linux/virt/kvm/kvm_main.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * This module enables machines with Intel VT-x extensions to run virtual
   5 * machines without emulation or binary translation.
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   9 *
  10 * Authors:
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *   Yaniv Kamay  <yaniv@qumranet.com>
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.  See
  15 * the COPYING file in the top-level directory.
  16 *
  17 */
  18
  19#include <kvm/iodev.h>
  20
  21#include <linux/kvm_host.h>
  22#include <linux/kvm.h>
  23#include <linux/module.h>
  24#include <linux/errno.h>
  25#include <linux/percpu.h>
  26#include <linux/mm.h>
  27#include <linux/miscdevice.h>
  28#include <linux/vmalloc.h>
  29#include <linux/reboot.h>
  30#include <linux/debugfs.h>
  31#include <linux/highmem.h>
  32#include <linux/file.h>
  33#include <linux/syscore_ops.h>
  34#include <linux/cpu.h>
  35#include <linux/sched.h>
  36#include <linux/cpumask.h>
  37#include <linux/smp.h>
  38#include <linux/anon_inodes.h>
  39#include <linux/profile.h>
  40#include <linux/kvm_para.h>
  41#include <linux/pagemap.h>
  42#include <linux/mman.h>
  43#include <linux/swap.h>
  44#include <linux/bitops.h>
  45#include <linux/spinlock.h>
  46#include <linux/compat.h>
  47#include <linux/srcu.h>
  48#include <linux/hugetlb.h>
  49#include <linux/slab.h>
  50#include <linux/sort.h>
  51#include <linux/bsearch.h>
  52
  53#include <asm/processor.h>
  54#include <asm/io.h>
  55#include <asm/ioctl.h>
  56#include <asm/uaccess.h>
  57#include <asm/pgtable.h>
  58
  59#include "coalesced_mmio.h"
  60#include "async_pf.h"
  61#include "vfio.h"
  62
  63#define CREATE_TRACE_POINTS
  64#include <trace/events/kvm.h>
  65
  66MODULE_AUTHOR("Qumranet");
  67MODULE_LICENSE("GPL");
  68
  69static unsigned int halt_poll_ns;
  70module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
  71
  72/*
  73 * Ordering of locks:
  74 *
  75 *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  76 */
  77
  78DEFINE_SPINLOCK(kvm_lock);
  79static DEFINE_RAW_SPINLOCK(kvm_count_lock);
  80LIST_HEAD(vm_list);
  81
  82static cpumask_var_t cpus_hardware_enabled;
  83static int kvm_usage_count;
  84static atomic_t hardware_enable_failed;
  85
  86struct kmem_cache *kvm_vcpu_cache;
  87EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  88
  89static __read_mostly struct preempt_ops kvm_preempt_ops;
  90
  91struct dentry *kvm_debugfs_dir;
  92EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
  93
  94static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  95                           unsigned long arg);
  96#ifdef CONFIG_KVM_COMPAT
  97static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
  98                                  unsigned long arg);
  99#endif
 100static int hardware_enable_all(void);
 101static void hardware_disable_all(void);
 102
 103static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
 104
 105static void kvm_release_pfn_dirty(pfn_t pfn);
 106static void mark_page_dirty_in_slot(struct kvm *kvm,
 107                                    struct kvm_memory_slot *memslot, gfn_t gfn);
 108
 109__visible bool kvm_rebooting;
 110EXPORT_SYMBOL_GPL(kvm_rebooting);
 111
 112static bool largepages_enabled = true;
 113
 114bool kvm_is_reserved_pfn(pfn_t pfn)
 115{
 116        if (pfn_valid(pfn))
 117                return PageReserved(pfn_to_page(pfn));
 118
 119        return true;
 120}
 121
 122/*
 123 * Switches to specified vcpu, until a matching vcpu_put()
 124 */
 125int vcpu_load(struct kvm_vcpu *vcpu)
 126{
 127        int cpu;
 128
 129        if (mutex_lock_killable(&vcpu->mutex))
 130                return -EINTR;
 131        cpu = get_cpu();
 132        preempt_notifier_register(&vcpu->preempt_notifier);
 133        kvm_arch_vcpu_load(vcpu, cpu);
 134        put_cpu();
 135        return 0;
 136}
 137
 138void vcpu_put(struct kvm_vcpu *vcpu)
 139{
 140        preempt_disable();
 141        kvm_arch_vcpu_put(vcpu);
 142        preempt_notifier_unregister(&vcpu->preempt_notifier);
 143        preempt_enable();
 144        mutex_unlock(&vcpu->mutex);
 145}
 146
 147static void ack_flush(void *_completed)
 148{
 149}
 150
 151bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
 152{
 153        int i, cpu, me;
 154        cpumask_var_t cpus;
 155        bool called = true;
 156        struct kvm_vcpu *vcpu;
 157
 158        zalloc_cpumask_var(&cpus, GFP_ATOMIC);
 159
 160        me = get_cpu();
 161        kvm_for_each_vcpu(i, vcpu, kvm) {
 162                kvm_make_request(req, vcpu);
 163                cpu = vcpu->cpu;
 164
 165                /* Set ->requests bit before we read ->mode */
 166                smp_mb();
 167
 168                if (cpus != NULL && cpu != -1 && cpu != me &&
 169                      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
 170                        cpumask_set_cpu(cpu, cpus);
 171        }
 172        if (unlikely(cpus == NULL))
 173                smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
 174        else if (!cpumask_empty(cpus))
 175                smp_call_function_many(cpus, ack_flush, NULL, 1);
 176        else
 177                called = false;
 178        put_cpu();
 179        free_cpumask_var(cpus);
 180        return called;
 181}
 182
 183#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
 184void kvm_flush_remote_tlbs(struct kvm *kvm)
 185{
 186        long dirty_count = kvm->tlbs_dirty;
 187
 188        smp_mb();
 189        if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
 190                ++kvm->stat.remote_tlb_flush;
 191        cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
 192}
 193EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
 194#endif
 195
 196void kvm_reload_remote_mmus(struct kvm *kvm)
 197{
 198        kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
 199}
 200
 201void kvm_make_mclock_inprogress_request(struct kvm *kvm)
 202{
 203        kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
 204}
 205
 206void kvm_make_scan_ioapic_request(struct kvm *kvm)
 207{
 208        kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
 209}
 210
 211int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
 212{
 213        struct page *page;
 214        int r;
 215
 216        mutex_init(&vcpu->mutex);
 217        vcpu->cpu = -1;
 218        vcpu->kvm = kvm;
 219        vcpu->vcpu_id = id;
 220        vcpu->pid = NULL;
 221        init_waitqueue_head(&vcpu->wq);
 222        kvm_async_pf_vcpu_init(vcpu);
 223
 224        page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 225        if (!page) {
 226                r = -ENOMEM;
 227                goto fail;
 228        }
 229        vcpu->run = page_address(page);
 230
 231        kvm_vcpu_set_in_spin_loop(vcpu, false);
 232        kvm_vcpu_set_dy_eligible(vcpu, false);
 233        vcpu->preempted = false;
 234
 235        r = kvm_arch_vcpu_init(vcpu);
 236        if (r < 0)
 237                goto fail_free_run;
 238        return 0;
 239
 240fail_free_run:
 241        free_page((unsigned long)vcpu->run);
 242fail:
 243        return r;
 244}
 245EXPORT_SYMBOL_GPL(kvm_vcpu_init);
 246
 247void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
 248{
 249        put_pid(vcpu->pid);
 250        kvm_arch_vcpu_uninit(vcpu);
 251        free_page((unsigned long)vcpu->run);
 252}
 253EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
 254
 255#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 256static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
 257{
 258        return container_of(mn, struct kvm, mmu_notifier);
 259}
 260
 261static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
 262                                             struct mm_struct *mm,
 263                                             unsigned long address)
 264{
 265        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 266        int need_tlb_flush, idx;
 267
 268        /*
 269         * When ->invalidate_page runs, the linux pte has been zapped
 270         * already but the page is still allocated until
 271         * ->invalidate_page returns. So if we increase the sequence
 272         * here the kvm page fault will notice if the spte can't be
 273         * established because the page is going to be freed. If
 274         * instead the kvm page fault establishes the spte before
 275         * ->invalidate_page runs, kvm_unmap_hva will release it
 276         * before returning.
 277         *
 278         * The sequence increase only need to be seen at spin_unlock
 279         * time, and not at spin_lock time.
 280         *
 281         * Increasing the sequence after the spin_unlock would be
 282         * unsafe because the kvm page fault could then establish the
 283         * pte after kvm_unmap_hva returned, without noticing the page
 284         * is going to be freed.
 285         */
 286        idx = srcu_read_lock(&kvm->srcu);
 287        spin_lock(&kvm->mmu_lock);
 288
 289        kvm->mmu_notifier_seq++;
 290        need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
 291        /* we've to flush the tlb before the pages can be freed */
 292        if (need_tlb_flush)
 293                kvm_flush_remote_tlbs(kvm);
 294
 295        spin_unlock(&kvm->mmu_lock);
 296
 297        kvm_arch_mmu_notifier_invalidate_page(kvm, address);
 298
 299        srcu_read_unlock(&kvm->srcu, idx);
 300}
 301
 302static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
 303                                        struct mm_struct *mm,
 304                                        unsigned long address,
 305                                        pte_t pte)
 306{
 307        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 308        int idx;
 309
 310        idx = srcu_read_lock(&kvm->srcu);
 311        spin_lock(&kvm->mmu_lock);
 312        kvm->mmu_notifier_seq++;
 313        kvm_set_spte_hva(kvm, address, pte);
 314        spin_unlock(&kvm->mmu_lock);
 315        srcu_read_unlock(&kvm->srcu, idx);
 316}
 317
 318static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
 319                                                    struct mm_struct *mm,
 320                                                    unsigned long start,
 321                                                    unsigned long end)
 322{
 323        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 324        int need_tlb_flush = 0, idx;
 325
 326        idx = srcu_read_lock(&kvm->srcu);
 327        spin_lock(&kvm->mmu_lock);
 328        /*
 329         * The count increase must become visible at unlock time as no
 330         * spte can be established without taking the mmu_lock and
 331         * count is also read inside the mmu_lock critical section.
 332         */
 333        kvm->mmu_notifier_count++;
 334        need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
 335        need_tlb_flush |= kvm->tlbs_dirty;
 336        /* we've to flush the tlb before the pages can be freed */
 337        if (need_tlb_flush)
 338                kvm_flush_remote_tlbs(kvm);
 339
 340        spin_unlock(&kvm->mmu_lock);
 341        srcu_read_unlock(&kvm->srcu, idx);
 342}
 343
 344static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
 345                                                  struct mm_struct *mm,
 346                                                  unsigned long start,
 347                                                  unsigned long end)
 348{
 349        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 350
 351        spin_lock(&kvm->mmu_lock);
 352        /*
 353         * This sequence increase will notify the kvm page fault that
 354         * the page that is going to be mapped in the spte could have
 355         * been freed.
 356         */
 357        kvm->mmu_notifier_seq++;
 358        smp_wmb();
 359        /*
 360         * The above sequence increase must be visible before the
 361         * below count decrease, which is ensured by the smp_wmb above
 362         * in conjunction with the smp_rmb in mmu_notifier_retry().
