linux/arch/powerpc/mm/hugetlbpage.c
<<
>>
Prefs
   1/*
   2 * PPC Huge TLB Page Support for Kernel.
   3 *
   4 * Copyright (C) 2003 David Gibson, IBM Corporation.
   5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
   6 *
   7 * Based on the IA-32 version:
   8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
   9 */
  10
  11#include <linux/mm.h>
  12#include <linux/io.h>
  13#include <linux/slab.h>
  14#include <linux/hugetlb.h>
  15#include <linux/export.h>
  16#include <linux/of_fdt.h>
  17#include <linux/memblock.h>
  18#include <linux/bootmem.h>
  19#include <linux/moduleparam.h>
  20#include <asm/pgtable.h>
  21#include <asm/pgalloc.h>
  22#include <asm/tlb.h>
  23#include <asm/setup.h>
  24#include <asm/hugetlb.h>
  25
  26#ifdef CONFIG_HUGETLB_PAGE
  27
  28#define PAGE_SHIFT_64K  16
  29#define PAGE_SHIFT_512K 19
  30#define PAGE_SHIFT_8M   23
  31#define PAGE_SHIFT_16M  24
  32#define PAGE_SHIFT_16G  34
  33
  34unsigned int HPAGE_SHIFT;
  35
  36/*
  37 * Tracks gpages after the device tree is scanned and before the
  38 * huge_boot_pages list is ready.  On non-Freescale implementations, this is
  39 * just used to track 16G pages and so is a single array.  FSL-based
  40 * implementations may have more than one gpage size, so we need multiple
  41 * arrays
  42 */
  43#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
  44#define MAX_NUMBER_GPAGES       128
  45struct psize_gpages {
  46        u64 gpage_list[MAX_NUMBER_GPAGES];
  47        unsigned int nr_gpages;
  48};
  49static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
  50#else
  51#define MAX_NUMBER_GPAGES       1024
  52static u64 gpage_freearray[MAX_NUMBER_GPAGES];
  53static unsigned nr_gpages;
  54#endif
  55
  56#define hugepd_none(hpd)        (hpd_val(hpd) == 0)
  57
  58pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
  59{
  60        /* Only called for hugetlbfs pages, hence can ignore THP */
  61        return __find_linux_pte_or_hugepte(mm->pgd, addr, NULL, NULL);
  62}
  63
  64static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
  65                           unsigned long address, unsigned pdshift, unsigned pshift)
  66{
  67        struct kmem_cache *cachep;
  68        pte_t *new;
  69        int i;
  70        int num_hugepd;
  71
  72        if (pshift >= pdshift) {
  73                cachep = hugepte_cache;
  74                num_hugepd = 1 << (pshift - pdshift);
  75        } else {
  76                cachep = PGT_CACHE(pdshift - pshift);
  77                num_hugepd = 1;
  78        }
  79
  80        new = kmem_cache_zalloc(cachep, GFP_KERNEL);
  81
  82        BUG_ON(pshift > HUGEPD_SHIFT_MASK);
  83        BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
  84
  85        if (! new)
  86                return -ENOMEM;
  87
  88        /*
  89         * Make sure other cpus find the hugepd set only after a
  90         * properly initialized page table is visible to them.
  91         * For more details look for comment in __pte_alloc().
  92         */
  93        smp_wmb();
  94
  95        spin_lock(&mm->page_table_lock);
  96
  97        /*
  98         * We have multiple higher-level entries that point to the same
  99         * actual pte location.  Fill in each as we go and backtrack on error.
 100         * We need all of these so the DTLB pgtable walk code can find the
 101         * right higher-level entry without knowing if it's a hugepage or not.
