linux/block/bio.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License version 2 as
   6 * published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  11 * GNU General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public Licens
  14 * along with this program; if not, write to the Free Software
  15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
  16 *
  17 */
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/bio.h>
  21#include <linux/blkdev.h>
  22#include <linux/uio.h>
  23#include <linux/iocontext.h>
  24#include <linux/slab.h>
  25#include <linux/init.h>
  26#include <linux/kernel.h>
  27#include <linux/export.h>
  28#include <linux/mempool.h>
  29#include <linux/workqueue.h>
  30#include <linux/cgroup.h>
  31
  32#include <trace/events/block.h>
  33
  34/*
  35 * Test patch to inline a certain number of bi_io_vec's inside the bio
  36 * itself, to shrink a bio data allocation from two mempool calls to one
  37 */
  38#define BIO_INLINE_VECS         4
  39
  40/*
  41 * if you change this list, also change bvec_alloc or things will
  42 * break badly! cannot be bigger than what you can fit into an
  43 * unsigned short
  44 */
  45#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
  46static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
  47        BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
  48};
  49#undef BV
  50
  51/*
  52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
  53 * IO code that does not need private memory pools.
  54 */
  55struct bio_set *fs_bio_set;
  56EXPORT_SYMBOL(fs_bio_set);
  57
  58/*
  59 * Our slab pool management
  60 */
  61struct bio_slab {
  62        struct kmem_cache *slab;
  63        unsigned int slab_ref;
  64        unsigned int slab_size;
  65        char name[8];
  66};
  67static DEFINE_MUTEX(bio_slab_lock);
  68static struct bio_slab *bio_slabs;
  69static unsigned int bio_slab_nr, bio_slab_max;
  70
  71static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
  72{
  73        unsigned int sz = sizeof(struct bio) + extra_size;
  74        struct kmem_cache *slab = NULL;
  75        struct bio_slab *bslab, *new_bio_slabs;
  76        unsigned int new_bio_slab_max;
  77        unsigned int i, entry = -1;
  78
  79        mutex_lock(&bio_slab_lock);
  80
  81        i = 0;
  82        while (i < bio_slab_nr) {
  83                bslab = &bio_slabs[i];
  84
  85                if (!bslab->slab && entry == -1)
  86                        entry = i;
  87                else if (bslab->slab_size == sz) {
  88                        slab = bslab->slab;
  89                        bslab->slab_ref++;
  90                        break;
  91                }
  92                i++;
  93        }
  94
  95        if (slab)
  96                goto out_unlock;
  97
  98        if (bio_slab_nr == bio_slab_max && entry == -1) {
  99                new_bio_slab_max = bio_slab_max << 1;
 100                new_bio_slabs = krealloc(bio_slabs,
 101                                         new_bio_slab_max * sizeof(struct bio_slab),
 102                                         GFP_KERNEL);
 103                if (!new_bio_slabs)
 104                        goto out_unlock;
 105                bio_slab_max = new_bio_slab_max;
 106                bio_slabs = new_bio_slabs;
 107        }
 108        if (entry == -1)
 109                entry = bio_slab_nr++;
 110
 111        bslab = &bio_slabs[entry];
 112
 113        snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
 114        slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
 115                                 SLAB_HWCACHE_ALIGN, NULL);
 116        if (!slab)
 117                goto out_unlock;
 118
 119        bslab->slab = slab;
 120        bslab->slab_ref = 1;
 121        bslab->slab_size = sz;
 122out_unlock:
 123        mutex_unlock(&bio_slab_lock);
 124        return slab;
 125}
 126
 127static void bio_put_slab(struct bio_set *bs)
 128{
 129        struct bio_slab *bslab = NULL;
 130        unsigned int i;
 131
 132        mutex_lock(&bio_slab_lock);
 133
 134        for (i = 0; i < bio_slab_nr; i++) {
 135                if (bs->bio_slab == bio_slabs[i].slab) {
 136                        bslab = &bio_slabs[i];
 137                        break;
 138                }
 139        }
 140
 141        if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
 142                goto out;
 143
 144        WARN_ON(!bslab->slab_ref);
 145
 146        if (--bslab->slab_ref)
 147                goto out;
 148
 149        kmem_cache_destroy(bslab->slab);
 150        bslab->slab = NULL;
 151
 152out:
 153        mutex_unlock(&bio_slab_lock);
 154}
 155
 156unsigned int bvec_nr_vecs(unsigned short idx)
 157{
 158        return bvec_slabs[idx].nr_vecs;
 159}
 160
 161void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
 162{
 163        if (!idx)
 164                return;
 165        idx--;
 166
 167        BIO_BUG_ON(idx >= BVEC_POOL_NR);
 168
 169        if (idx == BVEC_POOL_MAX) {
 170                mempool_free(bv, pool);
 171        } else {
 172                struct biovec_slab *bvs = bvec_slabs + idx;
 173
 174                kmem_cache_free(bvs->slab, bv);
 175        }
 176}
 177
 178struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
 179                           mempool_t *pool)
 180{
 181        struct bio_vec *bvl;
 182
 183        /*
 184         * see comment near bvec_array define!
 185         */
 186        switch (nr) {
 187        case 1:
 188                *idx = 0;
 189                break;
 190        case 2 ... 4:
 191                *idx = 1;
 192                break;
 193        case 5 ... 16:
 194                *idx = 2;
 195                break;
 196        case 17 ... 64:
 197                *idx = 3;
 198                break;
 199        case 65 ... 128:
 200                *idx = 4;
 201                break;
 202        case 129 ... BIO_MAX_PAGES:
 203                *idx = 5;
 204                break;
 205        default:
 206                return NULL;
 207        }
 208
 209        /*
 210         * idx now points to the pool we want to allocate from. only the
 211         * 1-vec entry pool is mempool backed.
