linux/sound/ppc/pmac.c
<<
>>
Prefs
   1/*
   2 * PMac DBDMA lowlevel functions
   3 *
   4 * Copyright (c) by Takashi Iwai <tiwai@suse.de>
   5 * code based on dmasound.c.
   6 *
   7 *   This program is free software; you can redistribute it and/or modify
   8 *   it under the terms of the GNU General Public License as published by
   9 *   the Free Software Foundation; either version 2 of the License, or
  10 *   (at your option) any later version.
  11 *
  12 *   This program is distributed in the hope that it will be useful,
  13 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 *   GNU General Public License for more details.
  16 *
  17 *   You should have received a copy of the GNU General Public License
  18 *   along with this program; if not, write to the Free Software
  19 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  20 */
  21
  22
  23#include <linux/io.h>
  24#include <asm/irq.h>
  25#include <linux/init.h>
  26#include <linux/delay.h>
  27#include <linux/slab.h>
  28#include <linux/interrupt.h>
  29#include <linux/pci.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/of_address.h>
  32#include <linux/of_irq.h>
  33#include <sound/core.h>
  34#include "pmac.h"
  35#include <sound/pcm_params.h>
  36#include <asm/pmac_feature.h>
  37#include <asm/pci-bridge.h>
  38
  39
  40/* fixed frequency table for awacs, screamer, burgundy, DACA (44100 max) */
  41static int awacs_freqs[8] = {
  42        44100, 29400, 22050, 17640, 14700, 11025, 8820, 7350
  43};
  44/* fixed frequency table for tumbler */
  45static int tumbler_freqs[1] = {
  46        44100
  47};
  48
  49
  50/*
  51 * we will allocate a single 'emergency' dbdma cmd block to use if the
  52 * tx status comes up "DEAD".  This happens on some PowerComputing Pmac
  53 * clones, either owing to a bug in dbdma or some interaction between
  54 * IDE and sound.  However, this measure would deal with DEAD status if
  55 * it appeared elsewhere.
  56 */
  57static struct pmac_dbdma emergency_dbdma;
  58static int emergency_in_use;
  59
  60
  61/*
  62 * allocate DBDMA command arrays
  63 */
  64static int snd_pmac_dbdma_alloc(struct snd_pmac *chip, struct pmac_dbdma *rec, int size)
  65{
  66        unsigned int rsize = sizeof(struct dbdma_cmd) * (size + 1);
  67
  68        rec->space = dma_alloc_coherent(&chip->pdev->dev, rsize,
  69                                        &rec->dma_base, GFP_KERNEL);
  70        if (rec->space == NULL)
  71                return -ENOMEM;
  72        rec->size = size;
  73        memset(rec->space, 0, rsize);
  74        rec->cmds = (void __iomem *)DBDMA_ALIGN(rec->space);
  75        rec->addr = rec->dma_base + (unsigned long)((char *)rec->cmds - (char *)rec->space);
  76
  77        return 0;
  78}
  79
  80static void snd_pmac_dbdma_free(struct snd_pmac *chip, struct pmac_dbdma *rec)
  81{
  82        if (rec->space) {
  83                unsigned int rsize = sizeof(struct dbdma_cmd) * (rec->size + 1);
  84
  85                dma_free_coherent(&chip->pdev->dev, rsize, rec->space, rec->dma_base);
  86        }
  87}
  88
  89
  90/*
  91 * pcm stuff
  92 */
  93
  94/*
  95 * look up frequency table
  96 */
  97
  98unsigned int snd_pmac_rate_index(struct snd_pmac *chip, struct pmac_stream *rec, unsigned int rate)
  99{
 100        int i, ok, found;
 101
 102        ok = rec->cur_freqs;
 103        if (rate > chip->freq_table[0])
 104                return 0;
 105        found = 0;
 106        for (i = 0; i < chip->num_freqs; i++, ok >>= 1) {
 107                if (! (ok & 1)) continue;
 108                found = i;
 109                if (rate >= chip->freq_table[i])
 110                        break;
 111        }
 112        return found;
 113}
 114
 115/*
 116 * check whether another stream is active
 117 */
 118static inline int another_stream(int stream)
 119{
 120        return (stream == SNDRV_PCM_STREAM_PLAYBACK) ?
 121                SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
 122}
 123
 124/*
 125 * allocate buffers
 126 */
 127static int snd_pmac_pcm_hw_params(struct snd_pcm_substream *subs,
 128                                  struct snd_pcm_hw_params *hw_params)
 129{
 130        return snd_pcm_lib_malloc_pages(subs, params_buffer_bytes(hw_params));
 131}
 132
 133/*
 134 * release buffers
 135 */
 136static int snd_pmac_pcm_hw_free(struct snd_pcm_substream *subs)
 137{
 138        snd_pcm_lib_free_pages(subs);
 139        return 0;
 140}
 141
 142/*
 143 * get a stream of the opposite direction
 144 */
 145static struct pmac_stream *snd_pmac_get_stream(struct snd_pmac *chip, int stream)
 146{
 147        switch (stream) {
 148        case SNDRV_PCM_STREAM_PLAYBACK:
 149                return &chip->playback;
 150        case SNDRV_PCM_STREAM_CAPTURE:
 151                return &chip->capture;
 152        default:
 153                snd_BUG();
 154                return NULL;
 155        }
 156}
 157
 158/*
 159 * wait while run status is on
 160 */
 161static inline void
 162snd_pmac_wait_ack(struct pmac_stream *rec)
 163{
 164        int timeout = 50000;
 165        while ((in_le32(&rec->dma->status) & RUN) && timeout-- > 0)
 166                udelay(1);
 167}
 168
 169/*
 170 * set the format and rate to the chip.
 171 * call the lowlevel function if defined (e.g. for AWACS).
