linux/arch/x86/kernel/irq.c
<<
>>
Prefs
   1/*
   2 * Common interrupt code for 32 and 64 bit
   3 */
   4#include <linux/cpu.h>
   5#include <linux/interrupt.h>
   6#include <linux/kernel_stat.h>
   7#include <linux/of.h>
   8#include <linux/seq_file.h>
   9#include <linux/smp.h>
  10#include <linux/ftrace.h>
  11#include <linux/delay.h>
  12#include <linux/export.h>
  13
  14#include <asm/apic.h>
  15#include <asm/io_apic.h>
  16#include <asm/irq.h>
  17#include <asm/mce.h>
  18#include <asm/hw_irq.h>
  19#include <asm/desc.h>
  20
  21#define CREATE_TRACE_POINTS
  22#include <asm/trace/irq_vectors.h>
  23
  24DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
  25EXPORT_PER_CPU_SYMBOL(irq_stat);
  26
  27DEFINE_PER_CPU(struct pt_regs *, irq_regs);
  28EXPORT_PER_CPU_SYMBOL(irq_regs);
  29
  30atomic_t irq_err_count;
  31
  32/* Function pointer for generic interrupt vector handling */
  33void (*x86_platform_ipi_callback)(void) = NULL;
  34
  35/*
  36 * 'what should we do if we get a hw irq event on an illegal vector'.
  37 * each architecture has to answer this themselves.
  38 */
  39void ack_bad_irq(unsigned int irq)
  40{
  41        if (printk_ratelimit())
  42                pr_err("unexpected IRQ trap at vector %02x\n", irq);
  43
  44        /*
  45         * Currently unexpected vectors happen only on SMP and APIC.
  46         * We _must_ ack these because every local APIC has only N
  47         * irq slots per priority level, and a 'hanging, unacked' IRQ
  48         * holds up an irq slot - in excessive cases (when multiple
  49         * unexpected vectors occur) that might lock up the APIC
  50         * completely.
  51         * But only ack when the APIC is enabled -AK
  52         */
  53        ack_APIC_irq();
  54}
  55
  56#define irq_stats(x)            (&per_cpu(irq_stat, x))
  57/*
  58 * /proc/interrupts printing for arch specific interrupts
  59 */
  60int arch_show_interrupts(struct seq_file *p, int prec)
  61{
  62        int j;
  63
  64        seq_printf(p, "%*s: ", prec, "NMI");
  65        for_each_online_cpu(j)
  66                seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
  67        seq_puts(p, "  Non-maskable interrupts\n");
  68#ifdef CONFIG_X86_LOCAL_APIC
  69        seq_printf(p, "%*s: ", prec, "LOC");
  70        for_each_online_cpu(j)
  71                seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
  72        seq_puts(p, "  Local timer interrupts\n");
  73
  74        seq_printf(p, "%*s: ", prec, "SPU");
  75        for_each_online_cpu(j)
  76                seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
  77        seq_puts(p, "  Spurious interrupts\n");
  78        seq_printf(p, "%*s: ", prec, "PMI");
  79        for_each_online_cpu(j)
  80                seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
  81        seq_puts(p, "  Performance monitoring interrupts\n");
  82        seq_printf(p, "%*s: ", prec, "IWI");
  83        for_each_online_cpu(j)
  84                seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
  85        seq_puts(p, "  IRQ work interrupts\n");
  86        seq_printf(p, "%*s: ", prec, "RTR");
  87        for_each_online_cpu(j)
  88                seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
  89        seq_puts(p, "  APIC ICR read retries\n");
  90#endif
  91        if (x86_platform_ipi_callback) {
  92                seq_printf(p, "%*s: ", prec, "PLT");
  93                for_each_online_cpu(j)
  94                        seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
  95                seq_puts(p, "  Platform interrupts\n");
  96        }
  97#ifdef CONFIG_SMP
  98        seq_printf(p, "%*s: ", prec, "RES");
  99        for_each_online_cpu(j)
 100                seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
 101        seq_puts(p, "  Rescheduling interrupts\n");
 102        seq_printf(p, "%*s: ", prec, "CAL");
 103        for_each_online_cpu(j)
 104                seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