 212         */
 213        if (*idx == BVEC_POOL_MAX) {
 214fallback:
 215                bvl = mempool_alloc(pool, gfp_mask);
 216        } else {
 217                struct biovec_slab *bvs = bvec_slabs + *idx;
 218                gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
 219
 220                /*
 221                 * Make this allocation restricted and don't dump info on
 222                 * allocation failures, since we'll fallback to the mempool
 223                 * in case of failure.
 224                 */
 225                __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
 226
 227                /*
 228                 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
 229                 * is set, retry with the 1-entry mempool
 230                 */
 231                bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
 232                if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
 233                        *idx = BVEC_POOL_MAX;
 234                        goto fallback;
 235                }
 236        }
 237
 238        (*idx)++;
 239        return bvl;
 240}
 241
 242static void __bio_free(struct bio *bio)
 243{
 244        bio_disassociate_task(bio);
 245
 246        if (bio_integrity(bio))
 247                bio_integrity_free(bio);
 248}
 249
 250static void bio_free(struct bio *bio)
 251{
 252        struct bio_set *bs = bio->bi_pool;
 253        void *p;
 254
 255        __bio_free(bio);
 256
 257        if (bs) {
 258                bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
 259
 260                /*
 261                 * If we have front padding, adjust the bio pointer before freeing
 262                 */
 263                p = bio;
 264                p -= bs->front_pad;
 265
 266                mempool_free(p, bs->bio_pool);
 267        } else {
 268                /* Bio was allocated by bio_kmalloc() */
 269                kfree(bio);
 270        }
 271}
 272
 273void bio_init(struct bio *bio, struct bio_vec *table,
 274              unsigned short max_vecs)
 275{
 276        memset(bio, 0, sizeof(*bio));
 277        atomic_set(&bio->__bi_remaining, 1);
 278        atomic_set(&bio->__bi_cnt, 1);
 279
 280        bio->bi_io_vec = table;
 281        bio->bi_max_vecs = max_vecs;
 282}
 283EXPORT_SYMBOL(bio_init);
 284
 285/**
 286 * bio_reset - reinitialize a bio
 287 * @bio:        bio to reset
 288 *
 289 * Description:
 290 *   After calling bio_reset(), @bio will be in the same state as a freshly
 291 *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
 292 *   preserved are the ones that are initialized by bio_alloc_bioset(). See
 293 *   comment in struct bio.
 294 */
 295void bio_reset(struct bio *bio)
 296{
 297        unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
 298
 299        __bio_free(bio);
 300
 301        memset(bio, 0, BIO_RESET_BYTES);
 302        bio->bi_flags = flags;
 303        atomic_set(&bio->__bi_remaining, 1);
 304}
 305EXPORT_SYMBOL(bio_reset);
 306
 307static struct bio *__bio_chain_endio(struct bio *bio)
 308{
 309        struct bio *parent = bio->bi_private;
 310
 311        if (!parent->bi_error)
 312                parent->bi_error = bio->bi_error;
 313        bio_put(bio);
 314        return parent;
 315}
 316
 317static void bio_chain_endio(struct bio *bio)
 318{
 319        bio_endio(__bio_chain_endio(bio));
 320}
 321
 322/**
 323 * bio_chain - chain bio completions
 324 * @bio: the target bio
 325 * @parent: the @bio's parent bio
 326 *
 327 * The caller won't have a bi_end_io called when @bio completes - instead,
 328 * @parent's bi_end_io won't be called until both @parent and @bio have
 329 * completed; the chained bio will also be freed when it completes.
 330 *
 331 * The caller must not set bi_private or bi_end_io in @bio.
 332 */
 333void bio_chain(struct bio *bio, struct bio *parent)
 334{
 335        BUG_ON(bio->bi_private || bio->bi_end_io);
 336
 337        bio->bi_private = parent;
 338        bio->bi_end_io  = bio_chain_endio;
 339        bio_inc_remaining(parent);
 340}
 341EXPORT_SYMBOL(bio_chain);
 342
 343static void bio_alloc_rescue(struct work_struct *work)
 344{
 345        struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
 346        struct bio *bio;
 347
 348        while (1) {
 349                spin_lock(&bs->rescue_lock);
 350                bio = bio_list_pop(&bs->rescue_list);
 351                spin_unlock(&bs->rescue_lock);
 352
 353                if (!bio)
 354                        break;
 355
 356                generic_make_request(bio);
 357        }
 358}
 359
 360static void punt_bios_to_rescuer(struct bio_set *bs)
 361{
 362        struct bio_list punt, nopunt;
 363        struct bio *bio;
 364
 365        /*
 366         * In order to guarantee forward progress we must punt only bios that
 367         * were allocated from this bio_set; otherwise, if there was a bio on
 368         * there for a stacking driver higher up in the stack, processing it
 369         * could require allocating bios from this bio_set, and doing that from
 370         * our own rescuer would be bad.
 371         *
 372         * Since bio lists are singly linked, pop them all instead of trying to
 373         * remove from the middle of the list:
 374         */
 375
 376        bio_list_init(&punt);
 377        bio_list_init(&nopunt);
 378
 379        while ((bio = bio_list_pop(current->bio_list)))
 380                bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
 381
 382        *current->bio_list = nopunt;
 383
 384        spin_lock(&bs->rescue_lock);
 385        bio_list_merge(&bs->rescue_list, &punt);
 386        spin_unlock(&bs->rescue_lock);
 387
 388        queue_work(bs->rescue_workqueue, &bs->rescue_work);
 389}
 390
 391/**
 392 * bio_alloc_bioset - allocate a bio for I/O
 393 * @gfp_mask:   the GFP_ mask given to the slab allocator
 394 * @nr_iovecs:  number of iovecs to pre-allocate
 395 * @bs:         the bio_set to allocate from.