 363         */
 364        kvm->mmu_notifier_count--;
 365        spin_unlock(&kvm->mmu_lock);
 366
 367        BUG_ON(kvm->mmu_notifier_count < 0);
 368}
 369
 370static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
 371                                              struct mm_struct *mm,
 372                                              unsigned long start,
 373                                              unsigned long end)
 374{
 375        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 376        int young, idx;
 377
 378        idx = srcu_read_lock(&kvm->srcu);
 379        spin_lock(&kvm->mmu_lock);
 380
 381        young = kvm_age_hva(kvm, start, end);
 382        if (young)
 383                kvm_flush_remote_tlbs(kvm);
 384
 385        spin_unlock(&kvm->mmu_lock);
 386        srcu_read_unlock(&kvm->srcu, idx);
 387
 388        return young;
 389}
 390
 391static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
 392                                       struct mm_struct *mm,
 393                                       unsigned long address)
 394{
 395        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 396        int young, idx;
 397
 398        idx = srcu_read_lock(&kvm->srcu);
 399        spin_lock(&kvm->mmu_lock);
 400        young = kvm_test_age_hva(kvm, address);
 401        spin_unlock(&kvm->mmu_lock);
 402        srcu_read_unlock(&kvm->srcu, idx);
 403
 404        return young;
 405}
 406
 407static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
 408                                     struct mm_struct *mm)
 409{
 410        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 411        int idx;
 412
 413        idx = srcu_read_lock(&kvm->srcu);
 414        kvm_arch_flush_shadow_all(kvm);
 415        srcu_read_unlock(&kvm->srcu, idx);
 416}
 417
 418static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
 419        .invalidate_page        = kvm_mmu_notifier_invalidate_page,
 420        .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
 421        .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
 422        .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
 423        .test_young             = kvm_mmu_notifier_test_young,
 424        .change_pte             = kvm_mmu_notifier_change_pte,
 425        .release                = kvm_mmu_notifier_release,
 426};
 427
 428static int kvm_init_mmu_notifier(struct kvm *kvm)
 429{
 430        kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
 431        return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
 432}
 433
 434#else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
 435
 436static int kvm_init_mmu_notifier(struct kvm *kvm)
 437{
 438        return 0;
 439}
 440
 441#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
 442
 443static void kvm_init_memslots_id(struct kvm *kvm)
 444{
 445        int i;
 446        struct kvm_memslots *slots = kvm->memslots;
 447
 448        for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
 449                slots->id_to_index[i] = slots->memslots[i].id = i;
 450}
 451
 452static struct kvm *kvm_create_vm(unsigned long type)
 453{
 454        int r, i;
 455        struct kvm *kvm = kvm_arch_alloc_vm();
 456
 457        if (!kvm)
 458                return ERR_PTR(-ENOMEM);
 459
 460        r = kvm_arch_init_vm(kvm, type);
 461        if (r)
 462                goto out_err_no_disable;
 463
 464        r = hardware_enable_all();
 465        if (r)
 466                goto out_err_no_disable;
 467
 468#ifdef CONFIG_HAVE_KVM_IRQFD
 469        INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
 470#endif
 471
 472        BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
 473
 474        r = -ENOMEM;
 475        kvm->memslots = kvm_kvzalloc(sizeof(struct kvm_memslots));
 476        if (!kvm->memslots)
 477                goto out_err_no_srcu;
 478
 479        /*
 480         * Init kvm generation close to the maximum to easily test the
 481         * code of handling generation number wrap-around.
 482         */
 483        kvm->memslots->generation = -150;
 484
 485        kvm_init_memslots_id(kvm);
 486        if (init_srcu_struct(&kvm->srcu))
 487                goto out_err_no_srcu;
 488        if (init_srcu_struct(&kvm->irq_srcu))
 489                goto out_err_no_irq_srcu;
 490        for (i = 0; i < KVM_NR_BUSES; i++) {
 491                kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
 492                                        GFP_KERNEL);
 493                if (!kvm->buses[i])
 494                        goto out_err;
 495        }
 496
 497        spin_lock_init(&kvm->mmu_lock);
 498        kvm->mm = current->mm;
 499        atomic_inc(&kvm->mm->mm_count);
 500        kvm_eventfd_init(kvm);
 501        mutex_init(&kvm->lock);
 502        mutex_init(&kvm->irq_lock);
 503        mutex_init(&kvm->slots_lock);
 504        atomic_set(&kvm->users_count, 1);
 505        INIT_LIST_HEAD(&kvm->devices);
 506
 507        r = kvm_init_mmu_notifier(kvm);
 508        if (r)
 509                goto out_err;
 510
 511        spin_lock(&kvm_lock);
 512        list_add(&kvm->vm_list, &vm_list);
 513        spin_unlock(&kvm_lock);
 514
 515        return kvm;
 516
 517out_err:
 518        cleanup_srcu_struct(&kvm->irq_srcu);
 519out_err_no_irq_srcu:
 520        cleanup_srcu_struct(&kvm->srcu);
 521out_err_no_srcu:
 522        hardware_disable_all();
 523out_err_no_disable:
 524        for (i = 0; i < KVM_NR_BUSES; i++)
 525                kfree(kvm->buses[i]);
 526        kvfree(kvm->memslots);
 527        kvm_arch_free_vm(kvm);
 528        return ERR_PTR(r);
 529}
 530
 531/*
 532 * Avoid using vmalloc for a small buffer.
 533 * Should not be used when the size is statically known.
 534 */
 535void *kvm_kvzalloc(unsigned long size)
 536{
 537        if (size > PAGE_SIZE)
 538                return vzalloc(size);
 539        else
 540                return kzalloc(size, GFP_KERNEL);
 541}
 542
 543static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
 544{
 545        if (!memslot->dirty_bitmap)
 546                return;
 547
 548        kvfree(memslot->dirty_bitmap);
 549        memslot->dirty_bitmap = NULL;
 550}
 551
 552/*
 553 * Free any memory in @free but not in @dont.
 554 */
 555static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
 556                                  struct kvm_memory_slot *dont)
 557{
 558        if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
 559                kvm_destroy_dirty_bitmap(free);
 560
 561        kvm_arch_free_memslot(kvm, free, dont);
 562
 563        free->npages = 0;
 564}
 565
 566static void kvm_free_physmem(struct kvm *kvm)
 567{
 568        struct kvm_memslots *slots = kvm->memslots;
 569        struct kvm_memory_slot *memslot;
 570
 571        kvm_for_each_memslot(memslot, slots)
 572                kvm_free_physmem_slot(kvm, memslot, NULL);
 573
 574        kvfree(kvm->memslots);
 575}
 576
 577static void kvm_destroy_devices(struct kvm *kvm)
 578{
 579        struct list_head *node, *tmp;
 580
 581        list_for_each_safe(node, tmp, &kvm->devices) {
 582                struct kvm_device *dev =
 583                        list_entry(node, struct kvm_device, vm_node);
 584
 585                list_del(node);
 586                dev->ops->destroy(dev);
 587        }
 588}
 589
 590static void kvm_destroy_vm(struct kvm *kvm)
 591{
 592        int i;
 593        struct mm_struct *mm = kvm->mm;
 594
 595        kvm_arch_sync_events(kvm);
 596        spin_lock(&kvm_lock);
 597        list_del(&kvm->vm_list);
 598        spin_unlock(&kvm_lock);
 599        kvm_free_irq_routing(kvm);
 600        for (i = 0; i < KVM_NR_BUSES; i++)
 601                kvm_io_bus_destroy(kvm->buses[i]);
 602        kvm_coalesced_mmio_free(kvm);
 603#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 604        mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
 605#else
 606        kvm_arch_flush_shadow_all(kvm);
 607#endif
 608        kvm_arch_destroy_vm(kvm);
 609        kvm_destroy_devices(kvm);
 610        kvm_free_physmem(kvm);
 611        cleanup_srcu_struct(&kvm->irq_srcu);
 612        cleanup_srcu_struct(&kvm->srcu);
 613        kvm_arch_free_vm(kvm);
 614        hardware_disable_all();
 615        mmdrop(mm);
 616}
 617
 618void kvm_get_kvm(struct kvm *kvm)
 619{
 620        atomic_inc(&kvm->users_count);
 621}
 622EXPORT_SYMBOL_GPL(kvm_get_kvm);
 623
 624void kvm_put_kvm(struct kvm *kvm)
 625{
 626        if (atomic_dec_and_test(&kvm->users_count))
 627                kvm_destroy_vm(kvm);
 628}
 629EXPORT_SYMBOL_GPL(kvm_put_kvm);
 630
 631
 632static int kvm_vm_release(struct inode *inode, struct file *filp)
 633{
 634        struct kvm *kvm = filp->private_data;
 635
 636        kvm_irqfd_release(kvm);
 637
 638        kvm_put_kvm(kvm);
 639        return 0;
 640}
 641
 642/*
 643 * Allocation size is twice as large as the actual dirty bitmap size.
 644 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
 645 */
 646static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
 647{
 648        unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
 649
 650        memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
 651        if (!memslot->dirty_bitmap)
 652                return -ENOMEM;
 653
 654        return 0;
 655}
 656
 657/*
 658 * Insert memslot and re-sort memslots based on their GFN,
 659 * so binary search could be used to lookup GFN.
 660 * Sorting algorithm takes advantage of having initially
 661 * sorted array and known changed memslot position.
 662 */
 663static void update_memslots(struct kvm_memslots *slots,
 664                            struct kvm_memory_slot *new)
 665{
 666        int id = new->id;
 667        int i = slots->id_to_index[id];
 668        struct kvm_memory_slot *mslots = slots->memslots;
 669
 670        WARN_ON(mslots[i].id != id);
 671        if (!new->npages) {
 672                WARN_ON(!mslots[i].npages);
 673                new->base_gfn = 0;
 674                new->flags = 0;
 675                if (mslots[i].npages)
 676                        slots->used_slots--;
 677        } else {
 678                if (!mslots[i].npages)
 679                        slots->used_slots++;
 680        }
 681
 682        while (i < KVM_MEM_SLOTS_NUM - 1 &&
 683               new->base_gfn <= mslots[i + 1].base_gfn) {
 684                if (!mslots[i + 1].npages)
 685                        break;
 686                mslots[i] = mslots[i + 1];
 687                slots->id_to_index[mslots[i].id] = i;
 688                i++;
 689        }
 690
 691        /*
 692         * The ">=" is needed when creating a slot with base_gfn == 0,
 693         * so that it moves before all those with base_gfn == npages == 0.
 694         *
 695         * On the other hand, if new->npages is zero, the above loop has
 696         * already left i pointing to the beginning of the empty part of
 697         * mslots, and the ">=" would move the hole backwards in this
 698         * case---which is wrong.  So skip the loop when deleting a slot.
 699         */
 700        if (new->npages) {
 701                while (i > 0 &&
 702                       new->base_gfn >= mslots[i - 1].base_gfn) {
 703                        mslots[i] = mslots[i - 1];
 704                        slots->id_to_index[mslots[i].id] = i;
 705                        i--;
 706                }
 707        } else
 708                WARN_ON_ONCE(i != slots->used_slots);
 709
 710        mslots[i] = *new;
 711        slots->id_to_index[mslots[i].id] = i;
 712}
 713
 714static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
 715{
 716        u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
 717
 718#ifdef __KVM_HAVE_READONLY_MEM
 719        valid_flags |= KVM_MEM_READONLY;
 720#endif
 721
 722        if (mem->flags & ~valid_flags)
 723                return -EINVAL;
 724
 725        return 0;
 726}
 727
 728static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
 729                struct kvm_memslots *slots)
 730{
 731        struct kvm_memslots *old_memslots = kvm->memslots;
 732
 733        /*
 734         * Set the low bit in the generation, which disables SPTE caching
 735         * until the end of synchronize_srcu_expedited.
 736         */
 737        WARN_ON(old_memslots->generation & 1);
 738        slots->generation = old_memslots->generation + 1;
 739
 740        rcu_assign_pointer(kvm->memslots, slots);
 741        synchronize_srcu_expedited(&kvm->srcu);
 742
 743        /*
 744         * Increment the new memslot generation a second time. This prevents
 745         * vm exits that race with memslot updates from caching a memslot
 746         * generation that will (potentially) be valid forever.
 747         */
 748        slots->generation++;
 749
 750        kvm_arch_memslots_updated(kvm);
 751
 752        return old_memslots;
 753}
 754
 755/*
 756 * Allocate some memory and give it an address in the guest physical address
 757 * space.
 758 *
 759 * Discontiguous memory is allowed, mostly for framebuffers.
 760 *
 761 * Must be called holding kvm->slots_lock for write.
