linux/arch/parisc/kernel/time.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/parisc/kernel/time.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
   5 *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
   6 *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
   7 *
   8 * 1994-07-02  Alan Modra
   9 *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
  10 * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
  11 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
  12 */
  13#include <linux/errno.h>
  14#include <linux/module.h>
  15#include <linux/rtc.h>
  16#include <linux/sched.h>
  17#include <linux/sched_clock.h>
  18#include <linux/kernel.h>
  19#include <linux/param.h>
  20#include <linux/string.h>
  21#include <linux/mm.h>
  22#include <linux/interrupt.h>
  23#include <linux/time.h>
  24#include <linux/init.h>
  25#include <linux/smp.h>
  26#include <linux/profile.h>
  27#include <linux/clocksource.h>
  28#include <linux/platform_device.h>
  29#include <linux/ftrace.h>
  30
  31#include <linux/uaccess.h>
  32#include <asm/io.h>
  33#include <asm/irq.h>
  34#include <asm/page.h>
  35#include <asm/param.h>
  36#include <asm/pdc.h>
  37#include <asm/led.h>
  38
  39#include <linux/timex.h>
  40
  41static unsigned long clocktick __read_mostly;   /* timer cycles per tick */
  42
  43/*
  44 * We keep time on PA-RISC Linux by using the Interval Timer which is
  45 * a pair of registers; one is read-only and one is write-only; both
  46 * accessed through CR16.  The read-only register is 32 or 64 bits wide,
  47 * and increments by 1 every CPU clock tick.  The architecture only
  48 * guarantees us a rate between 0.5 and 2, but all implementations use a
  49 * rate of 1.  The write-only register is 32-bits wide.  When the lowest
  50 * 32 bits of the read-only register compare equal to the write-only
  51 * register, it raises a maskable external interrupt.  Each processor has
  52 * an Interval Timer of its own and they are not synchronised.  
  53 *
  54 * We want to generate an interrupt every 1/HZ seconds.  So we program
  55 * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
  56 * is programmed with the intended time of the next tick.  We can be
  57 * held off for an arbitrarily long period of time by interrupts being
  58 * disabled, so we may miss one or more ticks.
  59 */
  60irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
  61{
  62        unsigned long now;
  63        unsigned long next_tick;
  64        unsigned long ticks_elapsed = 0;
  65        unsigned int cpu = smp_processor_id();
  66        struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
  67
  68        /* gcc can optimize for "read-only" case with a local clocktick */
  69        unsigned long cpt = clocktick;
  70
  71        profile_tick(CPU_PROFILING);
  72
  73        /* Initialize next_tick to the old expected tick time. */
  74        next_tick = cpuinfo->it_value;
  75
  76        /* Calculate how many ticks have elapsed. */
  77        do {
  78                ++ticks_elapsed;
  79                next_tick += cpt;
  80                now = mfctl(16);
  81        } while (next_tick - now > cpt);
  82
  83        /* Store (in CR16 cycles) up to when we are accounting right now. */
  84        cpuinfo->it_value = next_tick;
  85
  86        /* Go do system house keeping. */
  87        if (cpu == 0)
  88                xtime_update(ticks_elapsed);
  89
  90        update_process_times(user_mode(get_irq_regs()));
  91
  92        /* Skip clockticks on purpose if we know we would miss those.
  93         * The new CR16 must be "later" than current CR16 otherwise
  94         * itimer would not fire until CR16 wrapped - e.g 4 seconds
  95         * later on a 1Ghz processor. We'll account for the missed
  96         * ticks on the next timer interrupt.
  97         * We want IT to fire modulo clocktick even if we miss/skip some.
  98         * But those interrupts don't in fact get delivered that regularly.
  99         *
 100         * "next_tick - now" will always give the difference regardless
 101         * if one or the other wrapped. If "now" is "bigger" we'll end up
 102         * with a very large unsigned number.
 103         */
 104        while (next_tick - mfctl(16) > cpt)
 105                next_tick += cpt;
 106
 107        /* Program the IT when to deliver the next interrupt.
 108         * Only bottom 32-bits of next_tick are writable in CR16!
 109         * Timer interrupt will be delivered at least a few hundred cycles
 110         * after the IT fires, so if we are too close (<= 500 cycles) to the
 111         * next cycle, simply skip it.
