linux/arch/powerpc/mm/numa.c
<<
>>
Prefs
   1/*
   2 * pSeries NUMA support
   3 *
   4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11#define pr_fmt(fmt) "numa: " fmt
  12
  13#include <linux/threads.h>
  14#include <linux/bootmem.h>
  15#include <linux/init.h>
  16#include <linux/mm.h>
  17#include <linux/mmzone.h>
  18#include <linux/export.h>
  19#include <linux/nodemask.h>
  20#include <linux/cpu.h>
  21#include <linux/notifier.h>
  22#include <linux/memblock.h>
  23#include <linux/of.h>
  24#include <linux/pfn.h>
  25#include <linux/cpuset.h>
  26#include <linux/node.h>
  27#include <linux/stop_machine.h>
  28#include <linux/proc_fs.h>
  29#include <linux/seq_file.h>
  30#include <linux/uaccess.h>
  31#include <linux/slab.h>
  32#include <asm/cputhreads.h>
  33#include <asm/sparsemem.h>
  34#include <asm/prom.h>
  35#include <asm/smp.h>
  36#include <asm/cputhreads.h>
  37#include <asm/topology.h>
  38#include <asm/firmware.h>
  39#include <asm/paca.h>
  40#include <asm/hvcall.h>
  41#include <asm/setup.h>
  42#include <asm/vdso.h>
  43
  44static int numa_enabled = 1;
  45
  46static char *cmdline __initdata;
  47
  48static int numa_debug;
  49#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
  50
  51int numa_cpu_lookup_table[NR_CPUS];
  52cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
  53struct pglist_data *node_data[MAX_NUMNODES];
  54
  55EXPORT_SYMBOL(numa_cpu_lookup_table);
  56EXPORT_SYMBOL(node_to_cpumask_map);
  57EXPORT_SYMBOL(node_data);
  58
  59static int min_common_depth;
  60static int n_mem_addr_cells, n_mem_size_cells;
  61static int form1_affinity;
  62
  63#define MAX_DISTANCE_REF_POINTS 4
  64static int distance_ref_points_depth;
  65static const __be32 *distance_ref_points;
  66static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
  67
  68/*
  69 * Allocate node_to_cpumask_map based on number of available nodes
  70 * Requires node_possible_map to be valid.
  71 *
  72 * Note: cpumask_of_node() is not valid until after this is done.
  73 */
  74static void __init setup_node_to_cpumask_map(void)
  75{
  76        unsigned int node;
  77
  78        /* setup nr_node_ids if not done yet */
  79        if (nr_node_ids == MAX_NUMNODES)
  80                setup_nr_node_ids();
  81
  82        /* allocate the map */
  83        for_each_node(node)
  84                alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
  85
  86        /* cpumask_of_node() will now work */
  87        dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
  88}
  89
  90static int __init fake_numa_create_new_node(unsigned long end_pfn,
  91                                                unsigned int *nid)
  92{
  93        unsigned long long mem;
  94        char *p = cmdline;
  95        static unsigned int fake_nid;
  96        static unsigned long long curr_boundary;
  97
  98        /*
  99         * Modify node id, iff we started creating NUMA nodes
 100         * We want to continue from where we left of the last time
 101         */
 102        if (fake_nid)
 103                *nid = fake_nid;
 104        /*
 105         * In case there are no more arguments to parse, the
 106         * node_id should be the same as the last fake node id
 107         * (we've handled this above).
 108         */
 109        if (!p)
 110                return 0;
 111
 112        mem = memparse(p, &p);
 113        if (!mem)
 114                return 0;
 115
 116        if (mem < curr_boundary)
 117                return 0;
 118
 119        curr_boundary = mem;
 120
 121        if ((end_pfn << PAGE_SHIFT) > mem) {
 122                /*
 123                 * Skip commas and spaces
 124                 */
 125                while (*p == ',' || *p == ' ' || *p == '\t')
 126                        p++;
 127
 128                cmdline = p;
 129                fake_nid++;
 130                *nid = fake_nid;
 131                dbg("created new fake_node with id %d\n", fake_nid);
 132                return 1;
 133        }
 134        return 0;
 135}
 136
 137static void reset_numa_cpu_lookup_table(void)
 138{
 139        unsigned int cpu;
 140
 141        for_each_possible_cpu(cpu)
 142                numa_cpu_lookup_table[cpu] = -1;
 143}
 144
 145static void update_numa_cpu_lookup_table(unsigned int cpu, int node)
 146{
 147        numa_cpu_lookup_table[cpu] = node;
 148}
 149
 150static void map_cpu_to_node(int cpu, int node)
 151{
 152        update_numa_cpu_lookup_table(cpu, node);
 153
 154        dbg("adding cpu %d to node %d\n", cpu, node);
 155
 156        if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
 157                cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
 158}
 159
 160#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
 161static void unmap_cpu_from_node(unsigned long cpu)
 162{
 163        int node = numa_cpu_lookup_table[cpu];
 164
 165        dbg("removing cpu %lu from node %d\n", cpu, node);
 166
 167        if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
 168                cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
 169        } else {
 170                printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
 171                       cpu, node);
 172        }
 173}
 174#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
 175
 176/* must hold reference to node during call */
 177static const __be32 *of_get_associativity(struct device_node *dev)
 178{
 179        return of_get_property(dev, "ibm,associativity", NULL);
 180}
 181
 182/*
 183 * Returns the property linux,drconf-usable-memory if
 184 * it exists (the property exists only in kexec/kdump kernels,
 185 * added by kexec-tools)
 186 */
 187static const __be32 *of_get_usable_memory(struct device_node *memory)
 188{
 189        const __be32 *prop;
 190        u32 len;
 191        prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
 192        if (!prop || len < sizeof(unsigned int))
 193                return NULL;
 194        return prop;
 195}
 196
 197int __node_distance(int a, int b)
 198{
 199        int i;
 200        int distance = LOCAL_DISTANCE;
 201
 202        if (!form1_affinity)
 203                return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
 204
 205        for (i = 0; i < distance_ref_points_depth; i++) {
 206                if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
 207                        break;
 208
 209                /* Double the distance for each NUMA level */
 210                distance *= 2;
 211        }
 212
 213        return distance;
 214}
 215EXPORT_SYMBOL(__node_distance);
 216
 217static void initialize_distance_lookup_table(int nid,
 218                const __be32 *associativity)
 219{
 220        int i;
 221
 222        if (!form1_affinity)
 223                return;
 224
 225        for (i = 0; i < distance_ref_points_depth; i++) {
 226                const __be32 *entry;
 227
 228                entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
 229                distance_lookup_table[nid][i] = of_read_number(entry, 1);
 230        }
 231}
 232
 233/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 234 * info is found.