 762 */
 763int __kvm_set_memory_region(struct kvm *kvm,
 764                            struct kvm_userspace_memory_region *mem)
 765{
 766        int r;
 767        gfn_t base_gfn;
 768        unsigned long npages;
 769        struct kvm_memory_slot *slot;
 770        struct kvm_memory_slot old, new;
 771        struct kvm_memslots *slots = NULL, *old_memslots;
 772        enum kvm_mr_change change;
 773
 774        r = check_memory_region_flags(mem);
 775        if (r)
 776                goto out;
 777
 778        r = -EINVAL;
 779        /* General sanity checks */
 780        if (mem->memory_size & (PAGE_SIZE - 1))
 781                goto out;
 782        if (mem->guest_phys_addr & (PAGE_SIZE - 1))
 783                goto out;
 784        /* We can read the guest memory with __xxx_user() later on. */
 785        if ((mem->slot < KVM_USER_MEM_SLOTS) &&
 786            ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
 787             !access_ok(VERIFY_WRITE,
 788                        (void __user *)(unsigned long)mem->userspace_addr,
 789                        mem->memory_size)))
 790                goto out;
 791        if (mem->slot >= KVM_MEM_SLOTS_NUM)
 792                goto out;
 793        if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
 794                goto out;
 795
 796        slot = id_to_memslot(kvm->memslots, mem->slot);
 797        base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
 798        npages = mem->memory_size >> PAGE_SHIFT;
 799
 800        if (npages > KVM_MEM_MAX_NR_PAGES)
 801                goto out;
 802
 803        if (!npages)
 804                mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
 805
 806        new = old = *slot;
 807
 808        new.id = mem->slot;
 809        new.base_gfn = base_gfn;
 810        new.npages = npages;
 811        new.flags = mem->flags;
 812
 813        if (npages) {
 814                if (!old.npages)
 815                        change = KVM_MR_CREATE;
 816                else { /* Modify an existing slot. */
 817                        if ((mem->userspace_addr != old.userspace_addr) ||
 818                            (npages != old.npages) ||
 819                            ((new.flags ^ old.flags) & KVM_MEM_READONLY))
 820                                goto out;
 821
 822                        if (base_gfn != old.base_gfn)
 823                                change = KVM_MR_MOVE;
 824                        else if (new.flags != old.flags)
 825                                change = KVM_MR_FLAGS_ONLY;
 826                        else { /* Nothing to change. */
 827                                r = 0;
 828                                goto out;
 829                        }
 830                }
 831        } else if (old.npages) {
 832                change = KVM_MR_DELETE;
 833        } else /* Modify a non-existent slot: disallowed. */
 834                goto out;
 835
 836        if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
 837                /* Check for overlaps */
 838                r = -EEXIST;
 839                kvm_for_each_memslot(slot, kvm->memslots) {
 840                        if ((slot->id >= KVM_USER_MEM_SLOTS) ||
 841                            (slot->id == mem->slot))
 842                                continue;
 843                        if (!((base_gfn + npages <= slot->base_gfn) ||
 844                              (base_gfn >= slot->base_gfn + slot->npages)))
 845                                goto out;
 846                }
 847        }
 848
 849        /* Free page dirty bitmap if unneeded */
 850        if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
 851                new.dirty_bitmap = NULL;
 852
 853        r = -ENOMEM;
 854        if (change == KVM_MR_CREATE) {
 855                new.userspace_addr = mem->userspace_addr;
 856
 857                if (kvm_arch_create_memslot(kvm, &new, npages))
 858                        goto out_free;
 859        }
 860
 861        /* Allocate page dirty bitmap if needed */
 862        if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
 863                if (kvm_create_dirty_bitmap(&new) < 0)
 864                        goto out_free;
 865        }
 866
 867        slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
 868        if (!slots)
 869                goto out_free;
 870        memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
 871
 872        if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
 873                slot = id_to_memslot(slots, mem->slot);
 874                slot->flags |= KVM_MEMSLOT_INVALID;
 875
 876                old_memslots = install_new_memslots(kvm, slots);
 877
 878                /* slot was deleted or moved, clear iommu mapping */
 879                kvm_iommu_unmap_pages(kvm, &old);
 880                /* From this point no new shadow pages pointing to a deleted,
 881                 * or moved, memslot will be created.
 882                 *
 883                 * validation of sp->gfn happens in:
 884                 *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
 885                 *      - kvm_is_visible_gfn (mmu_check_roots)
 886                 */
 887                kvm_arch_flush_shadow_memslot(kvm, slot);
 888
 889                /*
 890                 * We can re-use the old_memslots from above, the only difference
 891                 * from the currently installed memslots is the invalid flag.  This
 892                 * will get overwritten by update_memslots anyway.
 893                 */
 894                slots = old_memslots;
 895        }
 896
 897        r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
 898        if (r)
 899                goto out_slots;
 900
 901        /* actual memory is freed via old in kvm_free_physmem_slot below */
 902        if (change == KVM_MR_DELETE) {
 903                new.dirty_bitmap = NULL;
 904                memset(&new.arch, 0, sizeof(new.arch));
 905        }
 906
 907        update_memslots(slots, &new);
 908        old_memslots = install_new_memslots(kvm, slots);
 909
 910        kvm_arch_commit_memory_region(kvm, mem, &old, change);
 911
 912        kvm_free_physmem_slot(kvm, &old, &new);
 913        kvfree(old_memslots);
 914
 915        /*
 916         * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
 917         * un-mapped and re-mapped if their base changes.  Since base change
 918         * unmapping is handled above with slot deletion, mapping alone is
 919         * needed here.  Anything else the iommu might care about for existing
 920         * slots (size changes, userspace addr changes and read-only flag
 921         * changes) is disallowed above, so any other attribute changes getting
 922         * here can be skipped.
 923         */
 924        if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
 925                r = kvm_iommu_map_pages(kvm, &new);
 926                return r;
 927        }
 928
 929        return 0;
 930
 931out_slots:
 932        kvfree(slots);
 933out_free:
 934        kvm_free_physmem_slot(kvm, &new, &old);
 935out:
 936        return r;
 937}
 938EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
 939
 940int kvm_set_memory_region(struct kvm *kvm,
 941                          struct kvm_userspace_memory_region *mem)
 942{
 943        int r;
 944
 945        mutex_lock(&kvm->slots_lock);
 946        r = __kvm_set_memory_region(kvm, mem);
 947        mutex_unlock(&kvm->slots_lock);
 948        return r;
 949}
 950EXPORT_SYMBOL_GPL(kvm_set_memory_region);
 951
 952static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
 953                                          struct kvm_userspace_memory_region *mem)
 954{
 955        if (mem->slot >= KVM_USER_MEM_SLOTS)
 956                return -EINVAL;
 957        return kvm_set_memory_region(kvm, mem);
 958}
 959
 960int kvm_get_dirty_log(struct kvm *kvm,
 961                        struct kvm_dirty_log *log, int *is_dirty)
 962{
 963        struct kvm_memory_slot *memslot;
 964        int r, i;
 965        unsigned long n;
 966        unsigned long any = 0;
 967
 968        r = -EINVAL;
 969        if (log->slot >= KVM_USER_MEM_SLOTS)
 970                goto out;
 971
 972        memslot = id_to_memslot(kvm->memslots, log->slot);
 973        r = -ENOENT;
 974        if (!memslot->dirty_bitmap)
 975                goto out;
 976
 977        n = kvm_dirty_bitmap_bytes(memslot);
 978
 979        for (i = 0; !any && i < n/sizeof(long); ++i)
 980                any = memslot->dirty_bitmap[i];
 981
 982        r = -EFAULT;
 983        if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
 984                goto out;
 985
 986        if (any)
 987                *is_dirty = 1;
 988
 989        r = 0;
 990out:
 991        return r;
 992}
 993EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
 994
 995#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
 996/**
 997 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
 998 *      are dirty write protect them for next write.
 999 * @kvm:        pointer to kvm instance
1000 * @log:        slot id and address to which we copy the log
1001 * @is_dirty:   flag set if any page is dirty
1002 *
1003 * We need to keep it in mind that VCPU threads can write to the bitmap
1004 * concurrently. So, to avoid losing track of dirty pages we keep the
1005 * following order:
1006 *
1007 *    1. Take a snapshot of the bit and clear it if needed.
1008 *    2. Write protect the corresponding page.
1009 *    3. Copy the snapshot to the userspace.
1010 *    4. Upon return caller flushes TLB's if needed.
1011 *
1012 * Between 2 and 4, the guest may write to the page using the remaining TLB
1013 * entry.  This is not a problem because the page is reported dirty using
1014 * the snapshot taken before and step 4 ensures that writes done after
1015 * exiting to userspace will be logged for the next call.
1016 *
1017 */
1018int kvm_get_dirty_log_protect(struct kvm *kvm,
1019                        struct kvm_dirty_log *log, bool *is_dirty)
1020{
1021        struct kvm_memory_slot *memslot;
1022        int r, i;
1023        unsigned long n;
1024        unsigned long *dirty_bitmap;
1025        unsigned long *dirty_bitmap_buffer;
1026
1027        r = -EINVAL;
1028        if (log->slot >= KVM_USER_MEM_SLOTS)
1029                goto out;
1030
1031        memslot = id_to_memslot(kvm->memslots, log->slot);
1032
1033        dirty_bitmap = memslot->dirty_bitmap;
1034        r = -ENOENT;
1035        if (!dirty_bitmap)
1036                goto out;
1037
1038        n = kvm_dirty_bitmap_bytes(memslot);
1039
1040        dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1041        memset(dirty_bitmap_buffer, 0, n);
1042
1043        spin_lock(&kvm->mmu_lock);
1044        *is_dirty = false;
1045        for (i = 0; i < n / sizeof(long); i++) {
1046                unsigned long mask;
1047                gfn_t offset;
1048
1049                if (!dirty_bitmap[i])
1050                        continue;
1051
1052                *is_dirty = true;
1053
1054                mask = xchg(&dirty_bitmap[i], 0);
1055                dirty_bitmap_buffer[i] = mask;
1056
1057                if (mask) {
1058                        offset = i * BITS_PER_LONG;
1059                        kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1060                                                                offset, mask);
1061                }
1062        }
1063
1064        spin_unlock(&kvm->mmu_lock);
1065
1066        r = -EFAULT;
1067        if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1068                goto out;
1069
1070        r = 0;
1071out:
1072        return r;
1073}
1074EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1075#endif
1076
1077bool kvm_largepages_enabled(void)
1078{
1079        return largepages_enabled;
1080}
1081
1082void kvm_disable_largepages(void)
1083{
1084        largepages_enabled = false;
1085}
1086EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1087
1088struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1089{
1090        return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1091}
1092EXPORT_SYMBOL_GPL(gfn_to_memslot);
1093
1094int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1095{
1096        struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1097
1098        if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1099              memslot->flags & KVM_MEMSLOT_INVALID)
1100                return 0;
1101
1102        return 1;
1103}
1104EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1105
1106unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1107{
1108        struct vm_area_struct *vma;
1109        unsigned long addr, size;
1110
1111        size = PAGE_SIZE;
1112
1113        addr = gfn_to_hva(kvm, gfn);
1114        if (kvm_is_error_hva(addr))
1115                return PAGE_SIZE;
1116
1117        down_read(&current->mm->mmap_sem);
1118        vma = find_vma(current->mm, addr);
1119        if (!vma)
1120                goto out;
1121
1122        size = vma_kernel_pagesize(vma);
1123
1124out:
1125        up_read(&current->mm->mmap_sem);
1126
1127        return size;
1128}
1129
1130static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1131{
1132        return slot->flags & KVM_MEM_READONLY;
1133}
1134
1135static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1136                                       gfn_t *nr_pages, bool write)
1137{
1138        if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1139                return KVM_HVA_ERR_BAD;
1140
1141        if (memslot_is_readonly(slot) && write)
1142                return KVM_HVA_ERR_RO_BAD;
1143
1144        if (nr_pages)
1145                *nr_pages = slot->npages - (gfn - slot->base_gfn);
1146
1147        return __gfn_to_hva_memslot(slot, gfn);
1148}
1149
1150static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1151                                     gfn_t *nr_pages)
1152{
1153        return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1154}
1155
1156unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1157                                        gfn_t gfn)
1158{
1159        return gfn_to_hva_many(slot, gfn, NULL);
1160}
1161EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1162
1163unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1164{
1165        return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1166}
1167EXPORT_SYMBOL_GPL(gfn_to_hva);
1168
1169/*
1170 * If writable is set to false, the hva returned by this function is only
1171 * allowed to be read.
1172 */
1173unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1174                                      gfn_t gfn, bool *writable)
1175{
1176        unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1177
1178        if (!kvm_is_error_hva(hva) && writable)
1179                *writable = !memslot_is_readonly(slot);
1180
1181        return hva;
1182}
1183
1184unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1185{
1186        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1187
1188        return gfn_to_hva_memslot_prot(slot, gfn, writable);
1189}
1190
1191static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1192        unsigned long start, int write, struct page **page)
1193{
1194        int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1195
1196        if (write)
1197                flags |= FOLL_WRITE;
1198
1199        return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1200}
1201
1202static inline int check_user_page_hwpoison(unsigned long addr)
1203{
1204        int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1205
1206        rc = __get_user_pages(current, current->mm, addr, 1,
1207                              flags, NULL, NULL, NULL);
1208        return rc == -EHWPOISON;
1209}
1210
1211/*
1212 * The atomic path to get the writable pfn which will be stored in @pfn,
1213 * true indicates success, otherwise false is returned.