 172 */
 173static void snd_pmac_pcm_set_format(struct snd_pmac *chip)
 174{
 175        /* set up frequency and format */
 176        out_le32(&chip->awacs->control, chip->control_mask | (chip->rate_index << 8));
 177        out_le32(&chip->awacs->byteswap, chip->format == SNDRV_PCM_FORMAT_S16_LE ? 1 : 0);
 178        if (chip->set_format)
 179                chip->set_format(chip);
 180}
 181
 182/*
 183 * stop the DMA transfer
 184 */
 185static inline void snd_pmac_dma_stop(struct pmac_stream *rec)
 186{
 187        out_le32(&rec->dma->control, (RUN|WAKE|FLUSH|PAUSE) << 16);
 188        snd_pmac_wait_ack(rec);
 189}
 190
 191/*
 192 * set the command pointer address
 193 */
 194static inline void snd_pmac_dma_set_command(struct pmac_stream *rec, struct pmac_dbdma *cmd)
 195{
 196        out_le32(&rec->dma->cmdptr, cmd->addr);
 197}
 198
 199/*
 200 * start the DMA
 201 */
 202static inline void snd_pmac_dma_run(struct pmac_stream *rec, int status)
 203{
 204        out_le32(&rec->dma->control, status | (status << 16));
 205}
 206
 207
 208/*
 209 * prepare playback/capture stream
 210 */
 211static int snd_pmac_pcm_prepare(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs)
 212{
 213        int i;
 214        volatile struct dbdma_cmd __iomem *cp;
 215        struct snd_pcm_runtime *runtime = subs->runtime;
 216        int rate_index;
 217        long offset;
 218        struct pmac_stream *astr;
 219
 220        rec->dma_size = snd_pcm_lib_buffer_bytes(subs);
 221        rec->period_size = snd_pcm_lib_period_bytes(subs);
 222        rec->nperiods = rec->dma_size / rec->period_size;
 223        rec->cur_period = 0;
 224        rate_index = snd_pmac_rate_index(chip, rec, runtime->rate);
 225
 226        /* set up constraints */
 227        astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
 228        if (! astr)
 229                return -EINVAL;
 230        astr->cur_freqs = 1 << rate_index;
 231        astr->cur_formats = 1 << runtime->format;
 232        chip->rate_index = rate_index;
 233        chip->format = runtime->format;
 234
 235        /* We really want to execute a DMA stop command, after the AWACS
 236         * is initialized.
 237         * For reasons I don't understand, it stops the hissing noise
 238         * common to many PowerBook G3 systems and random noise otherwise
 239         * captured on iBook2's about every third time. -ReneR
 240         */
 241        spin_lock_irq(&chip->reg_lock);
 242        snd_pmac_dma_stop(rec);
 243        chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP);
 244        snd_pmac_dma_set_command(rec, &chip->extra_dma);
 245        snd_pmac_dma_run(rec, RUN);
 246        spin_unlock_irq(&chip->reg_lock);
 247        mdelay(5);
 248        spin_lock_irq(&chip->reg_lock);
 249        /* continuous DMA memory type doesn't provide the physical address,
 250         * so we need to resolve the address here...
 251         */
 252        offset = runtime->dma_addr;
 253        for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) {
 254                cp->phy_addr = cpu_to_le32(offset);
 255                cp->req_count = cpu_to_le16(rec->period_size);
 256                /*cp->res_count = cpu_to_le16(0);*/
 257                cp->xfer_status = cpu_to_le16(0);
 258                offset += rec->period_size;
 259        }
 260        /* make loop */
 261        cp->command = cpu_to_le16(DBDMA_NOP + BR_ALWAYS);
 262        cp->cmd_dep = cpu_to_le32(rec->cmd.addr);
 263
 264        snd_pmac_dma_stop(rec);
 265        snd_pmac_dma_set_command(rec, &rec->cmd);
 266        spin_unlock_irq(&chip->reg_lock);
 267
 268        return 0;
 269}
 270
 271
 272/*
 273 * PCM trigger/stop
 274 */
 275static int snd_pmac_pcm_trigger(struct snd_pmac *chip, struct pmac_stream *rec,
 276                                struct snd_pcm_substream *subs, int cmd)
 277{
 278        volatile struct dbdma_cmd __iomem *cp;
 279        int i, command;
 280
 281        switch (cmd) {
 282        case SNDRV_PCM_TRIGGER_START:
 283        case SNDRV_PCM_TRIGGER_RESUME:
 284                if (rec->running)
 285                        return -EBUSY;
 286                command = (subs->stream == SNDRV_PCM_STREAM_PLAYBACK ?
 287                           OUTPUT_MORE : INPUT_MORE) + INTR_ALWAYS;
 288                spin_lock(&chip->reg_lock);
 289                snd_pmac_beep_stop(chip);
 290                snd_pmac_pcm_set_format(chip);
 291                for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
 292                        out_le16(&cp->command, command);
 293                snd_pmac_dma_set_command(rec, &rec->cmd);
 294                (void)in_le32(&rec->dma->status);
 295                snd_pmac_dma_run(rec, RUN|WAKE);
 296                rec->running = 1;
 297                spin_unlock(&chip->reg_lock);
 298                break;
 299
 300        case SNDRV_PCM_TRIGGER_STOP:
 301        case SNDRV_PCM_TRIGGER_SUSPEND:
 302                spin_lock(&chip->reg_lock);
 303                rec->running = 0;
 304                /*printk(KERN_DEBUG "stopped!!\n");*/
 305                snd_pmac_dma_stop(rec);
 306                for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
 307                        out_le16(&cp->command, DBDMA_STOP);
 308                spin_unlock(&chip->reg_lock);
 309                break;
 310
 311        default:
 312                return -EINVAL;
 313        }
 314
 315        return 0;
 316}
 317
 318/*
 319 * return the current pointer
 320 */
 321inline
 322static snd_pcm_uframes_t snd_pmac_pcm_pointer(struct snd_pmac *chip,
 323                                              struct pmac_stream *rec,
 324                                              struct snd_pcm_substream *subs)
 325{
 326        int count = 0;
 327
 328#if 1 /* hmm.. how can we get the current dma pointer?? */
 329        int stat;
 330        volatile struct dbdma_cmd __iomem *cp = &rec->cmd.cmds[rec->cur_period];
 331        stat = le16_to_cpu(cp->xfer_status);
 332        if (stat & (ACTIVE|DEAD)) {
 333                count = in_le16(&cp->res_count);
 334                if (count)
 335                        count = rec->period_size - count;
 336        }
 337#endif
 338        count += rec->cur_period * rec->period_size;
 339        /*printk(KERN_DEBUG "pointer=%d\n", count);*/
 340        return bytes_to_frames(subs->runtime, count);
 341}
 342
 343/*
 344 * playback
 345 */
 346
 347static int snd_pmac_playback_prepare(struct snd_pcm_substream *subs)
 348{
 349        struct snd_pmac *chip = snd_pcm_substream_chip(subs);
 350        return snd_pmac_pcm_prepare(chip, &chip->playback, subs);
 351}
 352
 353static int snd_pmac_playback_trigger(struct snd_pcm_substream *subs,
 354                                     int cmd)
 355{
 356        struct snd_pmac *chip = snd_pcm_substream_chip(subs);
 357        return snd_pmac_pcm_trigger(chip, &chip->playback, subs, cmd);
 358}
 359
 360static snd_pcm_uframes_t snd_pmac_playback_pointer(struct snd_pcm_substream *subs)
 361{
 362        struct snd_pmac *chip = snd_pcm_substream_chip(subs);
 363        return snd_pmac_pcm_pointer(chip, &chip->playback, subs);
 364}
 365
 366
 367/*
 368 * capture
 369 */
 370
 371static int snd_pmac_capture_prepare(struct snd_pcm_substream *subs)
 372{
 373        struct snd_pmac *chip = snd_pcm_substream_chip(subs);
 374        return snd_pmac_pcm_prepare(chip, &chip->capture, subs);
 375}
 376
 377static int snd_pmac_capture_trigger(struct snd_pcm_substream *subs,
 378                                    int cmd)
 379{
 380        struct snd_pmac *chip = snd_pcm_substream_chip(subs);
 381        return snd_pmac_pcm_trigger(chip, &chip->capture, subs, cmd);
 382}
 383
 384static snd_pcm_uframes_t snd_pmac_capture_pointer(struct snd_pcm_substream *subs)
 385{
 386        struct snd_pmac *chip = snd_pcm_substream_chip(subs);
 387        return snd_pmac_pcm_pointer(chip, &chip->capture, subs);
 388}
 389
 390
 391/*
 392 * Handle DEAD DMA transfers:
 393 * if the TX status comes up "DEAD" - reported on some Power Computing machines
 394 * we need to re-start the dbdma - but from a different physical start address
 395 * and with a different transfer length.  It would get very messy to do this
 396 * with the normal dbdma_cmd blocks - we would have to re-write the buffer start
 397 * addresses each time.  So, we will keep a single dbdma_cmd block which can be
 398 * fiddled with.