 102         */
 103        for (i = 0; i < num_hugepd; i++, hpdp++) {
 104                if (unlikely(!hugepd_none(*hpdp)))
 105                        break;
 106                else {
 107#ifdef CONFIG_PPC_BOOK3S_64
 108                        *hpdp = __hugepd(__pa(new) |
 109                                         (shift_to_mmu_psize(pshift) << 2));
 110#elif defined(CONFIG_PPC_8xx)
 111                        *hpdp = __hugepd(__pa(new) |
 112                                         (pshift == PAGE_SHIFT_8M ? _PMD_PAGE_8M :
 113                                          _PMD_PAGE_512K) | _PMD_PRESENT);
 114#else
 115                        /* We use the old format for PPC_FSL_BOOK3E */
 116                        *hpdp = __hugepd(((unsigned long)new & ~PD_HUGE) | pshift);
 117#endif
 118                }
 119        }
 120        /* If we bailed from the for loop early, an error occurred, clean up */
 121        if (i < num_hugepd) {
 122                for (i = i - 1 ; i >= 0; i--, hpdp--)
 123                        *hpdp = __hugepd(0);
 124                kmem_cache_free(cachep, new);
 125        }
 126        spin_unlock(&mm->page_table_lock);
 127        return 0;
 128}
 129
 130/*
 131 * These macros define how to determine which level of the page table holds
 132 * the hpdp.
 133 */
 134#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
 135#define HUGEPD_PGD_SHIFT PGDIR_SHIFT
 136#define HUGEPD_PUD_SHIFT PUD_SHIFT
 137#else
 138#define HUGEPD_PGD_SHIFT PUD_SHIFT
 139#define HUGEPD_PUD_SHIFT PMD_SHIFT
 140#endif
 141
 142/*
 143 * At this point we do the placement change only for BOOK3S 64. This would
 144 * possibly work on other subarchs.
 145 */
 146pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
 147{
 148        pgd_t *pg;
 149        pud_t *pu;
 150        pmd_t *pm;
 151        hugepd_t *hpdp = NULL;
 152        unsigned pshift = __ffs(sz);
 153        unsigned pdshift = PGDIR_SHIFT;
 154
 155        addr &= ~(sz-1);
 156        pg = pgd_offset(mm, addr);
 157
 158#ifdef CONFIG_PPC_BOOK3S_64
 159        if (pshift == PGDIR_SHIFT)
 160                /* 16GB huge page */
 161                return (pte_t *) pg;
 162        else if (pshift > PUD_SHIFT)
 163                /*
 164                 * We need to use hugepd table
 165                 */
 166                hpdp = (hugepd_t *)pg;
 167        else {
 168                pdshift = PUD_SHIFT;
 169                pu = pud_alloc(mm, pg, addr);
 170                if (pshift == PUD_SHIFT)
 171                        return (pte_t *)pu;
 172                else if (pshift > PMD_SHIFT)
 173                        hpdp = (hugepd_t *)pu;
 174                else {
 175                        pdshift = PMD_SHIFT;
 176                        pm = pmd_alloc(mm, pu, addr);
 177                        if (pshift == PMD_SHIFT)
 178                                /* 16MB hugepage */
 179                                return (pte_t *)pm;
 180                        else
 181                                hpdp = (hugepd_t *)pm;
 182                }
 183        }
 184#else
 185        if (pshift >= HUGEPD_PGD_SHIFT) {
 186                hpdp = (hugepd_t *)pg;
 187        } else {
 188                pdshift = PUD_SHIFT;
 189                pu = pud_alloc(mm, pg, addr);
 190                if (pshift >= HUGEPD_PUD_SHIFT) {
 191                        hpdp = (hugepd_t *)pu;
 192                } else {
 193                        pdshift = PMD_SHIFT;
 194                        pm = pmd_alloc(mm, pu, addr);
 195                        hpdp = (hugepd_t *)pm;
 196                }
 197        }
 198#endif
 199        if (!hpdp)
 200                return NULL;
 201
 202        BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
 203
 204        if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
 205                return NULL;
 206
 207        return hugepte_offset(*hpdp, addr, pdshift);
 208}
 209
 210#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
 211/* Build list of addresses of gigantic pages.  This function is used in early
 212 * boot before the buddy allocator is setup.
 213 */
 214void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
 215{
 216        unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
 217        int i;
 218
 219        if (addr == 0)
 220                return;
 221
 222        gpage_freearray[idx].nr_gpages = number_of_pages;
 223
 224        for (i = 0; i < number_of_pages; i++) {
 225                gpage_freearray[idx].gpage_list[i] = addr;
 226                addr += page_size;
 227        }
 228}
 229
 230/*
 231 * Moves the gigantic page addresses from the temporary list to the
 232 * huge_boot_pages list.
