324 * time, the nextcheck time is then set to that flush_time.
 325 *
 326 * A table is then only scanned if the current time is at least
 327 * the nextcheck time.
 328 *
 329 */
 330
 331static LIST_HEAD(cache_list);
 332static DEFINE_SPINLOCK(cache_list_lock);
 333static struct cache_detail *current_detail;
 334static int current_index;
 335
 336static void do_cache_clean(struct work_struct *work);
 337static struct delayed_work cache_cleaner;
 338
 339void sunrpc_init_cache_detail(struct cache_detail *cd)
 340{
 341        rwlock_init(&cd->hash_lock);
 342        INIT_LIST_HEAD(&cd->queue);
 343        spin_lock(&cache_list_lock);
 344        cd->nextcheck = 0;
 345        cd->entries = 0;
 346        atomic_set(&cd->readers, 0);
 347        cd->last_close = 0;
 348        cd->last_warn = -1;
 349        list_add(&cd->others, &cache_list);
 350        spin_unlock(&cache_list_lock);
 351
 352        /* start the cleaning process */
 353        schedule_delayed_work(&cache_cleaner, 0);
 354}
 355EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
 356
 357void sunrpc_destroy_cache_detail(struct cache_detail *cd)
 358{
 359        cache_purge(cd);
 360        spin_lock(&cache_list_lock);
 361        write_lock(&cd->hash_lock);
 362        if (cd->entries || atomic_read(&cd->inuse)) {
 363                write_unlock(&cd->hash_lock);
 364                spin_unlock(&cache_list_lock);
 365                goto out;
 366        }
 367        if (current_detail == cd)
 368                current_detail = NULL;
 369        list_del_init(&cd->others);
 370        write_unlock(&cd->hash_lock);
 371        spin_unlock(&cache_list_lock);
 372        if (list_empty(&cache_list)) {
 373                /* module must be being unloaded so its safe to kill the worker */
 374                cancel_delayed_work_sync(&cache_cleaner);
 375        }
 376        return;
 377out:
 378        printk(KERN_ERR "RPC: failed to unregister %s cache\n", cd->name);
 379}
 380EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
 381
 382/* clean cache tries to find something to clean
 383 * and cleans it.
 384 * It returns 1 if it cleaned something,
 385 *            0 if it didn't find anything this time
 386 *           -1 if it fell off the end of the list.
 387 */
 388static int cache_clean(void)
 389{
 390        int rv = 0;
 391        struct list_head *next;
 392
 393        spin_lock(&cache_list_lock);
 394
 395        /* find a suitable table if we don't already have one */
 396        while (current_detail == NULL ||
 397            current_index >= current_detail->hash_size) {
 398                if (current_detail)
 399                        next = current_detail->others.next;
 400                else
 401                        next = cache_list.next;
 402                if (next == &cache_list) {
 403                        current_detail = NULL;
 404                        spin_unlock(&cache_list_lock);
 405                        return -1;
 406                }
 407                current_detail = list_entry(next, struct cache_detail, others);
 408                if (current_detail->nextcheck > seconds_since_boot())
 409                        current_index = current_detail->hash_size;
 410                else {
 411                        current_index = 0;
 412                        current_detail->nextcheck = seconds_since_boot()+30*60;
 413                }
 414        }
 415
 416        /* find a non-empty bucket in the table */
 417        while (current_detail &&
 418               current_index < current_detail->hash_size &&
 419               current_detail->hash_table[current_index] == NULL)
 420                current_index++;
 421
 422        /* find a cleanable entry in the bucket and clean it, or set to next bucket */
 423
 424        if (current_detail && current_index < current_detail->hash_size) {
 425                struct cache_head *ch, **cp;
 426                struct cache_detail *d;
 427
 428                write_lock(&current_detail->hash_lock);
 429
 430                /* Ok, now to clean this strand */
 431
 432                cp = & current_detail->hash_table[current_index];
 433                for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) {
 434                        if (current_detail->nextcheck > ch->expiry_time)
 435                                current_detail->nextcheck = ch->expiry_time+1;
 436                        if (!cache_is_expired(current_detail, ch))
 437                                continue;
 438
 439                        *cp = ch->next;
 440                        ch->next = NULL;
 441                        current_detail->entries--;
 442                        rv = 1;
 443                        break;
 444                }
 445
 446                write_unlock(&current_detail->hash_lock);
 447                d = current_detail;
 448                if (!ch)
 449                        current_index ++;
 450                spin_unlock(&cache_list_lock);
 451                if (ch) {
 452                        set_bit(CACHE_CLEANED, &ch->flags);
 453                        cache_fresh_unlocked(ch, d);
 454                        cache_put(ch, d);
 455                }
 456        } else
 457                spin_unlock(&cache_list_lock);
 458
 459        return rv;
 460}
 461
 462/*
 463 * We want to regularly clean the cache, so we need to schedule some work ...
 464 */
 465static void do_cache_clean(struct work_struct *work)
 466{
 467        int delay = 5;
 468        if (cache_clean() == -1)
 469                delay = round_jiffies_relative(30*HZ);
 470
 471        if (list_empty(&cache_list))
 472                delay = 0;
 473
 474        if (delay)
 475                schedule_delayed_work(&cache_cleaner, delay);
 476}
 477
 478
 479/*
 480 * Clean all caches promptly.  This just calls cache_clean
 481 * repeatedly until we are sure that every cache has had a chance to
 482 * be fully cleaned
 483 */
 484void cache_flush(void)
 485{
 486        while (cache_clean() != -1)
 487                cond_resched();
 488        while (cache_clean() != -1)
 489                cond_resched();
 490}
 491EXPORT_SYMBOL_GPL(cache_flush);
 492
 493void cache_purge(struct cache_detail *detail)
 494{
 495        detail->flush_time = LONG_MAX;
 496        detail->nextcheck = seconds_since_boot();
 497        cache_flush();
 498        detail->flush_time = 1;
 499}
 500EXPORT_SYMBOL_GPL(cache_purge);
 501
 502
 503/*
 504 * Deferral and Revisiting of Requests.