 396 *
 397 * Description:
 398 *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
 399 *   backed by the @bs's mempool.
 400 *
 401 *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
 402 *   always be able to allocate a bio. This is due to the mempool guarantees.
 403 *   To make this work, callers must never allocate more than 1 bio at a time
 404 *   from this pool. Callers that need to allocate more than 1 bio must always
 405 *   submit the previously allocated bio for IO before attempting to allocate
 406 *   a new one. Failure to do so can cause deadlocks under memory pressure.
 407 *
 408 *   Note that when running under generic_make_request() (i.e. any block
 409 *   driver), bios are not submitted until after you return - see the code in
 410 *   generic_make_request() that converts recursion into iteration, to prevent
 411 *   stack overflows.
 412 *
 413 *   This would normally mean allocating multiple bios under
 414 *   generic_make_request() would be susceptible to deadlocks, but we have
 415 *   deadlock avoidance code that resubmits any blocked bios from a rescuer
 416 *   thread.
 417 *
 418 *   However, we do not guarantee forward progress for allocations from other
 419 *   mempools. Doing multiple allocations from the same mempool under
 420 *   generic_make_request() should be avoided - instead, use bio_set's front_pad
 421 *   for per bio allocations.
 422 *
 423 *   RETURNS:
 424 *   Pointer to new bio on success, NULL on failure.
 425 */
 426struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
 427{
 428        gfp_t saved_gfp = gfp_mask;
 429        unsigned front_pad;
 430        unsigned inline_vecs;
 431        struct bio_vec *bvl = NULL;
 432        struct bio *bio;
 433        void *p;
 434
 435        if (!bs) {
 436                if (nr_iovecs > UIO_MAXIOV)
 437                        return NULL;
 438
 439                p = kmalloc(sizeof(struct bio) +
 440                            nr_iovecs * sizeof(struct bio_vec),
 441                            gfp_mask);
 442                front_pad = 0;
 443                inline_vecs = nr_iovecs;
 444        } else {
 445                /* should not use nobvec bioset for nr_iovecs > 0 */
 446                if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
 447                        return NULL;
 448                /*
 449                 * generic_make_request() converts recursion to iteration; this
 450                 * means if we're running beneath it, any bios we allocate and
 451                 * submit will not be submitted (and thus freed) until after we
 452                 * return.
 453                 *
 454                 * This exposes us to a potential deadlock if we allocate
 455                 * multiple bios from the same bio_set() while running
 456                 * underneath generic_make_request(). If we were to allocate
 457                 * multiple bios (say a stacking block driver that was splitting
 458                 * bios), we would deadlock if we exhausted the mempool's
 459                 * reserve.
 460                 *
 461                 * We solve this, and guarantee forward progress, with a rescuer
 462                 * workqueue per bio_set. If we go to allocate and there are
 463                 * bios on current->bio_list, we first try the allocation
 464                 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
 465                 * bios we would be blocking to the rescuer workqueue before
 466                 * we retry with the original gfp_flags.
 467                 */
 468
 469                if (current->bio_list && !bio_list_empty(current->bio_list))
 470                        gfp_mask &= ~__GFP_DIRECT_RECLAIM;
 471
 472                p = mempool_alloc(bs->bio_pool, gfp_mask);
 473                if (!p && gfp_mask != saved_gfp) {
 474                        punt_bios_to_rescuer(bs);
 475                        gfp_mask = saved_gfp;
 476                        p = mempool_alloc(bs->bio_pool, gfp_mask);
 477                }
 478
 479                front_pad = bs->front_pad;
 480                inline_vecs = BIO_INLINE_VECS;
 481        }
 482
 483        if (unlikely(!p))
 484                return NULL;
 485
 486        bio = p + front_pad;
 487        bio_init(bio, NULL, 0);
 488
 489        if (nr_iovecs > inline_vecs) {
 490                unsigned long idx = 0;
 491
 492                bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
 493                if (!bvl && gfp_mask != saved_gfp) {
 494                        punt_bios_to_rescuer(bs);
 495                        gfp_mask = saved_gfp;
 496                        bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
 497                }
 498
 499                if (unlikely(!bvl))
 500                        goto err_free;
 501
 502                bio->bi_flags |= idx << BVEC_POOL_OFFSET;
 503        } else if (nr_iovecs) {
 504                bvl = bio->bi_inline_vecs;
 505        }
 506
 507        bio->bi_pool = bs;
 508        bio->bi_max_vecs = nr_iovecs;
 509        bio->bi_io_vec = bvl;
 510        return bio;
 511
 512err_free:
 513        mempool_free(p, bs->bio_pool);
 514        return NULL;
 515}
 516EXPORT_SYMBOL(bio_alloc_bioset);
 517
 518void zero_fill_bio(struct bio *bio)
 519{
 520        unsigned long flags;
 521        struct bio_vec bv;
 522        struct bvec_iter iter;
 523
 524        bio_for_each_segment(bv, bio, iter) {
 525                char *data = bvec_kmap_irq(&bv, &flags);
 526                memset(data, 0, bv.bv_len);
 527                flush_dcache_page(bv.bv_page);
 528                bvec_kunmap_irq(data, &flags);
 529        }
 530}
 531EXPORT_SYMBOL(zero_fill_bio);
 532
 533/**
 534 * bio_put - release a reference to a bio
 535 * @bio:   bio to release reference to
 536 *
 537 * Description:
 538 *   Put a reference to a &struct bio, either one you have gotten with
 539 *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
 540 **/
 541void bio_put(struct bio *bio)
 542{
 543        if (!bio_flagged(bio, BIO_REFFED))
 544                bio_free(bio);
 545        else {
 546                BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
 547
 548                /*
 549                 * last put frees it
 550                 */
 551                if (atomic_dec_and_test(&bio->__bi_cnt))
 552                        bio_free(bio);
 553        }
 554}
 555EXPORT_SYMBOL(bio_put);
 556
 557inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
 558{
 559        if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
 560                blk_recount_segments(q, bio);
 561
 562        return bio->bi_phys_segments;
 563}
 564EXPORT_SYMBOL(bio_phys_segments);
 565
 566/**
 567 *      __bio_clone_fast - clone a bio that shares the original bio's biovec
 568 *      @bio: destination bio
 569 *      @bio_src: bio to clone
 570 *
 571 *      Clone a &bio. Caller will own the returned bio, but not
 572 *      the actual data it points to. Reference count of returned
 573 *      bio will be one.
