linux/arch/mips/kernel/smp-bmips.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
   7 *
   8 * SMP support for BMIPS
   9 */
  10
  11#include <linux/init.h>
  12#include <linux/sched.h>
  13#include <linux/mm.h>
  14#include <linux/delay.h>
  15#include <linux/smp.h>
  16#include <linux/interrupt.h>
  17#include <linux/spinlock.h>
  18#include <linux/cpu.h>
  19#include <linux/cpumask.h>
  20#include <linux/reboot.h>
  21#include <linux/io.h>
  22#include <linux/compiler.h>
  23#include <linux/linkage.h>
  24#include <linux/bug.h>
  25#include <linux/kernel.h>
  26
  27#include <asm/time.h>
  28#include <asm/pgtable.h>
  29#include <asm/processor.h>
  30#include <asm/bootinfo.h>
  31#include <asm/pmon.h>
  32#include <asm/cacheflush.h>
  33#include <asm/tlbflush.h>
  34#include <asm/mipsregs.h>
  35#include <asm/bmips.h>
  36#include <asm/traps.h>
  37#include <asm/barrier.h>
  38#include <asm/cpu-features.h>
  39
  40static int __maybe_unused max_cpus = 1;
  41
  42/* these may be configured by the platform code */
  43int bmips_smp_enabled = 1;
  44int bmips_cpu_offset;
  45cpumask_t bmips_booted_mask;
  46unsigned long bmips_tp1_irqs = IE_IRQ1;
  47
  48#define RESET_FROM_KSEG0                0x80080800
  49#define RESET_FROM_KSEG1                0xa0080800
  50
  51static void bmips_set_reset_vec(int cpu, u32 val);
  52
  53#ifdef CONFIG_SMP
  54
  55/* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
  56unsigned long bmips_smp_boot_sp;
  57unsigned long bmips_smp_boot_gp;
  58
  59static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
  60static void bmips5000_send_ipi_single(int cpu, unsigned int action);
  61static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
  62static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
  63
  64/* SW interrupts 0,1 are used for interprocessor signaling */
  65#define IPI0_IRQ                        (MIPS_CPU_IRQ_BASE + 0)
  66#define IPI1_IRQ                        (MIPS_CPU_IRQ_BASE + 1)
  67
  68#define CPUNUM(cpu, shift)              (((cpu) + bmips_cpu_offset) << (shift))
  69#define ACTION_CLR_IPI(cpu, ipi)        (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
  70#define ACTION_SET_IPI(cpu, ipi)        (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
  71#define ACTION_BOOT_THREAD(cpu)         (0x08 | CPUNUM(cpu, 0))
  72
  73static void __init bmips_smp_setup(void)
  74{
  75        int i, cpu = 1, boot_cpu = 0;
  76        int cpu_hw_intr;
  77
  78        switch (current_cpu_type()) {
  79        case CPU_BMIPS4350:
  80        case CPU_BMIPS4380:
  81                /* arbitration priority */
  82                clear_c0_brcm_cmt_ctrl(0x30);
  83
  84                /* NBK and weak order flags */
  85                set_c0_brcm_config_0(0x30000);
  86
  87                /* Find out if we are running on TP0 or TP1 */
  88                boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
  89
  90                /*
  91                 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
  92                 * thread
  93                 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
  94                 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
  95                 */
  96                if (boot_cpu == 0)
  97                        cpu_hw_intr = 0x02;
  98                else
  99                        cpu_hw_intr = 0x1d;
 100
 101                change_c0_brcm_cmt_intr(0xf8018000,
 102                                        (cpu_hw_intr << 27) | (0x03 << 15));
 103
 104                /* single core, 2 threads (2 pipelines) */
 105                max_cpus = 2;
 106
 107                break;
 108        case CPU_BMIPS5000:
 109                /* enable raceless SW interrupts */
 110                set_c0_brcm_config(0x03 << 22);
 111
 112                /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
 113                change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
 114
 115                /* N cores, 2 threads per core */
 116                max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
 117
 118                /* clear any pending SW interrupts */
 119                for (i = 0; i < max_cpus; i++) {
 120                        write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
 121                        write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
 122                }
 123
 124                break;
 125        default:
 126                max_cpus = 1;
 127        }
 128
 129        if (!bmips_smp_enabled)
 130                max_cpus = 1;
 131
 132        /* this can be overridden by the BSP */
 133        if (!board_ebase_setup)
 134                board_ebase_setup = &bmips_ebase_setup;
 135
 136        __cpu_number_map[boot_cpu] = 0;
 137        __cpu_logical_map[0] = boot_cpu;
 138
 139        for (i = 0; i < max_cpus; i++) {
 140                if (i != boot_cpu) {
 141                        __cpu_number_map[i] = cpu;
 142                        __cpu_logical_map[cpu] = i;
 143                        cpu++;
 144                }
 145                set_cpu_possible(i, 1);
 146                set_cpu_present(i, 1);
 147        }
 148}
 149
 150/*
 151 * IPI IRQ setup - runs on CPU0
 152 */
 153static void bmips_prepare_cpus(unsigned int max_cpus)