 399 * When DEAD status is first reported the content of the faulted dbdma block is
 400 * copied into the emergency buffer and we note that the buffer is in use.
 401 * we then bump the start physical address by the amount that was successfully
 402 * output before it died.
 403 * On any subsequent DEAD result we just do the bump-ups (we know that we are
 404 * already using the emergency dbdma_cmd).
 405 * CHECK: this just tries to "do it".  It is possible that we should abandon
 406 * xfers when the number of residual bytes gets below a certain value - I can
 407 * see that this might cause a loop-forever if a too small transfer causes
 408 * DEAD status.  However this is a TODO for now - we'll see what gets reported.
 409 * When we get a successful transfer result with the emergency buffer we just
 410 * pretend that it completed using the original dmdma_cmd and carry on.  The
 411 * 'next_cmd' field will already point back to the original loop of blocks.
 412 */
 413static inline void snd_pmac_pcm_dead_xfer(struct pmac_stream *rec,
 414                                          volatile struct dbdma_cmd __iomem *cp)
 415{
 416        unsigned short req, res ;
 417        unsigned int phy ;
 418
 419        /* printk(KERN_WARNING "snd-powermac: DMA died - patching it up!\n"); */
 420
 421        /* to clear DEAD status we must first clear RUN
 422           set it to quiescent to be on the safe side */
 423        (void)in_le32(&rec->dma->status);
 424        out_le32(&rec->dma->control, (RUN|PAUSE|FLUSH|WAKE) << 16);
 425
 426        if (!emergency_in_use) { /* new problem */
 427                memcpy((void *)emergency_dbdma.cmds, (void *)cp,
 428                       sizeof(struct dbdma_cmd));
 429                emergency_in_use = 1;
 430                cp->xfer_status = cpu_to_le16(0);
 431                cp->req_count = cpu_to_le16(rec->period_size);
 432                cp = emergency_dbdma.cmds;
 433        }
 434
 435        /* now bump the values to reflect the amount
 436           we haven't yet shifted */
 437        req = le16_to_cpu(cp->req_count);
 438        res = le16_to_cpu(cp->res_count);
 439        phy = le32_to_cpu(cp->phy_addr);
 440        phy += (req - res);
 441        cp->req_count = cpu_to_le16(res);
 442        cp->res_count = cpu_to_le16(0);
 443        cp->xfer_status = cpu_to_le16(0);
 444        cp->phy_addr = cpu_to_le32(phy);
 445
 446        cp->cmd_dep = cpu_to_le32(rec->cmd.addr
 447                + sizeof(struct dbdma_cmd)*((rec->cur_period+1)%rec->nperiods));
 448
 449        cp->command = cpu_to_le16(OUTPUT_MORE | BR_ALWAYS | INTR_ALWAYS);
 450
 451        /* point at our patched up command block */
 452        out_le32(&rec->dma->cmdptr, emergency_dbdma.addr);
 453
 454        /* we must re-start the controller */
 455        (void)in_le32(&rec->dma->status);
 456        /* should complete clearing the DEAD status */
 457        out_le32(&rec->dma->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
 458}
 459
 460/*
 461 * update playback/capture pointer from interrupts
 462 */
 463static void snd_pmac_pcm_update(struct snd_pmac *chip, struct pmac_stream *rec)
 464{
 465        volatile struct dbdma_cmd __iomem *cp;
 466        int c;
 467        int stat;
 468
 469        spin_lock(&chip->reg_lock);
 470        if (rec->running) {
 471                for (c = 0; c < rec->nperiods; c++) { /* at most all fragments */
 472
 473                        if (emergency_in_use)   /* already using DEAD xfer? */
 474                                cp = emergency_dbdma.cmds;
 475                        else
 476                                cp = &rec->cmd.cmds[rec->cur_period];
 477
 478                        stat = le16_to_cpu(cp->xfer_status);
 479
 480                        if (stat & DEAD) {
 481                                snd_pmac_pcm_dead_xfer(rec, cp);
 482                                break; /* this block is still going */
 483                        }
 484
 485                        if (emergency_in_use)
 486                                emergency_in_use = 0 ; /* done that */
 487
 488                        if (! (stat & ACTIVE))
 489                                break;
 490
 491                        /*printk(KERN_DEBUG "update frag %d\n", rec->cur_period);*/
 492                        cp->xfer_status = cpu_to_le16(0);
 493                        cp->req_count = cpu_to_le16(rec->period_size);
 494                        /*cp->res_count = cpu_to_le16(0);*/
 495                        rec->cur_period++;
 496                        if (rec->cur_period >= rec->nperiods) {
 497                                rec->cur_period = 0;
 498                        }
 499
 500                        spin_unlock(&chip->reg_lock);
 501                        snd_pcm_period_elapsed(rec->substream);
 502                        spin_lock(&chip->reg_lock);
 503                }
 504        }
 505        spin_unlock(&chip->reg_lock);
 506}
 507
 508
 509/*
 510 * hw info
 511 */
 512
 513static struct snd_pcm_hardware snd_pmac_playback =
 514{
 515        .info =                 (SNDRV_PCM_INFO_INTERLEAVED |
 516                                 SNDRV_PCM_INFO_MMAP |
 517                                 SNDRV_PCM_INFO_MMAP_VALID |
 518                                 SNDRV_PCM_INFO_RESUME),
 519        .formats =              SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
 520        .rates =                SNDRV_PCM_RATE_8000_44100,
 521        .rate_min =             7350,
 522        .rate_max =             44100,
 523        .channels_min =         2,
 524        .channels_max =         2,
 525        .buffer_bytes_max =     131072,
 526        .period_bytes_min =     256,
 527        .period_bytes_max =     16384,
 528        .periods_min =          3,
 529        .periods_max =          PMAC_MAX_FRAGS,
 530};
 531
 532static struct snd_pcm_hardware snd_pmac_capture =
 533{
 534        .info =                 (SNDRV_PCM_INFO_INTERLEAVED |
 535                                 SNDRV_PCM_INFO_MMAP |
 536                                 SNDRV_PCM_INFO_MMAP_VALID |
 537                                 SNDRV_PCM_INFO_RESUME),
 538        .formats =              SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
 539        .rates =                SNDRV_PCM_RATE_8000_44100,
 540        .rate_min =             7350,
 541        .rate_max =             44100,
 542        .channels_min =         2,
 543        .channels_max =         2,
 544        .buffer_bytes_max =     131072,