1214 */
1215static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1216                            bool write_fault, bool *writable, pfn_t *pfn)
1217{
1218        struct page *page[1];
1219        int npages;
1220
1221        if (!(async || atomic))
1222                return false;
1223
1224        /*
1225         * Fast pin a writable pfn only if it is a write fault request
1226         * or the caller allows to map a writable pfn for a read fault
1227         * request.
1228         */
1229        if (!(write_fault || writable))
1230                return false;
1231
1232        npages = __get_user_pages_fast(addr, 1, 1, page);
1233        if (npages == 1) {
1234                *pfn = page_to_pfn(page[0]);
1235
1236                if (writable)
1237                        *writable = true;
1238                return true;
1239        }
1240
1241        return false;
1242}
1243
1244/*
1245 * The slow path to get the pfn of the specified host virtual address,
1246 * 1 indicates success, -errno is returned if error is detected.
1247 */
1248static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1249                           bool *writable, pfn_t *pfn)
1250{
1251        struct page *page[1];
1252        int npages = 0;
1253
1254        might_sleep();
1255
1256        if (writable)
1257                *writable = write_fault;
1258
1259        if (async) {
1260                down_read(&current->mm->mmap_sem);
1261                npages = get_user_page_nowait(current, current->mm,
1262                                              addr, write_fault, page);
1263                up_read(&current->mm->mmap_sem);
1264        } else
1265                npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1266                                                   write_fault, 0, page,
1267                                                   FOLL_TOUCH|FOLL_HWPOISON);
1268        if (npages != 1)
1269                return npages;
1270
1271        /* map read fault as writable if possible */
1272        if (unlikely(!write_fault) && writable) {
1273                struct page *wpage[1];
1274
1275                npages = __get_user_pages_fast(addr, 1, 1, wpage);
1276                if (npages == 1) {
1277                        *writable = true;
1278                        put_page(page[0]);
1279                        page[0] = wpage[0];
1280                }
1281
1282                npages = 1;
1283        }
1284        *pfn = page_to_pfn(page[0]);
1285        return npages;
1286}
1287
1288static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1289{
1290        if (unlikely(!(vma->vm_flags & VM_READ)))
1291                return false;
1292
1293        if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1294                return false;
1295
1296        return true;
1297}
1298
1299/*
1300 * Pin guest page in memory and return its pfn.
1301 * @addr: host virtual address which maps memory to the guest
1302 * @atomic: whether this function can sleep
1303 * @async: whether this function need to wait IO complete if the
1304 *         host page is not in the memory
1305 * @write_fault: whether we should get a writable host page
1306 * @writable: whether it allows to map a writable host page for !@write_fault
1307 *
1308 * The function will map a writable host page for these two cases:
1309 * 1): @write_fault = true
1310 * 2): @write_fault = false && @writable, @writable will tell the caller
1311 *     whether the mapping is writable.
1312 */
1313static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1314                        bool write_fault, bool *writable)
1315{
1316        struct vm_area_struct *vma;
1317        pfn_t pfn = 0;
1318        int npages;
1319
1320        /* we can do it either atomically or asynchronously, not both */
1321        BUG_ON(atomic && async);
1322
1323        if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1324                return pfn;
1325
1326        if (atomic)
1327                return KVM_PFN_ERR_FAULT;
1328
1329        npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1330        if (npages == 1)
1331                return pfn;
1332
1333        down_read(&current->mm->mmap_sem);
1334        if (npages == -EHWPOISON ||
1335              (!async && check_user_page_hwpoison(addr))) {
1336                pfn = KVM_PFN_ERR_HWPOISON;
1337                goto exit;
1338        }
1339
1340        vma = find_vma_intersection(current->mm, addr, addr + 1);
1341
1342        if (vma == NULL)
1343                pfn = KVM_PFN_ERR_FAULT;
1344        else if ((vma->vm_flags & VM_PFNMAP)) {
1345                pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1346                        vma->vm_pgoff;
1347                BUG_ON(!kvm_is_reserved_pfn(pfn));
1348        } else {
1349                if (async && vma_is_valid(vma, write_fault))
1350                        *async = true;
1351                pfn = KVM_PFN_ERR_FAULT;
1352        }
1353exit:
1354        up_read(&current->mm->mmap_sem);
1355        return pfn;
1356}
1357
1358static pfn_t
1359__gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1360                     bool *async, bool write_fault, bool *writable)
1361{
1362        unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1363
1364        if (addr == KVM_HVA_ERR_RO_BAD)
1365                return KVM_PFN_ERR_RO_FAULT;
1366
1367        if (kvm_is_error_hva(addr))
1368                return KVM_PFN_NOSLOT;
1369
1370        /* Do not map writable pfn in the readonly memslot. */
1371        if (writable && memslot_is_readonly(slot)) {
1372                *writable = false;
1373                writable = NULL;
1374        }
1375
1376        return hva_to_pfn(addr, atomic, async, write_fault,
1377                          writable);
1378}
1379
1380static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1381                          bool write_fault, bool *writable)
1382{
1383        struct kvm_memory_slot *slot;
1384
1385        if (async)
1386                *async = false;
1387
1388        slot = gfn_to_memslot(kvm, gfn);
1389
1390        return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1391                                    writable);
1392}
1393
1394pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1395{
1396        return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1397}
1398EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1399
1400pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1401                       bool write_fault, bool *writable)
1402{
1403        return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1404}
1405EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1406
1407pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1408{
1409        return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1410}
1411EXPORT_SYMBOL_GPL(gfn_to_pfn);
1412
1413pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1414                      bool *writable)
1415{
1416        return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1417}
1418EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1419
1420pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1421{
1422        return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1423}
1424
1425pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1426{
1427        return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1428}
1429EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1430
1431int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1432                                                                  int nr_pages)
1433{
1434        unsigned long addr;
1435        gfn_t entry;
1436
1437        addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1438        if (kvm_is_error_hva(addr))
1439                return -1;
1440
1441        if (entry < nr_pages)
1442                return 0;
1443
1444        return __get_user_pages_fast(addr, nr_pages, 1, pages);
1445}
1446EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1447
1448static struct page *kvm_pfn_to_page(pfn_t pfn)
1449{
1450        if (is_error_noslot_pfn(pfn))
1451                return KVM_ERR_PTR_BAD_PAGE;
1452
1453        if (kvm_is_reserved_pfn(pfn)) {
1454                WARN_ON(1);
1455                return KVM_ERR_PTR_BAD_PAGE;
1456        }
1457
1458        return pfn_to_page(pfn);
1459}
1460
1461struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1462{
1463        pfn_t pfn;
1464
1465        pfn = gfn_to_pfn(kvm, gfn);
1466
1467        return kvm_pfn_to_page(pfn);
1468}
1469EXPORT_SYMBOL_GPL(gfn_to_page);
1470
1471void kvm_release_page_clean(struct page *page)
1472{
1473        WARN_ON(is_error_page(page));
1474
1475        kvm_release_pfn_clean(page_to_pfn(page));
1476}
1477EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1478
1479void kvm_release_pfn_clean(pfn_t pfn)
1480{
1481        if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1482                put_page(pfn_to_page(pfn));
1483}
1484EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1485
1486void kvm_release_page_dirty(struct page *page)
1487{
1488        WARN_ON(is_error_page(page));
1489
1490        kvm_release_pfn_dirty(page_to_pfn(page));
1491}
1492EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1493
1494static void kvm_release_pfn_dirty(pfn_t pfn)
1495{
1496        kvm_set_pfn_dirty(pfn);
1497        kvm_release_pfn_clean(pfn);
1498}
1499
1500void kvm_set_pfn_dirty(pfn_t pfn)
1501{
1502        if (!kvm_is_reserved_pfn(pfn)) {
1503                struct page *page = pfn_to_page(pfn);
1504
1505                if (!PageReserved(page))
1506                        SetPageDirty(page);
1507        }
1508}
1509EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1510
1511void kvm_set_pfn_accessed(pfn_t pfn)
1512{
1513        if (!kvm_is_reserved_pfn(pfn))
1514                mark_page_accessed(pfn_to_page(pfn));
1515}
1516EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1517
1518void kvm_get_pfn(pfn_t pfn)
1519{
1520        if (!kvm_is_reserved_pfn(pfn))
1521                get_page(pfn_to_page(pfn));
1522}
1523EXPORT_SYMBOL_GPL(kvm_get_pfn);
1524
1525static int next_segment(unsigned long len, int offset)
1526{
1527        if (len > PAGE_SIZE - offset)
1528                return PAGE_SIZE - offset;
1529        else
1530                return len;
1531}
1532
1533int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1534                        int len)
1535{
1536        int r;
1537        unsigned long addr;
1538
1539        addr = gfn_to_hva_prot(kvm, gfn, NULL);
1540        if (kvm_is_error_hva(addr))
1541                return -EFAULT;
1542        r = __copy_from_user(data, (void __user *)addr + offset, len);
1543        if (r)
1544                return -EFAULT;
1545        return 0;
1546}
1547EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1548
1549int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1550{
1551        gfn_t gfn = gpa >> PAGE_SHIFT;
1552        int seg;
1553        int offset = offset_in_page(gpa);
1554        int ret;
1555
1556        while ((seg = next_segment(len, offset)) != 0) {
1557                ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1558                if (ret < 0)
1559                        return ret;
1560                offset = 0;
1561                len -= seg;
1562                data += seg;
1563                ++gfn;
1564        }
1565        return 0;
1566}
1567EXPORT_SYMBOL_GPL(kvm_read_guest);
1568
1569int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1570                          unsigned long len)
1571{
1572        int r;
1573        unsigned long addr;
1574        gfn_t gfn = gpa >> PAGE_SHIFT;
1575        int offset = offset_in_page(gpa);
1576
1577        addr = gfn_to_hva_prot(kvm, gfn, NULL);
1578        if (kvm_is_error_hva(addr))
1579                return -EFAULT;
1580        pagefault_disable();
1581        r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1582        pagefault_enable();
1583        if (r)
1584                return -EFAULT;
1585        return 0;
1586}
1587EXPORT_SYMBOL(kvm_read_guest_atomic);
1588
1589int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1590                         int offset, int len)
1591{
1592        int r;
1593        unsigned long addr;
1594
1595        addr = gfn_to_hva(kvm, gfn);
1596        if (kvm_is_error_hva(addr))
1597                return -EFAULT;
1598        r = __copy_to_user((void __user *)addr + offset, data, len);
1599        if (r)
1600                return -EFAULT;
1601        mark_page_dirty(kvm, gfn);
1602        return 0;
1603}
1604EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1605
1606int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1607                    unsigned long len)
1608{
1609        gfn_t gfn = gpa >> PAGE_SHIFT;
1610        int seg;
1611        int offset = offset_in_page(gpa);
1612        int ret;
1613
1614        while ((seg = next_segment(len, offset)) != 0) {
1615                ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1616                if (ret < 0)
1617                        return ret;
1618                offset = 0;
1619                len -= seg;
1620                data += seg;
1621                ++gfn;
1622        }
1623        return 0;
1624}
1625EXPORT_SYMBOL_GPL(kvm_write_guest);
1626
1627int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1628                              gpa_t gpa, unsigned long len)
1629{
1630        struct kvm_memslots *slots = kvm_memslots(kvm);
1631        int offset = offset_in_page(gpa);
1632        gfn_t start_gfn = gpa >> PAGE_SHIFT;
1633        gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1634        gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1635        gfn_t nr_pages_avail;
1636
1637        ghc->gpa = gpa;
1638        ghc->generation = slots->generation;
1639        ghc->len = len;
1640        ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1641        ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1642        if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1643                ghc->hva += offset;
1644        } else {
1645                /*
1646                 * If the requested region crosses two memslots, we still
1647                 * verify that the entire region is valid here.