 154{
 155        irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
 156
 157        switch (current_cpu_type()) {
 158        case CPU_BMIPS4350:
 159        case CPU_BMIPS4380:
 160                bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
 161                break;
 162        case CPU_BMIPS5000:
 163                bmips_ipi_interrupt = bmips5000_ipi_interrupt;
 164                break;
 165        default:
 166                return;
 167        }
 168
 169        if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
 170                        "smp_ipi0", NULL))
 171                panic("Can't request IPI0 interrupt");
 172        if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
 173                        "smp_ipi1", NULL))
 174                panic("Can't request IPI1 interrupt");
 175}
 176
 177/*
 178 * Tell the hardware to boot CPUx - runs on CPU0
 179 */
 180static void bmips_boot_secondary(int cpu, struct task_struct *idle)
 181{
 182        bmips_smp_boot_sp = __KSTK_TOS(idle);
 183        bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
 184        mb();
 185
 186        /*
 187         * Initial boot sequence for secondary CPU:
 188         *   bmips_reset_nmi_vec @ a000_0000 ->
 189         *   bmips_smp_entry ->
 190         *   plat_wired_tlb_setup (cached function call; optional) ->
 191         *   start_secondary (cached jump)
 192         *
 193         * Warm restart sequence:
 194         *   play_dead WAIT loop ->
 195         *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
 196         *   eret to play_dead ->
 197         *   bmips_secondary_reentry ->
 198         *   start_secondary
 199         */
 200
 201        pr_info("SMP: Booting CPU%d...\n", cpu);
 202
 203        if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
 204                /* kseg1 might not exist if this CPU enabled XKS01 */
 205                bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
 206
 207                switch (current_cpu_type()) {
 208                case CPU_BMIPS4350:
 209                case CPU_BMIPS4380:
 210                        bmips43xx_send_ipi_single(cpu, 0);
 211                        break;
 212                case CPU_BMIPS5000:
 213                        bmips5000_send_ipi_single(cpu, 0);
 214                        break;
 215                }
 216        } else {
 217                bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
 218
 219                switch (current_cpu_type()) {
 220                case CPU_BMIPS4350:
 221                case CPU_BMIPS4380:
 222                        /* Reset slave TP1 if booting from TP0 */
 223                        if (cpu_logical_map(cpu) == 1)
 224                                set_c0_brcm_cmt_ctrl(0x01);
 225                        break;
 226                case CPU_BMIPS5000:
 227                        write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
 228                        break;
 229                }
 230                cpumask_set_cpu(cpu, &bmips_booted_mask);
 231        }
 232}
 233
 234/*
 235 * Early setup - runs on secondary CPU after cache probe
 236 */
 237static void bmips_init_secondary(void)
 238{
 239        switch (current_cpu_type()) {
 240        case CPU_BMIPS4350:
 241        case CPU_BMIPS4380:
 242                clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
 243                break;
 244        case CPU_BMIPS5000:
 245                write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
 246                current_cpu_data.core = (read_c0_brcm_config() >> 25) & 3;
 247                break;
 248        }
 249}
 250
 251/*
 252 * Late setup - runs on secondary CPU before entering the idle loop
 253 */
 254static void bmips_smp_finish(void)
 255{
 256        pr_info("SMP: CPU%d is running\n", smp_processor_id());
 257
 258        /* make sure there won't be a timer interrupt for a little while */
 259        write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
 260
 261        irq_enable_hazard();
 262        set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
 263        irq_enable_hazard();
 264}
 265
 266/*
 267 * BMIPS5000 raceless IPIs
 268 *
 269 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
 270 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
 271 * IPI1 is used for SMP_CALL_FUNCTION
 272 */
 273
 274static void bmips5000_send_ipi_single(int cpu, unsigned int action)
 275{
 276        write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
 277}
 278
 279static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
 280{
 281        int action = irq - IPI0_IRQ;
 282
 283        write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
 284
 285        if (action == 0)
 286                scheduler_ipi();
 287        else
 288                generic_smp_call_function_interrupt();
 289
 290        return IRQ_HANDLED;
 291}
 292
 293static void bmips5000_send_ipi_mask(const struct cpumask *mask,
 294        unsigned int action)
 295{
 296        unsigned int i;
 297
 298        for_each_cpu(i, mask)
 299                bmips5000_send_ipi_single(i, action);
 300}
 301
 302/*
 303 * BMIPS43xx racey IPIs
 304 *
 305 * We use one inbound SW IRQ for each CPU.