 235 */
 236static int associativity_to_nid(const __be32 *associativity)
 237{
 238        int nid = -1;
 239
 240        if (min_common_depth == -1)
 241                goto out;
 242
 243        if (of_read_number(associativity, 1) >= min_common_depth)
 244                nid = of_read_number(&associativity[min_common_depth], 1);
 245
 246        /* POWER4 LPAR uses 0xffff as invalid node */
 247        if (nid == 0xffff || nid >= MAX_NUMNODES)
 248                nid = -1;
 249
 250        if (nid > 0 &&
 251                of_read_number(associativity, 1) >= distance_ref_points_depth) {
 252                /*
 253                 * Skip the length field and send start of associativity array
 254                 */
 255                initialize_distance_lookup_table(nid, associativity + 1);
 256        }
 257
 258out:
 259        return nid;
 260}
 261
 262/* Returns the nid associated with the given device tree node,
 263 * or -1 if not found.
 264 */
 265static int of_node_to_nid_single(struct device_node *device)
 266{
 267        int nid = -1;
 268        const __be32 *tmp;
 269
 270        tmp = of_get_associativity(device);
 271        if (tmp)
 272                nid = associativity_to_nid(tmp);
 273        return nid;
 274}
 275
 276/* Walk the device tree upwards, looking for an associativity id */
 277int of_node_to_nid(struct device_node *device)
 278{
 279        int nid = -1;
 280
 281        of_node_get(device);
 282        while (device) {
 283                nid = of_node_to_nid_single(device);
 284                if (nid != -1)
 285                        break;
 286
 287                device = of_get_next_parent(device);
 288        }
 289        of_node_put(device);
 290
 291        return nid;
 292}
 293EXPORT_SYMBOL_GPL(of_node_to_nid);
 294
 295static int __init find_min_common_depth(void)
 296{
 297        int depth;
 298        struct device_node *root;
 299
 300        if (firmware_has_feature(FW_FEATURE_OPAL))
 301                root = of_find_node_by_path("/ibm,opal");
 302        else
 303                root = of_find_node_by_path("/rtas");
 304        if (!root)
 305                root = of_find_node_by_path("/");
 306
 307        /*
 308         * This property is a set of 32-bit integers, each representing
 309         * an index into the ibm,associativity nodes.
 310         *
 311         * With form 0 affinity the first integer is for an SMP configuration
 312         * (should be all 0's) and the second is for a normal NUMA
 313         * configuration. We have only one level of NUMA.
 314         *
 315         * With form 1 affinity the first integer is the most significant
 316         * NUMA boundary and the following are progressively less significant
 317         * boundaries. There can be more than one level of NUMA.
 318         */
 319        distance_ref_points = of_get_property(root,
 320                                        "ibm,associativity-reference-points",
 321                                        &distance_ref_points_depth);
 322
 323        if (!distance_ref_points) {
 324                dbg("NUMA: ibm,associativity-reference-points not found.\n");
 325                goto err;
 326        }
 327
 328        distance_ref_points_depth /= sizeof(int);
 329
 330        if (firmware_has_feature(FW_FEATURE_OPAL) ||
 331            firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
 332                dbg("Using form 1 affinity\n");
 333                form1_affinity = 1;
 334        }
 335
 336        if (form1_affinity) {
 337                depth = of_read_number(distance_ref_points, 1);
 338        } else {
 339                if (distance_ref_points_depth < 2) {
 340                        printk(KERN_WARNING "NUMA: "
 341                                "short ibm,associativity-reference-points\n");
 342                        goto err;
 343                }
 344
 345                depth = of_read_number(&distance_ref_points[1], 1);
 346        }
 347
 348        /*
 349         * Warn and cap if the hardware supports more than
 350         * MAX_DISTANCE_REF_POINTS domains.
 351         */
 352        if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
 353                printk(KERN_WARNING "NUMA: distance array capped at "
 354                        "%d entries\n", MAX_DISTANCE_REF_POINTS);
 355                distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
 356        }
 357
 358        of_node_put(root);
 359        return depth;
 360
 361err:
 362        of_node_put(root);
 363        return -1;
 364}
 365
 366static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
 367{
 368        struct device_node *memory = NULL;
 369
 370        memory = of_find_node_by_type(memory, "memory");
 371        if (!memory)
 372                panic("numa.c: No memory nodes found!");
 373
 374        *n_addr_cells = of_n_addr_cells(memory);
 375        *n_size_cells = of_n_size_cells(memory);
 376        of_node_put(memory);
 377}
 378
 379static unsigned long read_n_cells(int n, const __be32 **buf)
 380{
 381        unsigned long result = 0;
 382
 383        while (n--) {
 384                result = (result << 32) | of_read_number(*buf, 1);
 385                (*buf)++;
 386        }
 387        return result;
 388}
 389
 390/*
 391 * Read the next memblock list entry from the ibm,dynamic-memory property
 392 * and return the information in the provided of_drconf_cell structure.
 393 */
 394static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp)
 395{
 396        const __be32 *cp;
 397
 398        drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
 399
 400        cp = *cellp;
 401        drmem->drc_index = of_read_number(cp, 1);
 402        drmem->reserved = of_read_number(&cp[1], 1);
 403        drmem->aa_index = of_read_number(&cp[2], 1);
 404        drmem->flags = of_read_number(&cp[3], 1);
 405
 406        *cellp = cp + 4;
 407}
 408
 409/*
 410 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
 411 *
 412 * The layout of the ibm,dynamic-memory property is a number N of memblock
 413 * list entries followed by N memblock list entries.  Each memblock list entry
 414 * contains information as laid out in the of_drconf_cell struct above.