 233 */
 234int alloc_bootmem_huge_page(struct hstate *hstate)
 235{
 236        struct huge_bootmem_page *m;
 237        int idx = shift_to_mmu_psize(huge_page_shift(hstate));
 238        int nr_gpages = gpage_freearray[idx].nr_gpages;
 239
 240        if (nr_gpages == 0)
 241                return 0;
 242
 243#ifdef CONFIG_HIGHMEM
 244        /*
 245         * If gpages can be in highmem we can't use the trick of storing the
 246         * data structure in the page; allocate space for this
 247         */
 248        m = memblock_virt_alloc(sizeof(struct huge_bootmem_page), 0);
 249        m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
 250#else
 251        m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
 252#endif
 253
 254        list_add(&m->list, &huge_boot_pages);
 255        gpage_freearray[idx].nr_gpages = nr_gpages;
 256        gpage_freearray[idx].gpage_list[nr_gpages] = 0;
 257        m->hstate = hstate;
 258
 259        return 1;
 260}
 261/*
 262 * Scan the command line hugepagesz= options for gigantic pages; store those in
 263 * a list that we use to allocate the memory once all options are parsed.
 264 */
 265
 266unsigned long gpage_npages[MMU_PAGE_COUNT];
 267
 268static int __init do_gpage_early_setup(char *param, char *val,
 269                                       const char *unused, void *arg)
 270{
 271        static phys_addr_t size;
 272        unsigned long npages;
 273
 274        /*
 275         * The hugepagesz and hugepages cmdline options are interleaved.  We
 276         * use the size variable to keep track of whether or not this was done
 277         * properly and skip over instances where it is incorrect.  Other
 278         * command-line parsing code will issue warnings, so we don't need to.
 279         *
 280         */
 281        if ((strcmp(param, "default_hugepagesz") == 0) ||
 282            (strcmp(param, "hugepagesz") == 0)) {
 283                size = memparse(val, NULL);
 284        } else if (strcmp(param, "hugepages") == 0) {
 285                if (size != 0) {
 286                        if (sscanf(val, "%lu", &npages) <= 0)
 287                                npages = 0;
 288                        if (npages > MAX_NUMBER_GPAGES) {
 289                                pr_warn("MMU: %lu pages requested for page "
 290#ifdef CONFIG_PHYS_ADDR_T_64BIT
 291                                        "size %llu KB, limiting to "
 292#else
 293                                        "size %u KB, limiting to "
 294#endif
 295                                        __stringify(MAX_NUMBER_GPAGES) "\n",
 296                                        npages, size / 1024);
 297                                npages = MAX_NUMBER_GPAGES;
 298                        }
 299                        gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
 300                        size = 0;
 301                }
 302        }
 303        return 0;
 304}
 305
 306
 307/*
 308 * This function allocates physical space for pages that are larger than the
 309 * buddy allocator can handle.  We want to allocate these in highmem because
 310 * the amount of lowmem is limited.  This means that this function MUST be
 311 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
 312 * allocate to grab highmem.
 313 */
 314void __init reserve_hugetlb_gpages(void)
 315{
 316        static __initdata char cmdline[COMMAND_LINE_SIZE];
 317        phys_addr_t size, base;
 318        int i;
 319
 320        strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
 321        parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
 322                        NULL, &do_gpage_early_setup);
 323
 324        /*
 325         * Walk gpage list in reverse, allocating larger page sizes first.
 326         * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
 327         * When we reach the point in the list where pages are no longer
 328         * considered gpages, we're done.
 329         */
 330        for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
 331                if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
 332                        continue;
 333                else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
 334                        break;
 335
 336                size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
 337                base = memblock_alloc_base(size * gpage_npages[i], size,
 338                                           MEMBLOCK_ALLOC_ANYWHERE);
 339                add_gpage(base, size, gpage_npages[i]);
 340        }
 341}
 342
 343#else /* !PPC_FSL_BOOK3E */
 344
 345/* Build list of addresses of gigantic pages.  This function is used in early
 346 * boot before the buddy allocator is setup.
 347 */
 348void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
 349{
 350        if (!addr)
 351                return;
 352        while (number_of_pages > 0) {
 353                gpage_freearray[nr_gpages] = addr;
 354                nr_gpages++;
 355                number_of_pages--;
 356                addr += page_size;
 357        }
 358}
 359
 360/* Moves the gigantic page addresses from the temporary list to the
 361 * huge_boot_pages list.
