linux/arch/powerpc/include/asm/nohash/pgtable.h
<<
>>
Prefs
   1#ifndef _ASM_POWERPC_NOHASH_PGTABLE_H
   2#define _ASM_POWERPC_NOHASH_PGTABLE_H
   3
   4#if defined(CONFIG_PPC64)
   5#include <asm/nohash/64/pgtable.h>
   6#else
   7#include <asm/nohash/32/pgtable.h>
   8#endif
   9
  10#ifndef __ASSEMBLY__
  11
  12/* Generic accessors to PTE bits */
  13static inline int pte_write(pte_t pte)
  14{
  15        return (pte_val(pte) & (_PAGE_RW | _PAGE_RO)) != _PAGE_RO;
  16}
  17static inline int pte_dirty(pte_t pte)          { return pte_val(pte) & _PAGE_DIRTY; }
  18static inline int pte_young(pte_t pte)          { return pte_val(pte) & _PAGE_ACCESSED; }
  19static inline int pte_special(pte_t pte)        { return pte_val(pte) & _PAGE_SPECIAL; }
  20static inline int pte_none(pte_t pte)           { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
  21static inline pgprot_t pte_pgprot(pte_t pte)    { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
  22
  23#ifdef CONFIG_NUMA_BALANCING
  24/*
  25 * These work without NUMA balancing but the kernel does not care. See the
  26 * comment in include/asm-generic/pgtable.h . On powerpc, this will only
  27 * work for user pages and always return true for kernel pages.
  28 */
  29static inline int pte_protnone(pte_t pte)
  30{
  31        return (pte_val(pte) &
  32                (_PAGE_PRESENT | _PAGE_USER)) == _PAGE_PRESENT;
  33}
  34
  35static inline int pmd_protnone(pmd_t pmd)
  36{
  37        return pte_protnone(pmd_pte(pmd));
  38}
  39#endif /* CONFIG_NUMA_BALANCING */
  40
  41static inline int pte_present(pte_t pte)
  42{
  43        return pte_val(pte) & _PAGE_PRESENT;
  44}
  45
  46/* Conversion functions: convert a page and protection to a page entry,
  47 * and a page entry and page directory to the page they refer to.
  48 *
  49 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
  50 * long for now.
  51 */
  52static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) {
  53        return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
  54                     pgprot_val(pgprot)); }
  55static inline unsigned long pte_pfn(pte_t pte)  {
  56        return pte_val(pte) >> PTE_RPN_SHIFT; }
  57
  58/* Generic modifiers for PTE bits */
  59static inline pte_t pte_wrprotect(pte_t pte)
  60{
  61        pte_basic_t ptev;
  62
  63        ptev = pte_val(pte) & ~(_PAGE_RW | _PAGE_HWWRITE);
  64        ptev |= _PAGE_RO;
  65        return __pte(ptev);
  66}
  67
  68static inline pte_t pte_mkclean(pte_t pte)
  69{
  70        return __pte(pte_val(pte) & ~(_PAGE_DIRTY | _PAGE_HWWRITE));
  71}
  72
  73static inline pte_t pte_mkold(pte_t pte)
  74{
  75        return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
  76}
  77
  78static inline pte_t pte_mkwrite(pte_t pte)
  79{
  80        pte_basic_t ptev;
  81
  82        ptev = pte_val(pte) & ~_PAGE_RO;
  83        ptev |= _PAGE_RW;
  84        return __pte(ptev);
  85}
  86
  87static inline pte_t pte_mkdirty(pte_t pte)
  88{
  89        return __pte(pte_val(pte) | _PAGE_DIRTY);
  90}
  91
  92static inline pte_t pte_mkyoung(pte_t pte)
  93{
  94        return __pte(pte_val(pte) | _PAGE_ACCESSED);
  95}
  96
  97static inline pte_t pte_mkspecial(pte_t pte)
  98{
  99        return __pte(pte_val(pte) | _PAGE_SPECIAL);
 100}
 101
 102static inline pte_t pte_mkhuge(pte_t pte)
 103{
 104        return pte;
 105}
 106
 107static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 108{
 109        return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
 110}
 111
 112/* Insert a PTE, top-level function is out of line. It uses an inline
 113 * low level function in the respective pgtable-* files
 114 */
 115extern void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
 116                       pte_t pte);
 117
 118/* This low level function performs the actual PTE insertion
 119 * Setting the PTE depends on the MMU type and other factors. It's
 120 * an horrible mess that I'm not going to try to clean up now but
 121 * I'm keeping it in one place rather than spread around
 122 */
 123static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
 124                                pte_t *ptep, pte_t pte, int percpu)
 125{
 126#if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
 127        /* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
 128         * helper pte_update() which does an atomic update. We need to do that
 129         * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
 130         * per-CPU PTE such as a kmap_atomic, we do a simple update preserving
 131         * the hash bits instead (ie, same as the non-SMP case)
 132         */
 133        if (percpu)
 134                *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
 135                              | (pte_val(pte) & ~_PAGE_HASHPTE));
 136        else
 137                pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte));
 138
 139#elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
 140        /* Second case is 32-bit with 64-bit PTE.  In this case, we
 141         * can just store as long as we do the two halves in the right order
 142         * with a barrier in between. This is possible because we take care,
 143         * in the hash code, to pre-invalidate if the PTE was already hashed,
 144         * which synchronizes us with any concurrent invalidation.