 415 */
 416static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm)
 417{
 418        const __be32 *prop;
 419        u32 len, entries;
 420
 421        prop = of_get_property(memory, "ibm,dynamic-memory", &len);
 422        if (!prop || len < sizeof(unsigned int))
 423                return 0;
 424
 425        entries = of_read_number(prop++, 1);
 426
 427        /* Now that we know the number of entries, revalidate the size
 428         * of the property read in to ensure we have everything
 429         */
 430        if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
 431                return 0;
 432
 433        *dm = prop;
 434        return entries;
 435}
 436
 437/*
 438 * Retrieve and validate the ibm,lmb-size property for drconf memory
 439 * from the device tree.
 440 */
 441static u64 of_get_lmb_size(struct device_node *memory)
 442{
 443        const __be32 *prop;
 444        u32 len;
 445
 446        prop = of_get_property(memory, "ibm,lmb-size", &len);
 447        if (!prop || len < sizeof(unsigned int))
 448                return 0;
 449
 450        return read_n_cells(n_mem_size_cells, &prop);
 451}
 452
 453struct assoc_arrays {
 454        u32     n_arrays;
 455        u32     array_sz;
 456        const __be32 *arrays;
 457};
 458
 459/*
 460 * Retrieve and validate the list of associativity arrays for drconf
 461 * memory from the ibm,associativity-lookup-arrays property of the
 462 * device tree..
 463 *
 464 * The layout of the ibm,associativity-lookup-arrays property is a number N
 465 * indicating the number of associativity arrays, followed by a number M
 466 * indicating the size of each associativity array, followed by a list
 467 * of N associativity arrays.
 468 */
 469static int of_get_assoc_arrays(struct device_node *memory,
 470                               struct assoc_arrays *aa)
 471{
 472        const __be32 *prop;
 473        u32 len;
 474
 475        prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
 476        if (!prop || len < 2 * sizeof(unsigned int))
 477                return -1;
 478
 479        aa->n_arrays = of_read_number(prop++, 1);
 480        aa->array_sz = of_read_number(prop++, 1);
 481
 482        /* Now that we know the number of arrays and size of each array,
 483         * revalidate the size of the property read in.
 484         */
 485        if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
 486                return -1;
 487
 488        aa->arrays = prop;
 489        return 0;
 490}
 491
 492/*
 493 * This is like of_node_to_nid_single() for memory represented in the
 494 * ibm,dynamic-reconfiguration-memory node.
 495 */
 496static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
 497                                   struct assoc_arrays *aa)
 498{
 499        int default_nid = 0;
 500        int nid = default_nid;
 501        int index;
 502
 503        if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
 504            !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
 505            drmem->aa_index < aa->n_arrays) {
 506                index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
 507                nid = of_read_number(&aa->arrays[index], 1);
 508
 509                if (nid == 0xffff || nid >= MAX_NUMNODES)
 510                        nid = default_nid;
 511
 512                if (nid > 0) {
 513                        index = drmem->aa_index * aa->array_sz;
 514                        initialize_distance_lookup_table(nid,
 515                                                        &aa->arrays[index]);
 516                }
 517        }
 518
 519        return nid;
 520}
 521
 522/*
 523 * Figure out to which domain a cpu belongs and stick it there.
 524 * Return the id of the domain used.
 525 */
 526static int numa_setup_cpu(unsigned long lcpu)
 527{
 528        int nid = -1;
 529        struct device_node *cpu;
 530
 531        /*
 532         * If a valid cpu-to-node mapping is already available, use it
 533         * directly instead of querying the firmware, since it represents
 534         * the most recent mapping notified to us by the platform (eg: VPHN).
 535         */
 536        if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
 537                map_cpu_to_node(lcpu, nid);
 538                return nid;
 539        }
 540
 541        cpu = of_get_cpu_node(lcpu, NULL);
 542
 543        if (!cpu) {
 544                WARN_ON(1);
 545                if (cpu_present(lcpu))
 546                        goto out_present;
 547                else
 548                        goto out;
 549        }
 550
 551        nid = of_node_to_nid_single(cpu);
 552
 553out_present:
 554        if (nid < 0 || !node_online(nid))
 555                nid = first_online_node;
 556
 557        map_cpu_to_node(lcpu, nid);
 558        of_node_put(cpu);
 559out:
 560        return nid;
 561}
 562
 563static void verify_cpu_node_mapping(int cpu, int node)
 564{
 565        int base, sibling, i;
 566
 567        /* Verify that all the threads in the core belong to the same node */
 568        base = cpu_first_thread_sibling(cpu);
 569
 570        for (i = 0; i < threads_per_core; i++) {
 571                sibling = base + i;
 572
 573                if (sibling == cpu || cpu_is_offline(sibling))
 574                        continue;
 575
 576                if (cpu_to_node(sibling) != node) {
 577                        WARN(1, "CPU thread siblings %d and %d don't belong"
 578                                " to the same node!\n", cpu, sibling);
 579                        break;
 580                }
 581        }
 582}
 583
 584/* Must run before sched domains notifier. */
 585static int ppc_numa_cpu_prepare(unsigned int cpu)
 586{
 587        int nid;
 588
 589        nid = numa_setup_cpu(cpu);
 590        verify_cpu_node_mapping(cpu, nid);
 591        return 0;
 592}
 593
 594static int ppc_numa_cpu_dead(unsigned int cpu)
 595{
 596#ifdef CONFIG_HOTPLUG_CPU
 597        unmap_cpu_from_node(cpu);
 598#endif
 599        return 0;
 600}
 601
 602/*
 603 * Check and possibly modify a memory region to enforce the memory limit.
 604 *
 605 * Returns the size the region should have to enforce the memory limit.
 606 * This will either be the original value of size, a truncated value,
 607 * or zero. If the returned value of size is 0 the region should be
 608 * discarded as it lies wholly above the memory limit.
 609 */
 610static unsigned long __init numa_enforce_memory_limit(unsigned long start,
 611                                                      unsigned long size)
 612{
 613        /*
 614         * We use memblock_end_of_DRAM() in here instead of memory_limit because
 615         * we've already adjusted it for the limit and it takes care of
 616         * having memory holes below the limit.  Also, in the case of
 617         * iommu_is_off, memory_limit is not set but is implicitly enforced.