 505 *
 506 * If a cache lookup finds a pending entry, we
 507 * need to defer the request and revisit it later.
 508 * All deferred requests are stored in a hash table,
 509 * indexed by "struct cache_head *".
 510 * As it may be wasteful to store a whole request
 511 * structure, we allow the request to provide a
 512 * deferred form, which must contain a
 513 * 'struct cache_deferred_req'
 514 * This cache_deferred_req contains a method to allow
 515 * it to be revisited when cache info is available
 516 */
 517
 518#define DFR_HASHSIZE    (PAGE_SIZE/sizeof(struct list_head))
 519#define DFR_HASH(item)  ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
 520
 521#define DFR_MAX 300     /* ??? */
 522
 523static DEFINE_SPINLOCK(cache_defer_lock);
 524static LIST_HEAD(cache_defer_list);
 525static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
 526static int cache_defer_cnt;
 527
 528static void __unhash_deferred_req(struct cache_deferred_req *dreq)
 529{
 530        hlist_del_init(&dreq->hash);
 531        if (!list_empty(&dreq->recent)) {
 532                list_del_init(&dreq->recent);
 533                cache_defer_cnt--;
 534        }
 535}
 536
 537static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
 538{
 539        int hash = DFR_HASH(item);
 540
 541        INIT_LIST_HEAD(&dreq->recent);
 542        hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
 543}
 544
 545static void setup_deferral(struct cache_deferred_req *dreq,
 546                           struct cache_head *item,
 547                           int count_me)
 548{
 549
 550        dreq->item = item;
 551
 552        spin_lock(&cache_defer_lock);
 553
 554        __hash_deferred_req(dreq, item);
 555
 556        if (count_me) {
 557                cache_defer_cnt++;
 558                list_add(&dreq->recent, &cache_defer_list);
 559        }
 560
 561        spin_unlock(&cache_defer_lock);
 562
 563}
 564
 565struct thread_deferred_req {
 566        struct cache_deferred_req handle;
 567        struct completion completion;
 568};
 569
 570static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
 571{
 572        struct thread_deferred_req *dr =
 573                container_of(dreq, struct thread_deferred_req, handle);
 574        complete(&dr->completion);
 575}
 576
 577static void cache_wait_req(struct cache_req *req, struct cache_head *item)
 578{
 579        struct thread_deferred_req sleeper;
 580        struct cache_deferred_req *dreq = &sleeper.handle;
 581
 582        sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
 583        dreq->revisit = cache_restart_thread;
 584
 585        setup_deferral(dreq, item, 0);
 586
 587        if (!test_bit(CACHE_PENDING, &item->flags) ||
 588            wait_for_completion_interruptible_timeout(
 589                    &sleeper.completion, req->thread_wait) <= 0) {
 590                /* The completion wasn't completed, so we need
 591                 * to clean up
 592                 */
 593                spin_lock(&cache_defer_lock);
 594                if (!hlist_unhashed(&sleeper.handle.hash)) {
 595                        __unhash_deferred_req(&sleeper.handle);
 596                        spin_unlock(&cache_defer_lock);
 597                } else {
 598                        /* cache_revisit_request already removed
 599                         * this from the hash table, but hasn't
 600                         * called ->revisit yet.  It will very soon
 601                         * and we need to wait for it.
 602                         */
 603                        spin_unlock(&cache_defer_lock);
 604                        wait_for_completion(&sleeper.completion);
 605                }
 606        }
 607}
 608
 609static void cache_limit_defers(void)
 610{
 611        /* Make sure we haven't exceed the limit of allowed deferred
 612         * requests.
 613         */
 614        struct cache_deferred_req *discard = NULL;
 615
 616        if (cache_defer_cnt <= DFR_MAX)
 617                return;
 618
 619        spin_lock(&cache_defer_lock);
 620
 621        /* Consider removing either the first or the last */
 622        if (cache_defer_cnt > DFR_MAX) {
 623                if (prandom_u32() & 1)
 624                        discard = list_entry(cache_defer_list.next,
 625                                             struct cache_deferred_req, recent);
 626                else
 627                        discard = list_entry(cache_defer_list.prev,
 628                                             struct cache_deferred_req, recent);
 629                __unhash_deferred_req(discard);
 630        }
 631        spin_unlock(&cache_defer_lock);
 632        if (discard)
 633                discard->revisit(discard, 1);
 634}
 635
 636/* Return true if and only if a deferred request is queued. */
 637static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
 638{
 639        struct cache_deferred_req *dreq;
 640
 641        if (req->thread_wait) {
 642                cache_wait_req(req, item);
 643                if (!test_bit(CACHE_PENDING, &item->flags))
 644                        return false;
 645        }
 646        dreq = req->defer(req);
 647        if (dreq == NULL)
 648                return false;
 649        setup_deferral(dreq, item, 1);
 650        if (!test_bit(CACHE_PENDING, &item->flags))
 651                /* Bit could have been cleared before we managed to
 652                 * set up the deferral, so need to revisit just in case
 653                 */
 654                cache_revisit_request(item);
 655
 656        cache_limit_defers();
 657        return true;
 658}
 659
 660static void cache_revisit_request(struct cache_head *item)
 661{
 662        struct cache_deferred_req *dreq;
 663        struct list_head pending;
 664        struct hlist_node *tmp;
 665        int hash = DFR_HASH(item);
 666
 667        INIT_LIST_HEAD(&pending);
 668        spin_lock(&cache_defer_lock);
 669
 670        hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
 671                if (dreq->item == item) {
 672                        __unhash_deferred_req(dreq);
 673                        list_add(&dreq->recent, &pending);
 674                }
 675
 676        spin_unlock(&cache_defer_lock);
 677
 678        while (!list_empty(&pending)) {
 679                dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 680                list_del_init(&dreq->recent);
 681                dreq->revisit(dreq, 0);
 682        }
 683}
 684
 685void cache_clean_deferred(void *owner)
 686{
 687        struct cache_deferred_req *dreq, *tmp;
 688        struct list_head pending;
 689
 690
 691        INIT_LIST_HEAD(&pending);
 692        spin_lock(&cache_defer_lock);
 693
 694        list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
 695                if (dreq->owner == owner) {
 696                        __unhash_deferred_req(dreq);
 697                        list_add(&dreq->recent, &pending);
 698                }
 699        }
 700        spin_unlock(&cache_defer_lock);
 701
 702        while (!list_empty(&pending)) {
 703                dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 704                list_del_init(&dreq->recent);
 705                dreq->revisit(dreq, 1);
 706        }
 707}
 708
 709/*
 710 * communicate with user-space
 711 *
 712 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
 713 * On read, you get a full request, or block.