1648                 */
1649                while (start_gfn <= end_gfn) {
1650                        ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1651                        ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1652                                                   &nr_pages_avail);
1653                        if (kvm_is_error_hva(ghc->hva))
1654                                return -EFAULT;
1655                        start_gfn += nr_pages_avail;
1656                }
1657                /* Use the slow path for cross page reads and writes. */
1658                ghc->memslot = NULL;
1659        }
1660        return 0;
1661}
1662EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1663
1664int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1665                           void *data, unsigned long len)
1666{
1667        struct kvm_memslots *slots = kvm_memslots(kvm);
1668        int r;
1669
1670        BUG_ON(len > ghc->len);
1671
1672        if (slots->generation != ghc->generation)
1673                kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1674
1675        if (unlikely(!ghc->memslot))
1676                return kvm_write_guest(kvm, ghc->gpa, data, len);
1677
1678        if (kvm_is_error_hva(ghc->hva))
1679                return -EFAULT;
1680
1681        r = __copy_to_user((void __user *)ghc->hva, data, len);
1682        if (r)
1683                return -EFAULT;
1684        mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1685
1686        return 0;
1687}
1688EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1689
1690int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1691                           void *data, unsigned long len)
1692{
1693        struct kvm_memslots *slots = kvm_memslots(kvm);
1694        int r;
1695
1696        BUG_ON(len > ghc->len);
1697
1698        if (slots->generation != ghc->generation)
1699                kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1700
1701        if (unlikely(!ghc->memslot))
1702                return kvm_read_guest(kvm, ghc->gpa, data, len);
1703
1704        if (kvm_is_error_hva(ghc->hva))
1705                return -EFAULT;
1706
1707        r = __copy_from_user(data, (void __user *)ghc->hva, len);
1708        if (r)
1709                return -EFAULT;
1710
1711        return 0;
1712}
1713EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1714
1715int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1716{
1717        const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1718
1719        return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1720}
1721EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1722
1723int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1724{
1725        gfn_t gfn = gpa >> PAGE_SHIFT;
1726        int seg;
1727        int offset = offset_in_page(gpa);
1728        int ret;
1729
1730        while ((seg = next_segment(len, offset)) != 0) {
1731                ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1732                if (ret < 0)
1733                        return ret;
1734                offset = 0;
1735                len -= seg;
1736                ++gfn;
1737        }
1738        return 0;
1739}
1740EXPORT_SYMBOL_GPL(kvm_clear_guest);
1741
1742static void mark_page_dirty_in_slot(struct kvm *kvm,
1743                                    struct kvm_memory_slot *memslot,
1744                                    gfn_t gfn)
1745{
1746        if (memslot && memslot->dirty_bitmap) {
1747                unsigned long rel_gfn = gfn - memslot->base_gfn;
1748
1749                set_bit_le(rel_gfn, memslot->dirty_bitmap);
1750        }
1751}
1752
1753void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1754{
1755        struct kvm_memory_slot *memslot;
1756
1757        memslot = gfn_to_memslot(kvm, gfn);
1758        mark_page_dirty_in_slot(kvm, memslot, gfn);
1759}
1760EXPORT_SYMBOL_GPL(mark_page_dirty);
1761
1762static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1763{
1764        if (kvm_arch_vcpu_runnable(vcpu)) {
1765                kvm_make_request(KVM_REQ_UNHALT, vcpu);
1766                return -EINTR;
1767        }
1768        if (kvm_cpu_has_pending_timer(vcpu))
1769                return -EINTR;
1770        if (signal_pending(current))
1771                return -EINTR;
1772
1773        return 0;
1774}
1775
1776/*
1777 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1778 */
1779void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1780{
1781        ktime_t start, cur;
1782        DEFINE_WAIT(wait);
1783        bool waited = false;
1784
1785        start = cur = ktime_get();
1786        if (halt_poll_ns) {
1787                ktime_t stop = ktime_add_ns(ktime_get(), halt_poll_ns);
1788
1789                do {
1790                        /*
1791                         * This sets KVM_REQ_UNHALT if an interrupt
1792                         * arrives.
1793                         */
1794                        if (kvm_vcpu_check_block(vcpu) < 0) {
1795                                ++vcpu->stat.halt_successful_poll;
1796                                goto out;
1797                        }
1798                        cur = ktime_get();
1799                } while (single_task_running() && ktime_before(cur, stop));
1800        }
1801
1802        for (;;) {
1803                prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1804
1805                if (kvm_vcpu_check_block(vcpu) < 0)
1806                        break;
1807
1808                waited = true;
1809                schedule();
1810        }
1811
1812        finish_wait(&vcpu->wq, &wait);
1813        cur = ktime_get();
1814
1815out:
1816        trace_kvm_vcpu_wakeup(ktime_to_ns(cur) - ktime_to_ns(start), waited);
1817}
1818EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1819
1820#ifndef CONFIG_S390
1821/*
1822 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1823 */
1824void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1825{
1826        int me;
1827        int cpu = vcpu->cpu;
1828        wait_queue_head_t *wqp;
1829
1830        wqp = kvm_arch_vcpu_wq(vcpu);
1831        if (waitqueue_active(wqp)) {
1832                wake_up_interruptible(wqp);
1833                ++vcpu->stat.halt_wakeup;
1834        }
1835
1836        me = get_cpu();
1837        if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1838                if (kvm_arch_vcpu_should_kick(vcpu))
1839                        smp_send_reschedule(cpu);
1840        put_cpu();
1841}
1842EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1843#endif /* !CONFIG_S390 */
1844
1845int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1846{
1847        struct pid *pid;
1848        struct task_struct *task = NULL;
1849        int ret = 0;
1850
1851        rcu_read_lock();
1852        pid = rcu_dereference(target->pid);
1853        if (pid)
1854                task = get_pid_task(pid, PIDTYPE_PID);
1855        rcu_read_unlock();
1856        if (!task)
1857                return ret;
1858        ret = yield_to(task, 1);
1859        put_task_struct(task);
1860
1861        return ret;
1862}
1863EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1864
1865/*
1866 * Helper that checks whether a VCPU is eligible for directed yield.
1867 * Most eligible candidate to yield is decided by following heuristics:
1868 *
1869 *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1870 *  (preempted lock holder), indicated by @in_spin_loop.
1871 *  Set at the beiginning and cleared at the end of interception/PLE handler.
1872 *
1873 *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1874 *  chance last time (mostly it has become eligible now since we have probably
1875 *  yielded to lockholder in last iteration. This is done by toggling
1876 *  @dy_eligible each time a VCPU checked for eligibility.)
1877 *
1878 *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1879 *  to preempted lock-holder could result in wrong VCPU selection and CPU
1880 *  burning. Giving priority for a potential lock-holder increases lock
1881 *  progress.
1882 *
1883 *  Since algorithm is based on heuristics, accessing another VCPU data without
1884 *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1885 *  and continue with next VCPU and so on.
1886 */
1887static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1888{
1889#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1890        bool eligible;
1891
1892        eligible = !vcpu->spin_loop.in_spin_loop ||
1893                    vcpu->spin_loop.dy_eligible;
1894
1895        if (vcpu->spin_loop.in_spin_loop)
1896                kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1897
1898        return eligible;
1899#else
1900        return true;
1901#endif
1902}
1903
1904void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1905{
1906        struct kvm *kvm = me->kvm;
1907        struct kvm_vcpu *vcpu;
1908        int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1909        int yielded = 0;
1910        int try = 3;
1911        int pass;
1912        int i;
1913
1914        kvm_vcpu_set_in_spin_loop(me, true);
1915        /*
1916         * We boost the priority of a VCPU that is runnable but not
1917         * currently running, because it got preempted by something
1918         * else and called schedule in __vcpu_run.  Hopefully that
1919         * VCPU is holding the lock that we need and will release it.
1920         * We approximate round-robin by starting at the last boosted VCPU.
1921         */
1922        for (pass = 0; pass < 2 && !yielded && try; pass++) {
1923                kvm_for_each_vcpu(i, vcpu, kvm) {
1924                        if (!pass && i <= last_boosted_vcpu) {
1925                                i = last_boosted_vcpu;
1926                                continue;
1927                        } else if (pass && i > last_boosted_vcpu)
1928                                break;
1929                        if (!ACCESS_ONCE(vcpu->preempted))
1930                                continue;
1931                        if (vcpu == me)
1932                                continue;
1933                        if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1934                                continue;
1935                        if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1936                                continue;
1937
1938                        yielded = kvm_vcpu_yield_to(vcpu);
1939                        if (yielded > 0) {
1940                                kvm->last_boosted_vcpu = i;
1941                                break;
1942                        } else if (yielded < 0) {
1943                                try--;
1944                                if (!try)
1945                                        break;
1946                        }
1947                }
1948        }
1949        kvm_vcpu_set_in_spin_loop(me, false);
1950
1951        /* Ensure vcpu is not eligible during next spinloop */
1952        kvm_vcpu_set_dy_eligible(me, false);
1953}
1954EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1955
1956static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1957{
1958        struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1959        struct page *page;
1960
1961        if (vmf->pgoff == 0)
1962                page = virt_to_page(vcpu->run);
1963#ifdef CONFIG_X86
1964        else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1965                page = virt_to_page(vcpu->arch.pio_data);
1966#endif
1967#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1968        else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1969                page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1970#endif
1971        else
1972                return kvm_arch_vcpu_fault(vcpu, vmf);
1973        get_page(page);
1974        vmf->page = page;
1975        return 0;
1976}
1977
1978static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1979        .fault = kvm_vcpu_fault,
1980};
1981
1982static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1983{
1984        vma->vm_ops = &kvm_vcpu_vm_ops;
1985        return 0;
1986}
1987
1988static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1989{
1990        struct kvm_vcpu *vcpu = filp->private_data;
1991
1992        kvm_put_kvm(vcpu->kvm);
1993        return 0;
1994}
1995
1996static struct file_operations kvm_vcpu_fops = {
1997        .release        = kvm_vcpu_release,
1998        .unlocked_ioctl = kvm_vcpu_ioctl,
1999#ifdef CONFIG_KVM_COMPAT
2000        .compat_ioctl   = kvm_vcpu_compat_ioctl,
2001#endif
2002        .mmap           = kvm_vcpu_mmap,
2003        .llseek         = noop_llseek,
2004};
2005
2006/*
2007 * Allocates an inode for the vcpu.
2008 */
2009static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2010{
2011        return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2012}
2013
2014/*
2015 * Creates some virtual cpus.  Good luck creating more than one.
2016 */
2017static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2018{
2019        int r;
2020        struct kvm_vcpu *vcpu, *v;
2021
2022        if (id >= KVM_MAX_VCPUS)
2023                return -EINVAL;
2024
2025        vcpu = kvm_arch_vcpu_create(kvm, id);
2026        if (IS_ERR(vcpu))
2027                return PTR_ERR(vcpu);
2028
2029        preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2030
2031        r = kvm_arch_vcpu_setup(vcpu);
2032        if (r)
2033                goto vcpu_destroy;
2034
2035        mutex_lock(&kvm->lock);
2036        if (!kvm_vcpu_compatible(vcpu)) {
2037                r = -EINVAL;
2038                goto unlock_vcpu_destroy;
2039        }
2040        if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2041                r = -EINVAL;
2042                goto unlock_vcpu_destroy;
2043        }
2044
2045        kvm_for_each_vcpu(r, v, kvm)
2046                if (v->vcpu_id == id) {
2047                        r = -EEXIST;
2048                        goto unlock_vcpu_destroy;
2049                }
2050
2051        BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2052
2053        /* Now it's all set up, let userspace reach it */
2054        kvm_get_kvm(kvm);
2055        r = create_vcpu_fd(vcpu);
2056        if (r < 0) {
2057                kvm_put_kvm(kvm);
2058                goto unlock_vcpu_destroy;
2059        }
2060
2061        kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2062        smp_wmb();
2063        atomic_inc(&kvm->online_vcpus);
2064
2065        mutex_unlock(&kvm->lock);
2066        kvm_arch_vcpu_postcreate(vcpu);
2067        return r;
2068
2069unlock_vcpu_destroy:
2070        mutex_unlock(&kvm->lock);
2071vcpu_destroy:
2072        kvm_arch_vcpu_destroy(vcpu);
2073        return r;
2074}
2075
2076static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2077{
2078        if (sigset) {
2079                sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2080                vcpu->sigset_active = 1;
2081                vcpu->sigset = *sigset;
2082        } else
2083                vcpu->sigset_active = 0;
2084        return 0;
2085}
2086
2087static long kvm_vcpu_ioctl(struct file *filp,
2088                           unsigned int ioctl, unsigned long arg)
2089{
2090        struct kvm_vcpu *vcpu = filp->private_data;
2091        void __user *argp = (void __user *)arg;
2092        int r;
2093        struct kvm_fpu *fpu = NULL;
2094        struct kvm_sregs *kvm_sregs = NULL;
2095
2096        if (vcpu->kvm->mm != current->mm)
2097                return -EIO;
2098
2099        if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2100                return -EINVAL;
2101
2102#if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2103        /*
2104         * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2105         * so vcpu_load() would break it.