 545        .period_bytes_min =     256,
 546        .period_bytes_max =     16384,
 547        .periods_min =          3,
 548        .periods_max =          PMAC_MAX_FRAGS,
 549};
 550
 551
 552#if 0 // NYI
 553static int snd_pmac_hw_rule_rate(struct snd_pcm_hw_params *params,
 554                                 struct snd_pcm_hw_rule *rule)
 555{
 556        struct snd_pmac *chip = rule->private;
 557        struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
 558        int i, freq_table[8], num_freqs;
 559
 560        if (! rec)
 561                return -EINVAL;
 562        num_freqs = 0;
 563        for (i = chip->num_freqs - 1; i >= 0; i--) {
 564                if (rec->cur_freqs & (1 << i))
 565                        freq_table[num_freqs++] = chip->freq_table[i];
 566        }
 567
 568        return snd_interval_list(hw_param_interval(params, rule->var),
 569                                 num_freqs, freq_table, 0);
 570}
 571
 572static int snd_pmac_hw_rule_format(struct snd_pcm_hw_params *params,
 573                                   struct snd_pcm_hw_rule *rule)
 574{
 575        struct snd_pmac *chip = rule->private;
 576        struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
 577
 578        if (! rec)
 579                return -EINVAL;
 580        return snd_mask_refine_set(hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT),
 581                                   rec->cur_formats);
 582}
 583#endif // NYI
 584
 585static int snd_pmac_pcm_open(struct snd_pmac *chip, struct pmac_stream *rec,
 586                             struct snd_pcm_substream *subs)
 587{
 588        struct snd_pcm_runtime *runtime = subs->runtime;
 589        int i;
 590
 591        /* look up frequency table and fill bit mask */
 592        runtime->hw.rates = 0;
 593        for (i = 0; i < chip->num_freqs; i++)
 594                if (chip->freqs_ok & (1 << i))
 595                        runtime->hw.rates |=
 596                                snd_pcm_rate_to_rate_bit(chip->freq_table[i]);
 597
 598        /* check for minimum and maximum rates */
 599        for (i = 0; i < chip->num_freqs; i++) {
 600                if (chip->freqs_ok & (1 << i)) {
 601                        runtime->hw.rate_max = chip->freq_table[i];
 602                        break;
 603                }
 604        }
 605        for (i = chip->num_freqs - 1; i >= 0; i--) {
 606                if (chip->freqs_ok & (1 << i)) {
 607                        runtime->hw.rate_min = chip->freq_table[i];
 608                        break;
 609                }
 610        }
 611        runtime->hw.formats = chip->formats_ok;
 612        if (chip->can_capture) {
 613                if (! chip->can_duplex)
 614                        runtime->hw.info |= SNDRV_PCM_INFO_HALF_DUPLEX;
 615                runtime->hw.info |= SNDRV_PCM_INFO_JOINT_DUPLEX;
 616        }
 617        runtime->private_data = rec;
 618        rec->substream = subs;
 619
 620#if 0 /* FIXME: still under development.. */
 621        snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
 622                            snd_pmac_hw_rule_rate, chip, rec->stream, -1);
 623        snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
 624                            snd_pmac_hw_rule_format, chip, rec->stream, -1);
 625#endif
 626
 627        runtime->hw.periods_max = rec->cmd.size - 1;
 628
 629        /* constraints to fix choppy sound */
 630        snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
 631        return 0;
 632}
 633
 634static int snd_pmac_pcm_close(struct snd_pmac *chip, struct pmac_stream *rec,
 635                              struct snd_pcm_substream *subs)
 636{
 637        struct pmac_stream *astr;
 638
 639        snd_pmac_dma_stop(rec);
 640
 641        astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
 642        if (! astr)
 643                return -EINVAL;
 644
 645        /* reset constraints */
 646        astr->cur_freqs = chip->freqs_ok;
 647        astr->cur_formats = chip->formats_ok;
 648
 649        return 0;
 650}
 651
 652static int snd_pmac_playback_open(struct snd_pcm_substream *subs)
 653{
 654        struct snd_pmac *chip = snd_pcm_substream_chip(subs);
 655
 656        subs->runtime->hw = snd_pmac_playback;
 657        return snd_pmac_pcm_open(chip, &chip->playback, subs);
 658}
 659
 660static int snd_pmac_capture_open(struct snd_pcm_substream *subs)
 661{
 662        struct snd_pmac *chip = snd_pcm_substream_chip(subs);
 663
 664        subs->runtime->hw = snd_pmac_capture;
 665        return snd_pmac_pcm_open(chip, &chip->capture, subs);
 666}
 667
 668static int snd_pmac_playback_close(struct snd_pcm_substream *subs)
 669{
 670        struct snd_pmac *chip = snd_pcm_substream_chip(subs);
 671
 672        return snd_pmac_pcm_close(chip, &chip->playback, subs);
 673}
 674
 675static int snd_pmac_capture_close(struct snd_pcm_substream *subs)
 676{
 677        struct snd_pmac *chip = snd_pcm_substream_chip(subs);
 678
 679        return snd_pmac_pcm_close(chip, &chip->capture, subs);
 680}
 681
 682/*
 683 */
 684
 685static struct snd_pcm_ops snd_pmac_playback_ops = {
 686        .open =         snd_pmac_playback_open,
 687        .close =        snd_pmac_playback_close,
 688        .ioctl =        snd_pcm_lib_ioctl,
 689        .hw_params =    snd_pmac_pcm_hw_params,
 690        .hw_free =      snd_pmac_pcm_hw_free,
 691        .prepare =      snd_pmac_playback_prepare,
 692        .trigger =      snd_pmac_playback_trigger,
 693        .pointer =      snd_pmac_playback_pointer,
 694};
 695
 696static struct snd_pcm_ops snd_pmac_capture_ops = {
 697        .open =         snd_pmac_capture_open,
 698        .close =        snd_pmac_capture_close,
 699        .ioctl =        snd_pcm_lib_ioctl,
 700        .hw_params =    snd_pmac_pcm_hw_params,
 701        .hw_free =      snd_pmac_pcm_hw_free,
 702        .prepare =      snd_pmac_capture_prepare,
 703        .trigger =      snd_pmac_capture_trigger,
 704        .pointer =      snd_pmac_capture_pointer,
 705};
 706
 707int snd_pmac_pcm_new(struct snd_pmac *chip)
 708{
 709        struct snd_pcm *pcm;
 710        int err;
 711        int num_captures = 1;
 712
 713        if (! chip->can_capture)
 714                num_captures = 0;
 715        err = snd_pcm_new(chip->card, chip->card->driver, 0, 1, num_captures, &pcm);
 716        if (err < 0)
 717                return err;
 718
 719        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pmac_playback_ops);
 720        if (chip->can_capture)
