linux/net/sunrpc/sched.c
<<
>>
Prefs
   1/*
   2 * linux/net/sunrpc/sched.c
   3 *
   4 * Scheduling for synchronous and asynchronous RPC requests.
   5 *
   6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
   7 *
   8 * TCP NFS related read + write fixes
   9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
  10 */
  11
  12#include <linux/module.h>
  13
  14#include <linux/sched.h>
  15#include <linux/interrupt.h>
  16#include <linux/slab.h>
  17#include <linux/mempool.h>
  18#include <linux/smp.h>
  19#include <linux/spinlock.h>
  20#include <linux/mutex.h>
  21#include <linux/freezer.h>
  22
  23#include <linux/sunrpc/clnt.h>
  24
  25#include "sunrpc.h"
  26
  27#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
  28#define RPCDBG_FACILITY         RPCDBG_SCHED
  29#endif
  30
  31#define CREATE_TRACE_POINTS
  32#include <trace/events/sunrpc.h>
  33
  34/*
  35 * RPC slabs and memory pools
  36 */
  37#define RPC_BUFFER_MAXSIZE      (2048)
  38#define RPC_BUFFER_POOLSIZE     (8)
  39#define RPC_TASK_POOLSIZE       (8)
  40static struct kmem_cache        *rpc_task_slabp __read_mostly;
  41static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
  42static mempool_t        *rpc_task_mempool __read_mostly;
  43static mempool_t        *rpc_buffer_mempool __read_mostly;
  44
  45static void                     rpc_async_schedule(struct work_struct *);
  46static void                      rpc_release_task(struct rpc_task *task);
  47static void __rpc_queue_timer_fn(unsigned long ptr);
  48
  49/*
  50 * RPC tasks sit here while waiting for conditions to improve.
  51 */
  52static struct rpc_wait_queue delay_queue;
  53
  54/*
  55 * rpciod-related stuff
  56 */
  57struct workqueue_struct *rpciod_workqueue;
  58
  59/*
  60 * Disable the timer for a given RPC task. Should be called with
  61 * queue->lock and bh_disabled in order to avoid races within
  62 * rpc_run_timer().
  63 */
  64static void
  65__rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  66{
  67        if (task->tk_timeout == 0)
  68                return;
  69        dprintk("RPC: %5u disabling timer\n", task->tk_pid);
  70        task->tk_timeout = 0;
  71        list_del(&task->u.tk_wait.timer_list);
  72        if (list_empty(&queue->timer_list.list))
  73                del_timer(&queue->timer_list.timer);
  74}
  75
  76static void
  77rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
  78{
  79        queue->timer_list.expires = expires;
  80        mod_timer(&queue->timer_list.timer, expires);
  81}
  82
  83/*
  84 * Set up a timer for the current task.
  85 */
  86static void
  87__rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  88{
  89        if (!task->tk_timeout)
  90                return;
  91
  92        dprintk("RPC: %5u setting alarm for %u ms\n",
  93                task->tk_pid, jiffies_to_msecs(task->tk_timeout));
  94
  95        task->u.tk_wait.expires = jiffies + task->tk_timeout;
  96        if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
  97                rpc_set_queue_timer(queue, task->u.tk_wait.expires);
  98        list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
  99}
 100
 101static void rpc_rotate_queue_owner(struct rpc_wait_queue *queue)
 102{
 103        struct list_head *q = &queue->tasks[queue->priority];
 104        struct rpc_task *task;
 105
 106        if (!list_empty(q)) {
 107                task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
 108                if (task->tk_owner == queue->owner)
 109                        list_move_tail(&task->u.tk_wait.list, q);
 110        }
 111}
 112
 113static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
 114{
 115        if (queue->priority != priority) {
 116                /* Fairness: rotate the list when changing priority */
 117                rpc_rotate_queue_owner(queue);
 118                queue->priority = priority;
 119        }
 120}
 121
 122static void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
 123{
 124        queue->owner = pid;
 125        queue->nr = RPC_BATCH_COUNT;
 126}
 127
 128static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
 129{
 130        rpc_set_waitqueue_priority(queue, queue->maxpriority);
 131        rpc_set_waitqueue_owner(queue, 0);
 132}
 133
 134/*
 135 * Add new request to a priority queue.