 362 */
 363int alloc_bootmem_huge_page(struct hstate *hstate)
 364{
 365        struct huge_bootmem_page *m;
 366        if (nr_gpages == 0)
 367                return 0;
 368        m = phys_to_virt(gpage_freearray[--nr_gpages]);
 369        gpage_freearray[nr_gpages] = 0;
 370        list_add(&m->list, &huge_boot_pages);
 371        m->hstate = hstate;
 372        return 1;
 373}
 374#endif
 375
 376#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
 377#define HUGEPD_FREELIST_SIZE \
 378        ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
 379
 380struct hugepd_freelist {
 381        struct rcu_head rcu;
 382        unsigned int index;
 383        void *ptes[0];
 384};
 385
 386static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
 387
 388static void hugepd_free_rcu_callback(struct rcu_head *head)
 389{
 390        struct hugepd_freelist *batch =
 391                container_of(head, struct hugepd_freelist, rcu);
 392        unsigned int i;
 393
 394        for (i = 0; i < batch->index; i++)
 395                kmem_cache_free(hugepte_cache, batch->ptes[i]);
 396
 397        free_page((unsigned long)batch);
 398}
 399
 400static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
 401{
 402        struct hugepd_freelist **batchp;
 403
 404        batchp = &get_cpu_var(hugepd_freelist_cur);
 405
 406        if (atomic_read(&tlb->mm->mm_users) < 2 ||
 407            cpumask_equal(mm_cpumask(tlb->mm),
 408                          cpumask_of(smp_processor_id()))) {
 409                kmem_cache_free(hugepte_cache, hugepte);
 410                put_cpu_var(hugepd_freelist_cur);
 411                return;
 412        }
 413
 414        if (*batchp == NULL) {
 415                *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
 416                (*batchp)->index = 0;
 417        }
 418
 419        (*batchp)->ptes[(*batchp)->index++] = hugepte;
 420        if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
 421                call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
 422                *batchp = NULL;
 423        }
 424        put_cpu_var(hugepd_freelist_cur);
 425}
 426#else
 427static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
 428#endif
 429
 430static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
 431                              unsigned long start, unsigned long end,
 432                              unsigned long floor, unsigned long ceiling)
 433{
 434        pte_t *hugepte = hugepd_page(*hpdp);
 435        int i;
 436
 437        unsigned long pdmask = ~((1UL << pdshift) - 1);
 438        unsigned int num_hugepd = 1;
 439        unsigned int shift = hugepd_shift(*hpdp);
 440
 441        /* Note: On fsl the hpdp may be the first of several */
 442        if (shift > pdshift)
 443                num_hugepd = 1 << (shift - pdshift);
 444
 445        start &= pdmask;
 446        if (start < floor)
 447                return;
 448        if (ceiling) {
 449                ceiling &= pdmask;
 450                if (! ceiling)
 451                        return;
 452        }
 453        if (end - 1 > ceiling - 1)
 454                return;
 455
 456        for (i = 0; i < num_hugepd; i++, hpdp++)
 457                *hpdp = __hugepd(0);
 458
 459        if (shift >= pdshift)
 460                hugepd_free(tlb, hugepte);
 461        else
 462                pgtable_free_tlb(tlb, hugepte, pdshift - shift);
 463}
 464
 465static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 466                                   unsigned long addr, unsigned long end,
 467                                   unsigned long floor, unsigned long ceiling)
 468{
 469        pmd_t *pmd;
 470        unsigned long next;
 471        unsigned long start;
 472
 473        start = addr;
 474        do {
 475                unsigned long more;
 476
 477                pmd = pmd_offset(pud, addr);
 478                next = pmd_addr_end(addr, end);
 479                if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
 480                        /*
 481                         * if it is not hugepd pointer, we should already find
 482                         * it cleared.
 483                         */
 484                        WARN_ON(!pmd_none_or_clear_bad(pmd));
 485                        continue;
 486                }
 487                /*
 488                 * Increment next by the size of the huge mapping since
 489                 * there may be more than one entry at this level for a
 490                 * single hugepage, but all of them point to
 491                 * the same kmem cache that holds the hugepte.