2106         */
2107        if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2108                return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2109#endif
2110
2111
2112        r = vcpu_load(vcpu);
2113        if (r)
2114                return r;
2115        switch (ioctl) {
2116        case KVM_RUN:
2117                r = -EINVAL;
2118                if (arg)
2119                        goto out;
2120                if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2121                        /* The thread running this VCPU changed. */
2122                        struct pid *oldpid = vcpu->pid;
2123                        struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2124
2125                        rcu_assign_pointer(vcpu->pid, newpid);
2126                        if (oldpid)
2127                                synchronize_rcu();
2128                        put_pid(oldpid);
2129                }
2130                r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2131                trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2132                break;
2133        case KVM_GET_REGS: {
2134                struct kvm_regs *kvm_regs;
2135
2136                r = -ENOMEM;
2137                kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2138                if (!kvm_regs)
2139                        goto out;
2140                r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2141                if (r)
2142                        goto out_free1;
2143                r = -EFAULT;
2144                if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2145                        goto out_free1;
2146                r = 0;
2147out_free1:
2148                kfree(kvm_regs);
2149                break;
2150        }
2151        case KVM_SET_REGS: {
2152                struct kvm_regs *kvm_regs;
2153
2154                r = -ENOMEM;
2155                kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2156                if (IS_ERR(kvm_regs)) {
2157                        r = PTR_ERR(kvm_regs);
2158                        goto out;
2159                }
2160                r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2161                kfree(kvm_regs);
2162                break;
2163        }
2164        case KVM_GET_SREGS: {
2165                kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2166                r = -ENOMEM;
2167                if (!kvm_sregs)
2168                        goto out;
2169                r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2170                if (r)
2171                        goto out;
2172                r = -EFAULT;
2173                if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2174                        goto out;
2175                r = 0;
2176                break;
2177        }
2178        case KVM_SET_SREGS: {
2179                kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2180                if (IS_ERR(kvm_sregs)) {
2181                        r = PTR_ERR(kvm_sregs);
2182                        kvm_sregs = NULL;
2183                        goto out;
2184                }
2185                r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2186                break;
2187        }
2188        case KVM_GET_MP_STATE: {
2189                struct kvm_mp_state mp_state;
2190
2191                r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2192                if (r)
2193                        goto out;
2194                r = -EFAULT;
2195                if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2196                        goto out;
2197                r = 0;
2198                break;
2199        }
2200        case KVM_SET_MP_STATE: {
2201                struct kvm_mp_state mp_state;
2202
2203                r = -EFAULT;
2204                if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2205                        goto out;
2206                r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2207                break;
2208        }
2209        case KVM_TRANSLATE: {
2210                struct kvm_translation tr;
2211
2212                r = -EFAULT;
2213                if (copy_from_user(&tr, argp, sizeof(tr)))
2214                        goto out;
2215                r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2216                if (r)
2217                        goto out;
2218                r = -EFAULT;
2219                if (copy_to_user(argp, &tr, sizeof(tr)))
2220                        goto out;
2221                r = 0;
2222                break;
2223        }
2224        case KVM_SET_GUEST_DEBUG: {
2225                struct kvm_guest_debug dbg;
2226
2227                r = -EFAULT;
2228                if (copy_from_user(&dbg, argp, sizeof(dbg)))
2229                        goto out;
2230                r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2231                break;
2232        }
2233        case KVM_SET_SIGNAL_MASK: {
2234                struct kvm_signal_mask __user *sigmask_arg = argp;
2235                struct kvm_signal_mask kvm_sigmask;
2236                sigset_t sigset, *p;
2237
2238                p = NULL;
2239                if (argp) {
2240                        r = -EFAULT;
2241                        if (copy_from_user(&kvm_sigmask, argp,
2242                                           sizeof(kvm_sigmask)))
2243                                goto out;
2244                        r = -EINVAL;
2245                        if (kvm_sigmask.len != sizeof(sigset))
2246                                goto out;
2247                        r = -EFAULT;
2248                        if (copy_from_user(&sigset, sigmask_arg->sigset,
2249                                           sizeof(sigset)))
2250                                goto out;
2251                        p = &sigset;
2252                }
2253                r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2254                break;
2255        }
2256        case KVM_GET_FPU: {
2257                fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2258                r = -ENOMEM;
2259                if (!fpu)
2260                        goto out;
2261                r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2262                if (r)
2263                        goto out;
2264                r = -EFAULT;
2265                if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2266                        goto out;
2267                r = 0;
2268                break;
2269        }
2270        case KVM_SET_FPU: {
2271                fpu = memdup_user(argp, sizeof(*fpu));
2272                if (IS_ERR(fpu)) {
2273                        r = PTR_ERR(fpu);
2274                        fpu = NULL;
2275                        goto out;
2276                }
2277                r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2278                break;
2279        }
2280        default:
2281                r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2282        }
2283out:
2284        vcpu_put(vcpu);
2285        kfree(fpu);
2286        kfree(kvm_sregs);
2287        return r;
2288}
2289
2290#ifdef CONFIG_KVM_COMPAT
2291static long kvm_vcpu_compat_ioctl(struct file *filp,
2292                                  unsigned int ioctl, unsigned long arg)
2293{
2294        struct kvm_vcpu *vcpu = filp->private_data;
2295        void __user *argp = compat_ptr(arg);
2296        int r;
2297
2298        if (vcpu->kvm->mm != current->mm)
2299                return -EIO;
2300
2301        switch (ioctl) {
2302        case KVM_SET_SIGNAL_MASK: {
2303                struct kvm_signal_mask __user *sigmask_arg = argp;
2304                struct kvm_signal_mask kvm_sigmask;
2305                compat_sigset_t csigset;
2306                sigset_t sigset;
2307
2308                if (argp) {
2309                        r = -EFAULT;
2310                        if (copy_from_user(&kvm_sigmask, argp,
2311                                           sizeof(kvm_sigmask)))
2312                                goto out;
2313                        r = -EINVAL;
2314                        if (kvm_sigmask.len != sizeof(csigset))
2315                                goto out;
2316                        r = -EFAULT;
2317                        if (copy_from_user(&csigset, sigmask_arg->sigset,
2318                                           sizeof(csigset)))
2319                                goto out;
2320                        sigset_from_compat(&sigset, &csigset);
2321                        r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2322                } else
2323                        r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2324                break;
2325        }
2326        default:
2327                r = kvm_vcpu_ioctl(filp, ioctl, arg);
2328        }
2329
2330out:
2331        return r;
2332}
2333#endif
2334
2335static int kvm_device_ioctl_attr(struct kvm_device *dev,
2336                                 int (*accessor)(struct kvm_device *dev,
2337                                                 struct kvm_device_attr *attr),
2338                                 unsigned long arg)
2339{
2340        struct kvm_device_attr attr;
2341
2342        if (!accessor)
2343                return -EPERM;
2344
2345        if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2346                return -EFAULT;
2347
2348        return accessor(dev, &attr);
2349}
2350
2351static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2352                             unsigned long arg)
2353{
2354        struct kvm_device *dev = filp->private_data;
2355
2356        switch (ioctl) {
2357        case KVM_SET_DEVICE_ATTR:
2358                return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2359        case KVM_GET_DEVICE_ATTR:
2360                return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2361        case KVM_HAS_DEVICE_ATTR:
2362                return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2363        default:
2364                if (dev->ops->ioctl)
2365                        return dev->ops->ioctl(dev, ioctl, arg);
2366
2367                return -ENOTTY;
2368        }
2369}
2370
2371static int kvm_device_release(struct inode *inode, struct file *filp)
2372{
2373        struct kvm_device *dev = filp->private_data;
2374        struct kvm *kvm = dev->kvm;
2375
2376        kvm_put_kvm(kvm);
2377        return 0;
2378}
2379
2380static const struct file_operations kvm_device_fops = {
2381        .unlocked_ioctl = kvm_device_ioctl,
2382#ifdef CONFIG_KVM_COMPAT
2383        .compat_ioctl = kvm_device_ioctl,
2384#endif
2385        .release = kvm_device_release,
2386};
2387
2388struct kvm_device *kvm_device_from_filp(struct file *filp)
2389{
2390        if (filp->f_op != &kvm_device_fops)
2391                return NULL;
2392
2393        return filp->private_data;
2394}
2395
2396static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2397#ifdef CONFIG_KVM_MPIC
2398        [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2399        [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2400#endif
2401
2402#ifdef CONFIG_KVM_XICS
2403        [KVM_DEV_TYPE_XICS]             = &kvm_xics_ops,
2404#endif
2405};
2406
2407int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2408{
2409        if (type >= ARRAY_SIZE(kvm_device_ops_table))
2410                return -ENOSPC;
2411
2412        if (kvm_device_ops_table[type] != NULL)
2413                return -EEXIST;
2414
2415        kvm_device_ops_table[type] = ops;
2416        return 0;
2417}
2418
2419void kvm_unregister_device_ops(u32 type)
2420{
2421        if (kvm_device_ops_table[type] != NULL)
2422                kvm_device_ops_table[type] = NULL;
2423}
2424
2425static int kvm_ioctl_create_device(struct kvm *kvm,
2426                                   struct kvm_create_device *cd)
2427{
2428        struct kvm_device_ops *ops = NULL;
2429        struct kvm_device *dev;
2430        bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2431        int ret;
2432
2433        if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2434                return -ENODEV;
2435
2436        ops = kvm_device_ops_table[cd->type];
2437        if (ops == NULL)
2438                return -ENODEV;
2439
2440        if (test)
2441                return 0;
2442
2443        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2444        if (!dev)
2445                return -ENOMEM;
2446
2447        dev->ops = ops;
2448        dev->kvm = kvm;
2449
2450        ret = ops->create(dev, cd->type);
2451        if (ret < 0) {
2452                kfree(dev);
2453                return ret;
2454        }
2455
2456        ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2457        if (ret < 0) {
2458                ops->destroy(dev);
2459                return ret;
2460        }
2461
2462        list_add(&dev->vm_node, &kvm->devices);
2463        kvm_get_kvm(kvm);
2464        cd->fd = ret;
2465        return 0;
2466}
2467
2468static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2469{
2470        switch (arg) {
2471        case KVM_CAP_USER_MEMORY:
2472        case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2473        case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2474#ifdef CONFIG_KVM_APIC_ARCHITECTURE
2475        case KVM_CAP_SET_BOOT_CPU_ID:
2476#endif
2477        case KVM_CAP_INTERNAL_ERROR_DATA:
2478#ifdef CONFIG_HAVE_KVM_MSI
2479        case KVM_CAP_SIGNAL_MSI:
2480#endif
2481#ifdef CONFIG_HAVE_KVM_IRQFD
2482        case KVM_CAP_IRQFD:
2483        case KVM_CAP_IRQFD_RESAMPLE:
2484#endif
2485        case KVM_CAP_CHECK_EXTENSION_VM:
2486                return 1;
2487#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2488        case KVM_CAP_IRQ_ROUTING:
2489                return KVM_MAX_IRQ_ROUTES;
2490#endif
2491        default:
2492                break;
2493        }