 136 */
 137static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
 138                struct rpc_task *task,
 139                unsigned char queue_priority)
 140{
 141        struct list_head *q;
 142        struct rpc_task *t;
 143
 144        INIT_LIST_HEAD(&task->u.tk_wait.links);
 145        if (unlikely(queue_priority > queue->maxpriority))
 146                queue_priority = queue->maxpriority;
 147        if (queue_priority > queue->priority)
 148                rpc_set_waitqueue_priority(queue, queue_priority);
 149        q = &queue->tasks[queue_priority];
 150        list_for_each_entry(t, q, u.tk_wait.list) {
 151                if (t->tk_owner == task->tk_owner) {
 152                        list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
 153                        return;
 154                }
 155        }
 156        list_add_tail(&task->u.tk_wait.list, q);
 157}
 158
 159/*
 160 * Add new request to wait queue.
 161 *
 162 * Swapper tasks always get inserted at the head of the queue.
 163 * This should avoid many nasty memory deadlocks and hopefully
 164 * improve overall performance.
 165 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
 166 */
 167static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
 168                struct rpc_task *task,
 169                unsigned char queue_priority)
 170{
 171        WARN_ON_ONCE(RPC_IS_QUEUED(task));
 172        if (RPC_IS_QUEUED(task))
 173                return;
 174
 175        if (RPC_IS_PRIORITY(queue))
 176                __rpc_add_wait_queue_priority(queue, task, queue_priority);
 177        else if (RPC_IS_SWAPPER(task))
 178                list_add(&task->u.tk_wait.list, &queue->tasks[0]);
 179        else
 180                list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
 181        task->tk_waitqueue = queue;
 182        queue->qlen++;
 183        /* barrier matches the read in rpc_wake_up_task_queue_locked() */
 184        smp_wmb();
 185        rpc_set_queued(task);
 186
 187        dprintk("RPC: %5u added to queue %p \"%s\"\n",
 188                        task->tk_pid, queue, rpc_qname(queue));
 189}
 190
 191/*
 192 * Remove request from a priority queue.
 193 */
 194static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
 195{
 196        struct rpc_task *t;
 197
 198        if (!list_empty(&task->u.tk_wait.links)) {
 199                t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
 200                list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
 201                list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
 202        }
 203}
 204
 205/*
 206 * Remove request from queue.
 207 * Note: must be called with spin lock held.
 208 */
 209static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
 210{
 211        __rpc_disable_timer(queue, task);
 212        if (RPC_IS_PRIORITY(queue))
 213                __rpc_remove_wait_queue_priority(task);
 214        list_del(&task->u.tk_wait.list);
 215        queue->qlen--;
 216        dprintk("RPC: %5u removed from queue %p \"%s\"\n",
 217                        task->tk_pid, queue, rpc_qname(queue));
 218}
 219
 220static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
 221{
 222        int i;
 223
 224        spin_lock_init(&queue->lock);
 225        for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
 226                INIT_LIST_HEAD(&queue->tasks[i]);
 227        queue->maxpriority = nr_queues - 1;
 228        rpc_reset_waitqueue_priority(queue);
 229        queue->qlen = 0;
 230        setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
 231        INIT_LIST_HEAD(&queue->timer_list.list);
 232        rpc_assign_waitqueue_name(queue, qname);
 233}
 234
 235void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 236{
 237        __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
 238}
 239EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
 240
 241void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 242{
 243        __rpc_init_priority_wait_queue(queue, qname, 1);
 244}
 245EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
 246
 247void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
 248{
 249        del_timer_sync(&queue->timer_list.timer);
 250}
 251EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
 252
 253static int rpc_wait_bit_killable(struct wait_bit_key *key)
 254{
 255        if (fatal_signal_pending(current))
 256                return -ERESTARTSYS;
 257        freezable_schedule_unsafe();
 258        return 0;
 259}
 260
 261#if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
 262static void rpc_task_set_debuginfo(struct rpc_task *task)
 263{
 264        static atomic_t rpc_pid;
 265
 266        task->tk_pid = atomic_inc_return(&rpc_pid);
 267}
 268#else
 269static inline void rpc_task_set_debuginfo(struct rpc_task *task)
 270{
 271}
 272#endif
 273
 274static void rpc_set_active(struct rpc_task *task)
 275{
 276        trace_rpc_task_begin(task->tk_client, task, NULL);
 277
 278        rpc_task_set_debuginfo(task);
 279        set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 280}
 281
 282/*
 283 * Mark an RPC call as having completed by clearing the 'active' bit
 284 * and then waking up all tasks that were sleeping.