 492                 */
 493                more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
 494                if (more > next)
 495                        next = more;
 496
 497                free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
 498                                  addr, next, floor, ceiling);
 499        } while (addr = next, addr != end);
 500
 501        start &= PUD_MASK;
 502        if (start < floor)
 503                return;
 504        if (ceiling) {
 505                ceiling &= PUD_MASK;
 506                if (!ceiling)
 507                        return;
 508        }
 509        if (end - 1 > ceiling - 1)
 510                return;
 511
 512        pmd = pmd_offset(pud, start);
 513        pud_clear(pud);
 514        pmd_free_tlb(tlb, pmd, start);
 515        mm_dec_nr_pmds(tlb->mm);
 516}
 517
 518static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
 519                                   unsigned long addr, unsigned long end,
 520                                   unsigned long floor, unsigned long ceiling)
 521{
 522        pud_t *pud;
 523        unsigned long next;
 524        unsigned long start;
 525
 526        start = addr;
 527        do {
 528                pud = pud_offset(pgd, addr);
 529                next = pud_addr_end(addr, end);
 530                if (!is_hugepd(__hugepd(pud_val(*pud)))) {
 531                        if (pud_none_or_clear_bad(pud))
 532                                continue;
 533                        hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
 534                                               ceiling);
 535                } else {
 536                        unsigned long more;
 537                        /*
 538                         * Increment next by the size of the huge mapping since
 539                         * there may be more than one entry at this level for a
 540                         * single hugepage, but all of them point to
 541                         * the same kmem cache that holds the hugepte.
 542                         */
 543                        more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
 544                        if (more > next)
 545                                next = more;
 546
 547                        free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
 548                                          addr, next, floor, ceiling);
 549                }
 550        } while (addr = next, addr != end);
 551
 552        start &= PGDIR_MASK;
 553        if (start < floor)
 554                return;
 555        if (ceiling) {
 556                ceiling &= PGDIR_MASK;
 557                if (!ceiling)
 558                        return;
 559        }
 560        if (end - 1 > ceiling - 1)
 561                return;
 562
 563        pud = pud_offset(pgd, start);
 564        pgd_clear(pgd);
 565        pud_free_tlb(tlb, pud, start);
 566}
 567
 568/*
 569 * This function frees user-level page tables of a process.
 570 */
 571void hugetlb_free_pgd_range(struct mmu_gather *tlb,
 572                            unsigned long addr, unsigned long end,
 573                            unsigned long floor, unsigned long ceiling)
 574{
 575        pgd_t *pgd;
 576        unsigned long next;
 577
 578        /*
 579         * Because there are a number of different possible pagetable
 580         * layouts for hugepage ranges, we limit knowledge of how
 581         * things should be laid out to the allocation path
 582         * (huge_pte_alloc(), above).  Everything else works out the
 583         * structure as it goes from information in the hugepd
 584         * pointers.  That means that we can't here use the
 585         * optimization used in the normal page free_pgd_range(), of
 586         * checking whether we're actually covering a large enough
 587         * range to have to do anything at the top level of the walk
 588         * instead of at the bottom.
 589         *
 590         * To make sense of this, you should probably go read the big
 591         * block comment at the top of the normal free_pgd_range(),
 592         * too.
 593         */
 594
 595        do {
 596                next = pgd_addr_end(addr, end);
 597                pgd = pgd_offset(tlb->mm, addr);
 598                if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
 599                        if (pgd_none_or_clear_bad(pgd))
 600                                continue;
 601                        hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
 602                } else {
 603                        unsigned long more;
 604                        /*
 605                         * Increment next by the size of the huge mapping since
 606                         * there may be more than one entry at the pgd level
 607                         * for a single hugepage, but all of them point to the
 608                         * same kmem cache that holds the hugepte.
 609                         */
 610                        more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
 611                        if (more > next)
 612                                next = more;
 613
 614                        free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
 615                                          addr, next, floor, ceiling);
 616                }
 617        } while (addr = next, addr != end);
 618}
 619
 620/*
 621 * We are holding mmap_sem, so a parallel huge page collapse cannot run.
 622 * To prevent hugepage split, disable irq.
 623 */
 624struct page *
 625follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
 626{
 627        bool is_thp;
 628        pte_t *ptep, pte;
 629        unsigned shift;
 630        unsigned long mask, flags;
 631        struct page *page = ERR_PTR(-EINVAL);
 632
 633        local_irq_save(flags);
 634        ptep = find_linux_pte_or_hugepte(mm->pgd, address, &is_thp, &shift);
 635        if (!ptep)
 636                goto no_page;
 637        pte = READ_ONCE(*ptep);
 638        /*
 639         * Verify it is a huge page else bail.