 721                snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pmac_capture_ops);
 722
 723        pcm->private_data = chip;
 724        pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
 725        strcpy(pcm->name, chip->card->shortname);
 726        chip->pcm = pcm;
 727
 728        chip->formats_ok = SNDRV_PCM_FMTBIT_S16_BE;
 729        if (chip->can_byte_swap)
 730                chip->formats_ok |= SNDRV_PCM_FMTBIT_S16_LE;
 731
 732        chip->playback.cur_formats = chip->formats_ok;
 733        chip->capture.cur_formats = chip->formats_ok;
 734        chip->playback.cur_freqs = chip->freqs_ok;
 735        chip->capture.cur_freqs = chip->freqs_ok;
 736
 737        /* preallocate 64k buffer */
 738        snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
 739                                              &chip->pdev->dev,
 740                                              64 * 1024, 64 * 1024);
 741
 742        return 0;
 743}
 744
 745
 746static void snd_pmac_dbdma_reset(struct snd_pmac *chip)
 747{
 748        out_le32(&chip->playback.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
 749        snd_pmac_wait_ack(&chip->playback);
 750        out_le32(&chip->capture.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
 751        snd_pmac_wait_ack(&chip->capture);
 752}
 753
 754
 755/*
 756 * handling beep
 757 */
 758void snd_pmac_beep_dma_start(struct snd_pmac *chip, int bytes, unsigned long addr, int speed)
 759{
 760        struct pmac_stream *rec = &chip->playback;
 761
 762        snd_pmac_dma_stop(rec);
 763        chip->extra_dma.cmds->req_count = cpu_to_le16(bytes);
 764        chip->extra_dma.cmds->xfer_status = cpu_to_le16(0);
 765        chip->extra_dma.cmds->cmd_dep = cpu_to_le32(chip->extra_dma.addr);
 766        chip->extra_dma.cmds->phy_addr = cpu_to_le32(addr);
 767        chip->extra_dma.cmds->command = cpu_to_le16(OUTPUT_MORE + BR_ALWAYS);
 768        out_le32(&chip->awacs->control,
 769                 (in_le32(&chip->awacs->control) & ~0x1f00)
 770                 | (speed << 8));
 771        out_le32(&chip->awacs->byteswap, 0);
 772        snd_pmac_dma_set_command(rec, &chip->extra_dma);
 773        snd_pmac_dma_run(rec, RUN);
 774}
 775
 776void snd_pmac_beep_dma_stop(struct snd_pmac *chip)
 777{
 778        snd_pmac_dma_stop(&chip->playback);
 779        chip->extra_dma.cmds->command = cpu_to_le16(DBDMA_STOP);
 780        snd_pmac_pcm_set_format(chip); /* reset format */
 781}
 782
 783
 784/*
 785 * interrupt handlers
 786 */
 787static irqreturn_t
 788snd_pmac_tx_intr(int irq, void *devid)
 789{
 790        struct snd_pmac *chip = devid;
 791        snd_pmac_pcm_update(chip, &chip->playback);
 792        return IRQ_HANDLED;
 793}
 794
 795
 796static irqreturn_t
 797snd_pmac_rx_intr(int irq, void *devid)
 798{
 799        struct snd_pmac *chip = devid;
 800        snd_pmac_pcm_update(chip, &chip->capture);
 801        return IRQ_HANDLED;
 802}
 803
 804
 805static irqreturn_t
 806snd_pmac_ctrl_intr(int irq, void *devid)
 807{
 808        struct snd_pmac *chip = devid;
 809        int ctrl = in_le32(&chip->awacs->control);
 810
 811        /*printk(KERN_DEBUG "pmac: control interrupt.. 0x%x\n", ctrl);*/
 812        if (ctrl & MASK_PORTCHG) {
 813                /* do something when headphone is plugged/unplugged? */
 814                if (chip->update_automute)
 815                        chip->update_automute(chip, 1);
 816        }
 817        if (ctrl & MASK_CNTLERR) {
 818                int err = (in_le32(&chip->awacs->codec_stat) & MASK_ERRCODE) >> 16;
 819                if (err && chip->model <= PMAC_SCREAMER)
 820                        snd_printk(KERN_DEBUG "error %x\n", err);
 821        }
 822        /* Writing 1s to the CNTLERR and PORTCHG bits clears them... */
 823        out_le32(&chip->awacs->control, ctrl);
 824        return IRQ_HANDLED;
 825}
 826
 827
 828/*
 829 * a wrapper to feature call for compatibility
 830 */
 831static void snd_pmac_sound_feature(struct snd_pmac *chip, int enable)
 832{
 833        if (ppc_md.feature_call)
 834                ppc_md.feature_call(PMAC_FTR_SOUND_CHIP_ENABLE, chip->node, 0, enable);
 835}
 836
 837/*
 838 * release resources
 839 */
 840
 841static int snd_pmac_free(struct snd_pmac *chip)
 842{
 843        /* stop sounds */
 844        if (chip->initialized) {
 845                snd_pmac_dbdma_reset(chip);
 846                /* disable interrupts from awacs interface */
 847                out_le32(&chip->awacs->control, in_le32(&chip->awacs->control) & 0xfff);
 848        }
 849
 850        if (chip->node)
 851                snd_pmac_sound_feature(chip, 0);
 852
 853        /* clean up mixer if any */
 854        if (chip->mixer_free)
 855                chip->mixer_free(chip);
 856
 857        snd_pmac_detach_beep(chip);
 858
 859        /* release resources */
 860        if (chip->irq >= 0)
 861                free_irq(chip->irq, (void*)chip);
 862        if (chip->tx_irq >= 0)
 863                free_irq(chip->tx_irq, (void*)chip);
 864        if (chip->rx_irq >= 0)
 865                free_irq(chip->rx_irq, (void*)chip);
 866        snd_pmac_dbdma_free(chip, &chip->playback.cmd);
 867        snd_pmac_dbdma_free(chip, &chip->capture.cmd);
 868        snd_pmac_dbdma_free(chip, &chip->extra_dma);
 869        snd_pmac_dbdma_free(chip, &emergency_dbdma);
 870        iounmap(chip->macio_base);
 871        iounmap(chip->latch_base);
 872        iounmap(chip->awacs);
 873        iounmap(chip->playback.dma);
 874        iounmap(chip->capture.dma);
 875
 876        if (chip->node) {
 877                int i;
 878                for (i = 0; i < 3; i++) {
 879                        if (chip->requested & (1 << i))
 880                                release_mem_region(chip->rsrc[i].start,
 881                                                   resource_size(&chip->rsrc[i]));
 882                }
 883        }
 884
 885        pci_dev_put(chip->pdev);
 886        of_node_put(chip->node);
 887        kfree(chip);
 888        return 0;
 889}
 890
 891
 892/*
 893 * free the device
 894 */
 895static int snd_pmac_dev_free(struct snd_device *device)
 896{
 897        struct snd_pmac *chip = device->device_data;
 898        return snd_pmac_free(chip);
 899}
 900
 901
 902/*
 903 * check the machine support byteswap (little-endian)
 904 */
 905
 906static void detect_byte_swap(struct snd_pmac *chip)
 907{
 908        struct device_node *mio;
 909
 910        /* if seems that Keylargo can't byte-swap  */
