linux/arch/x86/kernel/crash.c
<<
>>
Prefs
   1/*
   2 * Architecture specific (i386/x86_64) functions for kexec based crash dumps.
   3 *
   4 * Created by: Hariprasad Nellitheertha (hari@in.ibm.com)
   5 *
   6 * Copyright (C) IBM Corporation, 2004. All rights reserved.
   7 * Copyright (C) Red Hat Inc., 2014. All rights reserved.
   8 * Authors:
   9 *      Vivek Goyal <vgoyal@redhat.com>
  10 *
  11 */
  12
  13#define pr_fmt(fmt)     "kexec: " fmt
  14
  15#include <linux/types.h>
  16#include <linux/kernel.h>
  17#include <linux/smp.h>
  18#include <linux/reboot.h>
  19#include <linux/kexec.h>
  20#include <linux/delay.h>
  21#include <linux/elf.h>
  22#include <linux/elfcore.h>
  23#include <linux/export.h>
  24#include <linux/slab.h>
  25#include <linux/vmalloc.h>
  26
  27#include <asm/processor.h>
  28#include <asm/hardirq.h>
  29#include <asm/nmi.h>
  30#include <asm/hw_irq.h>
  31#include <asm/apic.h>
  32#include <asm/io_apic.h>
  33#include <asm/hpet.h>
  34#include <linux/kdebug.h>
  35#include <asm/cpu.h>
  36#include <asm/reboot.h>
  37#include <asm/virtext.h>
  38#include <asm/intel_pt.h>
  39
  40/* Alignment required for elf header segment */
  41#define ELF_CORE_HEADER_ALIGN   4096
  42
  43/* This primarily represents number of split ranges due to exclusion */
  44#define CRASH_MAX_RANGES        16
  45
  46struct crash_mem_range {
  47        u64 start, end;
  48};
  49
  50struct crash_mem {
  51        unsigned int nr_ranges;
  52        struct crash_mem_range ranges[CRASH_MAX_RANGES];
  53};
  54
  55/* Misc data about ram ranges needed to prepare elf headers */
  56struct crash_elf_data {
  57        struct kimage *image;
  58        /*
  59         * Total number of ram ranges we have after various adjustments for
  60         * crash reserved region, etc.
  61         */
  62        unsigned int max_nr_ranges;
  63
  64        /* Pointer to elf header */
  65        void *ehdr;
  66        /* Pointer to next phdr */
  67        void *bufp;
  68        struct crash_mem mem;
  69};
  70
  71/* Used while preparing memory map entries for second kernel */
  72struct crash_memmap_data {
  73        struct boot_params *params;
  74        /* Type of memory */
  75        unsigned int type;
  76};
  77
  78/*
  79 * This is used to VMCLEAR all VMCSs loaded on the
  80 * processor. And when loading kvm_intel module, the
  81 * callback function pointer will be assigned.
  82 *
  83 * protected by rcu.
  84 */
  85crash_vmclear_fn __rcu *crash_vmclear_loaded_vmcss = NULL;
  86EXPORT_SYMBOL_GPL(crash_vmclear_loaded_vmcss);
  87unsigned long crash_zero_bytes;
  88
  89static inline void cpu_crash_vmclear_loaded_vmcss(void)
  90{
  91        crash_vmclear_fn *do_vmclear_operation = NULL;
  92
  93        rcu_read_lock();
  94        do_vmclear_operation = rcu_dereference(crash_vmclear_loaded_vmcss);
  95        if (do_vmclear_operation)
  96                do_vmclear_operation();
  97        rcu_read_unlock();
  98}
  99
 100#if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC)
 101
 102static void kdump_nmi_callback(int cpu, struct pt_regs *regs)
 103{
 104#ifdef CONFIG_X86_32
 105        struct pt_regs fixed_regs;
 106
 107        if (!user_mode(regs)) {
 108                crash_fixup_ss_esp(&fixed_regs, regs);
 109                regs = &fixed_regs;
 110        }
 111#endif
 112        crash_save_cpu(regs, cpu);
 113
 114        /*
 115         * VMCLEAR VMCSs loaded on all cpus if needed.