 640         * Transparent hugepages are handled by generic code. We can skip them
 641         * here.
 642         */
 643        if (!shift || is_thp)
 644                goto no_page;
 645
 646        if (!pte_present(pte)) {
 647                page = NULL;
 648                goto no_page;
 649        }
 650        mask = (1UL << shift) - 1;
 651        page = pte_page(pte);
 652        if (page)
 653                page += (address & mask) / PAGE_SIZE;
 654
 655no_page:
 656        local_irq_restore(flags);
 657        return page;
 658}
 659
 660struct page *
 661follow_huge_pmd(struct mm_struct *mm, unsigned long address,
 662                pmd_t *pmd, int write)
 663{
 664        BUG();
 665        return NULL;
 666}
 667
 668struct page *
 669follow_huge_pud(struct mm_struct *mm, unsigned long address,
 670                pud_t *pud, int write)
 671{
 672        BUG();
 673        return NULL;
 674}
 675
 676static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
 677                                      unsigned long sz)
 678{
 679        unsigned long __boundary = (addr + sz) & ~(sz-1);
 680        return (__boundary - 1 < end - 1) ? __boundary : end;
 681}
 682
 683int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
 684                unsigned long end, int write, struct page **pages, int *nr)
 685{
 686        pte_t *ptep;
 687        unsigned long sz = 1UL << hugepd_shift(hugepd);
 688        unsigned long next;
 689
 690        ptep = hugepte_offset(hugepd, addr, pdshift);
 691        do {
 692                next = hugepte_addr_end(addr, end, sz);
 693                if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
 694                        return 0;
 695        } while (ptep++, addr = next, addr != end);
 696
 697        return 1;
 698}
 699
 700#ifdef CONFIG_PPC_MM_SLICES
 701unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
 702                                        unsigned long len, unsigned long pgoff,
 703                                        unsigned long flags)
 704{
 705        struct hstate *hstate = hstate_file(file);
 706        int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
 707
 708        if (radix_enabled())
 709                return radix__hugetlb_get_unmapped_area(file, addr, len,
 710                                                       pgoff, flags);
 711        return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
 712}
 713#endif
 714
 715unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 716{
 717#ifdef CONFIG_PPC_MM_SLICES
 718        unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
 719        /* With radix we don't use slice, so derive it from vma*/
 720        if (!radix_enabled())
 721                return 1UL << mmu_psize_to_shift(psize);
 722#endif
 723        if (!is_vm_hugetlb_page(vma))
 724                return PAGE_SIZE;
 725
 726        return huge_page_size(hstate_vma(vma));
 727}
 728
 729static inline bool is_power_of_4(unsigned long x)
 730{
 731        if (is_power_of_2(x))
 732                return (__ilog2(x) % 2) ? false : true;
 733        return false;
 734}
 735
 736static int __init add_huge_page_size(unsigned long long size)
 737{
 738        int shift = __ffs(size);
 739        int mmu_psize;
 740
 741        /* Check that it is a page size supported by the hardware and
 742         * that it fits within pagetable and slice limits. */
 743        if (size <= PAGE_SIZE)
 744                return -EINVAL;
 745#if defined(CONFIG_PPC_FSL_BOOK3E)
 746        if (!is_power_of_4(size))
 747                return -EINVAL;
 748#elif !defined(CONFIG_PPC_8xx)
 749        if (!is_power_of_2(size) || (shift > SLICE_HIGH_SHIFT))
 750                return -EINVAL;
 751#endif
 752
 753        if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
 754                return -EINVAL;
 755
 756        BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
 757
 758        /* Return if huge page size has already been setup */
 759        if (size_to_hstate(size))
 760                return 0;
 761
 762        hugetlb_add_hstate(shift - PAGE_SHIFT);
 763
 764        return 0;
 765}
 766
 767static int __init hugepage_setup_sz(char *str)
 768{
 769        unsigned long long size;
 770
 771        size = memparse(str, &str);
 772
 773        if (add_huge_page_size(size) != 0) {
 774                hugetlb_bad_size();
 775                pr_err("Invalid huge page size specified(%llu)\n", size);
 776        }
 777
 778        return 1;
 779}
 780__setup("hugepagesz=", hugepage_setup_sz);
 781
 782struct kmem_cache *hugepte_cache;
 783static int __init hugetlbpage_init(void)
 784{
 785        int psize;
 786
 787#if !defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_PPC_8xx)
 788        if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE))
 789                return -ENODEV;
 790#endif
 791        for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
 792                unsigned shift;
 793                unsigned pdshift;
 794
 795                if (!mmu_psize_defs[psize].shift)
 796                        continue;
 797
 798                shift = mmu_psize_to_shift(psize);
 799
 800                if (add_huge_page_size(1ULL << shift) < 0)
 801                        continue;
 802
 803                if (shift < HUGEPD_PUD_SHIFT)
 804                        pdshift = PMD_SHIFT;
 805                else if (shift < HUGEPD_PGD_SHIFT)
 806                        pdshift = PUD_SHIFT;
 807                else
 808                        pdshift = PGDIR_SHIFT;
 809                /*
 810                 * if we have pdshift and shift value same, we don't
 811                 * use pgt cache for hugepd.