 911        for (mio = chip->node->parent; mio; mio = mio->parent) {
 912                if (strcmp(mio->name, "mac-io") == 0) {
 913                        if (of_device_is_compatible(mio, "Keylargo"))
 914                                chip->can_byte_swap = 0;
 915                        break;
 916                }
 917        }
 918
 919        /* it seems the Pismo & iBook can't byte-swap in hardware. */
 920        if (of_machine_is_compatible("PowerBook3,1") ||
 921            of_machine_is_compatible("PowerBook2,1"))
 922                chip->can_byte_swap = 0 ;
 923
 924        if (of_machine_is_compatible("PowerBook2,1"))
 925                chip->can_duplex = 0;
 926}
 927
 928
 929/*
 930 * detect a sound chip
 931 */
 932static int snd_pmac_detect(struct snd_pmac *chip)
 933{
 934        struct device_node *sound;
 935        struct device_node *dn;
 936        const unsigned int *prop;
 937        unsigned int l;
 938        struct macio_chip* macio;
 939
 940        if (!machine_is(powermac))
 941                return -ENODEV;
 942
 943        chip->subframe = 0;
 944        chip->revision = 0;
 945        chip->freqs_ok = 0xff; /* all ok */
 946        chip->model = PMAC_AWACS;
 947        chip->can_byte_swap = 1;
 948        chip->can_duplex = 1;
 949        chip->can_capture = 1;
 950        chip->num_freqs = ARRAY_SIZE(awacs_freqs);
 951        chip->freq_table = awacs_freqs;
 952        chip->pdev = NULL;
 953
 954        chip->control_mask = MASK_IEPC | MASK_IEE | 0x11; /* default */
 955
 956        /* check machine type */
 957        if (of_machine_is_compatible("AAPL,3400/2400")
 958            || of_machine_is_compatible("AAPL,3500"))
 959                chip->is_pbook_3400 = 1;
 960        else if (of_machine_is_compatible("PowerBook1,1")
 961                 || of_machine_is_compatible("AAPL,PowerBook1998"))
 962                chip->is_pbook_G3 = 1;
 963        chip->node = of_find_node_by_name(NULL, "awacs");
 964        sound = of_node_get(chip->node);
 965
 966        /*
 967         * powermac G3 models have a node called "davbus"
 968         * with a child called "sound".
 969         */
 970        if (!chip->node)
 971                chip->node = of_find_node_by_name(NULL, "davbus");
 972        /*
 973         * if we didn't find a davbus device, try 'i2s-a' since
 974         * this seems to be what iBooks have
 975         */
 976        if (! chip->node) {
 977                chip->node = of_find_node_by_name(NULL, "i2s-a");
 978                if (chip->node && chip->node->parent &&
 979                    chip->node->parent->parent) {
 980                        if (of_device_is_compatible(chip->node->parent->parent,
 981                                                 "K2-Keylargo"))
 982                                chip->is_k2 = 1;
 983                }
 984        }
 985        if (! chip->node)
 986                return -ENODEV;
 987
 988        if (!sound) {
 989                for_each_node_by_name(sound, "sound")
 990                        if (sound->parent == chip->node)
 991                                break;
 992        }
 993        if (! sound) {
 994                of_node_put(chip->node);
 995                chip->node = NULL;
 996                return -ENODEV;
 997        }
 998        prop = of_get_property(sound, "sub-frame", NULL);
 999        if (prop && *prop < 16)
1000                chip->subframe = *prop;
1001        prop = of_get_property(sound, "layout-id", NULL);
1002        if (prop) {
1003                /* partly deprecate snd-powermac, for those machines
1004                 * that have a layout-id property for now */
1005                printk(KERN_INFO "snd-powermac no longer handles any "
1006                                 "machines with a layout-id property "
1007                                 "in the device-tree, use snd-aoa.\n");
1008                of_node_put(sound);
1009                of_node_put(chip->node);
1010                chip->node = NULL;
1011                return -ENODEV;
1012        }
1013        /* This should be verified on older screamers */
1014        if (of_device_is_compatible(sound, "screamer")) {
1015                chip->model = PMAC_SCREAMER;
1016                // chip->can_byte_swap = 0; /* FIXME: check this */
1017        }
1018        if (of_device_is_compatible(sound, "burgundy")) {
1019                chip->model = PMAC_BURGUNDY;
1020                chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1021        }
1022        if (of_device_is_compatible(sound, "daca")) {
1023                chip->model = PMAC_DACA;
1024                chip->can_capture = 0;  /* no capture */
1025                chip->can_duplex = 0;
1026                // chip->can_byte_swap = 0; /* FIXME: check this */
1027                chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1028        }
1029        if (of_device_is_compatible(sound, "tumbler")) {
1030                chip->model = PMAC_TUMBLER;
1031                chip->can_capture = of_machine_is_compatible("PowerMac4,2")
1032                                || of_machine_is_compatible("PowerBook3,2")
1033                                || of_machine_is_compatible("PowerBook3,3")
1034                                || of_machine_is_compatible("PowerBook4,1")
1035                                || of_machine_is_compatible("PowerBook4,2")
1036                                || of_machine_is_compatible("PowerBook4,3");
1037                chip->can_duplex = 0;
1038                // chip->can_byte_swap = 0; /* FIXME: check this */
1039                chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
1040                chip->freq_table = tumbler_freqs;
1041                chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1042        }
1043        if (of_device_is_compatible(sound, "snapper")) {
1044                chip->model = PMAC_SNAPPER;
1045                // chip->can_byte_swap = 0; /* FIXME: check this */
1046                chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
1047                chip->freq_table = tumbler_freqs;
1048                chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1049        }
1050        prop = of_get_property(sound, "device-id", NULL);
1051        if (prop)
1052                chip->device_id = *prop;
1053        dn = of_find_node_by_name(NULL, "perch");
1054        chip->has_iic = (dn != NULL);
1055        of_node_put(dn);
1056
1057        /* We need the PCI device for DMA allocations, let's use a crude method
1058         * for now ...