 618         */
 619
 620        if (start + size <= memblock_end_of_DRAM())
 621                return size;
 622
 623        if (start >= memblock_end_of_DRAM())
 624                return 0;
 625
 626        return memblock_end_of_DRAM() - start;
 627}
 628
 629/*
 630 * Reads the counter for a given entry in
 631 * linux,drconf-usable-memory property
 632 */
 633static inline int __init read_usm_ranges(const __be32 **usm)
 634{
 635        /*
 636         * For each lmb in ibm,dynamic-memory a corresponding
 637         * entry in linux,drconf-usable-memory property contains
 638         * a counter followed by that many (base, size) duple.
 639         * read the counter from linux,drconf-usable-memory
 640         */
 641        return read_n_cells(n_mem_size_cells, usm);
 642}
 643
 644/*
 645 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 646 * node.  This assumes n_mem_{addr,size}_cells have been set.
 647 */
 648static void __init parse_drconf_memory(struct device_node *memory)
 649{
 650        const __be32 *uninitialized_var(dm), *usm;
 651        unsigned int n, rc, ranges, is_kexec_kdump = 0;
 652        unsigned long lmb_size, base, size, sz;
 653        int nid;
 654        struct assoc_arrays aa = { .arrays = NULL };
 655
 656        n = of_get_drconf_memory(memory, &dm);
 657        if (!n)
 658                return;
 659
 660        lmb_size = of_get_lmb_size(memory);
 661        if (!lmb_size)
 662                return;
 663
 664        rc = of_get_assoc_arrays(memory, &aa);
 665        if (rc)
 666                return;
 667
 668        /* check if this is a kexec/kdump kernel */
 669        usm = of_get_usable_memory(memory);
 670        if (usm != NULL)
 671                is_kexec_kdump = 1;
 672
 673        for (; n != 0; --n) {
 674                struct of_drconf_cell drmem;
 675
 676                read_drconf_cell(&drmem, &dm);
 677
 678                /* skip this block if the reserved bit is set in flags (0x80)
 679                   or if the block is not assigned to this partition (0x8) */
 680                if ((drmem.flags & DRCONF_MEM_RESERVED)
 681                    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
 682                        continue;
 683
 684                base = drmem.base_addr;
 685                size = lmb_size;
 686                ranges = 1;
 687
 688                if (is_kexec_kdump) {
 689                        ranges = read_usm_ranges(&usm);
 690                        if (!ranges) /* there are no (base, size) duple */
 691                                continue;
 692                }
 693                do {
 694                        if (is_kexec_kdump) {
 695                                base = read_n_cells(n_mem_addr_cells, &usm);
 696                                size = read_n_cells(n_mem_size_cells, &usm);
 697                        }
 698                        nid = of_drconf_to_nid_single(&drmem, &aa);
 699                        fake_numa_create_new_node(
 700                                ((base + size) >> PAGE_SHIFT),
 701                                           &nid);
 702                        node_set_online(nid);
 703                        sz = numa_enforce_memory_limit(base, size);
 704                        if (sz)
 705                                memblock_set_node(base, sz,
 706                                                  &memblock.memory, nid);
 707                } while (--ranges);
 708        }
 709}
 710
 711static int __init parse_numa_properties(void)
 712{
 713        struct device_node *memory;
 714        int default_nid = 0;
 715        unsigned long i;
 716
 717        if (numa_enabled == 0) {
 718                printk(KERN_WARNING "NUMA disabled by user\n");
 719                return -1;
 720        }
 721
 722        min_common_depth = find_min_common_depth();
 723
 724        if (min_common_depth < 0)
 725                return min_common_depth;
 726
 727        dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
 728
 729        /*
 730         * Even though we connect cpus to numa domains later in SMP
 731         * init, we need to know the node ids now. This is because
 732         * each node to be onlined must have NODE_DATA etc backing it.
 733         */
 734        for_each_present_cpu(i) {
 735                struct device_node *cpu;
 736                int nid;
 737
 738                cpu = of_get_cpu_node(i, NULL);
 739                BUG_ON(!cpu);
 740                nid = of_node_to_nid_single(cpu);
 741                of_node_put(cpu);
 742
 743                /*
 744                 * Don't fall back to default_nid yet -- we will plug
 745                 * cpus into nodes once the memory scan has discovered
 746                 * the topology.
 747                 */
 748                if (nid < 0)
 749                        continue;
 750                node_set_online(nid);
 751        }
 752
 753        get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
 754
 755        for_each_node_by_type(memory, "memory") {
 756                unsigned long start;
 757                unsigned long size;
 758                int nid;
 759                int ranges;
 760                const __be32 *memcell_buf;
 761                unsigned int len;
 762
 763                memcell_buf = of_get_property(memory,
 764                        "linux,usable-memory", &len);
 765                if (!memcell_buf || len <= 0)
 766                        memcell_buf = of_get_property(memory, "reg", &len);
 767                if (!memcell_buf || len <= 0)
 768                        continue;
 769
 770                /* ranges in cell */
 771                ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
 772new_range:
 773                /* these are order-sensitive, and modify the buffer pointer */
 774                start = read_n_cells(n_mem_addr_cells, &memcell_buf);
 775                size = read_n_cells(n_mem_size_cells, &memcell_buf);
 776
 777                /*
 778                 * Assumption: either all memory nodes or none will
 779                 * have associativity properties.  If none, then
 780                 * everything goes to default_nid.
 781                 */
 782                nid = of_node_to_nid_single(memory);
 783                if (nid < 0)
 784                        nid = default_nid;
 785
 786                fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
 787                node_set_online(nid);
 788
 789                if (!(size = numa_enforce_memory_limit(start, size))) {
 790                        if (--ranges)
 791                                goto new_range;
 792                        else
 793                                continue;
 794                }
 795
 796                memblock_set_node(start, size, &memblock.memory, nid);
 797
 798                if (--ranges)
 799                        goto new_range;
 800        }
 801
 802        /*
 803         * Now do the same thing for each MEMBLOCK listed in the
 804         * ibm,dynamic-memory property in the
 805         * ibm,dynamic-reconfiguration-memory node.