 285 */
 286static int rpc_complete_task(struct rpc_task *task)
 287{
 288        void *m = &task->tk_runstate;
 289        wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
 290        struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
 291        unsigned long flags;
 292        int ret;
 293
 294        trace_rpc_task_complete(task->tk_client, task, NULL);
 295
 296        spin_lock_irqsave(&wq->lock, flags);
 297        clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 298        ret = atomic_dec_and_test(&task->tk_count);
 299        if (waitqueue_active(wq))
 300                __wake_up_locked_key(wq, TASK_NORMAL, &k);
 301        spin_unlock_irqrestore(&wq->lock, flags);
 302        return ret;
 303}
 304
 305/*
 306 * Allow callers to wait for completion of an RPC call
 307 *
 308 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
 309 * to enforce taking of the wq->lock and hence avoid races with
 310 * rpc_complete_task().
 311 */
 312int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
 313{
 314        if (action == NULL)
 315                action = rpc_wait_bit_killable;
 316        return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
 317                        action, TASK_KILLABLE);
 318}
 319EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
 320
 321/*
 322 * Make an RPC task runnable.
 323 *
 324 * Note: If the task is ASYNC, and is being made runnable after sitting on an
 325 * rpc_wait_queue, this must be called with the queue spinlock held to protect
 326 * the wait queue operation.
 327 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
 328 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
 329 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
 330 * the RPC_TASK_RUNNING flag.
 331 */
 332static void rpc_make_runnable(struct rpc_task *task)
 333{
 334        bool need_wakeup = !rpc_test_and_set_running(task);
 335
 336        rpc_clear_queued(task);
 337        if (!need_wakeup)
 338                return;
 339        if (RPC_IS_ASYNC(task)) {
 340                INIT_WORK(&task->u.tk_work, rpc_async_schedule);
 341                queue_work(rpciod_workqueue, &task->u.tk_work);
 342        } else
 343                wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
 344}
 345
 346/*
 347 * Prepare for sleeping on a wait queue.
 348 * By always appending tasks to the list we ensure FIFO behavior.
 349 * NB: An RPC task will only receive interrupt-driven events as long
 350 * as it's on a wait queue.
 351 */
 352static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
 353                struct rpc_task *task,
 354                rpc_action action,
 355                unsigned char queue_priority)
 356{
 357        dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
 358                        task->tk_pid, rpc_qname(q), jiffies);
 359
 360        trace_rpc_task_sleep(task->tk_client, task, q);
 361
 362        __rpc_add_wait_queue(q, task, queue_priority);
 363
 364        WARN_ON_ONCE(task->tk_callback != NULL);
 365        task->tk_callback = action;
 366        __rpc_add_timer(q, task);
 367}
 368
 369void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
 370                                rpc_action action)
 371{
 372        /* We shouldn't ever put an inactive task to sleep */
 373        WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
 374        if (!RPC_IS_ACTIVATED(task)) {
 375                task->tk_status = -EIO;
 376                rpc_put_task_async(task);
 377                return;
 378        }
 379
 380        /*
 381         * Protect the queue operations.
 382         */
 383        spin_lock_bh(&q->lock);
 384        __rpc_sleep_on_priority(q, task, action, task->tk_priority);
 385        spin_unlock_bh(&q->lock);
 386}
 387EXPORT_SYMBOL_GPL(rpc_sleep_on);
 388
 389void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
 390                rpc_action action, int priority)
 391{
 392        /* We shouldn't ever put an inactive task to sleep */
 393        WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
 394        if (!RPC_IS_ACTIVATED(task)) {
 395                task->tk_status = -EIO;
 396                rpc_put_task_async(task);
 397                return;
 398        }
 399
 400        /*
 401         * Protect the queue operations.
 402         */
 403        spin_lock_bh(&q->lock);
 404        __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
 405        spin_unlock_bh(&q->lock);
 406}
 407EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
 408
 409/**
 410 * __rpc_do_wake_up_task - wake up a single rpc_task
 411 * @queue: wait queue
 412 * @task: task to be woken up
 413 *
 414 * Caller must hold queue->lock, and have cleared the task queued flag.
 415 */
 416static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
 417{
 418        dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
 419                        task->tk_pid, jiffies);
 420
 421        /* Has the task been executed yet? If not, we cannot wake it up! */
 422        if (!RPC_IS_ACTIVATED(task)) {
 423                printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
 424                return;
 425        }
 426
 427        trace_rpc_task_wakeup(task->tk_client, task, queue);
 428
 429        __rpc_remove_wait_queue(queue, task);
 430
 431        rpc_make_runnable(task);
 432
 433        dprintk("RPC:       __rpc_wake_up_task done\n");
 434}
 435
 436/*
 437 * Wake up a queued task while the queue lock is being held
 438 */
 439static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
 440{
 441        if (RPC_IS_QUEUED(task)) {
 442                smp_rmb();
 443                if (task->tk_waitqueue == queue)
 444                        __rpc_do_wake_up_task(queue, task);
 445        }
 446}
 447
 448/*
 449 * Wake up a task on a specific queue
 450 */
 451void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
 452{
 453        spin_lock_bh(&queue->lock);
 454        rpc_wake_up_task_queue_locked(queue, task);
 455        spin_unlock_bh(&queue->lock);
 456}
 457EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
 458
 459/*
 460 * Wake up the next task on a priority queue.