 112         */
 113        if (next_tick - mfctl(16) <= 500)
 114                next_tick += cpt;
 115        mtctl(next_tick, 16);
 116
 117        return IRQ_HANDLED;
 118}
 119
 120
 121unsigned long profile_pc(struct pt_regs *regs)
 122{
 123        unsigned long pc = instruction_pointer(regs);
 124
 125        if (regs->gr[0] & PSW_N)
 126                pc -= 4;
 127
 128#ifdef CONFIG_SMP
 129        if (in_lock_functions(pc))
 130                pc = regs->gr[2];
 131#endif
 132
 133        return pc;
 134}
 135EXPORT_SYMBOL(profile_pc);
 136
 137
 138/* clock source code */
 139
 140static u64 notrace read_cr16(struct clocksource *cs)
 141{
 142        return get_cycles();
 143}
 144
 145static struct clocksource clocksource_cr16 = {
 146        .name                   = "cr16",
 147        .rating                 = 300,
 148        .read                   = read_cr16,
 149        .mask                   = CLOCKSOURCE_MASK(BITS_PER_LONG),
 150        .flags                  = CLOCK_SOURCE_IS_CONTINUOUS,
 151};
 152
 153void __init start_cpu_itimer(void)
 154{
 155        unsigned int cpu = smp_processor_id();
 156        unsigned long next_tick = mfctl(16) + clocktick;
 157
 158        mtctl(next_tick, 16);           /* kick off Interval Timer (CR16) */
 159
 160        per_cpu(cpu_data, cpu).it_value = next_tick;
 161}
 162
 163#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
 164static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
 165{
 166        struct pdc_tod tod_data;
 167
 168        memset(tm, 0, sizeof(*tm));
 169        if (pdc_tod_read(&tod_data) < 0)
 170                return -EOPNOTSUPP;
 171
 172        /* we treat tod_sec as unsigned, so this can work until year 2106 */
 173        rtc_time64_to_tm(tod_data.tod_sec, tm);
 174        return rtc_valid_tm(tm);
 175}
 176
 177static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
 178{
 179        time64_t secs = rtc_tm_to_time64(tm);
 180
 181        if (pdc_tod_set(secs, 0) < 0)
 182                return -EOPNOTSUPP;
 183
 184        return 0;
 185}
 186
 187static const struct rtc_class_ops rtc_generic_ops = {
 188        .read_time = rtc_generic_get_time,
 189        .set_time = rtc_generic_set_time,
 190};
 191
 192static int __init rtc_init(void)
 193{
 194        struct platform_device *pdev;
 195
 196        pdev = platform_device_register_data(NULL, "rtc-generic", -1,
 197                                             &rtc_generic_ops,
 198                                             sizeof(rtc_generic_ops));
 199
 200        return PTR_ERR_OR_ZERO(pdev);
 201}
 202device_initcall(rtc_init);
 203#endif
 204
 205void read_persistent_clock(struct timespec *ts)
 206{
 207        static struct pdc_tod tod_data;
 208        if (pdc_tod_read(&tod_data) == 0) {
 209                ts->tv_sec = tod_data.tod_sec;
 210                ts->tv_nsec = tod_data.tod_usec * 1000;
 211        } else {
 212                printk(KERN_ERR "Error reading tod clock\n");
 213                ts->tv_sec = 0;
 214                ts->tv_nsec = 0;
 215        }
 216}
 217
 218
 219static u64 notrace read_cr16_sched_clock(void)
 220{
 221        return get_cycles();
 222}
 223
 224
 225/*
 226 * timer interrupt and sched_clock() initialization
 227 */
 228
 229void __init time_init(void)
 230{
 231        unsigned long cr16_hz;
 232
 233        clocktick = (100 * PAGE0->mem_10msec) / HZ;
 234        start_cpu_itimer();     /* get CPU 0 started */
 235
 236        cr16_hz = 100 * PAGE0->mem_10msec;  /* Hz */
 237
 238        /* register as sched_clock source */
 239        sched_clock_register(read_cr16_sched_clock, BITS_PER_LONG, cr16_hz);
 240}
 241
 242static int __init init_cr16_clocksource(void)
 243{
 244        /*
 245         * The cr16 interval timers are not syncronized across CPUs, so mark
 246         * them unstable and lower rating on SMP systems.
 247         */
 248        if (num_online_cpus() > 1) {
 249                clocksource_cr16.flags = CLOCK_SOURCE_UNSTABLE;
 250                clocksource_cr16.rating = 0;
 251        }
 252
 253        /* register at clocksource framework */
 254        clocksource_register_hz(&clocksource_cr16,
 255                100 * PAGE0->mem_10msec);
 256
 257        return 0;
 258}
 259
 260device_initcall(init_cr16_clocksource);
 261