 306 *
 307 * A spinlock must be held in order to keep CPUx from accidentally clearing
 308 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
 309 * same spinlock is used to protect the action masks.
 310 */
 311
 312static DEFINE_SPINLOCK(ipi_lock);
 313static DEFINE_PER_CPU(int, ipi_action_mask);
 314
 315static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
 316{
 317        unsigned long flags;
 318
 319        spin_lock_irqsave(&ipi_lock, flags);
 320        set_c0_cause(cpu ? C_SW1 : C_SW0);
 321        per_cpu(ipi_action_mask, cpu) |= action;
 322        irq_enable_hazard();
 323        spin_unlock_irqrestore(&ipi_lock, flags);
 324}
 325
 326static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
 327{
 328        unsigned long flags;
 329        int action, cpu = irq - IPI0_IRQ;
 330
 331        spin_lock_irqsave(&ipi_lock, flags);
 332        action = __this_cpu_read(ipi_action_mask);
 333        per_cpu(ipi_action_mask, cpu) = 0;
 334        clear_c0_cause(cpu ? C_SW1 : C_SW0);
 335        spin_unlock_irqrestore(&ipi_lock, flags);
 336
 337        if (action & SMP_RESCHEDULE_YOURSELF)
 338                scheduler_ipi();
 339        if (action & SMP_CALL_FUNCTION)
 340                generic_smp_call_function_interrupt();
 341
 342        return IRQ_HANDLED;
 343}
 344
 345static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
 346        unsigned int action)
 347{
 348        unsigned int i;
 349
 350        for_each_cpu(i, mask)
 351                bmips43xx_send_ipi_single(i, action);
 352}
 353
 354#ifdef CONFIG_HOTPLUG_CPU
 355
 356static int bmips_cpu_disable(void)
 357{
 358        unsigned int cpu = smp_processor_id();
 359
 360        if (cpu == 0)
 361                return -EBUSY;
 362
 363        pr_info("SMP: CPU%d is offline\n", cpu);
 364
 365        set_cpu_online(cpu, false);
 366        calculate_cpu_foreign_map();
 367        cpumask_clear_cpu(cpu, &cpu_callin_map);
 368        clear_c0_status(IE_IRQ5);
 369
 370        local_flush_tlb_all();
 371        local_flush_icache_range(0, ~0);
 372
 373        return 0;
 374}
 375
 376static void bmips_cpu_die(unsigned int cpu)
 377{
 378}
 379
 380void __ref play_dead(void)
 381{
 382        idle_task_exit();
 383
 384        /* flush data cache */
 385        _dma_cache_wback_inv(0, ~0);
 386
 387        /*
 388         * Wakeup is on SW0 or SW1; disable everything else
 389         * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
 390         * IRQ handlers; this clears ST0_IE and returns immediately.