 812                 */
 813                if (pdshift > shift)
 814                        pgtable_cache_add(pdshift - shift, NULL);
 815#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
 816                else if (!hugepte_cache) {
 817                        /*
 818                         * Create a kmem cache for hugeptes.  The bottom bits in
 819                         * the pte have size information encoded in them, so
 820                         * align them to allow this
 821                         */
 822                        hugepte_cache = kmem_cache_create("hugepte-cache",
 823                                                          sizeof(pte_t),
 824                                                          HUGEPD_SHIFT_MASK + 1,
 825                                                          0, NULL);
 826                        if (hugepte_cache == NULL)
 827                                panic("%s: Unable to create kmem cache "
 828                                      "for hugeptes\n", __func__);
 829
 830                }
 831#endif
 832        }
 833
 834#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
 835        /* Default hpage size = 4M on FSL_BOOK3E and 512k on 8xx */
 836        if (mmu_psize_defs[MMU_PAGE_4M].shift)
 837                HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
 838        else if (mmu_psize_defs[MMU_PAGE_512K].shift)
 839                HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_512K].shift;
 840#else
 841        /* Set default large page size. Currently, we pick 16M or 1M
 842         * depending on what is available
 843         */
 844        if (mmu_psize_defs[MMU_PAGE_16M].shift)
 845                HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
 846        else if (mmu_psize_defs[MMU_PAGE_1M].shift)
 847                HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
 848        else if (mmu_psize_defs[MMU_PAGE_2M].shift)
 849                HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift;
 850#endif
 851        return 0;
 852}
 853
 854arch_initcall(hugetlbpage_init);
 855
 856void flush_dcache_icache_hugepage(struct page *page)
 857{
 858        int i;
 859        void *start;
 860
 861        BUG_ON(!PageCompound(page));
 862
 863        for (i = 0; i < (1UL << compound_order(page)); i++) {
 864                if (!PageHighMem(page)) {
 865                        __flush_dcache_icache(page_address(page+i));
 866                } else {
 867                        start = kmap_atomic(page+i);
 868                        __flush_dcache_icache(start);
 869                        kunmap_atomic(start);
 870                }
 871        }
 872}
 873
 874#endif /* CONFIG_HUGETLB_PAGE */
 875
 876/*
 877 * We have 4 cases for pgds and pmds:
 878 * (1) invalid (all zeroes)
 879 * (2) pointer to next table, as normal; bottom 6 bits == 0
 880 * (3) leaf pte for huge page _PAGE_PTE set
 881 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
 882 *
 883 * So long as we atomically load page table pointers we are safe against teardown,
 884 * we can follow the address down to the the page and take a ref on it.
 885 * This function need to be called with interrupts disabled. We use this variant
 886 * when we have MSR[EE] = 0 but the paca->soft_enabled = 1
 887 */
 888
 889pte_t *__find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
 890                                   bool *is_thp, unsigned *shift)
 891{
 892        pgd_t pgd, *pgdp;
 893        pud_t pud, *pudp;
 894        pmd_t pmd, *pmdp;
 895        pte_t *ret_pte;
 896        hugepd_t *hpdp = NULL;
 897        unsigned pdshift = PGDIR_SHIFT;
 898
 899        if (shift)
 900                *shift = 0;
 901
 902        if (is_thp)
 903                *is_thp = false;
 904
 905        pgdp = pgdir + pgd_index(ea);
 906        pgd  = READ_ONCE(*pgdp);
 907        /*
 908         * Always operate on the local stack value. This make sure the
 909         * value don't get updated by a parallel THP split/collapse,
 910         * page fault or a page unmap. The return pte_t * is still not
 911         * stable. So should be checked there for above conditions.