 145         * In the percpu case, we also fallback to the simple update preserving
 146         * the hash bits
 147         */
 148        if (percpu) {
 149                *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
 150                              | (pte_val(pte) & ~_PAGE_HASHPTE));
 151                return;
 152        }
 153#if _PAGE_HASHPTE != 0
 154        if (pte_val(*ptep) & _PAGE_HASHPTE)
 155                flush_hash_entry(mm, ptep, addr);
 156#endif
 157        __asm__ __volatile__("\
 158                stw%U0%X0 %2,%0\n\
 159                eieio\n\
 160                stw%U0%X0 %L2,%1"
 161        : "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
 162        : "r" (pte) : "memory");
 163
 164#elif defined(CONFIG_PPC_STD_MMU_32)
 165        /* Third case is 32-bit hash table in UP mode, we need to preserve
 166         * the _PAGE_HASHPTE bit since we may not have invalidated the previous
 167         * translation in the hash yet (done in a subsequent flush_tlb_xxx())
 168         * and see we need to keep track that this PTE needs invalidating
 169         */
 170        *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
 171                      | (pte_val(pte) & ~_PAGE_HASHPTE));
 172
 173#else
 174        /* Anything else just stores the PTE normally. That covers all 64-bit
 175         * cases, and 32-bit non-hash with 32-bit PTEs.
 176         */
 177        *ptep = pte;
 178
 179#ifdef CONFIG_PPC_BOOK3E_64
 180        /*
 181         * With hardware tablewalk, a sync is needed to ensure that
 182         * subsequent accesses see the PTE we just wrote.  Unlike userspace
 183         * mappings, we can't tolerate spurious faults, so make sure
 184         * the new PTE will be seen the first time.
 185         */
 186        if (is_kernel_addr(addr))
 187                mb();
 188#endif
 189#endif
 190}
 191
 192
 193#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
 194extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
 195                                 pte_t *ptep, pte_t entry, int dirty);
 196
 197/*
 198 * Macro to mark a page protection value as "uncacheable".
 199 */
 200
 201#define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
 202                         _PAGE_WRITETHRU)
 203
 204#define pgprot_noncached(prot)    (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
 205                                            _PAGE_NO_CACHE | _PAGE_GUARDED))
 206
 207#define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
 208                                            _PAGE_NO_CACHE))
 209
 210#define pgprot_cached(prot)       (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
 211                                            _PAGE_COHERENT))
 212
 213#define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
 214                                            _PAGE_COHERENT | _PAGE_WRITETHRU))
 215
 216#define pgprot_cached_noncoherent(prot) \
 217                (__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL))
 218
 219#define pgprot_writecombine pgprot_noncached_wc
 220
 221struct file;
 222extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 223                                     unsigned long size, pgprot_t vma_prot);
 224#define __HAVE_PHYS_MEM_ACCESS_PROT
 225
 226#ifdef CONFIG_HUGETLB_PAGE
 227static inline int hugepd_ok(hugepd_t hpd)
 228{
 229#ifdef CONFIG_PPC_8xx
 230        return ((hpd_val(hpd) & 0x4) != 0);
 231#else
 232        /* We clear the top bit to indicate hugepd */
 233        return ((hpd_val(hpd) & PD_HUGE) ==  0);
 234#endif
 235}
 236
 237static inline int pmd_huge(pmd_t pmd)
 238{
 239        return 0;
 240}
 241
 242static inline int pud_huge(pud_t pud)
 243{
 244        return 0;
 245}
 246
 247static inline int pgd_huge(pgd_t pgd)
 248{
 249        return 0;
 250}
 251#define pgd_huge                pgd_huge
 252
 253#define is_hugepd(hpd)          (hugepd_ok(hpd))
 254#endif
 255
 256#endif /* __ASSEMBLY__ */
 257#endif
 258