1059         */
1060        macio = macio_find(chip->node, macio_unknown);
1061        if (macio == NULL)
1062                printk(KERN_WARNING "snd-powermac: can't locate macio !\n");
1063        else {
1064                struct pci_dev *pdev = NULL;
1065
1066                for_each_pci_dev(pdev) {
1067                        struct device_node *np = pci_device_to_OF_node(pdev);
1068                        if (np && np == macio->of_node) {
1069                                chip->pdev = pdev;
1070                                break;
1071                        }
1072                }
1073        }
1074        if (chip->pdev == NULL)
1075                printk(KERN_WARNING "snd-powermac: can't locate macio PCI"
1076                       " device !\n");
1077
1078        detect_byte_swap(chip);
1079
1080        /* look for a property saying what sample rates
1081           are available */
1082        prop = of_get_property(sound, "sample-rates", &l);
1083        if (! prop)
1084                prop = of_get_property(sound, "output-frame-rates", &l);
1085        if (prop) {
1086                int i;
1087                chip->freqs_ok = 0;
1088                for (l /= sizeof(int); l > 0; --l) {
1089                        unsigned int r = *prop++;
1090                        /* Apple 'Fixed' format */
1091                        if (r >= 0x10000)
1092                                r >>= 16;
1093                        for (i = 0; i < chip->num_freqs; ++i) {
1094                                if (r == chip->freq_table[i]) {
1095                                        chip->freqs_ok |= (1 << i);
1096                                        break;
1097                                }
1098                        }
1099                }
1100        } else {
1101                /* assume only 44.1khz */
1102                chip->freqs_ok = 1;
1103        }
1104
1105        of_node_put(sound);
1106        return 0;
1107}
1108
1109#ifdef PMAC_SUPPORT_AUTOMUTE
1110/*
1111 * auto-mute
1112 */
1113static int pmac_auto_mute_get(struct snd_kcontrol *kcontrol,
1114                              struct snd_ctl_elem_value *ucontrol)
1115{
1116        struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1117        ucontrol->value.integer.value[0] = chip->auto_mute;
1118        return 0;
1119}
1120
1121static int pmac_auto_mute_put(struct snd_kcontrol *kcontrol,
1122                              struct snd_ctl_elem_value *ucontrol)
1123{
1124        struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1125        if (ucontrol->value.integer.value[0] != chip->auto_mute) {
1126                chip->auto_mute = !!ucontrol->value.integer.value[0];
1127                if (chip->update_automute)
1128                        chip->update_automute(chip, 1);
1129                return 1;
1130        }
1131        return 0;
1132}
1133
1134static int pmac_hp_detect_get(struct snd_kcontrol *kcontrol,
1135                              struct snd_ctl_elem_value *ucontrol)
1136{
1137        struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1138        if (chip->detect_headphone)
1139                ucontrol->value.integer.value[0] = chip->detect_headphone(chip);
1140        else
1141                ucontrol->value.integer.value[0] = 0;
1142        return 0;
1143}
1144
1145static struct snd_kcontrol_new auto_mute_controls[] = {
1146        { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1147          .name = "Auto Mute Switch",
1148          .info = snd_pmac_boolean_mono_info,
1149          .get = pmac_auto_mute_get,
1150          .put = pmac_auto_mute_put,
1151        },
1152        { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1153          .name = "Headphone Detection",
1154          .access = SNDRV_CTL_ELEM_ACCESS_READ,
1155          .info = snd_pmac_boolean_mono_info,
1156          .get = pmac_hp_detect_get,
1157        },
1158};
1159
1160int snd_pmac_add_automute(struct snd_pmac *chip)
1161{
1162        int err;
1163        chip->auto_mute = 1;
1164        err = snd_ctl_add(chip->card, snd_ctl_new1(&auto_mute_controls[0], chip));
1165        if (err < 0) {
1166                printk(KERN_ERR "snd-powermac: Failed to add automute control\n");
1167                return err;
1168        }
1169        chip->hp_detect_ctl = snd_ctl_new1(&auto_mute_controls[1], chip);
1170        return snd_ctl_add(chip->card, chip->hp_detect_ctl);
1171}
1172#endif /* PMAC_SUPPORT_AUTOMUTE */
1173
1174/*
1175 * create and detect a pmac chip record
1176 */
1177int snd_pmac_new(struct snd_card *card, struct snd_pmac **chip_return)
1178{
1179        struct snd_pmac *chip;
1180        struct device_node *np;
1181        int i, err;
1182        unsigned int irq;
1183        unsigned long ctrl_addr, txdma_addr, rxdma_addr;
1184        static struct snd_device_ops ops = {
1185                .dev_free =     snd_pmac_dev_free,
1186        };
1187
1188        *chip_return = NULL;
1189
1190        chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1191        if (chip == NULL)
1192                return -ENOMEM;
1193        chip->card = card;
1194
1195        spin_lock_init(&chip->reg_lock);
1196        chip->irq = chip->tx_irq = chip->rx_irq = -1;
1197
1198        chip->playback.stream = SNDRV_PCM_STREAM_PLAYBACK;
1199        chip->capture.stream = SNDRV_PCM_STREAM_CAPTURE;
1200
1201        if ((err = snd_pmac_detect(chip)) < 0)
1202                goto __error;
1203
1204        if (snd_pmac_dbdma_alloc(chip, &chip->playback.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1205            snd_pmac_dbdma_alloc(chip, &chip->capture.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1206            snd_pmac_dbdma_alloc(chip, &chip->extra_dma, 2) < 0 ||
1207            snd_pmac_dbdma_alloc(chip, &emergency_dbdma, 2) < 0) {
1208                err = -ENOMEM;
1209                goto __error;
1210        }
1211
1212        np = chip->node;
1213        chip->requested = 0;
1214        if (chip->is_k2) {
1215                static char *rnames[] = {
1216                        "Sound Control", "Sound DMA" };
1217                for (i = 0; i < 2; i ++) {
1218                        if (of_address_to_resource(np->parent, i,
1219                                                   &chip->rsrc[i])) {
1220                                printk(KERN_ERR "snd: can't translate rsrc "
1221                                       " %d (%s)\n", i, rnames[i]);
1222                                err = -ENODEV;
1223                                goto __error;
1224                        }
1225                        if (request_mem_region(chip->rsrc[i].start,
1226                                               resource_size(&chip->rsrc[i]),
1227                                               rnames[i]) == NULL) {
1228                                printk(KERN_ERR "snd: can't request rsrc "
1229                                       " %d (%s: %pR)\n",
1230                                       i, rnames[i], &chip->rsrc[i]);
1231                                err = -ENODEV;
1232                                goto __error;
1233                        }
1234                        chip->requested |= (1 << i);