 116         */
 117        cpu_crash_vmclear_loaded_vmcss();
 118
 119        /* Disable VMX or SVM if needed.
 120         *
 121         * We need to disable virtualization on all CPUs.
 122         * Having VMX or SVM enabled on any CPU may break rebooting
 123         * after the kdump kernel has finished its task.
 124         */
 125        cpu_emergency_vmxoff();
 126        cpu_emergency_svm_disable();
 127
 128        /*
 129         * Disable Intel PT to stop its logging
 130         */
 131        cpu_emergency_stop_pt();
 132
 133        disable_local_APIC();
 134}
 135
 136void kdump_nmi_shootdown_cpus(void)
 137{
 138        nmi_shootdown_cpus(kdump_nmi_callback);
 139
 140        disable_local_APIC();
 141}
 142
 143/* Override the weak function in kernel/panic.c */
 144void crash_smp_send_stop(void)
 145{
 146        static int cpus_stopped;
 147
 148        if (cpus_stopped)
 149                return;
 150
 151        if (smp_ops.crash_stop_other_cpus)
 152                smp_ops.crash_stop_other_cpus();
 153        else
 154                smp_send_stop();
 155
 156        cpus_stopped = 1;
 157}
 158
 159#else
 160void crash_smp_send_stop(void)
 161{
 162        /* There are no cpus to shootdown */
 163}
 164#endif
 165
 166void native_machine_crash_shutdown(struct pt_regs *regs)
 167{
 168        /* This function is only called after the system
 169         * has panicked or is otherwise in a critical state.
 170         * The minimum amount of code to allow a kexec'd kernel
 171         * to run successfully needs to happen here.
 172         *
 173         * In practice this means shooting down the other cpus in
 174         * an SMP system.
 175         */
 176        /* The kernel is broken so disable interrupts */
 177        local_irq_disable();
 178
 179        crash_smp_send_stop();
 180
 181        /*
 182         * VMCLEAR VMCSs loaded on this cpu if needed.
 183         */
 184        cpu_crash_vmclear_loaded_vmcss();
 185
 186        /* Booting kdump kernel with VMX or SVM enabled won't work,
 187         * because (among other limitations) we can't disable paging
 188         * with the virt flags.
 189         */
 190        cpu_emergency_vmxoff();
 191        cpu_emergency_svm_disable();
 192
 193        /*
 194         * Disable Intel PT to stop its logging
 195         */
 196        cpu_emergency_stop_pt();
 197
 198#ifdef CONFIG_X86_IO_APIC
 199        /* Prevent crash_kexec() from deadlocking on ioapic_lock. */
 200        ioapic_zap_locks();
 201        disable_IO_APIC();
 202#endif
 203        lapic_shutdown();
 204#ifdef CONFIG_HPET_TIMER
 205        hpet_disable();
 206#endif
 207        crash_save_cpu(regs, safe_smp_processor_id());
 208}
 209
 210#ifdef CONFIG_KEXEC_FILE
 211static int get_nr_ram_ranges_callback(u64 start, u64 end, void *arg)
 212{
 213        unsigned int *nr_ranges = arg;
 214
 215        (*nr_ranges)++;
 216        return 0;
 217}
 218
 219
 220/* Gather all the required information to prepare elf headers for ram regions */
 221static void fill_up_crash_elf_data(struct crash_elf_data *ced,
 222                                   struct kimage *image)
 223{
 224        unsigned int nr_ranges = 0;
 225
 226        ced->image = image;
 227
 228        walk_system_ram_res(0, -1, &nr_ranges,
 229                                get_nr_ram_ranges_callback);
 230
 231        ced->max_nr_ranges = nr_ranges;
 232
 233        /* Exclusion of crash region could split memory ranges */
 234        ced->max_nr_ranges++;
 235
 236        /* If crashk_low_res is not 0, another range split possible */
 237        if (crashk_low_res.end)
 238                ced->max_nr_ranges++;
 239}
 240
 241static int exclude_mem_range(struct crash_mem *mem,
 242                unsigned long long mstart, unsigned long long mend)
 243{
 244        int i, j;
 245        unsigned long long start, end;
 246        struct crash_mem_range temp_range = {0, 0};
 247
 248        for (i = 0; i < mem->nr_ranges; i++) {
 249                start = mem->ranges[i].start;
 250                end = mem->ranges[i].end;
 251
 252                if (mstart > end || mend < start)
 253                        continue;
 254
 255                /* Truncate any area outside of range */
 256                if (mstart < start)
 257                        mstart = start;
 258                if (mend > end)
 259                        mend = end;
 260