 714 * On write, an update request is processed.
 715 * Poll works if anything to read, and always allows write.
 716 *
 717 * Implemented by linked list of requests.  Each open file has
 718 * a ->private that also exists in this list.  New requests are added
 719 * to the end and may wakeup and preceding readers.
 720 * New readers are added to the head.  If, on read, an item is found with
 721 * CACHE_UPCALLING clear, we free it from the list.
 722 *
 723 */
 724
 725static DEFINE_SPINLOCK(queue_lock);
 726static DEFINE_MUTEX(queue_io_mutex);
 727
 728struct cache_queue {
 729        struct list_head        list;
 730        int                     reader; /* if 0, then request */
 731};
 732struct cache_request {
 733        struct cache_queue      q;
 734        struct cache_head       *item;
 735        char                    * buf;
 736        int                     len;
 737        int                     readers;
 738};
 739struct cache_reader {
 740        struct cache_queue      q;
 741        int                     offset; /* if non-0, we have a refcnt on next request */
 742};
 743
 744static int cache_request(struct cache_detail *detail,
 745                               struct cache_request *crq)
 746{
 747        char *bp = crq->buf;
 748        int len = PAGE_SIZE;
 749
 750        detail->cache_request(detail, crq->item, &bp, &len);
 751        if (len < 0)
 752                return -EAGAIN;
 753        return PAGE_SIZE - len;
 754}
 755
 756static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
 757                          loff_t *ppos, struct cache_detail *cd)
 758{
 759        struct cache_reader *rp = filp->private_data;
 760        struct cache_request *rq;
 761        struct inode *inode = file_inode(filp);
 762        int err;
 763
 764        if (count == 0)
 765                return 0;
 766
 767        mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
 768                              * readers on this file */
 769 again:
 770        spin_lock(&queue_lock);
 771        /* need to find next request */
 772        while (rp->q.list.next != &cd->queue &&
 773               list_entry(rp->q.list.next, struct cache_queue, list)
 774               ->reader) {
 775                struct list_head *next = rp->q.list.next;
 776                list_move(&rp->q.list, next);
 777        }
 778        if (rp->q.list.next == &cd->queue) {
 779                spin_unlock(&queue_lock);
 780                mutex_unlock(&inode->i_mutex);
 781                WARN_ON_ONCE(rp->offset);
 782                return 0;
 783        }
 784        rq = container_of(rp->q.list.next, struct cache_request, q.list);
 785        WARN_ON_ONCE(rq->q.reader);
 786        if (rp->offset == 0)
 787                rq->readers++;
 788        spin_unlock(&queue_lock);
 789
 790        if (rq->len == 0) {
 791                err = cache_request(cd, rq);
 792                if (err < 0)
 793                        goto out;
 794                rq->len = err;
 795        }
 796
 797        if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
 798                err = -EAGAIN;
 799                spin_lock(&queue_lock);
 800                list_move(&rp->q.list, &rq->q.list);
 801                spin_unlock(&queue_lock);
 802        } else {
 803                if (rp->offset + count > rq->len)
 804                        count = rq->len - rp->offset;
 805                err = -EFAULT;
 806                if (copy_to_user(buf, rq->buf + rp->offset, count))
 807                        goto out;
 808                rp->offset += count;
 809                if (rp->offset >= rq->len) {
 810                        rp->offset = 0;
 811                        spin_lock(&queue_lock);
 812                        list_move(&rp->q.list, &rq->q.list);
 813                        spin_unlock(&queue_lock);
 814                }
 815                err = 0;
 816        }
 817 out:
 818        if (rp->offset == 0) {
 819                /* need to release rq */
 820                spin_lock(&queue_lock);
 821                rq->readers--;
 822                if (rq->readers == 0 &&
 823                    !test_bit(CACHE_PENDING, &rq->item->flags)) {
 824                        list_del(&rq->q.list);
 825                        spin_unlock(&queue_lock);
 826                        cache_put(rq->item, cd);
 827                        kfree(rq->buf);
 828                        kfree(rq);
 829                } else
 830                        spin_unlock(&queue_lock);
 831        }
 832        if (err == -EAGAIN)
 833                goto again;
 834        mutex_unlock(&inode->i_mutex);
 835        return err ? err :  count;
 836}
 837
 838static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
 839                                 size_t count, struct cache_detail *cd)
 840{
 841        ssize_t ret;
 842
 843        if (count == 0)
 844                return -EINVAL;
 845        if (copy_from_user(kaddr, buf, count))
 846                return -EFAULT;
 847        kaddr[count] = '\0';
 848        ret = cd->cache_parse(cd, kaddr, count);
 849        if (!ret)
 850                ret = count;
 851        return ret;
 852}
 853
 854static ssize_t cache_slow_downcall(const char __user *buf,
 855                                   size_t count, struct cache_detail *cd)
 856{
 857        static char write_buf[8192]; /* protected by queue_io_mutex */
 858        ssize_t ret = -EINVAL;
 859
 860        if (count >= sizeof(write_buf))
 861                goto out;
 862        mutex_lock(&queue_io_mutex);
 863        ret = cache_do_downcall(write_buf, buf, count, cd);
 864        mutex_unlock(&queue_io_mutex);
 865out:
 866        return ret;
 867}
 868
 869static ssize_t cache_downcall(struct address_space *mapping,
 870                              const char __user *buf,
 871                              size_t count, struct cache_detail *cd)
 872{
 873        struct page *page;
 874        char *kaddr;
 875        ssize_t ret = -ENOMEM;
 876
 877        if (count >= PAGE_CACHE_SIZE)
 878                goto out_slow;
 879
 880        page = find_or_create_page(mapping, 0, GFP_KERNEL);
 881        if (!page)
 882                goto out_slow;
 883
 884        kaddr = kmap(page);
 885        ret = cache_do_downcall(kaddr, buf, count, cd);