 574 *
 575 *      Caller must ensure that @bio_src is not freed before @bio.
 576 */
 577void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
 578{
 579        BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
 580
 581        /*
 582         * most users will be overriding ->bi_bdev with a new target,
 583         * so we don't set nor calculate new physical/hw segment counts here
 584         */
 585        bio->bi_bdev = bio_src->bi_bdev;
 586        bio_set_flag(bio, BIO_CLONED);
 587        bio->bi_opf = bio_src->bi_opf;
 588        bio->bi_iter = bio_src->bi_iter;
 589        bio->bi_io_vec = bio_src->bi_io_vec;
 590
 591        bio_clone_blkcg_association(bio, bio_src);
 592}
 593EXPORT_SYMBOL(__bio_clone_fast);
 594
 595/**
 596 *      bio_clone_fast - clone a bio that shares the original bio's biovec
 597 *      @bio: bio to clone
 598 *      @gfp_mask: allocation priority
 599 *      @bs: bio_set to allocate from
 600 *
 601 *      Like __bio_clone_fast, only also allocates the returned bio
 602 */
 603struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
 604{
 605        struct bio *b;
 606
 607        b = bio_alloc_bioset(gfp_mask, 0, bs);
 608        if (!b)
 609                return NULL;
 610
 611        __bio_clone_fast(b, bio);
 612
 613        if (bio_integrity(bio)) {
 614                int ret;
 615
 616                ret = bio_integrity_clone(b, bio, gfp_mask);
 617
 618                if (ret < 0) {
 619                        bio_put(b);
 620                        return NULL;
 621                }
 622        }
 623
 624        return b;
 625}
 626EXPORT_SYMBOL(bio_clone_fast);
 627
 628/**
 629 *      bio_clone_bioset - clone a bio
 630 *      @bio_src: bio to clone
 631 *      @gfp_mask: allocation priority
 632 *      @bs: bio_set to allocate from
 633 *
 634 *      Clone bio. Caller will own the returned bio, but not the actual data it
 635 *      points to. Reference count of returned bio will be one.
 636 */
 637struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
 638                             struct bio_set *bs)
 639{
 640        struct bvec_iter iter;
 641        struct bio_vec bv;
 642        struct bio *bio;
 643
 644        /*
 645         * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
 646         * bio_src->bi_io_vec to bio->bi_io_vec.
 647         *
 648         * We can't do that anymore, because:
 649         *
 650         *  - The point of cloning the biovec is to produce a bio with a biovec
 651         *    the caller can modify: bi_idx and bi_bvec_done should be 0.
 652         *
 653         *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
 654         *    we tried to clone the whole thing bio_alloc_bioset() would fail.
 655         *    But the clone should succeed as long as the number of biovecs we
 656         *    actually need to allocate is fewer than BIO_MAX_PAGES.
 657         *
 658         *  - Lastly, bi_vcnt should not be looked at or relied upon by code
 659         *    that does not own the bio - reason being drivers don't use it for
 660         *    iterating over the biovec anymore, so expecting it to be kept up
 661         *    to date (i.e. for clones that share the parent biovec) is just
 662         *    asking for trouble and would force extra work on
 663         *    __bio_clone_fast() anyways.
 664         */
 665
 666        bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
 667        if (!bio)
 668                return NULL;
 669        bio->bi_bdev            = bio_src->bi_bdev;
 670        bio->bi_opf             = bio_src->bi_opf;
 671        bio->bi_iter.bi_sector  = bio_src->bi_iter.bi_sector;
 672        bio->bi_iter.bi_size    = bio_src->bi_iter.bi_size;
 673
 674        switch (bio_op(bio)) {
 675        case REQ_OP_DISCARD:
 676        case REQ_OP_SECURE_ERASE:
 677        case REQ_OP_WRITE_ZEROES:
 678                break;
 679        case REQ_OP_WRITE_SAME:
 680                bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
 681                break;
 682        default:
 683                bio_for_each_segment(bv, bio_src, iter)
 684                        bio->bi_io_vec[bio->bi_vcnt++] = bv;
 685                break;
 686        }
 687
 688        if (bio_integrity(bio_src)) {
 689                int ret;
 690
 691                ret = bio_integrity_clone(bio, bio_src, gfp_mask);
 692                if (ret < 0) {
 693                        bio_put(bio);
 694                        return NULL;
 695                }
 696        }
 697
 698        bio_clone_blkcg_association(bio, bio_src);
 699
 700        return bio;
 701}
 702EXPORT_SYMBOL(bio_clone_bioset);
 703
 704/**
 705 *      bio_add_pc_page -       attempt to add page to bio
 706 *      @q: the target queue
 707 *      @bio: destination bio
 708 *      @page: page to add
 709 *      @len: vec entry length
 710 *      @offset: vec entry offset
 711 *
 712 *      Attempt to add a page to the bio_vec maplist. This can fail for a
 713 *      number of reasons, such as the bio being full or target block device
 714 *      limitations. The target block device must allow bio's up to PAGE_SIZE,
 715 *      so it is always possible to add a single page to an empty bio.