 391         */
 392        clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
 393        change_c0_status(
 394                IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
 395                IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
 396        irq_disable_hazard();
 397
 398        /*
 399         * wait for SW interrupt from bmips_boot_secondary(), then jump
 400         * back to start_secondary()
 401         */
 402        __asm__ __volatile__(
 403        "       wait\n"
 404        "       j       bmips_secondary_reentry\n"
 405        : : : "memory");
 406}
 407
 408#endif /* CONFIG_HOTPLUG_CPU */
 409
 410struct plat_smp_ops bmips43xx_smp_ops = {
 411        .smp_setup              = bmips_smp_setup,
 412        .prepare_cpus           = bmips_prepare_cpus,
 413        .boot_secondary         = bmips_boot_secondary,
 414        .smp_finish             = bmips_smp_finish,
 415        .init_secondary         = bmips_init_secondary,
 416        .send_ipi_single        = bmips43xx_send_ipi_single,
 417        .send_ipi_mask          = bmips43xx_send_ipi_mask,
 418#ifdef CONFIG_HOTPLUG_CPU
 419        .cpu_disable            = bmips_cpu_disable,
 420        .cpu_die                = bmips_cpu_die,
 421#endif
 422};
 423
 424struct plat_smp_ops bmips5000_smp_ops = {
 425        .smp_setup              = bmips_smp_setup,
 426        .prepare_cpus           = bmips_prepare_cpus,
 427        .boot_secondary         = bmips_boot_secondary,
 428        .smp_finish             = bmips_smp_finish,
 429        .init_secondary         = bmips_init_secondary,
 430        .send_ipi_single        = bmips5000_send_ipi_single,
 431        .send_ipi_mask          = bmips5000_send_ipi_mask,
 432#ifdef CONFIG_HOTPLUG_CPU
 433        .cpu_disable            = bmips_cpu_disable,
 434        .cpu_die                = bmips_cpu_die,
 435#endif
 436};
 437
 438#endif /* CONFIG_SMP */
 439
 440/***********************************************************************
 441 * BMIPS vector relocation
 442 * This is primarily used for SMP boot, but it is applicable to some
 443 * UP BMIPS systems as well.
 444 ***********************************************************************/
 445
 446static void bmips_wr_vec(unsigned long dst, char *start, char *end)
 447{
 448        memcpy((void *)dst, start, end - start);
 449        dma_cache_wback(dst, end - start);
 450        local_flush_icache_range(dst, dst + (end - start));
 451        instruction_hazard();
 452}
 453
 454static inline void bmips_nmi_handler_setup(void)
 455{
 456        bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
 457                &bmips_reset_nmi_vec_end);
 458        bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
 459                &bmips_smp_int_vec_end);
 460}
 461
 462struct reset_vec_info {
 463        int cpu;
 464        u32 val;
 465};
 466
 467static void bmips_set_reset_vec_remote(void *vinfo)
 468{
 469        struct reset_vec_info *info = vinfo;
 470        int shift = info->cpu & 0x01 ? 16 : 0;
 471        u32 mask = ~(0xffff << shift), val = info->val >> 16;
 472
 473        preempt_disable();
 474        if (smp_processor_id() > 0) {
 475                smp_call_function_single(0, &bmips_set_reset_vec_remote,
 476                                         info, 1);
 477        } else {
 478                if (info->cpu & 0x02) {
 479                        /* BMIPS5200 "should" use mask/shift, but it's buggy */
 480                        bmips_write_zscm_reg(0xa0, (val << 16) | val);
 481                        bmips_read_zscm_reg(0xa0);
 482                } else {
 483                        write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
 484                                              (val << shift));
 485                }
 486        }
 487        preempt_enable();
 488}
 489
 490static void bmips_set_reset_vec(int cpu, u32 val)
 491{
 492        struct reset_vec_info info;
 493
 494        if (current_cpu_type() == CPU_BMIPS5000) {
 495                /* this needs to run from CPU0 (which is always online) */
 496                info.cpu = cpu;
 497                info.val = val;
 498                bmips_set_reset_vec_remote(&info);
 499        } else {
 500                void __iomem *cbr = BMIPS_GET_CBR();
 501
 502                if (cpu == 0)
 503                        __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
 504                else {
 505                        if (current_cpu_type() != CPU_BMIPS4380)
 506                                return;
 507                        __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
 508                }
 509        }
 510        __sync();
 511        back_to_back_c0_hazard();
 512}
 513
 514void bmips_ebase_setup(void)
 515{
 516        unsigned long new_ebase = ebase;
 517
 518        BUG_ON(ebase != CKSEG0);
 519
 520        switch (current_cpu_type()) {
 521        case CPU_BMIPS4350:
 522                /*
 523                 * BMIPS4350 cannot relocate the normal vectors, but it
 524                 * can relocate the BEV=1 vectors.  So CPU1 starts up at
 525                 * the relocated BEV=1, IV=0 general exception vector @
 526                 * 0xa000_0380.