 886        kunmap(page);
 887        unlock_page(page);
 888        page_cache_release(page);
 889        return ret;
 890out_slow:
 891        return cache_slow_downcall(buf, count, cd);
 892}
 893
 894static ssize_t cache_write(struct file *filp, const char __user *buf,
 895                           size_t count, loff_t *ppos,
 896                           struct cache_detail *cd)
 897{
 898        struct address_space *mapping = filp->f_mapping;
 899        struct inode *inode = file_inode(filp);
 900        ssize_t ret = -EINVAL;
 901
 902        if (!cd->cache_parse)
 903                goto out;
 904
 905        mutex_lock(&inode->i_mutex);
 906        ret = cache_downcall(mapping, buf, count, cd);
 907        mutex_unlock(&inode->i_mutex);
 908out:
 909        return ret;
 910}
 911
 912static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
 913
 914static unsigned int cache_poll(struct file *filp, poll_table *wait,
 915                               struct cache_detail *cd)
 916{
 917        unsigned int mask;
 918        struct cache_reader *rp = filp->private_data;
 919        struct cache_queue *cq;
 920
 921        poll_wait(filp, &queue_wait, wait);
 922
 923        /* alway allow write */
 924        mask = POLLOUT | POLLWRNORM;
 925
 926        if (!rp)
 927                return mask;
 928
 929        spin_lock(&queue_lock);
 930
 931        for (cq= &rp->q; &cq->list != &cd->queue;
 932             cq = list_entry(cq->list.next, struct cache_queue, list))
 933                if (!cq->reader) {
 934                        mask |= POLLIN | POLLRDNORM;
 935                        break;
 936                }
 937        spin_unlock(&queue_lock);
 938        return mask;
 939}
 940
 941static int cache_ioctl(struct inode *ino, struct file *filp,
 942                       unsigned int cmd, unsigned long arg,
 943                       struct cache_detail *cd)
 944{
 945        int len = 0;
 946        struct cache_reader *rp = filp->private_data;
 947        struct cache_queue *cq;
 948
 949        if (cmd != FIONREAD || !rp)
 950                return -EINVAL;
 951
 952        spin_lock(&queue_lock);
 953
 954        /* only find the length remaining in current request,
 955         * or the length of the next request
 956         */
 957        for (cq= &rp->q; &cq->list != &cd->queue;
 958             cq = list_entry(cq->list.next, struct cache_queue, list))
 959                if (!cq->reader) {
 960                        struct cache_request *cr =
 961                                container_of(cq, struct cache_request, q);
 962                        len = cr->len - rp->offset;
 963                        break;
 964                }
 965        spin_unlock(&queue_lock);
 966
 967        return put_user(len, (int __user *)arg);
 968}
 969
 970static int cache_open(struct inode *inode, struct file *filp,
 971                      struct cache_detail *cd)
 972{
 973        struct cache_reader *rp = NULL;
 974
 975        if (!cd || !try_module_get(cd->owner))
 976                return -EACCES;
 977        nonseekable_open(inode, filp);
 978        if (filp->f_mode & FMODE_READ) {
 979                rp = kmalloc(sizeof(*rp), GFP_KERNEL);
 980                if (!rp) {
 981                        module_put(cd->owner);
 982                        return -ENOMEM;
 983                }
 984                rp->offset = 0;
 985                rp->q.reader = 1;
 986                atomic_inc(&cd->readers);
 987                spin_lock(&queue_lock);
 988                list_add(&rp->q.list, &cd->queue);
 989                spin_unlock(&queue_lock);
 990        }
 991        filp->private_data = rp;
 992        return 0;
 993}
 994
 995static int cache_release(struct inode *inode, struct file *filp,
 996                         struct cache_detail *cd)
 997{
 998        struct cache_reader *rp = filp->private_data;
 999
1000        if (rp) {
1001                spin_lock(&queue_lock);
1002                if (rp->offset) {
1003                        struct cache_queue *cq;
1004                        for (cq= &rp->q; &cq->list != &cd->queue;
1005                             cq = list_entry(cq->list.next, struct cache_queue, list))
1006                                if (!cq->reader) {
1007                                        container_of(cq, struct cache_request, q)
1008                                                ->readers--;
1009                                        break;
1010                                }
1011                        rp->offset = 0;
1012                }
1013                list_del(&rp->q.list);
1014                spin_unlock(&queue_lock);
1015
1016                filp->private_data = NULL;
1017                kfree(rp);
1018
1019                cd->last_close = seconds_since_boot();
1020                atomic_dec(&cd->readers);
1021        }
1022        module_put(cd->owner);
1023        return 0;
1024}
1025
1026
1027
1028static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1029{
1030        struct cache_queue *cq, *tmp;
1031        struct cache_request *cr;
1032        struct list_head dequeued;
1033
1034        INIT_LIST_HEAD(&dequeued);
1035        spin_lock(&queue_lock);
1036        list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1037                if (!cq->reader) {
1038                        cr = container_of(cq, struct cache_request, q);
1039                        if (cr->item != ch)
1040                                continue;
1041                        if (test_bit(CACHE_PENDING, &ch->flags))
1042                                /* Lost a race and it is pending again */
1043                                break;
1044                        if (cr->readers != 0)
1045                                continue;
1046                        list_move(&cr->q.list, &dequeued);
1047                }
1048        spin_unlock(&queue_lock);
1049        while (!list_empty(&dequeued)) {
1050                cr = list_entry(dequeued.next, struct cache_request, q.list);
1051                list_del(&cr->q.list);
1052                cache_put(cr->item, detail);
1053                kfree(cr->buf);
1054                kfree(cr);
1055        }
1056}
1057
1058/*
1059 * Support routines for text-based upcalls.