2494        return kvm_vm_ioctl_check_extension(kvm, arg);
2495}
2496
2497static long kvm_vm_ioctl(struct file *filp,
2498                           unsigned int ioctl, unsigned long arg)
2499{
2500        struct kvm *kvm = filp->private_data;
2501        void __user *argp = (void __user *)arg;
2502        int r;
2503
2504        if (kvm->mm != current->mm)
2505                return -EIO;
2506        switch (ioctl) {
2507        case KVM_CREATE_VCPU:
2508                r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2509                break;
2510        case KVM_SET_USER_MEMORY_REGION: {
2511                struct kvm_userspace_memory_region kvm_userspace_mem;
2512
2513                r = -EFAULT;
2514                if (copy_from_user(&kvm_userspace_mem, argp,
2515                                                sizeof(kvm_userspace_mem)))
2516                        goto out;
2517
2518                r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2519                break;
2520        }
2521        case KVM_GET_DIRTY_LOG: {
2522                struct kvm_dirty_log log;
2523
2524                r = -EFAULT;
2525                if (copy_from_user(&log, argp, sizeof(log)))
2526                        goto out;
2527                r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2528                break;
2529        }
2530#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2531        case KVM_REGISTER_COALESCED_MMIO: {
2532                struct kvm_coalesced_mmio_zone zone;
2533
2534                r = -EFAULT;
2535                if (copy_from_user(&zone, argp, sizeof(zone)))
2536                        goto out;
2537                r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2538                break;
2539        }
2540        case KVM_UNREGISTER_COALESCED_MMIO: {
2541                struct kvm_coalesced_mmio_zone zone;
2542
2543                r = -EFAULT;
2544                if (copy_from_user(&zone, argp, sizeof(zone)))
2545                        goto out;
2546                r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2547                break;
2548        }
2549#endif
2550        case KVM_IRQFD: {
2551                struct kvm_irqfd data;
2552
2553                r = -EFAULT;
2554                if (copy_from_user(&data, argp, sizeof(data)))
2555                        goto out;
2556                r = kvm_irqfd(kvm, &data);
2557                break;
2558        }
2559        case KVM_IOEVENTFD: {
2560                struct kvm_ioeventfd data;
2561
2562                r = -EFAULT;
2563                if (copy_from_user(&data, argp, sizeof(data)))
2564                        goto out;
2565                r = kvm_ioeventfd(kvm, &data);
2566                break;
2567        }
2568#ifdef CONFIG_KVM_APIC_ARCHITECTURE
2569        case KVM_SET_BOOT_CPU_ID:
2570                r = 0;
2571                mutex_lock(&kvm->lock);
2572                if (atomic_read(&kvm->online_vcpus) != 0)
2573                        r = -EBUSY;
2574                else
2575                        kvm->bsp_vcpu_id = arg;
2576                mutex_unlock(&kvm->lock);
2577                break;
2578#endif
2579#ifdef CONFIG_HAVE_KVM_MSI
2580        case KVM_SIGNAL_MSI: {
2581                struct kvm_msi msi;
2582
2583                r = -EFAULT;
2584                if (copy_from_user(&msi, argp, sizeof(msi)))
2585                        goto out;
2586                r = kvm_send_userspace_msi(kvm, &msi);
2587                break;
2588        }
2589#endif
2590#ifdef __KVM_HAVE_IRQ_LINE
2591        case KVM_IRQ_LINE_STATUS:
2592        case KVM_IRQ_LINE: {
2593                struct kvm_irq_level irq_event;
2594
2595                r = -EFAULT;
2596                if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2597                        goto out;
2598
2599                r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2600                                        ioctl == KVM_IRQ_LINE_STATUS);
2601                if (r)
2602                        goto out;
2603
2604                r = -EFAULT;
2605                if (ioctl == KVM_IRQ_LINE_STATUS) {
2606                        if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2607                                goto out;
2608                }
2609
2610                r = 0;
2611                break;
2612        }
2613#endif
2614#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2615        case KVM_SET_GSI_ROUTING: {
2616                struct kvm_irq_routing routing;
2617                struct kvm_irq_routing __user *urouting;
2618                struct kvm_irq_routing_entry *entries;
2619
2620                r = -EFAULT;
2621                if (copy_from_user(&routing, argp, sizeof(routing)))
2622                        goto out;
2623                r = -EINVAL;
2624                if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2625                        goto out;
2626                if (routing.flags)
2627                        goto out;
2628                r = -ENOMEM;
2629                entries = vmalloc(routing.nr * sizeof(*entries));
2630                if (!entries)
2631                        goto out;
2632                r = -EFAULT;
2633                urouting = argp;
2634                if (copy_from_user(entries, urouting->entries,
2635                                   routing.nr * sizeof(*entries)))
2636                        goto out_free_irq_routing;
2637                r = kvm_set_irq_routing(kvm, entries, routing.nr,
2638                                        routing.flags);
2639out_free_irq_routing:
2640                vfree(entries);
2641                break;
2642        }
2643#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2644        case KVM_CREATE_DEVICE: {
2645                struct kvm_create_device cd;
2646
2647                r = -EFAULT;
2648                if (copy_from_user(&cd, argp, sizeof(cd)))
2649                        goto out;
2650
2651                r = kvm_ioctl_create_device(kvm, &cd);
2652                if (r)
2653                        goto out;
2654
2655                r = -EFAULT;
2656                if (copy_to_user(argp, &cd, sizeof(cd)))
2657                        goto out;
2658
2659                r = 0;
2660                break;
2661        }
2662        case KVM_CHECK_EXTENSION:
2663                r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2664                break;
2665        default:
2666                r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2667        }
2668out:
2669        return r;
2670}
2671
2672#ifdef CONFIG_KVM_COMPAT
2673struct compat_kvm_dirty_log {
2674        __u32 slot;
2675        __u32 padding1;
2676        union {
2677                compat_uptr_t dirty_bitmap; /* one bit per page */
2678                __u64 padding2;
2679        };
2680};
2681
2682static long kvm_vm_compat_ioctl(struct file *filp,
2683                           unsigned int ioctl, unsigned long arg)
2684{
2685        struct kvm *kvm = filp->private_data;
2686        int r;
2687
2688        if (kvm->mm != current->mm)
2689                return -EIO;
2690        switch (ioctl) {
2691        case KVM_GET_DIRTY_LOG: {
2692                struct compat_kvm_dirty_log compat_log;
2693                struct kvm_dirty_log log;
2694
2695                r = -EFAULT;
2696                if (copy_from_user(&compat_log, (void __user *)arg,
2697                                   sizeof(compat_log)))
2698                        goto out;
2699                log.slot         = compat_log.slot;
2700                log.padding1     = compat_log.padding1;
2701                log.padding2     = compat_log.padding2;
2702                log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2703
2704                r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2705                break;
2706        }
2707        default:
2708                r = kvm_vm_ioctl(filp, ioctl, arg);
2709        }
2710
2711out:
2712        return r;
2713}
2714#endif
2715
2716static struct file_operations kvm_vm_fops = {
2717        .release        = kvm_vm_release,
2718        .unlocked_ioctl = kvm_vm_ioctl,
2719#ifdef CONFIG_KVM_COMPAT
2720        .compat_ioctl   = kvm_vm_compat_ioctl,
2721#endif
2722        .llseek         = noop_llseek,
2723};
2724
2725static int kvm_dev_ioctl_create_vm(unsigned long type)
2726{
2727        int r;
2728        struct kvm *kvm;
2729
2730        kvm = kvm_create_vm(type);
2731        if (IS_ERR(kvm))
2732                return PTR_ERR(kvm);
2733#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2734        r = kvm_coalesced_mmio_init(kvm);
2735        if (r < 0) {
2736                kvm_put_kvm(kvm);
2737                return r;
2738        }
2739#endif
2740        r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2741        if (r < 0)
2742                kvm_put_kvm(kvm);
2743
2744        return r;
2745}
2746
2747static long kvm_dev_ioctl(struct file *filp,
2748                          unsigned int ioctl, unsigned long arg)
2749{
2750        long r = -EINVAL;
2751
2752        switch (ioctl) {
2753        case KVM_GET_API_VERSION:
2754                if (arg)
2755                        goto out;
2756                r = KVM_API_VERSION;
2757                break;
2758        case KVM_CREATE_VM:
2759                r = kvm_dev_ioctl_create_vm(arg);
2760                break;
2761        case KVM_CHECK_EXTENSION:
2762                r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2763                break;
2764        case KVM_GET_VCPU_MMAP_SIZE:
2765                if (arg)
2766                        goto out;
2767                r = PAGE_SIZE;     /* struct kvm_run */
2768#ifdef CONFIG_X86
2769                r += PAGE_SIZE;    /* pio data page */
2770#endif
2771#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2772                r += PAGE_SIZE;    /* coalesced mmio ring page */
2773#endif
2774                break;
2775        case KVM_TRACE_ENABLE:
2776        case KVM_TRACE_PAUSE:
2777        case KVM_TRACE_DISABLE:
2778                r = -EOPNOTSUPP;
2779                break;
2780        default:
2781                return kvm_arch_dev_ioctl(filp, ioctl, arg);
2782        }
2783out:
2784        return r;
2785}
2786
2787static struct file_operations kvm_chardev_ops = {
2788        .unlocked_ioctl = kvm_dev_ioctl,
2789        .compat_ioctl   = kvm_dev_ioctl,
2790        .llseek         = noop_llseek,
2791};
2792
2793static struct miscdevice kvm_dev = {
2794        KVM_MINOR,
2795        "kvm",
2796        &kvm_chardev_ops,
2797};
2798
2799static void hardware_enable_nolock(void *junk)
2800{
2801        int cpu = raw_smp_processor_id();
2802        int r;
2803
2804        if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2805                return;
2806
2807        cpumask_set_cpu(cpu, cpus_hardware_enabled);
2808
2809        r = kvm_arch_hardware_enable();
2810
2811        if (r) {
2812                cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2813                atomic_inc(&hardware_enable_failed);
2814                pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
2815        }
2816}
2817
2818static void hardware_enable(void)
2819{
2820        raw_spin_lock(&kvm_count_lock);
2821        if (kvm_usage_count)
2822                hardware_enable_nolock(NULL);
2823        raw_spin_unlock(&kvm_count_lock);
2824}
2825
2826static void hardware_disable_nolock(void *junk)
2827{
2828        int cpu = raw_smp_processor_id();
2829
2830        if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2831                return;
2832        cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2833        kvm_arch_hardware_disable();
2834}
2835
2836static void hardware_disable(void)
2837{
2838        raw_spin_lock(&kvm_count_lock);
2839        if (kvm_usage_count)
2840                hardware_disable_nolock(NULL);
2841        raw_spin_unlock(&kvm_count_lock);
2842}
2843
2844static void hardware_disable_all_nolock(void)
2845{
2846        BUG_ON(!kvm_usage_count);
2847
2848        kvm_usage_count--;
2849        if (!kvm_usage_count)
2850                on_each_cpu(hardware_disable_nolock, NULL, 1);
2851}
2852
2853static void hardware_disable_all(void)
2854{
2855        raw_spin_lock(&kvm_count_lock);
2856        hardware_disable_all_nolock();
2857        raw_spin_unlock(&kvm_count_lock);
2858}
2859
2860static int hardware_enable_all(void)
2861{
2862        int r = 0;
2863
2864        raw_spin_lock(&kvm_count_lock);
2865
2866        kvm_usage_count++;
2867        if (kvm_usage_count == 1) {
2868                atomic_set(&hardware_enable_failed, 0);
2869                on_each_cpu(hardware_enable_nolock, NULL, 1);
2870
2871                if (atomic_read(&hardware_enable_failed)) {
2872                        hardware_disable_all_nolock();
2873                        r = -EBUSY;
2874                }
2875        }
2876
2877        raw_spin_unlock(&kvm_count_lock);
2878
2879        return r;
2880}
2881
2882static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2883                           void *v)
2884{
2885        int cpu = (long)v;
2886
2887        val &= ~CPU_TASKS_FROZEN;
2888        switch (val) {
2889        case CPU_DYING:
2890                pr_info("kvm: disabling virtualization on CPU%d\n",
2891                       cpu);
2892                hardware_disable();
2893                break;
2894        case CPU_STARTING:
2895                pr_info("kvm: enabling virtualization on CPU%d\n",
2896                       cpu);
2897                hardware_enable();
2898                break;
2899        }
2900        return NOTIFY_OK;
2901}
2902
2903static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2904                      void *v)
2905{
2906        /*
2907         * Some (well, at least mine) BIOSes hang on reboot if
2908         * in vmx root mode.
2909         *
2910         * And Intel TXT required VMX off for all cpu when system shutdown.