 806         */
 807        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
 808        if (memory)
 809                parse_drconf_memory(memory);
 810
 811        return 0;
 812}
 813
 814static void __init setup_nonnuma(void)
 815{
 816        unsigned long top_of_ram = memblock_end_of_DRAM();
 817        unsigned long total_ram = memblock_phys_mem_size();
 818        unsigned long start_pfn, end_pfn;
 819        unsigned int nid = 0;
 820        struct memblock_region *reg;
 821
 822        printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
 823               top_of_ram, total_ram);
 824        printk(KERN_DEBUG "Memory hole size: %ldMB\n",
 825               (top_of_ram - total_ram) >> 20);
 826
 827        for_each_memblock(memory, reg) {
 828                start_pfn = memblock_region_memory_base_pfn(reg);
 829                end_pfn = memblock_region_memory_end_pfn(reg);
 830
 831                fake_numa_create_new_node(end_pfn, &nid);
 832                memblock_set_node(PFN_PHYS(start_pfn),
 833                                  PFN_PHYS(end_pfn - start_pfn),
 834                                  &memblock.memory, nid);
 835                node_set_online(nid);
 836        }
 837}
 838
 839void __init dump_numa_cpu_topology(void)
 840{
 841        unsigned int node;
 842        unsigned int cpu, count;
 843
 844        if (min_common_depth == -1 || !numa_enabled)
 845                return;
 846
 847        for_each_online_node(node) {
 848                pr_info("Node %d CPUs:", node);
 849
 850                count = 0;
 851                /*
 852                 * If we used a CPU iterator here we would miss printing
 853                 * the holes in the cpumap.
 854                 */
 855                for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
 856                        if (cpumask_test_cpu(cpu,
 857                                        node_to_cpumask_map[node])) {
 858                                if (count == 0)
 859                                        pr_cont(" %u", cpu);
 860                                ++count;
 861                        } else {
 862                                if (count > 1)
 863                                        pr_cont("-%u", cpu - 1);
 864                                count = 0;
 865                        }
 866                }
 867
 868                if (count > 1)
 869                        pr_cont("-%u", nr_cpu_ids - 1);
 870                pr_cont("\n");
 871        }
 872}
 873
 874/* Initialize NODE_DATA for a node on the local memory */
 875static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
 876{
 877        u64 spanned_pages = end_pfn - start_pfn;
 878        const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
 879        u64 nd_pa;
 880        void *nd;
 881        int tnid;
 882
 883        if (spanned_pages)
 884                pr_info("Initmem setup node %d [mem %#010Lx-%#010Lx]\n",
 885                        nid, start_pfn << PAGE_SHIFT,
 886                        (end_pfn << PAGE_SHIFT) - 1);
 887        else
 888                pr_info("Initmem setup node %d\n", nid);
 889
 890        nd_pa = memblock_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
 891        nd = __va(nd_pa);
 892
 893        /* report and initialize */
 894        pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
 895                nd_pa, nd_pa + nd_size - 1);
 896        tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
 897        if (tnid != nid)
 898                pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
 899
 900        node_data[nid] = nd;
 901        memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
 902        NODE_DATA(nid)->node_id = nid;
 903        NODE_DATA(nid)->node_start_pfn = start_pfn;
 904        NODE_DATA(nid)->node_spanned_pages = spanned_pages;
 905}
 906
 907void __init initmem_init(void)
 908{
 909        int nid, cpu;
 910
 911        max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
 912        max_pfn = max_low_pfn;
 913
 914        if (parse_numa_properties())
 915                setup_nonnuma();
 916
 917        memblock_dump_all();
 918
 919        /*
 920         * Reduce the possible NUMA nodes to the online NUMA nodes,
 921         * since we do not support node hotplug. This ensures that  we
 922         * lower the maximum NUMA node ID to what is actually present.
 923         */
 924        nodes_and(node_possible_map, node_possible_map, node_online_map);
 925
 926        for_each_online_node(nid) {
 927                unsigned long start_pfn, end_pfn;
 928
 929                get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 930                setup_node_data(nid, start_pfn, end_pfn);
 931                sparse_memory_present_with_active_regions(nid);
 932        }
 933
 934        sparse_init();
 935
 936        setup_node_to_cpumask_map();
 937
 938        reset_numa_cpu_lookup_table();
 939
 940        /*
 941         * We need the numa_cpu_lookup_table to be accurate for all CPUs,
 942         * even before we online them, so that we can use cpu_to_{node,mem}
 943         * early in boot, cf. smp_prepare_cpus().
 944         * _nocalls() + manual invocation is used because cpuhp is not yet
 945         * initialized for the boot CPU.
 946         */
 947        cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
 948                                  ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
 949        for_each_present_cpu(cpu)
 950                numa_setup_cpu(cpu);
 951}
 952
 953static int __init early_numa(char *p)
 954{
 955        if (!p)
 956                return 0;
 957
 958        if (strstr(p, "off"))
 959                numa_enabled = 0;
 960
 961        if (strstr(p, "debug"))
 962                numa_debug = 1;
 963
 964        p = strstr(p, "fake=");
 965        if (p)
 966                cmdline = p + strlen("fake=");
 967
 968        return 0;
 969}
 970early_param("numa", early_numa);
 971
 972static bool topology_updates_enabled = true;
 973
 974static int __init early_topology_updates(char *p)
 975{
 976        if (!p)
 977                return 0;
 978
 979        if (!strcmp(p, "off")) {
 980                pr_info("Disabling topology updates\n");
 981                topology_updates_enabled = false;
 982        }
 983
 984        return 0;
 985}
 986early_param("topology_updates", early_topology_updates);
 987
 988#ifdef CONFIG_MEMORY_HOTPLUG
 989/*
 990 * Find the node associated with a hot added memory section for
 991 * memory represented in the device tree by the property
 992 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
 993 */
 994static int hot_add_drconf_scn_to_nid(struct device_node *memory,
 995                                     unsigned long scn_addr)
 996{
 997        const __be32 *dm;
 998        unsigned int drconf_cell_cnt, rc;
 999        unsigned long lmb_size;
1000        struct assoc_arrays aa;
1001        int nid = -1;
1002
1003        drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1004        if (!drconf_cell_cnt)
1005                return -1;
1006
1007        lmb_size = of_get_lmb_size(memory);
1008        if (!lmb_size)
1009                return -1;
1010
1011        rc = of_get_assoc_arrays(memory, &aa);
1012        if (rc)
1013                return -1;
1014
1015        for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1016                struct of_drconf_cell drmem;
1017
1018                read_drconf_cell(&drmem, &dm);
1019
1020                /* skip this block if it is reserved or not assigned to
1021                 * this partition */
1022                if ((drmem.flags & DRCONF_MEM_RESERVED)
1023                    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1024                        continue;
1025
1026                if ((scn_addr < drmem.base_addr)
1027                    || (scn_addr >= (drmem.base_addr + lmb_size)))
1028                        continue;
1029
1030                nid = of_drconf_to_nid_single(&drmem, &aa);
1031                break;
1032        }
1033
1034        return nid;
1035}
1036
1037/*
1038 * Find the node associated with a hot added memory section for memory
1039 * represented in the device tree as a node (i.e. memory@XXXX) for
1040 * each memblock.