 461 */
 462static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
 463{
 464        struct list_head *q;
 465        struct rpc_task *task;
 466
 467        /*
 468         * Service a batch of tasks from a single owner.
 469         */
 470        q = &queue->tasks[queue->priority];
 471        if (!list_empty(q)) {
 472                task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
 473                if (queue->owner == task->tk_owner) {
 474                        if (--queue->nr)
 475                                goto out;
 476                        list_move_tail(&task->u.tk_wait.list, q);
 477                }
 478                /*
 479                 * Check if we need to switch queues.
 480                 */
 481                goto new_owner;
 482        }
 483
 484        /*
 485         * Service the next queue.
 486         */
 487        do {
 488                if (q == &queue->tasks[0])
 489                        q = &queue->tasks[queue->maxpriority];
 490                else
 491                        q = q - 1;
 492                if (!list_empty(q)) {
 493                        task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
 494                        goto new_queue;
 495                }
 496        } while (q != &queue->tasks[queue->priority]);
 497
 498        rpc_reset_waitqueue_priority(queue);
 499        return NULL;
 500
 501new_queue:
 502        rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
 503new_owner:
 504        rpc_set_waitqueue_owner(queue, task->tk_owner);
 505out:
 506        return task;
 507}
 508
 509static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
 510{
 511        if (RPC_IS_PRIORITY(queue))
 512                return __rpc_find_next_queued_priority(queue);
 513        if (!list_empty(&queue->tasks[0]))
 514                return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
 515        return NULL;
 516}
 517
 518/*
 519 * Wake up the first task on the wait queue.
 520 */
 521struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
 522                bool (*func)(struct rpc_task *, void *), void *data)
 523{
 524        struct rpc_task *task = NULL;
 525
 526        dprintk("RPC:       wake_up_first(%p \"%s\")\n",
 527                        queue, rpc_qname(queue));
 528        spin_lock_bh(&queue->lock);
 529        task = __rpc_find_next_queued(queue);
 530        if (task != NULL) {
 531                if (func(task, data))
 532                        rpc_wake_up_task_queue_locked(queue, task);
 533                else
 534                        task = NULL;
 535        }
 536        spin_unlock_bh(&queue->lock);
 537
 538        return task;
 539}
 540EXPORT_SYMBOL_GPL(rpc_wake_up_first);
 541
 542static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
 543{
 544        return true;
 545}
 546
 547/*
 548 * Wake up the next task on the wait queue.
 549*/
 550struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
 551{
 552        return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
 553}
 554EXPORT_SYMBOL_GPL(rpc_wake_up_next);
 555
 556/**
 557 * rpc_wake_up - wake up all rpc_tasks
 558 * @queue: rpc_wait_queue on which the tasks are sleeping
 559 *
 560 * Grabs queue->lock
 561 */
 562void rpc_wake_up(struct rpc_wait_queue *queue)
 563{
 564        struct list_head *head;
 565
 566        spin_lock_bh(&queue->lock);
 567        head = &queue->tasks[queue->maxpriority];
 568        for (;;) {
 569                while (!list_empty(head)) {
 570                        struct rpc_task *task;
 571                        task = list_first_entry(head,
 572                                        struct rpc_task,
 573                                        u.tk_wait.list);
 574                        rpc_wake_up_task_queue_locked(queue, task);
 575                }
 576                if (head == &queue->tasks[0])
 577                        break;
 578                head--;
 579        }
 580        spin_unlock_bh(&queue->lock);
 581}
 582EXPORT_SYMBOL_GPL(rpc_wake_up);
 583
 584/**
 585 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
 586 * @queue: rpc_wait_queue on which the tasks are sleeping
 587 * @status: status value to set
 588 *
 589 * Grabs queue->lock
 590 */
 591void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
 592{
 593        struct list_head *head;
 594
 595        spin_lock_bh(&queue->lock);
 596        head = &queue->tasks[queue->maxpriority];
 597        for (;;) {
 598                while (!list_empty(head)) {
 599                        struct rpc_task *task;