 261                /* Found completely overlapping range */
 262                if (mstart == start && mend == end) {
 263                        mem->ranges[i].start = 0;
 264                        mem->ranges[i].end = 0;
 265                        if (i < mem->nr_ranges - 1) {
 266                                /* Shift rest of the ranges to left */
 267                                for (j = i; j < mem->nr_ranges - 1; j++) {
 268                                        mem->ranges[j].start =
 269                                                mem->ranges[j+1].start;
 270                                        mem->ranges[j].end =
 271                                                        mem->ranges[j+1].end;
 272                                }
 273                        }
 274                        mem->nr_ranges--;
 275                        return 0;
 276                }
 277
 278                if (mstart > start && mend < end) {
 279                        /* Split original range */
 280                        mem->ranges[i].end = mstart - 1;
 281                        temp_range.start = mend + 1;
 282                        temp_range.end = end;
 283                } else if (mstart != start)
 284                        mem->ranges[i].end = mstart - 1;
 285                else
 286                        mem->ranges[i].start = mend + 1;
 287                break;
 288        }
 289
 290        /* If a split happend, add the split to array */
 291        if (!temp_range.end)
 292                return 0;
 293
 294        /* Split happened */
 295        if (i == CRASH_MAX_RANGES - 1) {
 296                pr_err("Too many crash ranges after split\n");
 297                return -ENOMEM;
 298        }
 299
 300        /* Location where new range should go */
 301        j = i + 1;
 302        if (j < mem->nr_ranges) {
 303                /* Move over all ranges one slot towards the end */
 304                for (i = mem->nr_ranges - 1; i >= j; i--)
 305                        mem->ranges[i + 1] = mem->ranges[i];
 306        }
 307
 308        mem->ranges[j].start = temp_range.start;
 309        mem->ranges[j].end = temp_range.end;
 310        mem->nr_ranges++;
 311        return 0;
 312}
 313
 314/*
 315 * Look for any unwanted ranges between mstart, mend and remove them. This
 316 * might lead to split and split ranges are put in ced->mem.ranges[] array
 317 */
 318static int elf_header_exclude_ranges(struct crash_elf_data *ced,
 319                unsigned long long mstart, unsigned long long mend)
 320{
 321        struct crash_mem *cmem = &ced->mem;
 322        int ret = 0;
 323
 324        memset(cmem->ranges, 0, sizeof(cmem->ranges));
 325
 326        cmem->ranges[0].start = mstart;
 327        cmem->ranges[0].end = mend;
 328        cmem->nr_ranges = 1;
 329
 330        /* Exclude crashkernel region */
 331        ret = exclude_mem_range(cmem, crashk_res.start, crashk_res.end);
 332        if (ret)
 333                return ret;
 334
 335        if (crashk_low_res.end) {
 336                ret = exclude_mem_range(cmem, crashk_low_res.start, crashk_low_res.end);
 337                if (ret)
 338                        return ret;
 339        }
 340
 341        return ret;
 342}
 343
 344static int prepare_elf64_ram_headers_callback(u64 start, u64 end, void *arg)
 345{
 346        struct crash_elf_data *ced = arg;
 347        Elf64_Ehdr *ehdr;
 348        Elf64_Phdr *phdr;
 349        unsigned long mstart, mend;
 350        struct kimage *image = ced->image;
 351        struct crash_mem *cmem;
 352        int ret, i;
 353
 354        ehdr = ced->ehdr;
 355
 356        /* Exclude unwanted mem ranges */
 357        ret = elf_header_exclude_ranges(ced, start, end);
 358        if (ret)
 359                return ret;
 360
 361        /* Go through all the ranges in ced->mem.ranges[] and prepare phdr */
 362        cmem = &ced->mem;
 363
 364        for (i = 0; i < cmem->nr_ranges; i++) {
 365                mstart = cmem->ranges[i].start;
 366                mend = cmem->ranges[i].end;
 367
 368                phdr = ced->bufp;
 369                ced->bufp += sizeof(Elf64_Phdr);
 370
 371                phdr->p_type = PT_LOAD;
 372                phdr->p_flags = PF_R|PF_W|PF_X;
 373                phdr->p_offset  = mstart;
 374
 375                /*
 376                 * If a range matches backup region, adjust offset to backup
 377                 * segment.