1041 */
1042static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1043{
1044        struct device_node *memory;
1045        int nid = -1;
1046
1047        for_each_node_by_type(memory, "memory") {
1048                unsigned long start, size;
1049                int ranges;
1050                const __be32 *memcell_buf;
1051                unsigned int len;
1052
1053                memcell_buf = of_get_property(memory, "reg", &len);
1054                if (!memcell_buf || len <= 0)
1055                        continue;
1056
1057                /* ranges in cell */
1058                ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1059
1060                while (ranges--) {
1061                        start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1062                        size = read_n_cells(n_mem_size_cells, &memcell_buf);
1063
1064                        if ((scn_addr < start) || (scn_addr >= (start + size)))
1065                                continue;
1066
1067                        nid = of_node_to_nid_single(memory);
1068                        break;
1069                }
1070
1071                if (nid >= 0)
1072                        break;
1073        }
1074
1075        of_node_put(memory);
1076
1077        return nid;
1078}
1079
1080/*
1081 * Find the node associated with a hot added memory section.  Section
1082 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1083 * sections are fully contained within a single MEMBLOCK.
1084 */
1085int hot_add_scn_to_nid(unsigned long scn_addr)
1086{
1087        struct device_node *memory = NULL;
1088        int nid;
1089
1090        if (!numa_enabled || (min_common_depth < 0))
1091                return first_online_node;
1092
1093        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1094        if (memory) {
1095                nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1096                of_node_put(memory);
1097        } else {
1098                nid = hot_add_node_scn_to_nid(scn_addr);
1099        }
1100
1101        if (nid < 0 || !node_online(nid))
1102                nid = first_online_node;
1103
1104        return nid;
1105}
1106
1107static u64 hot_add_drconf_memory_max(void)
1108{
1109        struct device_node *memory = NULL;
1110        struct device_node *dn = NULL;
1111        unsigned int drconf_cell_cnt = 0;
1112        u64 lmb_size = 0;
1113        const __be32 *dm = NULL;
1114        const __be64 *lrdr = NULL;
1115        struct of_drconf_cell drmem;
1116
1117        dn = of_find_node_by_path("/rtas");
1118        if (dn) {
1119                lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1120                of_node_put(dn);
1121                if (lrdr)
1122                        return be64_to_cpup(lrdr);
1123        }
1124
1125        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1126        if (memory) {
1127                drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1128                lmb_size = of_get_lmb_size(memory);
1129
1130                /* Advance to the last cell, each cell has 6 32 bit integers */
1131                dm += (drconf_cell_cnt - 1) * 6;
1132                read_drconf_cell(&drmem, &dm);
1133                of_node_put(memory);
1134                return drmem.base_addr + lmb_size;
1135        }
1136        return 0;
1137}
1138
1139/*
1140 * memory_hotplug_max - return max address of memory that may be added
1141 *
1142 * This is currently only used on systems that support drconfig memory
1143 * hotplug.
1144 */
1145u64 memory_hotplug_max(void)
1146{
1147        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1148}
1149#endif /* CONFIG_MEMORY_HOTPLUG */
1150
1151/* Virtual Processor Home Node (VPHN) support */
1152#ifdef CONFIG_PPC_SPLPAR
1153
1154#include "vphn.h"
1155
1156struct topology_update_data {
1157        struct topology_update_data *next;
1158        unsigned int cpu;
1159        int old_nid;
1160        int new_nid;
1161};
1162
1163static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1164static cpumask_t cpu_associativity_changes_mask;
1165static int vphn_enabled;
1166static int prrn_enabled;
1167static void reset_topology_timer(void);
1168
1169/*
1170 * Store the current values of the associativity change counters in the
1171 * hypervisor.
1172 */
1173static void setup_cpu_associativity_change_counters(void)
1174{
1175        int cpu;
1176
1177        /* The VPHN feature supports a maximum of 8 reference points */
1178        BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1179
1180        for_each_possible_cpu(cpu) {
1181                int i;
1182                u8 *counts = vphn_cpu_change_counts[cpu];
1183                volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1184
1185                for (i = 0; i < distance_ref_points_depth; i++)
1186                        counts[i] = hypervisor_counts[i];
1187        }
1188}
1189
1190/*
1191 * The hypervisor maintains a set of 8 associativity change counters in
1192 * the VPA of each cpu that correspond to the associativity levels in the
1193 * ibm,associativity-reference-points property. When an associativity
1194 * level changes, the corresponding counter is incremented.
1195 *
1196 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1197 * node associativity levels have changed.
1198 *
1199 * Returns the number of cpus with unhandled associativity changes.
1200 */
1201static int update_cpu_associativity_changes_mask(void)
1202{
1203        int cpu;
1204        cpumask_t *changes = &cpu_associativity_changes_mask;
1205
1206        for_each_possible_cpu(cpu) {
1207                int i, changed = 0;
1208                u8 *counts = vphn_cpu_change_counts[cpu];
1209                volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1210
1211                for (i = 0; i < distance_ref_points_depth; i++) {
1212                        if (hypervisor_counts[i] != counts[i]) {
1213                                counts[i] = hypervisor_counts[i];
1214                                changed = 1;
1215                        }
1216                }
1217                if (changed) {
1218                        cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1219                        cpu = cpu_last_thread_sibling(cpu);
1220                }
1221        }
1222
1223        return cpumask_weight(changes);
1224}
1225
1226/*
1227 * Retrieve the new associativity information for a virtual processor's
1228 * home node.