 600                        task = list_first_entry(head,
 601                                        struct rpc_task,
 602                                        u.tk_wait.list);
 603                        task->tk_status = status;
 604                        rpc_wake_up_task_queue_locked(queue, task);
 605                }
 606                if (head == &queue->tasks[0])
 607                        break;
 608                head--;
 609        }
 610        spin_unlock_bh(&queue->lock);
 611}
 612EXPORT_SYMBOL_GPL(rpc_wake_up_status);
 613
 614static void __rpc_queue_timer_fn(unsigned long ptr)
 615{
 616        struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
 617        struct rpc_task *task, *n;
 618        unsigned long expires, now, timeo;
 619
 620        spin_lock(&queue->lock);
 621        expires = now = jiffies;
 622        list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
 623                timeo = task->u.tk_wait.expires;
 624                if (time_after_eq(now, timeo)) {
 625                        dprintk("RPC: %5u timeout\n", task->tk_pid);
 626                        task->tk_status = -ETIMEDOUT;
 627                        rpc_wake_up_task_queue_locked(queue, task);
 628                        continue;
 629                }
 630                if (expires == now || time_after(expires, timeo))
 631                        expires = timeo;
 632        }
 633        if (!list_empty(&queue->timer_list.list))
 634                rpc_set_queue_timer(queue, expires);
 635        spin_unlock(&queue->lock);
 636}
 637
 638static void __rpc_atrun(struct rpc_task *task)
 639{
 640        if (task->tk_status == -ETIMEDOUT)
 641                task->tk_status = 0;
 642}
 643
 644/*
 645 * Run a task at a later time
 646 */
 647void rpc_delay(struct rpc_task *task, unsigned long delay)
 648{
 649        task->tk_timeout = delay;
 650        rpc_sleep_on(&delay_queue, task, __rpc_atrun);
 651}
 652EXPORT_SYMBOL_GPL(rpc_delay);
 653
 654/*
 655 * Helper to call task->tk_ops->rpc_call_prepare
 656 */
 657void rpc_prepare_task(struct rpc_task *task)
 658{
 659        task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
 660}
 661
 662static void
 663rpc_init_task_statistics(struct rpc_task *task)
 664{
 665        /* Initialize retry counters */
 666        task->tk_garb_retry = 2;
 667        task->tk_cred_retry = 2;
 668        task->tk_rebind_retry = 2;
 669
 670        /* starting timestamp */
 671        task->tk_start = ktime_get();
 672}
 673
 674static void
 675rpc_reset_task_statistics(struct rpc_task *task)
 676{
 677        task->tk_timeouts = 0;
 678        task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
 679
 680        rpc_init_task_statistics(task);
 681}
 682
 683/*
 684 * Helper that calls task->tk_ops->rpc_call_done if it exists
 685 */
 686void rpc_exit_task(struct rpc_task *task)
 687{
 688        task->tk_action = NULL;
 689        if (task->tk_ops->rpc_call_done != NULL) {
 690                task->tk_ops->rpc_call_done(task, task->tk_calldata);
 691                if (task->tk_action != NULL) {
 692                        WARN_ON(RPC_ASSASSINATED(task));
 693                        /* Always release the RPC slot and buffer memory */
 694                        xprt_release(task);
 695                        rpc_reset_task_statistics(task);
 696                }
 697        }
 698}
 699
 700void rpc_exit(struct rpc_task *task, int status)
 701{
 702        task->tk_status = status;
 703        task->tk_action = rpc_exit_task;
 704        if (RPC_IS_QUEUED(task))
 705                rpc_wake_up_queued_task(task->tk_waitqueue, task);
 706}
 707EXPORT_SYMBOL_GPL(rpc_exit);
 708
 709void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
 710{
 711        if (ops->rpc_release != NULL)
 712                ops->rpc_release(calldata);
 713}
 714
 715/*
 716 * This is the RPC `scheduler' (or rather, the finite state machine).
 717 */
 718static void __rpc_execute(struct rpc_task *task)
 719{
 720        struct rpc_wait_queue *queue;
 721        int task_is_async = RPC_IS_ASYNC(task);
 722        int status = 0;
 723
 724        dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
 725                        task->tk_pid, task->tk_flags);
 726
 727        WARN_ON_ONCE(RPC_IS_QUEUED(task));
 728        if (RPC_IS_QUEUED(task))
 729                return;
 730
 731        for (;;) {
 732                void (*do_action)(struct rpc_task *);
 733
 734                /*
 735                 * Execute any pending callback first.