1235                }
1236                ctrl_addr = chip->rsrc[0].start;
1237                txdma_addr = chip->rsrc[1].start;
1238                rxdma_addr = txdma_addr + 0x100;
1239        } else {
1240                static char *rnames[] = {
1241                        "Sound Control", "Sound Tx DMA", "Sound Rx DMA" };
1242                for (i = 0; i < 3; i ++) {
1243                        if (of_address_to_resource(np, i,
1244                                                   &chip->rsrc[i])) {
1245                                printk(KERN_ERR "snd: can't translate rsrc "
1246                                       " %d (%s)\n", i, rnames[i]);
1247                                err = -ENODEV;
1248                                goto __error;
1249                        }
1250                        if (request_mem_region(chip->rsrc[i].start,
1251                                               resource_size(&chip->rsrc[i]),
1252                                               rnames[i]) == NULL) {
1253                                printk(KERN_ERR "snd: can't request rsrc "
1254                                       " %d (%s: %pR)\n",
1255                                       i, rnames[i], &chip->rsrc[i]);
1256                                err = -ENODEV;
1257                                goto __error;
1258                        }
1259                        chip->requested |= (1 << i);
1260                }
1261                ctrl_addr = chip->rsrc[0].start;
1262                txdma_addr = chip->rsrc[1].start;
1263                rxdma_addr = chip->rsrc[2].start;
1264        }
1265
1266        chip->awacs = ioremap(ctrl_addr, 0x1000);
1267        chip->playback.dma = ioremap(txdma_addr, 0x100);
1268        chip->capture.dma = ioremap(rxdma_addr, 0x100);
1269        if (chip->model <= PMAC_BURGUNDY) {
1270                irq = irq_of_parse_and_map(np, 0);
1271                if (request_irq(irq, snd_pmac_ctrl_intr, 0,
1272                                "PMac", (void*)chip)) {
1273                        snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n",
1274                                   irq);
1275                        err = -EBUSY;
1276                        goto __error;
1277                }
1278                chip->irq = irq;
1279        }
1280        irq = irq_of_parse_and_map(np, 1);
1281        if (request_irq(irq, snd_pmac_tx_intr, 0, "PMac Output", (void*)chip)){
1282                snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq);
1283                err = -EBUSY;
1284                goto __error;
1285        }
1286        chip->tx_irq = irq;
1287        irq = irq_of_parse_and_map(np, 2);
1288        if (request_irq(irq, snd_pmac_rx_intr, 0, "PMac Input", (void*)chip)) {
1289                snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq);
1290                err = -EBUSY;
1291                goto __error;
1292        }
1293        chip->rx_irq = irq;
1294
1295        snd_pmac_sound_feature(chip, 1);
1296
1297        /* reset & enable interrupts */
1298        if (chip->model <= PMAC_BURGUNDY)
1299                out_le32(&chip->awacs->control, chip->control_mask);
1300
1301        /* Powerbooks have odd ways of enabling inputs such as
1302           an expansion-bay CD or sound from an internal modem
1303           or a PC-card modem. */
1304        if (chip->is_pbook_3400) {
1305                /* Enable CD and PC-card sound inputs. */
1306                /* This is done by reading from address
1307                 * f301a000, + 0x10 to enable the expansion-bay
1308                 * CD sound input, + 0x80 to enable the PC-card
1309                 * sound input.  The 0x100 enables the SCSI bus
1310                 * terminator power.
1311                 */
1312                chip->latch_base = ioremap (0xf301a000, 0x1000);
1313                in_8(chip->latch_base + 0x190);
1314        } else if (chip->is_pbook_G3) {
1315                struct device_node* mio;
1316                for (mio = chip->node->parent; mio; mio = mio->parent) {
1317                        if (strcmp(mio->name, "mac-io") == 0) {
1318                                struct resource r;
1319                                if (of_address_to_resource(mio, 0, &r) == 0)
1320                                        chip->macio_base =
1321                                                ioremap(r.start, 0x40);
1322                                break;
1323                        }
1324                }
1325                /* Enable CD sound input. */
1326                /* The relevant bits for writing to this byte are 0x8f.
1327                 * I haven't found out what the 0x80 bit does.
1328                 * For the 0xf bits, writing 3 or 7 enables the CD
1329                 * input, any other value disables it.  Values
1330                 * 1, 3, 5, 7 enable the microphone.  Values 0, 2,
1331                 * 4, 6, 8 - f enable the input from the modem.
1332                 */
1333                if (chip->macio_base)
1334                        out_8(chip->macio_base + 0x37, 3);
1335        }
1336
1337        /* Reset dbdma channels */
1338        snd_pmac_dbdma_reset(chip);
1339
1340        if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0)
1341                goto __error;
1342
1343        *chip_return = chip;
1344        return 0;
1345
1346 __error:
1347        snd_pmac_free(chip);
1348        return err;
1349}
1350
1351
1352/*
1353 * sleep notify for powerbook
1354 */
1355
1356#ifdef CONFIG_PM
1357
1358/*
1359 * Save state when going to sleep, restore it afterwards.
1360 */
1361
1362void snd_pmac_suspend(struct snd_pmac *chip)
1363{
1364        unsigned long flags;
1365
1366        snd_power_change_state(chip->card, SNDRV_CTL_POWER_D3hot);
1367        if (chip->suspend)
1368                chip->suspend(chip);
1369        snd_pcm_suspend_all(chip->pcm);
1370        spin_lock_irqsave(&chip->reg_lock, flags);
1371        snd_pmac_beep_stop(chip);
1372        spin_unlock_irqrestore(&chip->reg_lock, flags);
1373        if (chip->irq >= 0)
1374                disable_irq(chip->irq);
1375        if (chip->tx_irq >= 0)
1376                disable_irq(chip->tx_irq);
1377        if (chip->rx_irq >= 0)
1378                disable_irq(chip->rx_irq);
1379        snd_pmac_sound_feature(chip, 0);
1380}
1381
1382void snd_pmac_resume(struct snd_pmac *chip)
1383{
1384        snd_pmac_sound_feature(chip, 1);
1385        if (chip->resume)
1386                chip->resume(chip);
1387        /* enable CD sound input */
1388        if (chip->macio_base && chip->is_pbook_G3)
1389                out_8(chip->macio_base + 0x37, 3);
1390        else if (chip->is_pbook_3400)
1391                in_8(chip->latch_base + 0x190);
1392
1393        snd_pmac_pcm_set_format(chip);
1394
1395        if (chip->irq >= 0)
1396                enable_irq(chip->irq);
1397        if (chip->tx_irq >= 0)
1398                enable_irq(chip->tx_irq);
1399        if (chip->rx_irq >= 0)
1400                enable_irq(chip->rx_irq);
1401
1402        snd_power_change_state(chip->card, SNDRV_CTL_POWER_D0);
1403}
1404
1405#endif /* CONFIG_PM */
1406
1407