 105        seq_puts(p, "  Function call interrupts\n");
 106        seq_printf(p, "%*s: ", prec, "TLB");
 107        for_each_online_cpu(j)
 108                seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
 109        seq_puts(p, "  TLB shootdowns\n");
 110#endif
 111#ifdef CONFIG_X86_THERMAL_VECTOR
 112        seq_printf(p, "%*s: ", prec, "TRM");
 113        for_each_online_cpu(j)
 114                seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
 115        seq_puts(p, "  Thermal event interrupts\n");
 116#endif
 117#ifdef CONFIG_X86_MCE_THRESHOLD
 118        seq_printf(p, "%*s: ", prec, "THR");
 119        for_each_online_cpu(j)
 120                seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
 121        seq_puts(p, "  Threshold APIC interrupts\n");
 122#endif
 123#ifdef CONFIG_X86_MCE_AMD
 124        seq_printf(p, "%*s: ", prec, "DFR");
 125        for_each_online_cpu(j)
 126                seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count);
 127        seq_puts(p, "  Deferred Error APIC interrupts\n");
 128#endif
 129#ifdef CONFIG_X86_MCE
 130        seq_printf(p, "%*s: ", prec, "MCE");
 131        for_each_online_cpu(j)
 132                seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
 133        seq_puts(p, "  Machine check exceptions\n");
 134        seq_printf(p, "%*s: ", prec, "MCP");
 135        for_each_online_cpu(j)
 136                seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
 137        seq_puts(p, "  Machine check polls\n");
 138#endif
 139#if IS_ENABLED(CONFIG_HYPERV) || defined(CONFIG_XEN)
 140        if (test_bit(HYPERVISOR_CALLBACK_VECTOR, used_vectors)) {
 141                seq_printf(p, "%*s: ", prec, "HYP");
 142                for_each_online_cpu(j)
 143                        seq_printf(p, "%10u ",
 144                                   irq_stats(j)->irq_hv_callback_count);
 145                seq_puts(p, "  Hypervisor callback interrupts\n");
 146        }
 147#endif
 148        seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
 149#if defined(CONFIG_X86_IO_APIC)
 150        seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
 151#endif
 152#ifdef CONFIG_HAVE_KVM
 153        seq_printf(p, "%*s: ", prec, "PIN");
 154        for_each_online_cpu(j)
 155                seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis);
 156        seq_puts(p, "  Posted-interrupt notification event\n");
 157
 158        seq_printf(p, "%*s: ", prec, "PIW");
 159        for_each_online_cpu(j)
 160                seq_printf(p, "%10u ",
 161                           irq_stats(j)->kvm_posted_intr_wakeup_ipis);
 162        seq_puts(p, "  Posted-interrupt wakeup event\n");
 163#endif
 164        return 0;
 165}
 166
 167/*
 168 * /proc/stat helpers
 169 */
 170u64 arch_irq_stat_cpu(unsigned int cpu)
 171{
 172        u64 sum = irq_stats(cpu)->__nmi_count;
 173
 174#ifdef CONFIG_X86_LOCAL_APIC
 175        sum += irq_stats(cpu)->apic_timer_irqs;
 176        sum += irq_stats(cpu)->irq_spurious_count;
 177        sum += irq_stats(cpu)->apic_perf_irqs;
 178        sum += irq_stats(cpu)->apic_irq_work_irqs;
 179        sum += irq_stats(cpu)->icr_read_retry_count;
 180#endif
 181        if (x86_platform_ipi_callback)
 182                sum += irq_stats(cpu)->x86_platform_ipis;
 183#ifdef CONFIG_SMP
 184        sum += irq_stats(cpu)->irq_resched_count;
 185        sum += irq_stats(cpu)->irq_call_count;
 186#endif
 187#ifdef CONFIG_X86_THERMAL_VECTOR
 188        sum += irq_stats(cpu)->irq_thermal_count;
 189#endif
 190#ifdef CONFIG_X86_MCE_THRESHOLD
 191        sum += irq_stats(cpu)->irq_threshold_count;
 192#endif
 193#ifdef CONFIG_X86_MCE
 194        sum += per_cpu(mce_exception_count, cpu);
 195        sum += per_cpu(mce_poll_count, cpu);
 196#endif
 197        return sum;
 198}
 199
 200u64 arch_irq_stat(void)
 201{
 202        u64 sum = atomic_read(&irq_err_count);
 203        return sum;
 204}
 205
 206
 207/*
 208 * do_IRQ handles all normal device IRQ's (the special
 209 * SMP cross-CPU interrupts have their own specific
 210 * handlers).