1060 * Fields are separated by spaces.
1061 * Fields are either mangled to quote space tab newline slosh with slosh
1062 * or a hexified with a leading \x
1063 * Record is terminated with newline.
1064 *
1065 */
1066
1067void qword_add(char **bpp, int *lp, char *str)
1068{
1069        char *bp = *bpp;
1070        int len = *lp;
1071        int ret;
1072
1073        if (len < 0) return;
1074
1075        ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1076        if (ret >= len) {
1077                bp += len;
1078                len = -1;
1079        } else {
1080                bp += ret;
1081                len -= ret;
1082                *bp++ = ' ';
1083                len--;
1084        }
1085        *bpp = bp;
1086        *lp = len;
1087}
1088EXPORT_SYMBOL_GPL(qword_add);
1089
1090void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1091{
1092        char *bp = *bpp;
1093        int len = *lp;
1094
1095        if (len < 0) return;
1096
1097        if (len > 2) {
1098                *bp++ = '\\';
1099                *bp++ = 'x';
1100                len -= 2;
1101                while (blen && len >= 2) {
1102                        bp = hex_byte_pack(bp, *buf++);
1103                        len -= 2;
1104                        blen--;
1105                }
1106        }
1107        if (blen || len<1) len = -1;
1108        else {
1109                *bp++ = ' ';
1110                len--;
1111        }
1112        *bpp = bp;
1113        *lp = len;
1114}
1115EXPORT_SYMBOL_GPL(qword_addhex);
1116
1117static void warn_no_listener(struct cache_detail *detail)
1118{
1119        if (detail->last_warn != detail->last_close) {
1120                detail->last_warn = detail->last_close;
1121                if (detail->warn_no_listener)
1122                        detail->warn_no_listener(detail, detail->last_close != 0);
1123        }
1124}
1125
1126static bool cache_listeners_exist(struct cache_detail *detail)
1127{
1128        if (atomic_read(&detail->readers))
1129                return true;
1130        if (detail->last_close == 0)
1131                /* This cache was never opened */
1132                return false;
1133        if (detail->last_close < seconds_since_boot() - 30)
1134                /*
1135                 * We allow for the possibility that someone might
1136                 * restart a userspace daemon without restarting the
1137                 * server; but after 30 seconds, we give up.
1138                 */
1139                 return false;
1140        return true;
1141}
1142
1143/*
1144 * register an upcall request to user-space and queue it up for read() by the
1145 * upcall daemon.
1146 *
1147 * Each request is at most one page long.
1148 */
1149int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1150{
1151
1152        char *buf;
1153        struct cache_request *crq;
1154        int ret = 0;
1155
1156        if (!detail->cache_request)
1157                return -EINVAL;
1158
1159        if (!cache_listeners_exist(detail)) {
1160                warn_no_listener(detail);
1161                return -EINVAL;
1162        }
1163        if (test_bit(CACHE_CLEANED, &h->flags))
1164                /* Too late to make an upcall */
1165                return -EAGAIN;
1166
1167        buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1168        if (!buf)
1169                return -EAGAIN;
1170
1171        crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1172        if (!crq) {
1173                kfree(buf);
1174                return -EAGAIN;
1175        }
1176
1177        crq->q.reader = 0;
1178        crq->item = cache_get(h);
1179        crq->buf = buf;
1180        crq->len = 0;
1181        crq->readers = 0;
1182        spin_lock(&queue_lock);
1183        if (test_bit(CACHE_PENDING, &h->flags))
1184                list_add_tail(&crq->q.list, &detail->queue);
1185        else
1186                /* Lost a race, no longer PENDING, so don't enqueue */
1187                ret = -EAGAIN;
1188        spin_unlock(&queue_lock);
1189        wake_up(&queue_wait);
1190        if (ret == -EAGAIN) {
1191                kfree(buf);
1192                kfree(crq);
1193        }
1194        return ret;
1195}
1196EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1197
1198/*
1199 * parse a message from user-space and pass it
1200 * to an appropriate cache
1201 * Messages are, like requests, separated into fields by
1202 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1203 *
1204 * Message is
1205 *   reply cachename expiry key ... content....
1206 *
1207 * key and content are both parsed by cache
1208 */
1209
1210int qword_get(char **bpp, char *dest, int bufsize)
1211{
1212        /* return bytes copied, or -1 on error */
1213        char *bp = *bpp;
1214        int len = 0;
1215
1216        while (*bp == ' ') bp++;
1217
1218        if (bp[0] == '\\' && bp[1] == 'x') {
1219                /* HEX STRING */
1220                bp += 2;
1221                while (len < bufsize) {
1222                        int h, l;
1223
1224                        h = hex_to_bin(bp[0]);
1225                        if (h < 0)
1226                                break;
1227
1228                        l = hex_to_bin(bp[1]);
1229                        if (l < 0)
1230                                break;
1231
1232                        *dest++ = (h << 4) | l;
1233                        bp += 2;
1234                        len++;
1235                }
1236        } else {
1237                /* text with \nnn octal quoting */
1238                while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1239                        if (*bp == '\\' &&
1240                            isodigit(bp[1]) && (bp[1] <= '3') &&
1241                            isodigit(bp[2]) &&
1242                            isodigit(bp[3])) {
1243                                int byte = (*++bp -'0');
1244                                bp++;
1245                                byte = (byte << 3) | (*bp++ - '0');
1246                                byte = (byte << 3) | (*bp++ - '0');
1247                                *dest++ = byte;
1248                                len++;
1249                        } else {
1250                                *dest++ = *bp++;
1251                                len++;
1252                        }
1253                }
1254        }
1255
1256        if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1257                return -1;
1258        while (*bp == ' ') bp++;
1259        *bpp = bp;
1260        *dest = '\0';
1261        return len;
1262}
1263EXPORT_SYMBOL_GPL(qword_get);
1264
1265
1266/*
1267 * support /proc/sunrpc/cache/$CACHENAME/content
1268 * as a seqfile.