 378                 */
 379                if (mstart == image->arch.backup_src_start &&
 380                    (mend - mstart + 1) == image->arch.backup_src_sz)
 381                        phdr->p_offset = image->arch.backup_load_addr;
 382
 383                phdr->p_paddr = mstart;
 384                phdr->p_vaddr = (unsigned long long) __va(mstart);
 385                phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
 386                phdr->p_align = 0;
 387                ehdr->e_phnum++;
 388                pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
 389                        phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
 390                        ehdr->e_phnum, phdr->p_offset);
 391        }
 392
 393        return ret;
 394}
 395
 396static int prepare_elf64_headers(struct crash_elf_data *ced,
 397                void **addr, unsigned long *sz)
 398{
 399        Elf64_Ehdr *ehdr;
 400        Elf64_Phdr *phdr;
 401        unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
 402        unsigned char *buf, *bufp;
 403        unsigned int cpu;
 404        unsigned long long notes_addr;
 405        int ret;
 406
 407        /* extra phdr for vmcoreinfo elf note */
 408        nr_phdr = nr_cpus + 1;
 409        nr_phdr += ced->max_nr_ranges;
 410
 411        /*
 412         * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
 413         * area on x86_64 (ffffffff80000000 - ffffffffa0000000).
 414         * I think this is required by tools like gdb. So same physical
 415         * memory will be mapped in two elf headers. One will contain kernel
 416         * text virtual addresses and other will have __va(physical) addresses.
 417         */
 418
 419        nr_phdr++;
 420        elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
 421        elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
 422
 423        buf = vzalloc(elf_sz);
 424        if (!buf)
 425                return -ENOMEM;
 426
 427        bufp = buf;
 428        ehdr = (Elf64_Ehdr *)bufp;
 429        bufp += sizeof(Elf64_Ehdr);
 430        memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
 431        ehdr->e_ident[EI_CLASS] = ELFCLASS64;
 432        ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
 433        ehdr->e_ident[EI_VERSION] = EV_CURRENT;
 434        ehdr->e_ident[EI_OSABI] = ELF_OSABI;
 435        memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
 436        ehdr->e_type = ET_CORE;
 437        ehdr->e_machine = ELF_ARCH;
 438        ehdr->e_version = EV_CURRENT;
 439        ehdr->e_phoff = sizeof(Elf64_Ehdr);
 440        ehdr->e_ehsize = sizeof(Elf64_Ehdr);
 441        ehdr->e_phentsize = sizeof(Elf64_Phdr);
 442
 443        /* Prepare one phdr of type PT_NOTE for each present cpu */
 444        for_each_present_cpu(cpu) {
 445                phdr = (Elf64_Phdr *)bufp;
 446                bufp += sizeof(Elf64_Phdr);
 447                phdr->p_type = PT_NOTE;
 448                notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
 449                phdr->p_offset = phdr->p_paddr = notes_addr;
 450                phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
 451                (ehdr->e_phnum)++;
 452        }
 453
 454        /* Prepare one PT_NOTE header for vmcoreinfo */
 455        phdr = (Elf64_Phdr *)bufp;
 456        bufp += sizeof(Elf64_Phdr);
 457        phdr->p_type = PT_NOTE;
 458        phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
 459        phdr->p_filesz = phdr->p_memsz = sizeof(vmcoreinfo_note);
 460        (ehdr->e_phnum)++;
 461
 462#ifdef CONFIG_X86_64
 463        /* Prepare PT_LOAD type program header for kernel text region */
 464        phdr = (Elf64_Phdr *)bufp;
 465        bufp += sizeof(Elf64_Phdr);
 466        phdr->p_type = PT_LOAD;
 467        phdr->p_flags = PF_R|PF_W|PF_X;
 468        phdr->p_vaddr = (Elf64_Addr)_text;
 469        phdr->p_filesz = phdr->p_memsz = _end - _text;
