linux/arch/x86/kernel/unwind_frame.c
<<
>>
Prefs
   1#include <linux/sched.h>
   2#include <asm/ptrace.h>
   3#include <asm/bitops.h>
   4#include <asm/stacktrace.h>
   5#include <asm/unwind.h>
   6
   7#define FRAME_HEADER_SIZE (sizeof(long) * 2)
   8
   9/*
  10 * This disables KASAN checking when reading a value from another task's stack,
  11 * since the other task could be running on another CPU and could have poisoned
  12 * the stack in the meantime.
  13 */
  14#define READ_ONCE_TASK_STACK(task, x)                   \
  15({                                                      \
  16        unsigned long val;                              \
  17        if (task == current)                            \
  18                val = READ_ONCE(x);                     \
  19        else                                            \
  20                val = READ_ONCE_NOCHECK(x);             \
  21        val;                                            \
  22})
  23
  24static void unwind_dump(struct unwind_state *state, unsigned long *sp)
  25{
  26        static bool dumped_before = false;
  27        bool prev_zero, zero = false;
  28        unsigned long word;
  29
  30        if (dumped_before)
  31                return;
  32
  33        dumped_before = true;
  34
  35        printk_deferred("unwind stack type:%d next_sp:%p mask:%lx graph_idx:%d\n",
  36                        state->stack_info.type, state->stack_info.next_sp,
  37                        state->stack_mask, state->graph_idx);
  38
  39        for (sp = state->orig_sp; sp < state->stack_info.end; sp++) {
  40                word = READ_ONCE_NOCHECK(*sp);
  41
  42                prev_zero = zero;
  43                zero = word == 0;
  44
  45                if (zero) {
  46                        if (!prev_zero)
  47                                printk_deferred("%p: %016x ...\n", sp, 0);
  48                        continue;
  49                }
  50
  51                printk_deferred("%p: %016lx (%pB)\n", sp, word, (void *)word);
  52        }
  53}
  54
  55unsigned long unwind_get_return_address(struct unwind_state *state)
  56{
  57        unsigned long addr;
  58        unsigned long *addr_p = unwind_get_return_address_ptr(state);
  59
  60        if (unwind_done(state))
  61                return 0;
  62
  63        if (state->regs && user_mode(state->regs))
  64                return 0;
  65
  66        addr = READ_ONCE_TASK_STACK(state->task, *addr_p);
  67        addr = ftrace_graph_ret_addr(state->task, &state->graph_idx, addr,
  68                                     addr_p);
  69
  70        return __kernel_text_address(addr) ? addr : 0;
  71}
  72EXPORT_SYMBOL_GPL(unwind_get_return_address);
  73
  74static size_t regs_size(struct pt_regs *regs)
  75{
  76        /* x86_32 regs from kernel mode are two words shorter: */
  77        if (IS_ENABLED(CONFIG_X86_32) && !user_mode(regs))
  78                return sizeof(*regs) - 2*sizeof(long);
  79
  80        return sizeof(*regs);
  81}
  82
  83static bool is_last_task_frame(struct unwind_state *state)
  84{
  85        unsigned long bp = (unsigned long)state->bp;
  86        unsigned long regs = (unsigned long)task_pt_regs(state->task);
  87
  88        /*
  89         * We have to check for the last task frame at two different locations
  90         * because gcc can occasionally decide to realign the stack pointer and
  91         * change the offset of the stack frame by a word in the prologue of a
  92         * function called by head/entry code.
  93         */
  94        return bp == regs - FRAME_HEADER_SIZE ||
  95               bp == regs - FRAME_HEADER_SIZE - sizeof(long);
  96}
  97
  98/*
  99 * This determines if the frame pointer actually contains an encoded pointer to
 100 * pt_regs on the stack.  See ENCODE_FRAME_POINTER.
 101 */
 102static struct pt_regs *decode_frame_pointer(unsigned long *bp)
 103{
 104        unsigned long regs = (unsigned long)bp;
 105
 106        if (!(regs & 0x1))
 107                return NULL;
 108
 109        return (struct pt_regs *)(regs & ~0x1);
 110}
 111
 112static bool update_stack_state(struct unwind_state *state, void *addr,
 113                               size_t len)
 114{
 115        struct stack_info *info = &state->stack_info;
 116        enum stack_type orig_type = info->type;
 117
 118        /*
 119         * If addr isn't on the current stack, switch to the next one.
 120         *
 121         * We may have to traverse multiple stacks to deal with the possibility
 122         * that 'info->next_sp' could point to an empty stack and 'addr' could
 123         * be on a subsequent stack.
 124         */
 125        while (!on_stack(info, addr, len))
 126                if (get_stack_info(info->next_sp, state->task, info,
 127                                   &state->stack_mask))
 128                        return false;
 129
 130        if (!state->orig_sp || info->type != orig_type)
 131                state->orig_sp = addr;
 132
 133        return true;
 134}
 135
 136bool unwind_next_frame(struct unwind_state *state)
 137{
 138        struct pt_regs *regs;
 139        unsigned long *next_bp, *next_frame;
 140        size_t next_len;
 141        enum stack_type prev_type = state->stack_info.type;
 142
 143        if (unwind_done(state))
 144                return false;
 145
 146        /* have we reached the end? */
 147        if (state->regs && user_mode(state->regs))
 148                goto the_end;
 149
 150        if (is_last_task_frame(state)) {
 151                regs = task_pt_regs(state->task);
 152
 153                /*
 154                 * kthreads (other than the boot CPU's idle thread) have some
 155                 * partial regs at the end of their stack which were placed
 156                 * there by copy_thread_tls().  But the regs don't have any
 157                 * useful information, so we can skip them.