1269 * We call ->cache_show passing NULL for the item to
1270 * get a header, then pass each real item in the cache
1271 */
1272
1273struct handle {
1274        struct cache_detail *cd;
1275};
1276
1277static void *c_start(struct seq_file *m, loff_t *pos)
1278        __acquires(cd->hash_lock)
1279{
1280        loff_t n = *pos;
1281        unsigned int hash, entry;
1282        struct cache_head *ch;
1283        struct cache_detail *cd = ((struct handle*)m->private)->cd;
1284
1285
1286        read_lock(&cd->hash_lock);
1287        if (!n--)
1288                return SEQ_START_TOKEN;
1289        hash = n >> 32;
1290        entry = n & ((1LL<<32) - 1);
1291
1292        for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1293                if (!entry--)
1294                        return ch;
1295        n &= ~((1LL<<32) - 1);
1296        do {
1297                hash++;
1298                n += 1LL<<32;
1299        } while(hash < cd->hash_size &&
1300                cd->hash_table[hash]==NULL);
1301        if (hash >= cd->hash_size)
1302                return NULL;
1303        *pos = n+1;
1304        return cd->hash_table[hash];
1305}
1306
1307static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1308{
1309        struct cache_head *ch = p;
1310        int hash = (*pos >> 32);
1311        struct cache_detail *cd = ((struct handle*)m->private)->cd;
1312
1313        if (p == SEQ_START_TOKEN)
1314                hash = 0;
1315        else if (ch->next == NULL) {
1316                hash++;
1317                *pos += 1LL<<32;
1318        } else {
1319                ++*pos;
1320                return ch->next;
1321        }
1322        *pos &= ~((1LL<<32) - 1);
1323        while (hash < cd->hash_size &&
1324               cd->hash_table[hash] == NULL) {
1325                hash++;
1326                *pos += 1LL<<32;
1327        }
1328        if (hash >= cd->hash_size)
1329                return NULL;
1330        ++*pos;
1331        return cd->hash_table[hash];
1332}
1333
1334static void c_stop(struct seq_file *m, void *p)
1335        __releases(cd->hash_lock)
1336{
1337        struct cache_detail *cd = ((struct handle*)m->private)->cd;
1338        read_unlock(&cd->hash_lock);
1339}
1340
1341static int c_show(struct seq_file *m, void *p)
1342{
1343        struct cache_head *cp = p;
1344        struct cache_detail *cd = ((struct handle*)m->private)->cd;
1345
1346        if (p == SEQ_START_TOKEN)
1347                return cd->cache_show(m, cd, NULL);
1348
1349        ifdebug(CACHE)
1350                seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1351                           convert_to_wallclock(cp->expiry_time),
1352                           atomic_read(&cp->ref.refcount), cp->flags);
1353        cache_get(cp);
1354        if (cache_check(cd, cp, NULL))
1355                /* cache_check does a cache_put on failure */
1356                seq_printf(m, "# ");
1357        else {
1358                if (cache_is_expired(cd, cp))
1359                        seq_printf(m, "# ");
1360                cache_put(cp, cd);
1361        }
1362
1363        return cd->cache_show(m, cd, cp);
1364}
1365
1366static const struct seq_operations cache_content_op = {
1367        .start  = c_start,
1368        .next   = c_next,
1369        .stop   = c_stop,
1370        .show   = c_show,
1371};
1372
1373static int content_open(struct inode *inode, struct file *file,
1374                        struct cache_detail *cd)
1375{
1376        struct handle *han;
1377
1378        if (!cd || !try_module_get(cd->owner))
1379                return -EACCES;
1380        han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1381        if (han == NULL) {
1382                module_put(cd->owner);
1383                return -ENOMEM;
1384        }
1385
1386        han->cd = cd;
1387        return 0;
1388}
1389
1390static int content_release(struct inode *inode, struct file *file,
1391                struct cache_detail *cd)
1392{
1393        int ret = seq_release_private(inode, file);
1394        module_put(cd->owner);
1395        return ret;
1396}
1397
1398static int open_flush(struct inode *inode, struct file *file,
1399                        struct cache_detail *cd)
1400{
1401        if (!cd || !try_module_get(cd->owner))
1402                return -EACCES;
1403        return nonseekable_open(inode, file);
1404}
1405
1406static int release_flush(struct inode *inode, struct file *file,
1407                        struct cache_detail *cd)
1408{
1409        module_put(cd->owner);
1410        return 0;
1411}
1412
1413static ssize_t read_flush(struct file *file, char __user *buf,
1414                          size_t count, loff_t *ppos,
1415                          struct cache_detail *cd)
1416{
1417        char tbuf[22];
1418        unsigned long p = *ppos;
1419        size_t len;
1420
1421        snprintf(tbuf, sizeof(tbuf), "%lu\n", convert_to_wallclock(cd->flush_time));
1422        len = strlen(tbuf);
1423        if (p >= len)
1424                return 0;
1425        len -= p;
1426        if (len > count)
1427                len = count;
1428        if (copy_to_user(buf, (void*)(tbuf+p), len))
1429                return -EFAULT;
1430        *ppos += len;
1431        return len;
1432}
1433
1434static ssize_t write_flush(struct file *file, const char __user *buf,
1435                           size_t count, loff_t *ppos,
1436                           struct cache_detail *cd)
1437{
1438        char tbuf[20];
1439        char *bp, *ep;
1440
1441        if (*ppos || count > sizeof(tbuf)-1)
1442                return -EINVAL;
1443        if (copy_from_user(tbuf, buf, count))
1444                return -EFAULT;
1445        tbuf[count] = 0;
1446        simple_strtoul(tbuf, &ep, 0);
1447        if (*ep && *ep != '\n')
1448                return -EINVAL;
1449
1450        bp = tbuf;
1451        cd->flush_time = get_expiry(&bp);
1452        cd->nextcheck = seconds_since_boot();
1453        cache_flush();
1454
1455        *ppos += count;
1456        return count;
1457}
1458
1459static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1460                                 size_t count, loff_t *ppos)
1461{
1462        struct cache_detail *cd = PDE_DATA(file_inode(filp));