1229 */
1230static long hcall_vphn(unsigned long cpu, __be32 *associativity)
1231{
1232        long rc;
1233        long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1234        u64 flags = 1;
1235        int hwcpu = get_hard_smp_processor_id(cpu);
1236
1237        rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1238        vphn_unpack_associativity(retbuf, associativity);
1239
1240        return rc;
1241}
1242
1243static long vphn_get_associativity(unsigned long cpu,
1244                                        __be32 *associativity)
1245{
1246        long rc;
1247
1248        rc = hcall_vphn(cpu, associativity);
1249
1250        switch (rc) {
1251        case H_FUNCTION:
1252                printk(KERN_INFO
1253                        "VPHN is not supported. Disabling polling...\n");
1254                stop_topology_update();
1255                break;
1256        case H_HARDWARE:
1257                printk(KERN_ERR
1258                        "hcall_vphn() experienced a hardware fault "
1259                        "preventing VPHN. Disabling polling...\n");
1260                stop_topology_update();
1261        }
1262
1263        return rc;
1264}
1265
1266/*
1267 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1268 * characteristics change. This function doesn't perform any locking and is
1269 * only safe to call from stop_machine().
1270 */
1271static int update_cpu_topology(void *data)
1272{
1273        struct topology_update_data *update;
1274        unsigned long cpu;
1275
1276        if (!data)
1277                return -EINVAL;
1278
1279        cpu = smp_processor_id();
1280
1281        for (update = data; update; update = update->next) {
1282                int new_nid = update->new_nid;
1283                if (cpu != update->cpu)
1284                        continue;
1285
1286                unmap_cpu_from_node(cpu);
1287                map_cpu_to_node(cpu, new_nid);
1288                set_cpu_numa_node(cpu, new_nid);
1289                set_cpu_numa_mem(cpu, local_memory_node(new_nid));
1290                vdso_getcpu_init();
1291        }
1292
1293        return 0;
1294}
1295
1296static int update_lookup_table(void *data)
1297{
1298        struct topology_update_data *update;
1299
1300        if (!data)
1301                return -EINVAL;
1302
1303        /*
1304         * Upon topology update, the numa-cpu lookup table needs to be updated
1305         * for all threads in the core, including offline CPUs, to ensure that
1306         * future hotplug operations respect the cpu-to-node associativity
1307         * properly.
1308         */
1309        for (update = data; update; update = update->next) {
1310                int nid, base, j;
1311
1312                nid = update->new_nid;
1313                base = cpu_first_thread_sibling(update->cpu);
1314
1315                for (j = 0; j < threads_per_core; j++) {
1316                        update_numa_cpu_lookup_table(base + j, nid);
1317                }
1318        }
1319
1320        return 0;
1321}
1322
1323/*
1324 * Update the node maps and sysfs entries for each cpu whose home node
1325 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1326 */
1327int arch_update_cpu_topology(void)
1328{
1329        unsigned int cpu, sibling, changed = 0;
1330        struct topology_update_data *updates, *ud;
1331        __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1332        cpumask_t updated_cpus;
1333        struct device *dev;
1334        int weight, new_nid, i = 0;
1335
1336        if (!prrn_enabled && !vphn_enabled)
1337                return 0;
1338
1339        weight = cpumask_weight(&cpu_associativity_changes_mask);
1340        if (!weight)
1341                return 0;
1342
1343        updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
1344        if (!updates)
1345                return 0;
1346
1347        cpumask_clear(&updated_cpus);
1348
1349        for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1350                /*
1351                 * If siblings aren't flagged for changes, updates list
1352                 * will be too short. Skip on this update and set for next
1353                 * update.
1354                 */
1355                if (!cpumask_subset(cpu_sibling_mask(cpu),
1356                                        &cpu_associativity_changes_mask)) {
1357                        pr_info("Sibling bits not set for associativity "
1358                                        "change, cpu%d\n", cpu);
1359                        cpumask_or(&cpu_associativity_changes_mask,
1360                                        &cpu_associativity_changes_mask,
1361                                        cpu_sibling_mask(cpu));
1362                        cpu = cpu_last_thread_sibling(cpu);
1363                        continue;
1364                }
1365
1366                /* Use associativity from first thread for all siblings */
1367                vphn_get_associativity(cpu, associativity);
1368                new_nid = associativity_to_nid(associativity);
1369                if (new_nid < 0 || !node_online(new_nid))
1370                        new_nid = first_online_node;
1371
1372                if (new_nid == numa_cpu_lookup_table[cpu]) {
1373                        cpumask_andnot(&cpu_associativity_changes_mask,
1374                                        &cpu_associativity_changes_mask,
1375                                        cpu_sibling_mask(cpu));
1376                        cpu = cpu_last_thread_sibling(cpu);
1377                        continue;
1378                }
1379
1380                for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1381                        ud = &updates[i++];
1382                        ud->cpu = sibling;
1383                        ud->new_nid = new_nid;
1384                        ud->old_nid = numa_cpu_lookup_table[sibling];
1385                        cpumask_set_cpu(sibling, &updated_cpus);
1386                        if (i < weight)
1387                                ud->next = &updates[i];
1388                }
1389                cpu = cpu_last_thread_sibling(cpu);
1390        }
1391
1392        pr_debug("Topology update for the following CPUs:\n");
1393        if (cpumask_weight(&updated_cpus)) {
1394                for (ud = &updates[0]; ud; ud = ud->next) {
1395                        pr_debug("cpu %d moving from node %d "
1396                                          "to %d\n", ud->cpu,
1397                                          ud->old_nid, ud->new_nid);
1398                }
1399        }
1400
1401        /*
1402         * In cases where we have nothing to update (because the updates list
1403         * is too short or because the new topology is same as the old one),
1404         * skip invoking update_cpu_topology() via stop-machine(). This is
1405         * necessary (and not just a fast-path optimization) since stop-machine
1406         * can end up electing a random CPU to run update_cpu_topology(), and
1407         * thus trick us into setting up incorrect cpu-node mappings (since
1408         * 'updates' is kzalloc()'ed).