 211 */
 212__visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs)
 213{
 214        struct pt_regs *old_regs = set_irq_regs(regs);
 215        struct irq_desc * desc;
 216        /* high bit used in ret_from_ code  */
 217        unsigned vector = ~regs->orig_ax;
 218
 219        /*
 220         * NB: Unlike exception entries, IRQ entries do not reliably
 221         * handle context tracking in the low-level entry code.  This is
 222         * because syscall entries execute briefly with IRQs on before
 223         * updating context tracking state, so we can take an IRQ from
 224         * kernel mode with CONTEXT_USER.  The low-level entry code only
 225         * updates the context if we came from user mode, so we won't
 226         * switch to CONTEXT_KERNEL.  We'll fix that once the syscall
 227         * code is cleaned up enough that we can cleanly defer enabling
 228         * IRQs.
 229         */
 230
 231        entering_irq();
 232
 233        /* entering_irq() tells RCU that we're not quiescent.  Check it. */
 234        RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU");
 235
 236        desc = __this_cpu_read(vector_irq[vector]);
 237
 238        if (!handle_irq(desc, regs)) {
 239                ack_APIC_irq();
 240
 241                if (desc != VECTOR_RETRIGGERED) {
 242                        pr_emerg_ratelimited("%s: %d.%d No irq handler for vector\n",
 243                                             __func__, smp_processor_id(),
 244                                             vector);
 245                } else {
 246                        __this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
 247                }
 248        }
 249
 250        exiting_irq();
 251
 252        set_irq_regs(old_regs);
 253        return 1;
 254}
 255
 256/*
 257 * Handler for X86_PLATFORM_IPI_VECTOR.
 258 */
 259void __smp_x86_platform_ipi(void)
 260{
 261        inc_irq_stat(x86_platform_ipis);
 262
 263        if (x86_platform_ipi_callback)
 264                x86_platform_ipi_callback();
 265}
 266
 267__visible void smp_x86_platform_ipi(struct pt_regs *regs)
 268{
 269        struct pt_regs *old_regs = set_irq_regs(regs);
 270
 271        entering_ack_irq();
 272        __smp_x86_platform_ipi();
 273        exiting_irq();
 274        set_irq_regs(old_regs);
 275}
 276
 277#ifdef CONFIG_HAVE_KVM
 278static void dummy_handler(void) {}
 279static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler;
 280
 281void kvm_set_posted_intr_wakeup_handler(void (*handler)(void))
 282{
 283        if (handler)
 284                kvm_posted_intr_wakeup_handler = handler;
 285        else
 286                kvm_posted_intr_wakeup_handler = dummy_handler;
 287}
 288EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler);
 289
 290/*
 291 * Handler for POSTED_INTERRUPT_VECTOR.
 292 */
 293__visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs)
 294{
 295        struct pt_regs *old_regs = set_irq_regs(regs);
 296
 297        entering_ack_irq();
 298        inc_irq_stat(kvm_posted_intr_ipis);
 299        exiting_irq();
 300        set_irq_regs(old_regs);
 301}
 302
 303/*
 304 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
 305 */
 306__visible void smp_kvm_posted_intr_wakeup_ipi(struct pt_regs *regs)
 307{
 308        struct pt_regs *old_regs = set_irq_regs(regs);
 309
 310        entering_ack_irq();
 311        inc_irq_stat(kvm_posted_intr_wakeup_ipis);
 312        kvm_posted_intr_wakeup_handler();
 313        exiting_irq();
 314        set_irq_regs(old_regs);
 315}
 316#endif
 317
 318__visible void smp_trace_x86_platform_ipi(struct pt_regs *regs)
 319{
 320        struct pt_regs *old_regs = set_irq_regs(regs);
 321
 322        entering_ack_irq();
 323        trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
 324        __smp_x86_platform_ipi();
 325        trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
 326        exiting_irq();
 327        set_irq_regs(old_regs);
 328}
 329
 330EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq);
 331
 332#ifdef CONFIG_HOTPLUG_CPU
 333
 334/* These two declarations are only used in check_irq_vectors_for_cpu_disable()
 335 * below, which is protected by stop_machine().  Putting them on the stack
 336 * results in a stack frame overflow.  Dynamically allocating could result in a
 337 * failure so declare these two cpumasks as global.