1463
1464        return cache_read(filp, buf, count, ppos, cd);
1465}
1466
1467static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1468                                  size_t count, loff_t *ppos)
1469{
1470        struct cache_detail *cd = PDE_DATA(file_inode(filp));
1471
1472        return cache_write(filp, buf, count, ppos, cd);
1473}
1474
1475static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1476{
1477        struct cache_detail *cd = PDE_DATA(file_inode(filp));
1478
1479        return cache_poll(filp, wait, cd);
1480}
1481
1482static long cache_ioctl_procfs(struct file *filp,
1483                               unsigned int cmd, unsigned long arg)
1484{
1485        struct inode *inode = file_inode(filp);
1486        struct cache_detail *cd = PDE_DATA(inode);
1487
1488        return cache_ioctl(inode, filp, cmd, arg, cd);
1489}
1490
1491static int cache_open_procfs(struct inode *inode, struct file *filp)
1492{
1493        struct cache_detail *cd = PDE_DATA(inode);
1494
1495        return cache_open(inode, filp, cd);
1496}
1497
1498static int cache_release_procfs(struct inode *inode, struct file *filp)
1499{
1500        struct cache_detail *cd = PDE_DATA(inode);
1501
1502        return cache_release(inode, filp, cd);
1503}
1504
1505static const struct file_operations cache_file_operations_procfs = {
1506        .owner          = THIS_MODULE,
1507        .llseek         = no_llseek,
1508        .read           = cache_read_procfs,
1509        .write          = cache_write_procfs,
1510        .poll           = cache_poll_procfs,
1511        .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */
1512        .open           = cache_open_procfs,
1513        .release        = cache_release_procfs,
1514};
1515
1516static int content_open_procfs(struct inode *inode, struct file *filp)
1517{
1518        struct cache_detail *cd = PDE_DATA(inode);
1519
1520        return content_open(inode, filp, cd);
1521}
1522
1523static int content_release_procfs(struct inode *inode, struct file *filp)
1524{
1525        struct cache_detail *cd = PDE_DATA(inode);
1526
1527        return content_release(inode, filp, cd);
1528}
1529
1530static const struct file_operations content_file_operations_procfs = {
1531        .open           = content_open_procfs,
1532        .read           = seq_read,
1533        .llseek         = seq_lseek,
1534        .release        = content_release_procfs,
1535};
1536
1537static int open_flush_procfs(struct inode *inode, struct file *filp)
1538{
1539        struct cache_detail *cd = PDE_DATA(inode);
1540
1541        return open_flush(inode, filp, cd);
1542}
1543
1544static int release_flush_procfs(struct inode *inode, struct file *filp)
1545{
1546        struct cache_detail *cd = PDE_DATA(inode);
1547
1548        return release_flush(inode, filp, cd);
1549}
1550
1551static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1552                            size_t count, loff_t *ppos)
1553{
1554        struct cache_detail *cd = PDE_DATA(file_inode(filp));
1555
1556        return read_flush(filp, buf, count, ppos, cd);
1557}
1558
1559static ssize_t write_flush_procfs(struct file *filp,
1560                                  const char __user *buf,
1561                                  size_t count, loff_t *ppos)
1562{
1563        struct cache_detail *cd = PDE_DATA(file_inode(filp));
1564
1565        return write_flush(filp, buf, count, ppos, cd);
1566}
1567
1568static const struct file_operations cache_flush_operations_procfs = {
1569        .open           = open_flush_procfs,
1570        .read           = read_flush_procfs,
1571        .write          = write_flush_procfs,
1572        .release        = release_flush_procfs,
1573        .llseek         = no_llseek,
1574};
1575
1576static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net)
1577{
1578        struct sunrpc_net *sn;
1579
1580        if (cd->u.procfs.proc_ent == NULL)
1581                return;
1582        if (cd->u.procfs.flush_ent)
1583                remove_proc_entry("flush", cd->u.procfs.proc_ent);
1584        if (cd->u.procfs.channel_ent)
1585                remove_proc_entry("channel", cd->u.procfs.proc_ent);
1586        if (cd->u.procfs.content_ent)
1587                remove_proc_entry("content", cd->u.procfs.proc_ent);
1588        cd->u.procfs.proc_ent = NULL;
1589        sn = net_generic(net, sunrpc_net_id);
1590        remove_proc_entry(cd->name, sn->proc_net_rpc);
1591}
1592
1593#ifdef CONFIG_PROC_FS
1594static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1595{
1596        struct proc_dir_entry *p;
1597        struct sunrpc_net *sn;
1598
1599        sn = net_generic(net, sunrpc_net_id);
1600        cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc);
1601        if (cd->u.procfs.proc_ent == NULL)
1602                goto out_nomem;
1603        cd->u.procfs.channel_ent = NULL;
1604        cd->u.procfs.content_ent = NULL;
1605
1606        p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1607                             cd->u.procfs.proc_ent,
1608                             &cache_flush_operations_procfs, cd);
1609        cd->u.procfs.flush_ent = p;
1610        if (p == NULL)
1611                goto out_nomem;
1612
1613        if (cd->cache_request || cd->cache_parse) {
1614                p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1615                                     cd->u.procfs.proc_ent,
1616                                     &cache_file_operations_procfs, cd);
1617                cd->u.procfs.channel_ent = p;
1618                if (p == NULL)
1619                        goto out_nomem;
1620        }
1621        if (cd->cache_show) {
1622                p = proc_create_data("content", S_IFREG|S_IRUSR,
1623                                cd->u.procfs.proc_ent,
1624                                &content_file_operations_procfs, cd);
1625                cd->u.procfs.content_ent = p;
1626                if (p == NULL)
1627                        goto out_nomem;
1628        }
1629        return 0;
1630out_nomem:
1631        remove_cache_proc_entries(cd, net);
1632        return -ENOMEM;
1633}
1634#else /* CONFIG_PROC_FS */
1635static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1636{
1637        return 0;