 470        phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
 471        (ehdr->e_phnum)++;
 472#endif
 473
 474        /* Prepare PT_LOAD headers for system ram chunks. */
 475        ced->ehdr = ehdr;
 476        ced->bufp = bufp;
 477        ret = walk_system_ram_res(0, -1, ced,
 478                        prepare_elf64_ram_headers_callback);
 479        if (ret < 0)
 480                return ret;
 481
 482        *addr = buf;
 483        *sz = elf_sz;
 484        return 0;
 485}
 486
 487/* Prepare elf headers. Return addr and size */
 488static int prepare_elf_headers(struct kimage *image, void **addr,
 489                                        unsigned long *sz)
 490{
 491        struct crash_elf_data *ced;
 492        int ret;
 493
 494        ced = kzalloc(sizeof(*ced), GFP_KERNEL);
 495        if (!ced)
 496                return -ENOMEM;
 497
 498        fill_up_crash_elf_data(ced, image);
 499
 500        /* By default prepare 64bit headers */
 501        ret =  prepare_elf64_headers(ced, addr, sz);
 502        kfree(ced);
 503        return ret;
 504}
 505
 506static int add_e820_entry(struct boot_params *params, struct e820entry *entry)
 507{
 508        unsigned int nr_e820_entries;
 509
 510        nr_e820_entries = params->e820_entries;
 511        if (nr_e820_entries >= E820MAX)
 512                return 1;
 513
 514        memcpy(&params->e820_map[nr_e820_entries], entry,
 515                        sizeof(struct e820entry));
 516        params->e820_entries++;
 517        return 0;
 518}
 519
 520static int memmap_entry_callback(u64 start, u64 end, void *arg)
 521{
 522        struct crash_memmap_data *cmd = arg;
 523        struct boot_params *params = cmd->params;
 524        struct e820entry ei;
 525
 526        ei.addr = start;
 527        ei.size = end - start + 1;
 528        ei.type = cmd->type;
 529        add_e820_entry(params, &ei);
 530
 531        return 0;
 532}
 533
 534static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem,
 535                                 unsigned long long mstart,
 536                                 unsigned long long mend)
 537{
 538        unsigned long start, end;
 539        int ret = 0;
 540
 541        cmem->ranges[0].start = mstart;
 542        cmem->ranges[0].end = mend;
 543        cmem->nr_ranges = 1;
 544
 545        /* Exclude Backup region */
 546        start = image->arch.backup_load_addr;
 547        end = start + image->arch.backup_src_sz - 1;
 548        ret = exclude_mem_range(cmem, start, end);
 549        if (ret)
 550                return ret;
 551
 552        /* Exclude elf header region */
 553        start = image->arch.elf_load_addr;
 554        end = start + image->arch.elf_headers_sz - 1;
 555        return exclude_mem_range(cmem, start, end);
 556}
 557
 558/* Prepare memory map for crash dump kernel */
 559int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params)
 560{
 561        int i, ret = 0;
 562        unsigned long flags;
 563        struct e820entry ei;
 564        struct crash_memmap_data cmd;
 565        struct crash_mem *cmem;
 566
 567        cmem = vzalloc(sizeof(struct crash_mem));
 568        if (!cmem)
 569                return -ENOMEM;
 570
 571        memset(&cmd, 0, sizeof(struct crash_memmap_data));
 572        cmd.params = params;
 573
 574        /* Add first 640K segment */
 575        ei.addr = image->arch.backup_src_start;
 576        ei.size = image->arch.backup_src_sz;
 577        ei.type = E820_RAM;
 578        add_e820_entry(params, &ei);
 579
 580        /* Add ACPI tables */
 581        cmd.type = E820_ACPI;
 582        flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 583        walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1, &cmd,
 584                       memmap_entry_callback);
 585
 586        /* Add ACPI Non-volatile Storage */
 587        cmd.type = E820_NVS;
 588        walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1, &cmd,