 716 *
 717 *      This should only be used by REQ_PC bios.
 718 */
 719int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
 720                    *page, unsigned int len, unsigned int offset)
 721{
 722        int retried_segments = 0;
 723        struct bio_vec *bvec;
 724
 725        /*
 726         * cloned bio must not modify vec list
 727         */
 728        if (unlikely(bio_flagged(bio, BIO_CLONED)))
 729                return 0;
 730
 731        if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
 732                return 0;
 733
 734        /*
 735         * For filesystems with a blocksize smaller than the pagesize
 736         * we will often be called with the same page as last time and
 737         * a consecutive offset.  Optimize this special case.
 738         */
 739        if (bio->bi_vcnt > 0) {
 740                struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
 741
 742                if (page == prev->bv_page &&
 743                    offset == prev->bv_offset + prev->bv_len) {
 744                        prev->bv_len += len;
 745                        bio->bi_iter.bi_size += len;
 746                        goto done;
 747                }
 748
 749                /*
 750                 * If the queue doesn't support SG gaps and adding this
 751                 * offset would create a gap, disallow it.
 752                 */
 753                if (bvec_gap_to_prev(q, prev, offset))
 754                        return 0;
 755        }
 756
 757        if (bio->bi_vcnt >= bio->bi_max_vecs)
 758                return 0;
 759
 760        /*
 761         * setup the new entry, we might clear it again later if we
 762         * cannot add the page
 763         */
 764        bvec = &bio->bi_io_vec[bio->bi_vcnt];
 765        bvec->bv_page = page;
 766        bvec->bv_len = len;
 767        bvec->bv_offset = offset;
 768        bio->bi_vcnt++;
 769        bio->bi_phys_segments++;
 770        bio->bi_iter.bi_size += len;
 771
 772        /*
 773         * Perform a recount if the number of segments is greater
 774         * than queue_max_segments(q).
 775         */
 776
 777        while (bio->bi_phys_segments > queue_max_segments(q)) {
 778
 779                if (retried_segments)
 780                        goto failed;
 781
 782                retried_segments = 1;
 783                blk_recount_segments(q, bio);
 784        }
 785
 786        /* If we may be able to merge these biovecs, force a recount */
 787        if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
 788                bio_clear_flag(bio, BIO_SEG_VALID);
 789
 790 done:
 791        return len;
 792
 793 failed:
 794        bvec->bv_page = NULL;
 795        bvec->bv_len = 0;
 796        bvec->bv_offset = 0;
 797        bio->bi_vcnt--;
 798        bio->bi_iter.bi_size -= len;
 799        blk_recount_segments(q, bio);
 800        return 0;
 801}
 802EXPORT_SYMBOL(bio_add_pc_page);
 803
 804/**
 805 *      bio_add_page    -       attempt to add page to bio
 806 *      @bio: destination bio
 807 *      @page: page to add
 808 *      @len: vec entry length
 809 *      @offset: vec entry offset
 810 *
 811 *      Attempt to add a page to the bio_vec maplist. This will only fail
 812 *      if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
 813 */
 814int bio_add_page(struct bio *bio, struct page *page,
 815                 unsigned int len, unsigned int offset)
 816{
 817        struct bio_vec *bv;
 818
 819        /*
 820         * cloned bio must not modify vec list
 821         */
 822        if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
 823                return 0;
 824
 825        /*
 826         * For filesystems with a blocksize smaller than the pagesize
 827         * we will often be called with the same page as last time and
 828         * a consecutive offset.  Optimize this special case.
 829         */
 830        if (bio->bi_vcnt > 0) {
 831                bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
 832
 833                if (page == bv->bv_page &&
 834                    offset == bv->bv_offset + bv->bv_len) {
 835                        bv->bv_len += len;
 836                        goto done;
 837                }
 838        }
 839
 840        if (bio->bi_vcnt >= bio->bi_max_vecs)
 841                return 0;
 842
 843        bv              = &bio->bi_io_vec[bio->bi_vcnt];
 844        bv->bv_page     = page;
 845        bv->bv_len      = len;
 846        bv->bv_offset   = offset;
 847
 848        bio->bi_vcnt++;
 849done:
 850        bio->bi_iter.bi_size += len;
 851        return len;
 852}
 853EXPORT_SYMBOL(bio_add_page);
 854
 855/**
 856 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
 857 * @bio: bio to add pages to
 858 * @iter: iov iterator describing the region to be mapped
 859 *
 860 * Pins as many pages from *iter and appends them to @bio's bvec array. The
 861 * pages will have to be released using put_page() when done.