 338 */
 339static struct cpumask affinity_new, online_new;
 340
 341/*
 342 * This cpu is going to be removed and its vectors migrated to the remaining
 343 * online cpus.  Check to see if there are enough vectors in the remaining cpus.
 344 * This function is protected by stop_machine().
 345 */
 346int check_irq_vectors_for_cpu_disable(void)
 347{
 348        unsigned int this_cpu, vector, this_count, count;
 349        struct irq_desc *desc;
 350        struct irq_data *data;
 351        int cpu;
 352
 353        this_cpu = smp_processor_id();
 354        cpumask_copy(&online_new, cpu_online_mask);
 355        cpumask_clear_cpu(this_cpu, &online_new);
 356
 357        this_count = 0;
 358        for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
 359                desc = __this_cpu_read(vector_irq[vector]);
 360                if (IS_ERR_OR_NULL(desc))
 361                        continue;
 362                /*
 363                 * Protect against concurrent action removal, affinity
 364                 * changes etc.
 365                 */
 366                raw_spin_lock(&desc->lock);
 367                data = irq_desc_get_irq_data(desc);
 368                cpumask_copy(&affinity_new,
 369                             irq_data_get_affinity_mask(data));
 370                cpumask_clear_cpu(this_cpu, &affinity_new);
 371
 372                /* Do not count inactive or per-cpu irqs. */
 373                if (!irq_desc_has_action(desc) || irqd_is_per_cpu(data)) {
 374                        raw_spin_unlock(&desc->lock);
 375                        continue;
 376                }
 377
 378                raw_spin_unlock(&desc->lock);
 379                /*
 380                 * A single irq may be mapped to multiple cpu's
 381                 * vector_irq[] (for example IOAPIC cluster mode).  In
 382                 * this case we have two possibilities:
 383                 *
 384                 * 1) the resulting affinity mask is empty; that is
 385                 * this the down'd cpu is the last cpu in the irq's
 386                 * affinity mask, or
 387                 *
 388                 * 2) the resulting affinity mask is no longer a
 389                 * subset of the online cpus but the affinity mask is
 390                 * not zero; that is the down'd cpu is the last online
 391                 * cpu in a user set affinity mask.
 392                 */
 393                if (cpumask_empty(&affinity_new) ||
 394                    !cpumask_subset(&affinity_new, &online_new))
 395                        this_count++;
 396        }
 397
 398        count = 0;
 399        for_each_online_cpu(cpu) {
 400                if (cpu == this_cpu)
 401                        continue;
 402                /*
 403                 * We scan from FIRST_EXTERNAL_VECTOR to first system
 404                 * vector. If the vector is marked in the used vectors
 405                 * bitmap or an irq is assigned to it, we don't count
 406                 * it as available.
 407                 *
 408                 * As this is an inaccurate snapshot anyway, we can do
 409                 * this w/o holding vector_lock.
