linux/arch/arm/lib/uaccess_with_memcpy.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/lib/uaccess_with_memcpy.c
   3 *
   4 *  Written by: Lennert Buytenhek and Nicolas Pitre
   5 *  Copyright (C) 2009 Marvell Semiconductor
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11
  12#include <linux/kernel.h>
  13#include <linux/ctype.h>
  14#include <linux/uaccess.h>
  15#include <linux/rwsem.h>
  16#include <linux/mm.h>
  17#include <linux/sched.h>
  18#include <linux/hardirq.h> /* for in_atomic() */
  19#include <linux/gfp.h>
  20#include <linux/highmem.h>
  21#include <linux/hugetlb.h>
  22#include <asm/current.h>
  23#include <asm/page.h>
  24
  25static int
  26pin_page_for_write(const void __user *_addr, pte_t **ptep, spinlock_t **ptlp)
  27{
  28        unsigned long addr = (unsigned long)_addr;
  29        pgd_t *pgd;
  30        pmd_t *pmd;
  31        pte_t *pte;
  32        pud_t *pud;
  33        spinlock_t *ptl;
  34
  35        pgd = pgd_offset(current->mm, addr);
  36        if (unlikely(pgd_none(*pgd) || pgd_bad(*pgd)))
  37                return 0;
  38
  39        pud = pud_offset(pgd, addr);
  40        if (unlikely(pud_none(*pud) || pud_bad(*pud)))
  41                return 0;
  42
  43        pmd = pmd_offset(pud, addr);
  44        if (unlikely(pmd_none(*pmd)))
  45                return 0;
  46
  47        /*
  48         * A pmd can be bad if it refers to a HugeTLB or THP page.
  49         *
  50         * Both THP and HugeTLB pages have the same pmd layout
  51         * and should not be manipulated by the pte functions.
  52         *
  53         * Lock the page table for the destination and check
  54         * to see that it's still huge and whether or not we will
  55         * need to fault on write.
  56         */
  57        if (unlikely(pmd_thp_or_huge(*pmd))) {
  58                ptl = &current->mm->page_table_lock;
  59                spin_lock(ptl);
  60                if (unlikely(!pmd_thp_or_huge(*pmd)
  61                        || pmd_hugewillfault(*pmd))) {
  62                        spin_unlock(ptl);
  63                        return 0;
  64                }
  65
  66                *ptep = NULL;
  67                *ptlp = ptl;
  68                return 1;
  69        }
  70
  71        if (unlikely(pmd_bad(*pmd)))
  72                return 0;
  73
  74        pte = pte_offset_map_lock(current->mm, pmd, addr, &ptl);
  75        if (unlikely(!pte_present(*pte) || !pte_young(*pte) ||
  76            !pte_write(*pte) || !pte_dirty(*pte))) {
  77                pte_unmap_unlock(pte, ptl);
  78                return 0;
  79        }
  80
  81        *ptep = pte;
  82        *ptlp = ptl;
  83
  84        return 1;
  85}
  86
  87static unsigned long noinline
  88__copy_to_user_memcpy(void __user *to, const void *from, unsigned long n)
  89{
  90        unsigned long ua_flags;
  91        int atomic;
  92
  93        if (unlikely(segment_eq(get_fs(), KERNEL_DS))) {
  94                memcpy((void *)to, from, n);
  95                return 0;
  96        }
  97
  98        /* the mmap semaphore is taken only if not in an atomic context */
  99        atomic = faulthandler_disabled();
 100
 101        if (!atomic)
 102                down_read(&current->mm->mmap_sem);
 103        while (n) {
 104                pte_t *pte;
 105                spinlock_t *ptl;
 106                int tocopy;
 107
 108                while (!pin_page_for_write(to, &pte, &ptl)) {
 109                        if (!atomic)
 110                                up_read(&current->mm->mmap_sem);
 111                        if (__put_user(0, (char __user *)to))
 112                                goto out;
 113                        if (!atomic)
 114                                down_read(&current->mm->mmap_sem);
 115                }
 116
 117                tocopy = (~(unsigned long)to & ~PAGE_MASK) + 1;
 118                if (tocopy > n)
 119                        tocopy = n;
 120
 121                ua_flags = uaccess_save_and_enable();
 122                memcpy((void *)to, from, tocopy);
 123                uaccess_restore(ua_flags);
 124                to += tocopy;
 125                from += tocopy;
 126                n -= tocopy;
 127
 128                if (pte)
 129                        pte_unmap_unlock(pte, ptl);
 130                else
 131                        spin_unlock(ptl);
 132        }
 133        if (!atomic)
 134                up_read(&current->mm->mmap_sem);
 135
 136out:
 137        return n;
 138}
 139
 140unsigned long
 141arm_copy_to_user(void __user *to, const void *from, unsigned long n)
 142{
 143        /*
 144         * This test is stubbed out of the main function above to keep
 145         * the overhead for small copies low by avoiding a large
 146         * register dump on the stack just to reload them right away.