 862 */
 863int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
 864{
 865        unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
 866        struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
 867        struct page **pages = (struct page **)bv;
 868        size_t offset, diff;
 869        ssize_t size;
 870
 871        size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
 872        if (unlikely(size <= 0))
 873                return size ? size : -EFAULT;
 874        nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
 875
 876        /*
 877         * Deep magic below:  We need to walk the pinned pages backwards
 878         * because we are abusing the space allocated for the bio_vecs
 879         * for the page array.  Because the bio_vecs are larger than the
 880         * page pointers by definition this will always work.  But it also
 881         * means we can't use bio_add_page, so any changes to it's semantics
 882         * need to be reflected here as well.
 883         */
 884        bio->bi_iter.bi_size += size;
 885        bio->bi_vcnt += nr_pages;
 886
 887        diff = (nr_pages * PAGE_SIZE - offset) - size;
 888        while (nr_pages--) {
 889                bv[nr_pages].bv_page = pages[nr_pages];
 890                bv[nr_pages].bv_len = PAGE_SIZE;
 891                bv[nr_pages].bv_offset = 0;
 892        }
 893
 894        bv[0].bv_offset += offset;
 895        bv[0].bv_len -= offset;
 896        if (diff)
 897                bv[bio->bi_vcnt - 1].bv_len -= diff;
 898
 899        iov_iter_advance(iter, size);
 900        return 0;
 901}
 902EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
 903
 904struct submit_bio_ret {
 905        struct completion event;
 906        int error;
 907};
 908
 909static void submit_bio_wait_endio(struct bio *bio)
 910{
 911        struct submit_bio_ret *ret = bio->bi_private;
 912
 913        ret->error = bio->bi_error;
 914        complete(&ret->event);
 915}
 916
 917/**
 918 * submit_bio_wait - submit a bio, and wait until it completes
 919 * @bio: The &struct bio which describes the I/O
 920 *
 921 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
 922 * bio_endio() on failure.
 923 */
 924int submit_bio_wait(struct bio *bio)
 925{
 926        struct submit_bio_ret ret;
 927
 928        init_completion(&ret.event);
 929        bio->bi_private = &ret;
 930        bio->bi_end_io = submit_bio_wait_endio;
 931        bio->bi_opf |= REQ_SYNC;
 932        submit_bio(bio);
 933        wait_for_completion_io(&ret.event);
 934
 935        return ret.error;
 936}
 937EXPORT_SYMBOL(submit_bio_wait);
 938
 939/**
 940 * bio_advance - increment/complete a bio by some number of bytes
 941 * @bio:        bio to advance
 942 * @bytes:      number of bytes to complete
 943 *
 944 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
 945 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
 946 * be updated on the last bvec as well.
 947 *
 948 * @bio will then represent the remaining, uncompleted portion of the io.
 949 */
 950void bio_advance(struct bio *bio, unsigned bytes)
 951{
 952        if (bio_integrity(bio))
 953                bio_integrity_advance(bio, bytes);
 954
 955        bio_advance_iter(bio, &bio->bi_iter, bytes);
 956}
 957EXPORT_SYMBOL(bio_advance);
 958
 959/**
 960 * bio_alloc_pages - allocates a single page for each bvec in a bio
 961 * @bio: bio to allocate pages for
 962 * @gfp_mask: flags for allocation
 963 *
 964 * Allocates pages up to @bio->bi_vcnt.
 965 *
 966 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
 967 * freed.
 968 */
 969int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
 970{
 971        int i;
 972        struct bio_vec *bv;
 973
 974        bio_for_each_segment_all(bv, bio, i) {
 975                bv->bv_page = alloc_page(gfp_mask);
 976                if (!bv->bv_page) {
 977                        while (--bv >= bio->bi_io_vec)
 978                                __free_page(bv->bv_page);
 979                        return -ENOMEM;
 980                }
 981        }
 982
 983        return 0;
 984}
 985EXPORT_SYMBOL(bio_alloc_pages);
 986
 987/**
 988 * bio_copy_data - copy contents of data buffers from one chain of bios to
 989 * another
 990 * @src: source bio list
 991 * @dst: destination bio list
 992 *
 993 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
 994 * @src and @dst as linked lists of bios.
 995 *
 996 * Stops when it reaches the end of either @src or @dst - that is, copies
 997 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
 998 */
 999void bio_copy_data(struct bio *dst, struct bio *src)
1000{
1001        struct bvec_iter src_iter, dst_iter;
1002        struct bio_vec src_bv, dst_bv;
1003        void *src_p, *dst_p;
1004        unsigned bytes;
1005
1006        src_iter = src->bi_iter;
1007        dst_iter = dst->bi_iter;
1008
1009        while (1) {
1010                if (!src_iter.bi_size) {
1011                        src = src->bi_next;
1012                        if (!src)
1013                                break;
1014
1015                        src_iter = src->bi_iter;
1016                }
1017
1018                if (!dst_iter.bi_size) {
1019                        dst = dst->bi_next;
1020                        if (!dst)
1021                                break;
1022
1023                        dst_iter = dst->bi_iter;
1024                }
1025
1026                src_bv = bio_iter_iovec(src, src_iter);
1027                dst_bv = bio_iter_iovec(dst, dst_iter);
1028
1029                bytes = min(src_bv.bv_len, dst_bv.bv_len);
1030
1031                src_p = kmap_atomic(src_bv.bv_page);
1032                dst_p = kmap_atomic(dst_bv.bv_page);
1033
1034                memcpy(dst_p + dst_bv.bv_offset,
1035                       src_p + src_bv.bv_offset,
1036                       bytes);
1037
1038                kunmap_atomic(dst_p);
1039                kunmap_atomic(src_p);
1040
1041                bio_advance_iter(src, &src_iter, bytes);
1042                bio_advance_iter(dst, &dst_iter, bytes);
1043        }
1044}
1045EXPORT_SYMBOL(bio_copy_data);
1046
1047struct bio_map_data {
1048        int is_our_pages;
1049        struct iov_iter iter;
1050        struct iovec iov[];
1051};
1052
1053static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1054                                               gfp_t gfp_mask)
1055{
1056        if (iov_count > UIO_MAXIOV)
1057                return NULL;
1058
1059        return kmalloc(sizeof(struct bio_map_data) +
1060                       sizeof(struct iovec) * iov_count, gfp_mask);
1061}
1062
1063/**
1064 * bio_copy_from_iter - copy all pages from iov_iter to bio
1065 * @bio: The &struct bio which describes the I/O as destination
1066 * @iter: iov_iter as source
1067 *
1068 * Copy all pages from iov_iter to bio.