 736                 */
 737                do_action = task->tk_callback;
 738                task->tk_callback = NULL;
 739                if (do_action == NULL) {
 740                        /*
 741                         * Perform the next FSM step.
 742                         * tk_action may be NULL if the task has been killed.
 743                         * In particular, note that rpc_killall_tasks may
 744                         * do this at any time, so beware when dereferencing.
 745                         */
 746                        do_action = task->tk_action;
 747                        if (do_action == NULL)
 748                                break;
 749                }
 750                trace_rpc_task_run_action(task->tk_client, task, task->tk_action);
 751                do_action(task);
 752
 753                /*
 754                 * Lockless check for whether task is sleeping or not.
 755                 */
 756                if (!RPC_IS_QUEUED(task))
 757                        continue;
 758                /*
 759                 * The queue->lock protects against races with
 760                 * rpc_make_runnable().
 761                 *
 762                 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
 763                 * rpc_task, rpc_make_runnable() can assign it to a
 764                 * different workqueue. We therefore cannot assume that the
 765                 * rpc_task pointer may still be dereferenced.
 766                 */
 767                queue = task->tk_waitqueue;
 768                spin_lock_bh(&queue->lock);
 769                if (!RPC_IS_QUEUED(task)) {
 770                        spin_unlock_bh(&queue->lock);
 771                        continue;
 772                }
 773                rpc_clear_running(task);
 774                spin_unlock_bh(&queue->lock);
 775                if (task_is_async)
 776                        return;
 777
 778                /* sync task: sleep here */
 779                dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
 780                status = out_of_line_wait_on_bit(&task->tk_runstate,
 781                                RPC_TASK_QUEUED, rpc_wait_bit_killable,
 782                                TASK_KILLABLE);
 783                if (status == -ERESTARTSYS) {
 784                        /*
 785                         * When a sync task receives a signal, it exits with
 786                         * -ERESTARTSYS. In order to catch any callbacks that
 787                         * clean up after sleeping on some queue, we don't
 788                         * break the loop here, but go around once more.
 789                         */
 790                        dprintk("RPC: %5u got signal\n", task->tk_pid);
 791                        task->tk_flags |= RPC_TASK_KILLED;
 792                        rpc_exit(task, -ERESTARTSYS);
 793                }
 794                dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
 795        }
 796
 797        dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
 798                        task->tk_status);
 799        /* Release all resources associated with the task */
 800        rpc_release_task(task);
 801}
 802
 803/*
 804 * User-visible entry point to the scheduler.
 805 *
 806 * This may be called recursively if e.g. an async NFS task updates
 807 * the attributes and finds that dirty pages must be flushed.
 808 * NOTE: Upon exit of this function the task is guaranteed to be
 809 *       released. In particular note that tk_release() will have
 810 *       been called, so your task memory may have been freed.
 811 */
 812void rpc_execute(struct rpc_task *task)
 813{
 814        bool is_async = RPC_IS_ASYNC(task);
 815
 816        rpc_set_active(task);
 817        rpc_make_runnable(task);
 818        if (!is_async)
 819                __rpc_execute(task);
 820}
 821
 822static void rpc_async_schedule(struct work_struct *work)
 823{
 824        __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
 825}
 826
 827/**
 828 * rpc_malloc - allocate an RPC buffer
 829 * @task: RPC task that will use this buffer
 830 * @size: requested byte size
 831 *
 832 * To prevent rpciod from hanging, this allocator never sleeps,
 833 * returning NULL and suppressing warning if the request cannot be serviced
 834 * immediately.
 835 * The caller can arrange to sleep in a way that is safe for rpciod.
 836 *
 837 * Most requests are 'small' (under 2KiB) and can be serviced from a
 838 * mempool, ensuring that NFS reads and writes can always proceed,
 839 * and that there is good locality of reference for these buffers.
 840 *
 841 * In order to avoid memory starvation triggering more writebacks of
 842 * NFS requests, we avoid using GFP_KERNEL.