1638}
1639#endif
1640
1641void __init cache_initialize(void)
1642{
1643        INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1644}
1645
1646int cache_register_net(struct cache_detail *cd, struct net *net)
1647{
1648        int ret;
1649
1650        sunrpc_init_cache_detail(cd);
1651        ret = create_cache_proc_entries(cd, net);
1652        if (ret)
1653                sunrpc_destroy_cache_detail(cd);
1654        return ret;
1655}
1656EXPORT_SYMBOL_GPL(cache_register_net);
1657
1658void cache_unregister_net(struct cache_detail *cd, struct net *net)
1659{
1660        remove_cache_proc_entries(cd, net);
1661        sunrpc_destroy_cache_detail(cd);
1662}
1663EXPORT_SYMBOL_GPL(cache_unregister_net);
1664
1665struct cache_detail *cache_create_net(struct cache_detail *tmpl, struct net *net)
1666{
1667        struct cache_detail *cd;
1668
1669        cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1670        if (cd == NULL)
1671                return ERR_PTR(-ENOMEM);
1672
1673        cd->hash_table = kzalloc(cd->hash_size * sizeof(struct cache_head *),
1674                                 GFP_KERNEL);
1675        if (cd->hash_table == NULL) {
1676                kfree(cd);
1677                return ERR_PTR(-ENOMEM);
1678        }
1679        cd->net = net;
1680        return cd;
1681}
1682EXPORT_SYMBOL_GPL(cache_create_net);
1683
1684void cache_destroy_net(struct cache_detail *cd, struct net *net)
1685{
1686        kfree(cd->hash_table);
1687        kfree(cd);
1688}
1689EXPORT_SYMBOL_GPL(cache_destroy_net);
1690
1691static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1692                                 size_t count, loff_t *ppos)
1693{
1694        struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1695
1696        return cache_read(filp, buf, count, ppos, cd);
1697}
1698
1699static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1700                                  size_t count, loff_t *ppos)
1701{
1702        struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1703
1704        return cache_write(filp, buf, count, ppos, cd);
1705}
1706
1707static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1708{
1709        struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1710
1711        return cache_poll(filp, wait, cd);
1712}
1713
1714static long cache_ioctl_pipefs(struct file *filp,
1715                              unsigned int cmd, unsigned long arg)
1716{
1717        struct inode *inode = file_inode(filp);
1718        struct cache_detail *cd = RPC_I(inode)->private;
1719
1720        return cache_ioctl(inode, filp, cmd, arg, cd);
1721}
1722
1723static int cache_open_pipefs(struct inode *inode, struct file *filp)
1724{
1725        struct cache_detail *cd = RPC_I(inode)->private;
1726
1727        return cache_open(inode, filp, cd);
1728}
1729
1730static int cache_release_pipefs(struct inode *inode, struct file *filp)
1731{
1732        struct cache_detail *cd = RPC_I(inode)->private;
1733
1734        return cache_release(inode, filp, cd);
1735}
1736
1737const struct file_operations cache_file_operations_pipefs = {
1738        .owner          = THIS_MODULE,
1739        .llseek         = no_llseek,
1740        .read           = cache_read_pipefs,
1741        .write          = cache_write_pipefs,
1742        .poll           = cache_poll_pipefs,
1743        .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */
1744        .open           = cache_open_pipefs,
1745        .release        = cache_release_pipefs,
1746};
1747
1748static int content_open_pipefs(struct inode *inode, struct file *filp)
1749{
1750        struct cache_detail *cd = RPC_I(inode)->private;
1751
1752        return content_open(inode, filp, cd);
1753}
1754
1755static int content_release_pipefs(struct inode *inode, struct file *filp)
1756{
1757        struct cache_detail *cd = RPC_I(inode)->private;
1758
1759        return content_release(inode, filp, cd);
1760}
1761
1762const struct file_operations content_file_operations_pipefs = {
1763        .open           = content_open_pipefs,
1764        .read           = seq_read,
1765        .llseek         = seq_lseek,
1766        .release        = content_release_pipefs,
1767};
1768
1769static int open_flush_pipefs(struct inode *inode, struct file *filp)
1770{
1771        struct cache_detail *cd = RPC_I(inode)->private;
1772
1773        return open_flush(inode, filp, cd);
1774}
1775
1776static int release_flush_pipefs(struct inode *inode, struct file *filp)
1777{
1778        struct cache_detail *cd = RPC_I(inode)->private;
1779
1780        return release_flush(inode, filp, cd);
1781}
1782
1783static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1784                            size_t count, loff_t *ppos)
1785{
1786        struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1787
1788        return read_flush(filp, buf, count, ppos, cd);
1789}
1790
1791static ssize_t write_flush_pipefs(struct file *filp,
1792                                  const char __user *buf,
1793                                  size_t count, loff_t *ppos)
1794{
1795        struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1796
1797        return write_flush(filp, buf, count, ppos, cd);
1798}
1799
1800const struct file_operations cache_flush_operations_pipefs = {
1801        .open           = open_flush_pipefs,
1802        .read           = read_flush_pipefs,
1803        .write          = write_flush_pipefs,
1804        .release        = release_flush_pipefs,
1805        .llseek         = no_llseek,
1806};
1807
1808int sunrpc_cache_register_pipefs(struct dentry *parent,
1809                                 const char *name, umode_t umode,
1810                                 struct cache_detail *cd)
1811{
1812        struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1813        if (IS_ERR(dir))
1814                return PTR_ERR(dir);
1815        cd->u.pipefs.dir = dir;
1816        return 0;
1817}
1818EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1819
1820void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1821{
1822        rpc_remove_cache_dir(cd->u.pipefs.dir);
1823        cd->u.pipefs.dir = NULL;
1824}
1825EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1826
1827