 912         */
 913        if (pgd_none(pgd))
 914                return NULL;
 915        else if (pgd_huge(pgd)) {
 916                ret_pte = (pte_t *) pgdp;
 917                goto out;
 918        } else if (is_hugepd(__hugepd(pgd_val(pgd))))
 919                hpdp = (hugepd_t *)&pgd;
 920        else {
 921                /*
 922                 * Even if we end up with an unmap, the pgtable will not
 923                 * be freed, because we do an rcu free and here we are
 924                 * irq disabled
 925                 */
 926                pdshift = PUD_SHIFT;
 927                pudp = pud_offset(&pgd, ea);
 928                pud  = READ_ONCE(*pudp);
 929
 930                if (pud_none(pud))
 931                        return NULL;
 932                else if (pud_huge(pud)) {
 933                        ret_pte = (pte_t *) pudp;
 934                        goto out;
 935                } else if (is_hugepd(__hugepd(pud_val(pud))))
 936                        hpdp = (hugepd_t *)&pud;
 937                else {
 938                        pdshift = PMD_SHIFT;
 939                        pmdp = pmd_offset(&pud, ea);
 940                        pmd  = READ_ONCE(*pmdp);
 941                        /*
 942                         * A hugepage collapse is captured by pmd_none, because
 943                         * it mark the pmd none and do a hpte invalidate.
 944                         */
 945                        if (pmd_none(pmd))
 946                                return NULL;
 947
 948                        if (pmd_trans_huge(pmd)) {
 949                                if (is_thp)
 950                                        *is_thp = true;
 951                                ret_pte = (pte_t *) pmdp;
 952                                goto out;
 953                        }
 954
 955                        if (pmd_huge(pmd)) {
 956                                ret_pte = (pte_t *) pmdp;
 957                                goto out;
 958                        } else if (is_hugepd(__hugepd(pmd_val(pmd))))
 959                                hpdp = (hugepd_t *)&pmd;
 960                        else
 961                                return pte_offset_kernel(&pmd, ea);
 962                }
 963        }
 964        if (!hpdp)
 965                return NULL;
 966
 967        ret_pte = hugepte_offset(*hpdp, ea, pdshift);
 968        pdshift = hugepd_shift(*hpdp);
 969out:
 970        if (shift)
 971                *shift = pdshift;
 972        return ret_pte;
 973}
 974EXPORT_SYMBOL_GPL(__find_linux_pte_or_hugepte);
 975
 976int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
 977                unsigned long end, int write, struct page **pages, int *nr)
 978{
 979        unsigned long mask;
 980        unsigned long pte_end;
 981        struct page *head, *page;
 982        pte_t pte;
 983        int refs;
 984
 985        pte_end = (addr + sz) & ~(sz-1);
 986        if (pte_end < end)
 987                end = pte_end;
 988
 989        pte = READ_ONCE(*ptep);
 990        mask = _PAGE_PRESENT | _PAGE_READ;
 991
 992        /*
 993         * On some CPUs like the 8xx, _PAGE_RW hence _PAGE_WRITE is defined
 994         * as 0 and _PAGE_RO has to be set when a page is not writable
 995         */
 996        if (write)
 997                mask |= _PAGE_WRITE;
 998        else
 999                mask |= _PAGE_RO;
1000
1001        if ((pte_val(pte) & mask) != mask)
1002                return 0;
1003
1004        /* hugepages are never "special" */
1005        VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1006
1007        refs = 0;
1008        head = pte_page(pte);
1009
1010        page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
1011        do {
1012                VM_BUG_ON(compound_head(page) != head);
1013                pages[*nr] = page;
1014                (*nr)++;
1015                page++;
1016                refs++;
1017        } while (addr += PAGE_SIZE, addr != end);
1018
1019        if (!page_cache_add_speculative(head, refs)) {
1020                *nr -= refs;
1021                return 0;
1022        }
1023
1024        if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1025                /* Could be optimized better */
1026                *nr -= refs;
1027                while (refs--)
1028                        put_page(head);
1029                return 0;
1030        }
1031
1032        return 1;
1033}
1034