 843 */
 844void *rpc_malloc(struct rpc_task *task, size_t size)
 845{
 846        struct rpc_buffer *buf;
 847        gfp_t gfp = GFP_NOIO | __GFP_NOWARN;
 848
 849        if (RPC_IS_SWAPPER(task))
 850                gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
 851
 852        size += sizeof(struct rpc_buffer);
 853        if (size <= RPC_BUFFER_MAXSIZE)
 854                buf = mempool_alloc(rpc_buffer_mempool, gfp);
 855        else
 856                buf = kmalloc(size, gfp);
 857
 858        if (!buf)
 859                return NULL;
 860
 861        buf->len = size;
 862        dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
 863                        task->tk_pid, size, buf);
 864        return &buf->data;
 865}
 866EXPORT_SYMBOL_GPL(rpc_malloc);
 867
 868/**
 869 * rpc_free - free buffer allocated via rpc_malloc
 870 * @buffer: buffer to free
 871 *
 872 */
 873void rpc_free(void *buffer)
 874{
 875        size_t size;
 876        struct rpc_buffer *buf;
 877
 878        if (!buffer)
 879                return;
 880
 881        buf = container_of(buffer, struct rpc_buffer, data);
 882        size = buf->len;
 883
 884        dprintk("RPC:       freeing buffer of size %zu at %p\n",
 885                        size, buf);
 886
 887        if (size <= RPC_BUFFER_MAXSIZE)
 888                mempool_free(buf, rpc_buffer_mempool);
 889        else
 890                kfree(buf);
 891}
 892EXPORT_SYMBOL_GPL(rpc_free);
 893
 894/*
 895 * Creation and deletion of RPC task structures
 896 */
 897static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
 898{
 899        memset(task, 0, sizeof(*task));
 900        atomic_set(&task->tk_count, 1);
 901        task->tk_flags  = task_setup_data->flags;
 902        task->tk_ops = task_setup_data->callback_ops;
 903        task->tk_calldata = task_setup_data->callback_data;
 904        INIT_LIST_HEAD(&task->tk_task);
 905
 906        task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
 907        task->tk_owner = current->tgid;
 908
 909        /* Initialize workqueue for async tasks */
 910        task->tk_workqueue = task_setup_data->workqueue;
 911
 912        if (task->tk_ops->rpc_call_prepare != NULL)
 913                task->tk_action = rpc_prepare_task;
 914
 915        rpc_init_task_statistics(task);
 916
 917        dprintk("RPC:       new task initialized, procpid %u\n",
 918                                task_pid_nr(current));
 919}
 920
 921static struct rpc_task *
 922rpc_alloc_task(void)
 923{
 924        return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO);
 925}
 926
 927/*
 928 * Create a new task for the specified client.
 929 */
 930struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
 931{
 932        struct rpc_task *task = setup_data->task;
 933        unsigned short flags = 0;
 934
 935        if (task == NULL) {
 936                task = rpc_alloc_task();
 937                if (task == NULL) {
 938                        rpc_release_calldata(setup_data->callback_ops,
 939                                        setup_data->callback_data);
 940                        return ERR_PTR(-ENOMEM);
 941                }
 942                flags = RPC_TASK_DYNAMIC;
 943        }
 944
 945        rpc_init_task(task, setup_data);
 946        task->tk_flags |= flags;
 947        dprintk("RPC:       allocated task %p\n", task);
 948        return task;
 949}
 950
 951/*
 952 * rpc_free_task - release rpc task and perform cleanups
 953 *
 954 * Note that we free up the rpc_task _after_ rpc_release_calldata()
 955 * in order to work around a workqueue dependency issue.
 956 *
 957 * Tejun Heo states:
 958 * "Workqueue currently considers two work items to be the same if they're
 959 * on the same address and won't execute them concurrently - ie. it
 960 * makes a work item which is queued again while being executed wait
 961 * for the previous execution to complete.
 962 *
 963 * If a work function frees the work item, and then waits for an event
 964 * which should be performed by another work item and *that* work item
 965 * recycles the freed work item, it can create a false dependency loop.
 966 * There really is no reliable way to detect this short of verifying
 967 * every memory free."