1069 * Returns 0 on success, or error on failure.
1070 */
1071static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1072{
1073        int i;
1074        struct bio_vec *bvec;
1075
1076        bio_for_each_segment_all(bvec, bio, i) {
1077                ssize_t ret;
1078
1079                ret = copy_page_from_iter(bvec->bv_page,
1080                                          bvec->bv_offset,
1081                                          bvec->bv_len,
1082                                          &iter);
1083
1084                if (!iov_iter_count(&iter))
1085                        break;
1086
1087                if (ret < bvec->bv_len)
1088                        return -EFAULT;
1089        }
1090
1091        return 0;
1092}
1093
1094/**
1095 * bio_copy_to_iter - copy all pages from bio to iov_iter
1096 * @bio: The &struct bio which describes the I/O as source
1097 * @iter: iov_iter as destination
1098 *
1099 * Copy all pages from bio to iov_iter.
1100 * Returns 0 on success, or error on failure.
1101 */
1102static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1103{
1104        int i;
1105        struct bio_vec *bvec;
1106
1107        bio_for_each_segment_all(bvec, bio, i) {
1108                ssize_t ret;
1109
1110                ret = copy_page_to_iter(bvec->bv_page,
1111                                        bvec->bv_offset,
1112                                        bvec->bv_len,
1113                                        &iter);
1114
1115                if (!iov_iter_count(&iter))
1116                        break;
1117
1118                if (ret < bvec->bv_len)
1119                        return -EFAULT;
1120        }
1121
1122        return 0;
1123}
1124
1125void bio_free_pages(struct bio *bio)
1126{
1127        struct bio_vec *bvec;
1128        int i;
1129
1130        bio_for_each_segment_all(bvec, bio, i)
1131                __free_page(bvec->bv_page);
1132}
1133EXPORT_SYMBOL(bio_free_pages);
1134
1135/**
1136 *      bio_uncopy_user -       finish previously mapped bio
1137 *      @bio: bio being terminated
1138 *
1139 *      Free pages allocated from bio_copy_user_iov() and write back data
1140 *      to user space in case of a read.
1141 */
1142int bio_uncopy_user(struct bio *bio)
1143{
1144        struct bio_map_data *bmd = bio->bi_private;
1145        int ret = 0;
1146
1147        if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1148                /*
1149                 * if we're in a workqueue, the request is orphaned, so
1150                 * don't copy into a random user address space, just free
1151                 * and return -EINTR so user space doesn't expect any data.
1152                 */
1153                if (!current->mm)
1154                        ret = -EINTR;
1155                else if (bio_data_dir(bio) == READ)
1156                        ret = bio_copy_to_iter(bio, bmd->iter);
1157                if (bmd->is_our_pages)
1158                        bio_free_pages(bio);
1159        }
1160        kfree(bmd);
1161        bio_put(bio);
1162        return ret;
1163}
1164
1165/**
1166 *      bio_copy_user_iov       -       copy user data to bio
1167 *      @q:             destination block queue
1168 *      @map_data:      pointer to the rq_map_data holding pages (if necessary)
1169 *      @iter:          iovec iterator
1170 *      @gfp_mask:      memory allocation flags
1171 *
1172 *      Prepares and returns a bio for indirect user io, bouncing data
1173 *      to/from kernel pages as necessary. Must be paired with
1174 *      call bio_uncopy_user() on io completion.
1175 */
1176struct bio *bio_copy_user_iov(struct request_queue *q,
1177                              struct rq_map_data *map_data,
1178                              const struct iov_iter *iter,
1179                              gfp_t gfp_mask)
1180{
1181        struct bio_map_data *bmd;
1182        struct page *page;
1183        struct bio *bio;
1184        int i, ret;
1185        int nr_pages = 0;
1186        unsigned int len = iter->count;
1187        unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1188
1189        for (i = 0; i < iter->nr_segs; i++) {
1190                unsigned long uaddr;
1191                unsigned long end;
1192                unsigned long start;
1193
1194                uaddr = (unsigned long) iter->iov[i].iov_base;
1195                end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1196                        >> PAGE_SHIFT;
1197                start = uaddr >> PAGE_SHIFT;
1198
1199                /*
1200                 * Overflow, abort
1201                 */
1202                if (end < start)
1203                        return ERR_PTR(-EINVAL);
1204
1205                nr_pages += end - start;
1206        }
1207
1208        if (offset)
1209                nr_pages++;
1210
1211        bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1212        if (!bmd)
1213                return ERR_PTR(-ENOMEM);
1214
1215        /*
1216         * We need to do a deep copy of the iov_iter including the iovecs.
1217         * The caller provided iov might point to an on-stack or otherwise
1218         * shortlived one.