 589                        memmap_entry_callback);
 590
 591        /* Add crashk_low_res region */
 592        if (crashk_low_res.end) {
 593                ei.addr = crashk_low_res.start;
 594                ei.size = crashk_low_res.end - crashk_low_res.start + 1;
 595                ei.type = E820_RAM;
 596                add_e820_entry(params, &ei);
 597        }
 598
 599        /* Exclude some ranges from crashk_res and add rest to memmap */
 600        ret = memmap_exclude_ranges(image, cmem, crashk_res.start,
 601                                                crashk_res.end);
 602        if (ret)
 603                goto out;
 604
 605        for (i = 0; i < cmem->nr_ranges; i++) {
 606                ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1;
 607
 608                /* If entry is less than a page, skip it */
 609                if (ei.size < PAGE_SIZE)
 610                        continue;
 611                ei.addr = cmem->ranges[i].start;
 612                ei.type = E820_RAM;
 613                add_e820_entry(params, &ei);
 614        }
 615
 616out:
 617        vfree(cmem);
 618        return ret;
 619}
 620
 621static int determine_backup_region(u64 start, u64 end, void *arg)
 622{
 623        struct kimage *image = arg;
 624
 625        image->arch.backup_src_start = start;
 626        image->arch.backup_src_sz = end - start + 1;
 627
 628        /* Expecting only one range for backup region */
 629        return 1;
 630}
 631
 632int crash_load_segments(struct kimage *image)
 633{
 634        int ret;
 635        struct kexec_buf kbuf = { .image = image, .buf_min = 0,
 636                                  .buf_max = ULONG_MAX, .top_down = false };
 637
 638        /*
 639         * Determine and load a segment for backup area. First 640K RAM
 640         * region is backup source
 641         */
 642
 643        ret = walk_system_ram_res(KEXEC_BACKUP_SRC_START, KEXEC_BACKUP_SRC_END,
 644                                image, determine_backup_region);
 645
 646        /* Zero or postive return values are ok */
 647        if (ret < 0)
 648                return ret;
 649
 650        /* Add backup segment. */
 651        if (image->arch.backup_src_sz) {
 652                kbuf.buffer = &crash_zero_bytes;
 653                kbuf.bufsz = sizeof(crash_zero_bytes);
 654                kbuf.memsz = image->arch.backup_src_sz;
 655                kbuf.buf_align = PAGE_SIZE;
 656                /*
 657                 * Ideally there is no source for backup segment. This is
 658                 * copied in purgatory after crash. Just add a zero filled
 659                 * segment for now to make sure checksum logic works fine.
 660                 */
 661                ret = kexec_add_buffer(&kbuf);
 662                if (ret)
 663                        return ret;
 664                image->arch.backup_load_addr = kbuf.mem;
 665                pr_debug("Loaded backup region at 0x%lx backup_start=0x%lx memsz=0x%lx\n",
 666                         image->arch.backup_load_addr,
 667                         image->arch.backup_src_start, kbuf.memsz);
 668        }
 669
 670        /* Prepare elf headers and add a segment */
 671        ret = prepare_elf_headers(image, &kbuf.buffer, &kbuf.bufsz);
 672        if (ret)
 673                return ret;
 674
 675        image->arch.elf_headers = kbuf.buffer;
 676        image->arch.elf_headers_sz = kbuf.bufsz;
 677
 678        kbuf.memsz = kbuf.bufsz;
 679        kbuf.buf_align = ELF_CORE_HEADER_ALIGN;
 680        ret = kexec_add_buffer(&kbuf);
 681        if (ret) {
 682                vfree((void *)image->arch.elf_headers);
 683                return ret;
 684        }
 685        image->arch.elf_load_addr = kbuf.mem;
 686        pr_debug("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
 687                 image->arch.elf_load_addr, kbuf.bufsz, kbuf.bufsz);
 688
 689        return ret;
 690}
 691#endif /* CONFIG_KEXEC_FILE */
 692