linux/arch/x86/kvm/mmu.h
<<
>>
Prefs
   1#ifndef __KVM_X86_MMU_H
   2#define __KVM_X86_MMU_H
   3
   4#include <linux/kvm_host.h>
   5#include "kvm_cache_regs.h"
   6
   7#define PT64_PT_BITS 9
   8#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
   9#define PT32_PT_BITS 10
  10#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
  11
  12#define PT_WRITABLE_SHIFT 1
  13#define PT_USER_SHIFT 2
  14
  15#define PT_PRESENT_MASK (1ULL << 0)
  16#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
  17#define PT_USER_MASK (1ULL << PT_USER_SHIFT)
  18#define PT_PWT_MASK (1ULL << 3)
  19#define PT_PCD_MASK (1ULL << 4)
  20#define PT_ACCESSED_SHIFT 5
  21#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
  22#define PT_DIRTY_SHIFT 6
  23#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
  24#define PT_PAGE_SIZE_SHIFT 7
  25#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
  26#define PT_PAT_MASK (1ULL << 7)
  27#define PT_GLOBAL_MASK (1ULL << 8)
  28#define PT64_NX_SHIFT 63
  29#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
  30
  31#define PT_PAT_SHIFT 7
  32#define PT_DIR_PAT_SHIFT 12
  33#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
  34
  35#define PT32_DIR_PSE36_SIZE 4
  36#define PT32_DIR_PSE36_SHIFT 13
  37#define PT32_DIR_PSE36_MASK \
  38        (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
  39
  40#define PT64_ROOT_LEVEL 4
  41#define PT32_ROOT_LEVEL 2
  42#define PT32E_ROOT_LEVEL 3
  43
  44#define PT_PDPE_LEVEL 3
  45#define PT_DIRECTORY_LEVEL 2
  46#define PT_PAGE_TABLE_LEVEL 1
  47#define PT_MAX_HUGEPAGE_LEVEL (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES - 1)
  48
  49static inline u64 rsvd_bits(int s, int e)
  50{
  51        return ((1ULL << (e - s + 1)) - 1) << s;
  52}
  53
  54void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask);
  55
  56void
  57reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context);
  58
  59/*
  60 * Return values of handle_mmio_page_fault:
  61 * RET_MMIO_PF_EMULATE: it is a real mmio page fault, emulate the instruction
  62 *                      directly.
  63 * RET_MMIO_PF_INVALID: invalid spte is detected then let the real page
  64 *                      fault path update the mmio spte.
  65 * RET_MMIO_PF_RETRY: let CPU fault again on the address.
  66 * RET_MMIO_PF_BUG: a bug was detected (and a WARN was printed).
  67 */
  68enum {
  69        RET_MMIO_PF_EMULATE = 1,
  70        RET_MMIO_PF_INVALID = 2,
  71        RET_MMIO_PF_RETRY = 0,
  72        RET_MMIO_PF_BUG = -1
  73};
  74
  75int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct);
  76void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu);
  77void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly);
  78
  79static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm)
  80{
  81        if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
  82                return kvm->arch.n_max_mmu_pages -
  83                        kvm->arch.n_used_mmu_pages;
  84
  85        return 0;
  86}
  87
  88static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
  89{
  90        if (likely(vcpu->arch.mmu.root_hpa != INVALID_PAGE))
  91                return 0;
  92
  93        return kvm_mmu_load(vcpu);
  94}
  95
  96/*
  97 * Currently, we have two sorts of write-protection, a) the first one
  98 * write-protects guest page to sync the guest modification, b) another one is
  99 * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
 100 * between these two sorts are:
 101 * 1) the first case clears SPTE_MMU_WRITEABLE bit.
 102 * 2) the first case requires flushing tlb immediately avoiding corrupting
 103 *    shadow page table between all vcpus so it should be in the protection of
 104 *    mmu-lock. And the another case does not need to flush tlb until returning
 105 *    the dirty bitmap to userspace since it only write-protects the page
 106 *    logged in the bitmap, that means the page in the dirty bitmap is not
 107 *    missed, so it can flush tlb out of mmu-lock.
 108 *
 109 * So, there is the problem: the first case can meet the corrupted tlb caused
 110 * by another case which write-protects pages but without flush tlb
 111 * immediately. In order to making the first case be aware this problem we let
 112 * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
 113 * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
 114 *
 115 * Anyway, whenever a spte is updated (only permission and status bits are
 116 * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
 117 * readonly, if that happens, we need to flush tlb. Fortunately,
 118 * mmu_spte_update() has already handled it perfectly.
 119 *
 120 * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
 121 * - if we want to see if it has writable tlb entry or if the spte can be
 122 *   writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
 123 *   case, otherwise
 124 * - if we fix page fault on the spte or do write-protection by dirty logging,
 125 *   check PT_WRITABLE_MASK.
 126 *
 127 * TODO: introduce APIs to split these two cases.
 128 */
 129static inline int is_writable_pte(unsigned long pte)
 130{
 131        return pte & PT_WRITABLE_MASK;
 132}
 133
 134static inline bool is_write_protection(struct kvm_vcpu *vcpu)
 135{
 136        return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
 137}
 138
 139/*
 140 * Check if a given access (described through the I/D, W/R and U/S bits of a
 141 * page fault error code pfec) causes a permission fault with the given PTE
 142 * access rights (in ACC_* format).
 143 *
 144 * Return zero if the access does not fault; return the page fault error code
 145 * if the access faults.
 146 */
 147static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 148                                  unsigned pte_access, unsigned pte_pkey,
 149                                  unsigned pfec)
 150{
 151        int cpl = kvm_x86_ops->get_cpl(vcpu);
 152        unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
 153
 154        /*
 155         * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
 156         *
 157         * If CPL = 3, SMAP applies to all supervisor-mode data accesses
 158         * (these are implicit supervisor accesses) regardless of the value
 159         * of EFLAGS.AC.
 160         *
 161         * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
 162         * the result in X86_EFLAGS_AC. We then insert it in place of
 163         * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
 164         * but it will be one in index if SMAP checks are being overridden.
 165         * It is important to keep this branchless.
 166         */
 167        unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
 168        int index = (pfec >> 1) +
 169                    (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
 170        bool fault = (mmu->permissions[index] >> pte_access) & 1;
 171        u32 errcode = PFERR_PRESENT_MASK;
 172
 173        WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
 174        if (unlikely(mmu->pkru_mask)) {
 175                u32 pkru_bits, offset;
 176
 177                /*
 178                * PKRU defines 32 bits, there are 16 domains and 2
 179                * attribute bits per domain in pkru.  pte_pkey is the
 180                * index of the protection domain, so pte_pkey * 2 is
 181                * is the index of the first bit for the domain.
 182                */
 183                pkru_bits = (kvm_read_pkru(vcpu) >> (pte_pkey * 2)) & 3;
 184
 185                /* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
 186                offset = (pfec & ~1) +
 187                        ((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
 188
 189                pkru_bits &= mmu->pkru_mask >> offset;
 190                errcode |= -pkru_bits & PFERR_PK_MASK;
 191                fault |= (pkru_bits != 0);
 192        }
 193
 194        return -(u32)fault & errcode;
 195}
 196
 197void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm);
 198void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
 199
 200void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
 201void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
 202bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
 203                                    struct kvm_memory_slot *slot, u64 gfn);
 204#endif
 205