 147         * With frame pointer disabled, tail call optimization kicks in
 148         * as well making this test almost invisible.
 149         */
 150        if (n < 64) {
 151                unsigned long ua_flags = uaccess_save_and_enable();
 152                n = __copy_to_user_std(to, from, n);
 153                uaccess_restore(ua_flags);
 154        } else {
 155                n = __copy_to_user_memcpy(to, from, n);
 156        }
 157        return n;
 158}
 159        
 160static unsigned long noinline
 161__clear_user_memset(void __user *addr, unsigned long n)
 162{
 163        unsigned long ua_flags;
 164
 165        if (unlikely(segment_eq(get_fs(), KERNEL_DS))) {
 166                memset((void *)addr, 0, n);
 167                return 0;
 168        }
 169
 170        down_read(&current->mm->mmap_sem);
 171        while (n) {
 172                pte_t *pte;
 173                spinlock_t *ptl;
 174                int tocopy;
 175
 176                while (!pin_page_for_write(addr, &pte, &ptl)) {
 177                        up_read(&current->mm->mmap_sem);
 178                        if (__put_user(0, (char __user *)addr))
 179                                goto out;
 180                        down_read(&current->mm->mmap_sem);
 181                }
 182
 183                tocopy = (~(unsigned long)addr & ~PAGE_MASK) + 1;
 184                if (tocopy > n)
 185                        tocopy = n;
 186
 187                ua_flags = uaccess_save_and_enable();
 188                memset((void *)addr, 0, tocopy);
 189                uaccess_restore(ua_flags);
 190                addr += tocopy;
 191                n -= tocopy;
 192
 193                if (pte)
 194                        pte_unmap_unlock(pte, ptl);
 195                else
 196                        spin_unlock(ptl);
 197        }
 198        up_read(&current->mm->mmap_sem);
 199
 200out:
 201        return n;
 202}
 203
 204unsigned long arm_clear_user(void __user *addr, unsigned long n)
 205{
 206        /* See rational for this in __copy_to_user() above. */
 207        if (n < 64) {
 208                unsigned long ua_flags = uaccess_save_and_enable();
 209                n = __clear_user_std(addr, n);
 210                uaccess_restore(ua_flags);
 211        } else {
 212                n = __clear_user_memset(addr, n);
 213        }
 214        return n;
 215}
 216
 217#if 0
 218
 219/*
 220 * This code is disabled by default, but kept around in case the chosen
 221 * thresholds need to be revalidated.  Some overhead (small but still)
 222 * would be implied by a runtime determined variable threshold, and
 223 * so far the measurement on concerned targets didn't show a worthwhile
 224 * variation.
 225 *
 226 * Note that a fairly precise sched_clock() implementation is needed
 227 * for results to make some sense.
 228 */
 229
 230#include <linux/vmalloc.h>
 231
 232static int __init test_size_treshold(void)
 233{
 234        struct page *src_page, *dst_page;
 235        void *user_ptr, *kernel_ptr;
 236        unsigned long long t0, t1, t2;
 237        int size, ret;
 238
 239        ret = -ENOMEM;
 240        src_page = alloc_page(GFP_KERNEL);
 241        if (!src_page)
 242                goto no_src;
 243        dst_page = alloc_page(GFP_KERNEL);
 244        if (!dst_page)
 245                goto no_dst;
 246        kernel_ptr = page_address(src_page);
 247        user_ptr = vmap(&dst_page, 1, VM_IOREMAP, __pgprot(__P010));
 248        if (!user_ptr)
 249                goto no_vmap;
 250
 251        /* warm up the src page dcache */
 252        ret = __copy_to_user_memcpy(user_ptr, kernel_ptr, PAGE_SIZE);
 253
 254        for (size = PAGE_SIZE; size >= 4; size /= 2) {
 255                t0 = sched_clock();
 256                ret |= __copy_to_user_memcpy(user_ptr, kernel_ptr, size);
 257                t1 = sched_clock();
 258                ret |= __copy_to_user_std(user_ptr, kernel_ptr, size);
 259                t2 = sched_clock();
 260                printk("copy_to_user: %d %llu %llu\n", size, t1 - t0, t2 - t1);
 261        }
 262
 263        for (size = PAGE_SIZE; size >= 4; size /= 2) {
 264                t0 = sched_clock();
 265                ret |= __clear_user_memset(user_ptr, size);
 266                t1 = sched_clock();
 267                ret |= __clear_user_std(user_ptr, size);
 268                t2 = sched_clock();
 269                printk("clear_user: %d %llu %llu\n", size, t1 - t0, t2 - t1);
 270        }
 271
 272        if (ret)
 273                ret = -EFAULT;
 274
 275        vunmap(user_ptr);
 276no_vmap:
 277        put_page(dst_page);
 278no_dst:
 279        put_page(src_page);
 280no_src:
 281        return ret;
 282}
 283
 284subsys_initcall(test_size_treshold);
 285
 286#endif
 287