 968 *
 969 */
 970static void rpc_free_task(struct rpc_task *task)
 971{
 972        unsigned short tk_flags = task->tk_flags;
 973
 974        rpc_release_calldata(task->tk_ops, task->tk_calldata);
 975
 976        if (tk_flags & RPC_TASK_DYNAMIC) {
 977                dprintk("RPC: %5u freeing task\n", task->tk_pid);
 978                mempool_free(task, rpc_task_mempool);
 979        }
 980}
 981
 982static void rpc_async_release(struct work_struct *work)
 983{
 984        rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
 985}
 986
 987static void rpc_release_resources_task(struct rpc_task *task)
 988{
 989        xprt_release(task);
 990        if (task->tk_msg.rpc_cred) {
 991                put_rpccred(task->tk_msg.rpc_cred);
 992                task->tk_msg.rpc_cred = NULL;
 993        }
 994        rpc_task_release_client(task);
 995}
 996
 997static void rpc_final_put_task(struct rpc_task *task,
 998                struct workqueue_struct *q)
 999{
1000        if (q != NULL) {
1001                INIT_WORK(&task->u.tk_work, rpc_async_release);
1002                queue_work(q, &task->u.tk_work);
1003        } else
1004                rpc_free_task(task);
1005}
1006
1007static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1008{
1009        if (atomic_dec_and_test(&task->tk_count)) {
1010                rpc_release_resources_task(task);
1011                rpc_final_put_task(task, q);
1012        }
1013}
1014
1015void rpc_put_task(struct rpc_task *task)
1016{
1017        rpc_do_put_task(task, NULL);
1018}
1019EXPORT_SYMBOL_GPL(rpc_put_task);
1020
1021void rpc_put_task_async(struct rpc_task *task)
1022{
1023        rpc_do_put_task(task, task->tk_workqueue);
1024}
1025EXPORT_SYMBOL_GPL(rpc_put_task_async);
1026
1027static void rpc_release_task(struct rpc_task *task)
1028{
1029        dprintk("RPC: %5u release task\n", task->tk_pid);
1030
1031        WARN_ON_ONCE(RPC_IS_QUEUED(task));
1032
1033        rpc_release_resources_task(task);
1034
1035        /*
1036         * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1037         * so it should be safe to use task->tk_count as a test for whether
1038         * or not any other processes still hold references to our rpc_task.
1039         */
1040        if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1041                /* Wake up anyone who may be waiting for task completion */
1042                if (!rpc_complete_task(task))
1043                        return;
1044        } else {
1045                if (!atomic_dec_and_test(&task->tk_count))
1046                        return;
1047        }
1048        rpc_final_put_task(task, task->tk_workqueue);
1049}
1050
1051int rpciod_up(void)
1052{
1053        return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1054}
1055
1056void rpciod_down(void)
1057{
1058        module_put(THIS_MODULE);
1059}
1060
1061/*
1062 * Start up the rpciod workqueue.
1063 */
1064static int rpciod_start(void)
1065{
1066        struct workqueue_struct *wq;
1067
1068        /*
1069         * Create the rpciod thread and wait for it to start.
1070         */
1071        dprintk("RPC:       creating workqueue rpciod\n");
1072        /* Note: highpri because network receive is latency sensitive */
1073        wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1074        rpciod_workqueue = wq;
1075        return rpciod_workqueue != NULL;
1076}
1077
1078static void rpciod_stop(void)
1079{
1080        struct workqueue_struct *wq = NULL;
1081
1082        if (rpciod_workqueue == NULL)
1083                return;
1084        dprintk("RPC:       destroying workqueue rpciod\n");
1085
1086        wq = rpciod_workqueue;
1087        rpciod_workqueue = NULL;
1088        destroy_workqueue(wq);
1089}
1090
1091void
1092rpc_destroy_mempool(void)
1093{
1094        rpciod_stop();
1095        if (rpc_buffer_mempool)
1096                mempool_destroy(rpc_buffer_mempool);
1097        if (rpc_task_mempool)
1098                mempool_destroy(rpc_task_mempool);
1099        if (rpc_task_slabp)
1100                kmem_cache_destroy(rpc_task_slabp);
1101        if (rpc_buffer_slabp)
1102                kmem_cache_destroy(rpc_buffer_slabp);
1103        rpc_destroy_wait_queue(&delay_queue);
1104}
1105
1106int
1107rpc_init_mempool(void)
1108{
1109        /*
1110         * The following is not strictly a mempool initialisation,
1111         * but there is no harm in doing it here
1112         */
1113        rpc_init_wait_queue(&delay_queue, "delayq");
1114        if (!rpciod_start())
1115                goto err_nomem;
1116
1117        rpc_task_slabp = kmem_cache_create("rpc_tasks",
1118                                             sizeof(struct rpc_task),
1119                                             0, SLAB_HWCACHE_ALIGN,
1120                                             NULL);
1121        if (!rpc_task_slabp)
1122                goto err_nomem;
1123        rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1124                                             RPC_BUFFER_MAXSIZE,
1125                                             0, SLAB_HWCACHE_ALIGN,
1126                                             NULL);
1127        if (!rpc_buffer_slabp)
1128                goto err_nomem;
1129        rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1130                                                    rpc_task_slabp);
1131        if (!rpc_task_mempool)
1132                goto err_nomem;
1133        rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1134                                                      rpc_buffer_slabp);
1135        if (!rpc_buffer_mempool)
1136                goto err_nomem;
1137        return 0;
1138err_nomem:
1139        rpc_destroy_mempool();
1140        return -ENOMEM;
1141}
1142