 158                 *
 159                 * This user_mode() check is slightly broader than a PF_KTHREAD
 160                 * check because it also catches the awkward situation where a
 161                 * newly forked kthread transitions into a user task by calling
 162                 * do_execve(), which eventually clears PF_KTHREAD.
 163                 */
 164                if (!user_mode(regs))
 165                        goto the_end;
 166
 167                /*
 168                 * We're almost at the end, but not quite: there's still the
 169                 * syscall regs frame.  Entry code doesn't encode the regs
 170                 * pointer for syscalls, so we have to set it manually.
 171                 */
 172                state->regs = regs;
 173                state->bp = NULL;
 174                return true;
 175        }
 176
 177        /* get the next frame pointer */
 178        if (state->regs)
 179                next_bp = (unsigned long *)state->regs->bp;
 180        else
 181                next_bp = (unsigned long *)READ_ONCE_TASK_STACK(state->task,*state->bp);
 182
 183        /* is the next frame pointer an encoded pointer to pt_regs? */
 184        regs = decode_frame_pointer(next_bp);
 185        if (regs) {
 186                next_frame = (unsigned long *)regs;
 187                next_len = sizeof(*regs);
 188        } else {
 189                next_frame = next_bp;
 190                next_len = FRAME_HEADER_SIZE;
 191        }
 192
 193        /* make sure the next frame's data is accessible */
 194        if (!update_stack_state(state, next_frame, next_len)) {
 195                /*
 196                 * Don't warn on bad regs->bp.  An interrupt in entry code
 197                 * might cause a false positive warning.
 198                 */
 199                if (state->regs)
 200                        goto the_end;
 201
 202                goto bad_address;
 203        }
 204
 205        /* Make sure it only unwinds up and doesn't overlap the last frame: */
 206        if (state->stack_info.type == prev_type) {
 207                if (state->regs && (void *)next_frame < (void *)state->regs + regs_size(state->regs))
 208                        goto bad_address;
 209
 210                if (state->bp && (void *)next_frame < (void *)state->bp + FRAME_HEADER_SIZE)
 211                        goto bad_address;
 212        }
 213
 214        /* move to the next frame */
 215        if (regs) {
 216                state->regs = regs;
 217                state->bp = NULL;
 218        } else {
 219                state->bp = next_bp;
 220                state->regs = NULL;
 221        }
 222
 223        return true;
 224
 225bad_address:
 226        /*
 227         * When unwinding a non-current task, the task might actually be
 228         * running on another CPU, in which case it could be modifying its
 229         * stack while we're reading it.  This is generally not a problem and
 230         * can be ignored as long as the caller understands that unwinding
 231         * another task will not always succeed.
 232         */
 233        if (state->task != current)
 234                goto the_end;
 235
 236        if (state->regs) {
 237                printk_deferred_once(KERN_WARNING
 238                        "WARNING: kernel stack regs at %p in %s:%d has bad 'bp' value %p\n",
 239                        state->regs, state->task->comm,
 240                        state->task->pid, next_frame);
 241                unwind_dump(state, (unsigned long *)state->regs);
 242        } else {
 243                printk_deferred_once(KERN_WARNING
 244                        "WARNING: kernel stack frame pointer at %p in %s:%d has bad value %p\n",
 245                        state->bp, state->task->comm,
 246                        state->task->pid, next_frame);
 247                unwind_dump(state, state->bp);
 248        }
 249the_end:
 250        state->stack_info.type = STACK_TYPE_UNKNOWN;
 251        return false;
 252}
 253EXPORT_SYMBOL_GPL(unwind_next_frame);
 254
 255void __unwind_start(struct unwind_state *state, struct task_struct *task,
 256                    struct pt_regs *regs, unsigned long *first_frame)
 257{
 258        unsigned long *bp, *frame;
 259        size_t len;
 260
 261        memset(state, 0, sizeof(*state));
 262        state->task = task;
 263
 264        /* don't even attempt to start from user mode regs */
 265        if (regs && user_mode(regs)) {
 266                state->stack_info.type = STACK_TYPE_UNKNOWN;
 267                return;
 268        }
 269
 270        /* set up the starting stack frame */
 271        bp = get_frame_pointer(task, regs);
 272        regs = decode_frame_pointer(bp);
 273        if (regs) {
 274                state->regs = regs;
 275                frame = (unsigned long *)regs;
 276                len = sizeof(*regs);
 277        } else {
 278                state->bp = bp;
 279                frame = bp;
 280                len = FRAME_HEADER_SIZE;
 281        }
 282
 283        /* initialize stack info and make sure the frame data is accessible */
 284        get_stack_info(frame, state->task, &state->stack_info,
 285                       &state->stack_mask);
 286        update_stack_state(state, frame, len);
 287
 288        /*
 289         * The caller can provide the address of the first frame directly
 290         * (first_frame) or indirectly (regs->sp) to indicate which stack frame
 291         * to start unwinding at.  Skip ahead until we reach it.
 292         */
 293        while (!unwind_done(state) &&
 294               (!on_stack(&state->stack_info, first_frame, sizeof(long)) ||
 295                        state->bp < first_frame))
 296                unwind_next_frame(state);
 297}
 298EXPORT_SYMBOL_GPL(__unwind_start);
 299