1409         *
1410         * And for the similar reason, we will skip all the following updating.
1411         */
1412        if (!cpumask_weight(&updated_cpus))
1413                goto out;
1414
1415        stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1416
1417        /*
1418         * Update the numa-cpu lookup table with the new mappings, even for
1419         * offline CPUs. It is best to perform this update from the stop-
1420         * machine context.
1421         */
1422        stop_machine(update_lookup_table, &updates[0],
1423                                        cpumask_of(raw_smp_processor_id()));
1424
1425        for (ud = &updates[0]; ud; ud = ud->next) {
1426                unregister_cpu_under_node(ud->cpu, ud->old_nid);
1427                register_cpu_under_node(ud->cpu, ud->new_nid);
1428
1429                dev = get_cpu_device(ud->cpu);
1430                if (dev)
1431                        kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1432                cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1433                changed = 1;
1434        }
1435
1436out:
1437        kfree(updates);
1438        return changed;
1439}
1440
1441static void topology_work_fn(struct work_struct *work)
1442{
1443        rebuild_sched_domains();
1444}
1445static DECLARE_WORK(topology_work, topology_work_fn);
1446
1447static void topology_schedule_update(void)
1448{
1449        schedule_work(&topology_work);
1450}
1451
1452static void topology_timer_fn(unsigned long ignored)
1453{
1454        if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1455                topology_schedule_update();
1456        else if (vphn_enabled) {
1457                if (update_cpu_associativity_changes_mask() > 0)
1458                        topology_schedule_update();
1459                reset_topology_timer();
1460        }
1461}
1462static struct timer_list topology_timer =
1463        TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1464
1465static void reset_topology_timer(void)
1466{
1467        topology_timer.data = 0;
1468        topology_timer.expires = jiffies + 60 * HZ;
1469        mod_timer(&topology_timer, topology_timer.expires);
1470}
1471
1472#ifdef CONFIG_SMP
1473
1474static void stage_topology_update(int core_id)
1475{
1476        cpumask_or(&cpu_associativity_changes_mask,
1477                &cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
1478        reset_topology_timer();
1479}
1480
1481static int dt_update_callback(struct notifier_block *nb,
1482                                unsigned long action, void *data)
1483{
1484        struct of_reconfig_data *update = data;
1485        int rc = NOTIFY_DONE;
1486
1487        switch (action) {
1488        case OF_RECONFIG_UPDATE_PROPERTY:
1489                if (!of_prop_cmp(update->dn->type, "cpu") &&
1490                    !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1491                        u32 core_id;
1492                        of_property_read_u32(update->dn, "reg", &core_id);
1493                        stage_topology_update(core_id);
1494                        rc = NOTIFY_OK;
1495                }
1496                break;
1497        }
1498
1499        return rc;
1500}
1501
1502static struct notifier_block dt_update_nb = {
1503        .notifier_call = dt_update_callback,
1504};
1505
1506#endif
1507
1508/*
1509 * Start polling for associativity changes.
1510 */
1511int start_topology_update(void)
1512{
1513        int rc = 0;
1514
1515        if (firmware_has_feature(FW_FEATURE_PRRN)) {
1516                if (!prrn_enabled) {
1517                        prrn_enabled = 1;
1518                        vphn_enabled = 0;
1519#ifdef CONFIG_SMP
1520                        rc = of_reconfig_notifier_register(&dt_update_nb);
1521#endif
1522                }
1523        } else if (firmware_has_feature(FW_FEATURE_VPHN) &&
1524                   lppaca_shared_proc(get_lppaca())) {
1525                if (!vphn_enabled) {
1526                        prrn_enabled = 0;
1527                        vphn_enabled = 1;
1528                        setup_cpu_associativity_change_counters();
1529                        init_timer_deferrable(&topology_timer);
1530                        reset_topology_timer();
1531                }
1532        }
1533
1534        return rc;
1535}
1536
1537/*
1538 * Disable polling for VPHN associativity changes.
1539 */
1540int stop_topology_update(void)
1541{
1542        int rc = 0;
1543
1544        if (prrn_enabled) {
1545                prrn_enabled = 0;
1546#ifdef CONFIG_SMP
1547                rc = of_reconfig_notifier_unregister(&dt_update_nb);
1548#endif
1549        } else if (vphn_enabled) {
1550                vphn_enabled = 0;
1551                rc = del_timer_sync(&topology_timer);
1552        }
1553
1554        return rc;
1555}
1556
1557int prrn_is_enabled(void)
1558{
1559        return prrn_enabled;
1560}
1561
1562static int topology_read(struct seq_file *file, void *v)
1563{
1564        if (vphn_enabled || prrn_enabled)
1565                seq_puts(file, "on\n");
1566        else
1567                seq_puts(file, "off\n");
1568
1569        return 0;
1570}
1571
1572static int topology_open(struct inode *inode, struct file *file)
1573{
1574        return single_open(file, topology_read, NULL);
1575}
1576
1577static ssize_t topology_write(struct file *file, const char __user *buf,
1578                              size_t count, loff_t *off)
1579{
1580        char kbuf[4]; /* "on" or "off" plus null. */
1581        int read_len;
1582
1583        read_len = count < 3 ? count : 3;
1584        if (copy_from_user(kbuf, buf, read_len))
1585                return -EINVAL;
1586
1587        kbuf[read_len] = '\0';
1588
1589        if (!strncmp(kbuf, "on", 2))
1590                start_topology_update();
1591        else if (!strncmp(kbuf, "off", 3))
1592                stop_topology_update();
1593        else
1594                return -EINVAL;
1595
1596        return count;
1597}
1598
1599static const struct file_operations topology_ops = {
1600        .read = seq_read,
1601        .write = topology_write,
1602        .open = topology_open,
1603        .release = single_release
1604};
1605
1606static int topology_update_init(void)
1607{
1608        /* Do not poll for changes if disabled at boot */
1609        if (topology_updates_enabled)
1610                start_topology_update();
1611
1612        if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
1613                return -ENOMEM;
1614
1615        return 0;
1616}
1617device_initcall(topology_update_init);
1618#endif /* CONFIG_PPC_SPLPAR */
1619