 527                 *
 528                 * set_uncached_handler() is used here because:
 529                 *  - CPU1 will run this from uncached space
 530                 *  - None of the cacheflush functions are set up yet
 531                 */
 532                set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
 533                        &bmips_smp_int_vec, 0x80);
 534                __sync();
 535                return;
 536        case CPU_BMIPS3300:
 537        case CPU_BMIPS4380:
 538                /*
 539                 * 0x8000_0000: reset/NMI (initially in kseg1)
 540                 * 0x8000_0400: normal vectors
 541                 */
 542                new_ebase = 0x80000400;
 543                bmips_set_reset_vec(0, RESET_FROM_KSEG0);
 544                break;
 545        case CPU_BMIPS5000:
 546                /*
 547                 * 0x8000_0000: reset/NMI (initially in kseg1)
 548                 * 0x8000_1000: normal vectors
 549                 */
 550                new_ebase = 0x80001000;
 551                bmips_set_reset_vec(0, RESET_FROM_KSEG0);
 552                write_c0_ebase(new_ebase);
 553                break;
 554        default:
 555                return;
 556        }
 557
 558        board_nmi_handler_setup = &bmips_nmi_handler_setup;
 559        ebase = new_ebase;
 560}
 561
 562asmlinkage void __weak plat_wired_tlb_setup(void)
 563{
 564        /*
 565         * Called when starting/restarting a secondary CPU.
 566         * Kernel stacks and other important data might only be accessible
 567         * once the wired entries are present.
 568         */
 569}
 570
 571void __init bmips_cpu_setup(void)
 572{
 573        void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
 574        u32 __maybe_unused cfg;
 575
 576        switch (current_cpu_type()) {
 577        case CPU_BMIPS3300:
 578                /* Set BIU to async mode */
 579                set_c0_brcm_bus_pll(BIT(22));
 580                __sync();
 581
 582                /* put the BIU back in sync mode */
 583                clear_c0_brcm_bus_pll(BIT(22));
 584
 585                /* clear BHTD to enable branch history table */
 586                clear_c0_brcm_reset(BIT(16));
 587
 588                /* Flush and enable RAC */
 589                cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
 590                __raw_writel(cfg | 0x100, BMIPS_RAC_CONFIG);
 591                __raw_readl(cbr + BMIPS_RAC_CONFIG);
 592
 593                cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
 594                __raw_writel(cfg | 0xf, BMIPS_RAC_CONFIG);
 595                __raw_readl(cbr + BMIPS_RAC_CONFIG);
 596
 597                cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
 598                __raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
 599                __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
 600                break;
 601
 602        case CPU_BMIPS4380:
 603                /* CBG workaround for early BMIPS4380 CPUs */
 604                switch (read_c0_prid()) {
 605                case 0x2a040:
 606                case 0x2a042:
 607                case 0x2a044:
 608                case 0x2a060:
 609                        cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
 610                        __raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
 611                        __raw_readl(cbr + BMIPS_L2_CONFIG);
 612                }
 613
 614                /* clear BHTD to enable branch history table */
 615                clear_c0_brcm_config_0(BIT(21));
 616
 617                /* XI/ROTR enable */
 618                set_c0_brcm_config_0(BIT(23));
 619                set_c0_brcm_cmt_ctrl(BIT(15));
 620                break;
 621
 622        case CPU_BMIPS5000:
 623                /* enable RDHWR, BRDHWR */
 624                set_c0_brcm_config(BIT(17) | BIT(21));
 625
 626                /* Disable JTB */
 627                __asm__ __volatile__(
 628                "       .set    noreorder\n"
 629                "       li      $8, 0x5a455048\n"
 630                "       .word   0x4088b00f\n"   /* mtc0 t0, $22, 15 */
 631                "       .word   0x4008b008\n"   /* mfc0 t0, $22, 8 */
 632                "       li      $9, 0x00008000\n"
 633                "       or      $8, $8, $9\n"
 634                "       .word   0x4088b008\n"   /* mtc0 t0, $22, 8 */
 635                "       sync\n"
 636                "       li      $8, 0x0\n"
 637                "       .word   0x4088b00f\n"   /* mtc0 t0, $22, 15 */
 638                "       .set    reorder\n"
 639                : : : "$8", "$9");
 640
 641                /* XI enable */
 642                set_c0_brcm_config(BIT(27));
 643
 644                /* enable MIPS32R2 ROR instruction for XI TLB handlers */
 645                __asm__ __volatile__(
 646                "       li      $8, 0x5a455048\n"
 647                "       .word   0x4088b00f\n"   /* mtc0 $8, $22, 15 */
 648                "       nop; nop; nop\n"
 649                "       .word   0x4008b008\n"   /* mfc0 $8, $22, 8 */
 650                "       lui     $9, 0x0100\n"
 651                "       or      $8, $9\n"
 652                "       .word   0x4088b008\n"   /* mtc0 $8, $22, 8 */
 653                : : : "$8", "$9");
 654                break;
 655        }
 656}
 657