 410                 */
 411                for (vector = FIRST_EXTERNAL_VECTOR;
 412                     vector < first_system_vector; vector++) {
 413                        if (!test_bit(vector, used_vectors) &&
 414                            IS_ERR_OR_NULL(per_cpu(vector_irq, cpu)[vector]))
 415                            count++;
 416                }
 417        }
 418
 419        if (count < this_count) {
 420                pr_warn("CPU %d disable failed: CPU has %u vectors assigned and there are only %u available.\n",
 421                        this_cpu, this_count, count);
 422                return -ERANGE;
 423        }
 424        return 0;
 425}
 426
 427/* A cpu has been removed from cpu_online_mask.  Reset irq affinities. */
 428void fixup_irqs(void)
 429{
 430        unsigned int irq, vector;
 431        static int warned;
 432        struct irq_desc *desc;
 433        struct irq_data *data;
 434        struct irq_chip *chip;
 435        int ret;
 436
 437        for_each_irq_desc(irq, desc) {
 438                int break_affinity = 0;
 439                int set_affinity = 1;
 440                const struct cpumask *affinity;
 441
 442                if (!desc)
 443                        continue;
 444                if (irq == 2)
 445                        continue;
 446
 447                /* interrupt's are disabled at this point */
 448                raw_spin_lock(&desc->lock);
 449
 450                data = irq_desc_get_irq_data(desc);
 451                affinity = irq_data_get_affinity_mask(data);
 452                if (!irq_has_action(irq) || irqd_is_per_cpu(data) ||
 453                    cpumask_subset(affinity, cpu_online_mask)) {
 454                        raw_spin_unlock(&desc->lock);
 455                        continue;
 456                }
 457
 458                /*
 459                 * Complete the irq move. This cpu is going down and for
 460                 * non intr-remapping case, we can't wait till this interrupt
 461                 * arrives at this cpu before completing the irq move.
 462                 */
 463                irq_force_complete_move(desc);
 464
 465                if (cpumask_any_and(affinity, cpu_online_mask) >= nr_cpu_ids) {
 466                        break_affinity = 1;
 467                        affinity = cpu_online_mask;
 468                }
 469
 470                chip = irq_data_get_irq_chip(data);
 471                /*
 472                 * The interrupt descriptor might have been cleaned up
 473                 * already, but it is not yet removed from the radix tree
 474                 */
 475                if (!chip) {
 476                        raw_spin_unlock(&desc->lock);
 477                        continue;
 478                }
 479
 480                if (!irqd_can_move_in_process_context(data) && chip->irq_mask)
 481                        chip->irq_mask(data);
 482
 483                if (chip->irq_set_affinity) {
 484                        ret = chip->irq_set_affinity(data, affinity, true);
 485                        if (ret == -ENOSPC)
 486                                pr_crit("IRQ %d set affinity failed because there are no available vectors.  The device assigned to this IRQ is unstable.\n", irq);
 487                } else {
 488                        if (!(warned++))
 489                                set_affinity = 0;
 490                }
 491
 492                /*
 493                 * We unmask if the irq was not marked masked by the
 494                 * core code. That respects the lazy irq disable
 495                 * behaviour.
 496                 */
 497                if (!irqd_can_move_in_process_context(data) &&
 498                    !irqd_irq_masked(data) && chip->irq_unmask)
 499                        chip->irq_unmask(data);
 500
 501                raw_spin_unlock(&desc->lock);
 502
 503                if (break_affinity && set_affinity)
 504                        pr_notice("Broke affinity for irq %i\n", irq);
 505                else if (!set_affinity)
 506                        pr_notice("Cannot set affinity for irq %i\n", irq);
 507        }
 508
 509        /*
 510         * We can remove mdelay() and then send spuriuous interrupts to
 511         * new cpu targets for all the irqs that were handled previously by
 512         * this cpu. While it works, I have seen spurious interrupt messages
 513         * (nothing wrong but still...).
 514         *
 515         * So for now, retain mdelay(1) and check the IRR and then send those
 516         * interrupts to new targets as this cpu is already offlined...
 517         */
 518        mdelay(1);
 519
 520        /*
 521         * We can walk the vector array of this cpu without holding
 522         * vector_lock because the cpu is already marked !online, so
 523         * nothing else will touch it.
 524         */
 525        for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
 526                unsigned int irr;
 527
 528                if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector])))
 529                        continue;
 530
 531                irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
 532                if (irr  & (1 << (vector % 32))) {
 533                        desc = __this_cpu_read(vector_irq[vector]);
 534
 535                        raw_spin_lock(&desc->lock);
 536                        data = irq_desc_get_irq_data(desc);
 537                        chip = irq_data_get_irq_chip(data);
 538                        if (chip->irq_retrigger) {
 539                                chip->irq_retrigger(data);
 540                                __this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
 541                        }
 542                        raw_spin_unlock(&desc->lock);
 543                }
 544                if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
 545                        __this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
 546        }
 547}
 548#endif
 549