2911         */
2912        pr_info("kvm: exiting hardware virtualization\n");
2913        kvm_rebooting = true;
2914        on_each_cpu(hardware_disable_nolock, NULL, 1);
2915        return NOTIFY_OK;
2916}
2917
2918static struct notifier_block kvm_reboot_notifier = {
2919        .notifier_call = kvm_reboot,
2920        .priority = 0,
2921};
2922
2923static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2924{
2925        int i;
2926
2927        for (i = 0; i < bus->dev_count; i++) {
2928                struct kvm_io_device *pos = bus->range[i].dev;
2929
2930                kvm_iodevice_destructor(pos);
2931        }
2932        kfree(bus);
2933}
2934
2935static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2936                                 const struct kvm_io_range *r2)
2937{
2938        if (r1->addr < r2->addr)
2939                return -1;
2940        if (r1->addr + r1->len > r2->addr + r2->len)
2941                return 1;
2942        return 0;
2943}
2944
2945static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2946{
2947        return kvm_io_bus_cmp(p1, p2);
2948}
2949
2950static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2951                          gpa_t addr, int len)
2952{
2953        bus->range[bus->dev_count++] = (struct kvm_io_range) {
2954                .addr = addr,
2955                .len = len,
2956                .dev = dev,
2957        };
2958
2959        sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2960                kvm_io_bus_sort_cmp, NULL);
2961
2962        return 0;
2963}
2964
2965static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2966                             gpa_t addr, int len)
2967{
2968        struct kvm_io_range *range, key;
2969        int off;
2970
2971        key = (struct kvm_io_range) {
2972                .addr = addr,
2973                .len = len,
2974        };
2975
2976        range = bsearch(&key, bus->range, bus->dev_count,
2977                        sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2978        if (range == NULL)
2979                return -ENOENT;
2980
2981        off = range - bus->range;
2982
2983        while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2984                off--;
2985
2986        return off;
2987}
2988
2989static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
2990                              struct kvm_io_range *range, const void *val)
2991{
2992        int idx;
2993
2994        idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2995        if (idx < 0)
2996                return -EOPNOTSUPP;
2997
2998        while (idx < bus->dev_count &&
2999                kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3000                if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3001                                        range->len, val))
3002                        return idx;
3003                idx++;
3004        }
3005
3006        return -EOPNOTSUPP;
3007}
3008
3009/* kvm_io_bus_write - called under kvm->slots_lock */
3010int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3011                     int len, const void *val)
3012{
3013        struct kvm_io_bus *bus;
3014        struct kvm_io_range range;
3015        int r;
3016
3017        range = (struct kvm_io_range) {
3018                .addr = addr,
3019                .len = len,
3020        };
3021
3022        bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3023        r = __kvm_io_bus_write(vcpu, bus, &range, val);
3024        return r < 0 ? r : 0;
3025}
3026
3027/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3028int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3029                            gpa_t addr, int len, const void *val, long cookie)
3030{
3031        struct kvm_io_bus *bus;
3032        struct kvm_io_range range;
3033
3034        range = (struct kvm_io_range) {
3035                .addr = addr,
3036                .len = len,
3037        };
3038
3039        bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3040
3041        /* First try the device referenced by cookie. */
3042        if ((cookie >= 0) && (cookie < bus->dev_count) &&
3043            (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3044                if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3045                                        val))
3046                        return cookie;
3047
3048        /*
3049         * cookie contained garbage; fall back to search and return the
3050         * correct cookie value.
3051         */
3052        return __kvm_io_bus_write(vcpu, bus, &range, val);
3053}
3054
3055static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3056                             struct kvm_io_range *range, void *val)
3057{
3058        int idx;
3059
3060        idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3061        if (idx < 0)
3062                return -EOPNOTSUPP;
3063
3064        while (idx < bus->dev_count &&
3065                kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3066                if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3067                                       range->len, val))
3068                        return idx;
3069                idx++;
3070        }
3071
3072        return -EOPNOTSUPP;
3073}
3074EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3075
3076/* kvm_io_bus_read - called under kvm->slots_lock */
3077int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3078                    int len, void *val)
3079{
3080        struct kvm_io_bus *bus;
3081        struct kvm_io_range range;
3082        int r;
3083
3084        range = (struct kvm_io_range) {
3085                .addr = addr,
3086                .len = len,
3087        };
3088
3089        bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3090        r = __kvm_io_bus_read(vcpu, bus, &range, val);
3091        return r < 0 ? r : 0;
3092}
3093
3094
3095/* Caller must hold slots_lock. */
3096int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3097                            int len, struct kvm_io_device *dev)
3098{
3099        struct kvm_io_bus *new_bus, *bus;
3100
3101        bus = kvm->buses[bus_idx];
3102        /* exclude ioeventfd which is limited by maximum fd */
3103        if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3104                return -ENOSPC;
3105
3106        new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3107                          sizeof(struct kvm_io_range)), GFP_KERNEL);
3108        if (!new_bus)
3109                return -ENOMEM;
3110        memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3111               sizeof(struct kvm_io_range)));
3112        kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3113        rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3114        synchronize_srcu_expedited(&kvm->srcu);
3115        kfree(bus);
3116
3117        return 0;
3118}
3119
3120/* Caller must hold slots_lock. */
3121int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3122                              struct kvm_io_device *dev)
3123{
3124        int i, r;
3125        struct kvm_io_bus *new_bus, *bus;
3126
3127        bus = kvm->buses[bus_idx];
3128        r = -ENOENT;
3129        for (i = 0; i < bus->dev_count; i++)
3130                if (bus->range[i].dev == dev) {
3131                        r = 0;
3132                        break;
3133                }
3134
3135        if (r)
3136                return r;
3137
3138        new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3139                          sizeof(struct kvm_io_range)), GFP_KERNEL);
3140        if (!new_bus)
3141                return -ENOMEM;
3142
3143        memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3144        new_bus->dev_count--;
3145        memcpy(new_bus->range + i, bus->range + i + 1,
3146               (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3147
3148        rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3149        synchronize_srcu_expedited(&kvm->srcu);
3150        kfree(bus);
3151        return r;
3152}
3153
3154static struct notifier_block kvm_cpu_notifier = {
3155        .notifier_call = kvm_cpu_hotplug,
3156};
3157
3158static int vm_stat_get(void *_offset, u64 *val)
3159{
3160        unsigned offset = (long)_offset;
3161        struct kvm *kvm;
3162
3163        *val = 0;
3164        spin_lock(&kvm_lock);
3165        list_for_each_entry(kvm, &vm_list, vm_list)
3166                *val += *(u32 *)((void *)kvm + offset);
3167        spin_unlock(&kvm_lock);
3168        return 0;
3169}
3170
3171DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3172
3173static int vcpu_stat_get(void *_offset, u64 *val)
3174{
3175        unsigned offset = (long)_offset;
3176        struct kvm *kvm;
3177        struct kvm_vcpu *vcpu;
3178        int i;
3179
3180        *val = 0;
3181        spin_lock(&kvm_lock);
3182        list_for_each_entry(kvm, &vm_list, vm_list)
3183                kvm_for_each_vcpu(i, vcpu, kvm)
3184                        *val += *(u32 *)((void *)vcpu + offset);
3185
3186        spin_unlock(&kvm_lock);
3187        return 0;
3188}
3189
3190DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3191
3192static const struct file_operations *stat_fops[] = {
3193        [KVM_STAT_VCPU] = &vcpu_stat_fops,
3194        [KVM_STAT_VM]   = &vm_stat_fops,
3195};
3196
3197static int kvm_init_debug(void)
3198{
3199        int r = -EEXIST;
3200        struct kvm_stats_debugfs_item *p;
3201
3202        kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3203        if (kvm_debugfs_dir == NULL)
3204                goto out;
3205
3206        for (p = debugfs_entries; p->name; ++p) {
3207                p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3208                                                (void *)(long)p->offset,
3209                                                stat_fops[p->kind]);
3210                if (p->dentry == NULL)
3211                        goto out_dir;
3212        }
3213
3214        return 0;
3215
3216out_dir:
3217        debugfs_remove_recursive(kvm_debugfs_dir);
3218out:
3219        return r;
3220}
3221
3222static void kvm_exit_debug(void)
3223{
3224        struct kvm_stats_debugfs_item *p;
3225
3226        for (p = debugfs_entries; p->name; ++p)
3227                debugfs_remove(p->dentry);
3228        debugfs_remove(kvm_debugfs_dir);
3229}
3230
3231static int kvm_suspend(void)
3232{
3233        if (kvm_usage_count)
3234                hardware_disable_nolock(NULL);
3235        return 0;
3236}
3237
3238static void kvm_resume(void)
3239{
3240        if (kvm_usage_count) {
3241                WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3242                hardware_enable_nolock(NULL);
3243        }
3244}
3245
3246static struct syscore_ops kvm_syscore_ops = {
3247        .suspend = kvm_suspend,
3248        .resume = kvm_resume,
3249};
3250
3251static inline
3252struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3253{
3254        return container_of(pn, struct kvm_vcpu, preempt_notifier);
3255}
3256
3257static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3258{
3259        struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3260
3261        if (vcpu->preempted)
3262                vcpu->preempted = false;
3263
3264        kvm_arch_sched_in(vcpu, cpu);
3265
3266        kvm_arch_vcpu_load(vcpu, cpu);
3267}
3268
3269static void kvm_sched_out(struct preempt_notifier *pn,
3270                          struct task_struct *next)
3271{
3272        struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3273
3274        if (current->state == TASK_RUNNING)
3275                vcpu->preempted = true;
3276        kvm_arch_vcpu_put(vcpu);
3277}
3278
3279int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3280                  struct module *module)
3281{
3282        int r;
3283        int cpu;
3284
3285        r = kvm_arch_init(opaque);
3286        if (r)
3287                goto out_fail;
3288
3289        /*
3290         * kvm_arch_init makes sure there's at most one caller
3291         * for architectures that support multiple implementations,
3292         * like intel and amd on x86.
3293         * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3294         * conflicts in case kvm is already setup for another implementation.
3295         */
3296        r = kvm_irqfd_init();
3297        if (r)
3298                goto out_irqfd;
3299
3300        if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3301                r = -ENOMEM;
3302                goto out_free_0;
3303        }
3304
3305        r = kvm_arch_hardware_setup();
3306        if (r < 0)
3307                goto out_free_0a;
3308
3309        for_each_online_cpu(cpu) {
3310                smp_call_function_single(cpu,
3311                                kvm_arch_check_processor_compat,
3312                                &r, 1);
3313                if (r < 0)
3314                        goto out_free_1;
3315        }
3316
3317        r = register_cpu_notifier(&kvm_cpu_notifier);
3318        if (r)
3319                goto out_free_2;
3320        register_reboot_notifier(&kvm_reboot_notifier);
3321
3322        /* A kmem cache lets us meet the alignment requirements of fx_save. */
3323        if (!vcpu_align)
3324                vcpu_align = __alignof__(struct kvm_vcpu);
3325        kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3326                                           0, NULL);
3327        if (!kvm_vcpu_cache) {
3328                r = -ENOMEM;
3329                goto out_free_3;
3330        }
3331
3332        r = kvm_async_pf_init();
3333        if (r)
3334                goto out_free;
3335
3336        kvm_chardev_ops.owner = module;
3337        kvm_vm_fops.owner = module;
3338        kvm_vcpu_fops.owner = module;
3339
3340        r = misc_register(&kvm_dev);
3341        if (r) {
3342                pr_err("kvm: misc device register failed\n");
3343                goto out_unreg;
3344        }
3345
3346        register_syscore_ops(&kvm_syscore_ops);
3347
3348        kvm_preempt_ops.sched_in = kvm_sched_in;
3349        kvm_preempt_ops.sched_out = kvm_sched_out;
3350
3351        r = kvm_init_debug();
3352        if (r) {
3353                pr_err("kvm: create debugfs files failed\n");
3354                goto out_undebugfs;
3355        }
3356
3357        r = kvm_vfio_ops_init();
3358        WARN_ON(r);
3359
3360        return 0;
3361
3362out_undebugfs:
3363        unregister_syscore_ops(&kvm_syscore_ops);
3364        misc_deregister(&kvm_dev);
3365out_unreg:
3366        kvm_async_pf_deinit();
3367out_free:
3368        kmem_cache_destroy(kvm_vcpu_cache);
3369out_free_3:
3370        unregister_reboot_notifier(&kvm_reboot_notifier);
3371        unregister_cpu_notifier(&kvm_cpu_notifier);
3372out_free_2:
3373out_free_1:
3374        kvm_arch_hardware_unsetup();
3375out_free_0a:
3376        free_cpumask_var(cpus_hardware_enabled);
3377out_free_0:
3378        kvm_irqfd_exit();
3379out_irqfd:
3380        kvm_arch_exit();
3381out_fail:
3382        return r;
3383}
3384EXPORT_SYMBOL_GPL(kvm_init);
3385
3386void kvm_exit(void)
3387{
3388        kvm_exit_debug();
3389        misc_deregister(&kvm_dev);
3390        kmem_cache_destroy(kvm_vcpu_cache);
3391        kvm_async_pf_deinit();
3392        unregister_syscore_ops(&kvm_syscore_ops);
3393        unregister_reboot_notifier(&kvm_reboot_notifier);
3394        unregister_cpu_notifier(&kvm_cpu_notifier);
3395        on_each_cpu(hardware_disable_nolock, NULL, 1);
3396        kvm_arch_hardware_unsetup();
3397        kvm_arch_exit();
3398        kvm_irqfd_exit();
3399        free_cpumask_var(cpus_hardware_enabled);
3400        kvm_vfio_ops_exit();
3401}
3402EXPORT_SYMBOL_GPL(kvm_exit);
3403