1219         */
1220        bmd->is_our_pages = map_data ? 0 : 1;
1221        memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1222        iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1223                        iter->nr_segs, iter->count);
1224
1225        ret = -ENOMEM;
1226        bio = bio_kmalloc(gfp_mask, nr_pages);
1227        if (!bio)
1228                goto out_bmd;
1229
1230        if (iter->type & WRITE)
1231                bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1232
1233        ret = 0;
1234
1235        if (map_data) {
1236                nr_pages = 1 << map_data->page_order;
1237                i = map_data->offset / PAGE_SIZE;
1238        }
1239        while (len) {
1240                unsigned int bytes = PAGE_SIZE;
1241
1242                bytes -= offset;
1243
1244                if (bytes > len)
1245                        bytes = len;
1246
1247                if (map_data) {
1248                        if (i == map_data->nr_entries * nr_pages) {
1249                                ret = -ENOMEM;
1250                                break;
1251                        }
1252
1253                        page = map_data->pages[i / nr_pages];
1254                        page += (i % nr_pages);
1255
1256                        i++;
1257                } else {
1258                        page = alloc_page(q->bounce_gfp | gfp_mask);
1259                        if (!page) {
1260                                ret = -ENOMEM;
1261                                break;
1262                        }
1263                }
1264
1265                if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1266                        break;
1267
1268                len -= bytes;
1269                offset = 0;
1270        }
1271
1272        if (ret)
1273                goto cleanup;
1274
1275        /*
1276         * success
1277         */
1278        if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1279            (map_data && map_data->from_user)) {
1280                ret = bio_copy_from_iter(bio, *iter);
1281                if (ret)
1282                        goto cleanup;
1283        }
1284
1285        bio->bi_private = bmd;
1286        return bio;
1287cleanup:
1288        if (!map_data)
1289                bio_free_pages(bio);
1290        bio_put(bio);
1291out_bmd:
1292        kfree(bmd);
1293        return ERR_PTR(ret);
1294}
1295
1296/**
1297 *      bio_map_user_iov - map user iovec into bio
1298 *      @q:             the struct request_queue for the bio
1299 *      @iter:          iovec iterator
1300 *      @gfp_mask:      memory allocation flags
1301 *
1302 *      Map the user space address into a bio suitable for io to a block
1303 *      device. Returns an error pointer in case of error.
1304 */
1305struct bio *bio_map_user_iov(struct request_queue *q,
1306                             const struct iov_iter *iter,
1307                             gfp_t gfp_mask)
1308{
1309        int j;
1310        int nr_pages = 0;
1311        struct page **pages;
1312        struct bio *bio;
1313        int cur_page = 0;
1314        int ret, offset;
1315        struct iov_iter i;
1316        struct iovec iov;
1317
1318        iov_for_each(iov, i, *iter) {
1319                unsigned long uaddr = (unsigned long) iov.iov_base;
1320                unsigned long len = iov.iov_len;
1321                unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1322                unsigned long start = uaddr >> PAGE_SHIFT;
1323
1324                /*
1325                 * Overflow, abort
1326                 */
1327                if (end < start)
1328                        return ERR_PTR(-EINVAL);
1329
1330                nr_pages += end - start;
1331                /*
1332                 * buffer must be aligned to at least logical block size for now
1333                 */
1334                if (uaddr & queue_dma_alignment(q))
1335                        return ERR_PTR(-EINVAL);
1336        }
1337
1338        if (!nr_pages)
1339                return ERR_PTR(-EINVAL);
1340
1341        bio = bio_kmalloc(gfp_mask, nr_pages);
1342        if (!bio)
1343                return ERR_PTR(-ENOMEM);
1344
1345        ret = -ENOMEM;
1346        pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1347        if (!pages)
1348                goto out;
1349
1350        iov_for_each(iov, i, *iter) {
1351                unsigned long uaddr = (unsigned long) iov.iov_base;
1352                unsigned long len = iov.iov_len;
1353                unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1354                unsigned long start = uaddr >> PAGE_SHIFT;
1355                const int local_nr_pages = end - start;
1356                const int page_limit = cur_page + local_nr_pages;
1357
1358                ret = get_user_pages_fast(uaddr, local_nr_pages,
1359                                (iter->type & WRITE) != WRITE,
1360                                &pages[cur_page]);
1361                if (ret < local_nr_pages) {
1362                        ret = -EFAULT;
1363                        goto out_unmap;
1364                }
1365
1366                offset = offset_in_page(uaddr);
1367                for (j = cur_page; j < page_limit; j++) {
1368                        unsigned int bytes = PAGE_SIZE - offset;
1369
1370                        if (len <= 0)
1371                                break;
1372                        
1373                        if (bytes > len)
1374                                bytes = len;
1375
1376                        /*
1377                         * sorry...
1378                         */
1379                        if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1380                                            bytes)
1381                                break;
1382
1383                        len -= bytes;
1384                        offset = 0;
1385                }
1386
1387                cur_page = j;
1388                /*
1389                 * release the pages we didn't map into the bio, if any
1390                 */
1391                while (j < page_limit)
1392                        put_page(pages[j++]);
1393        }
1394
1395        kfree(pages);
1396
1397        /*
1398         * set data direction, and check if mapped pages need bouncing
1399         */
1400        if (iter->type & WRITE)
1401                bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1402
1403        bio_set_flag(bio, BIO_USER_MAPPED);
1404
1405        /*
1406         * subtle -- if __bio_map_user() ended up bouncing a bio,
1407         * it would normally disappear when its bi_end_io is run.
1408         * however, we need it for the unmap, so grab an extra
1409         * reference to it
1410         */
1411        bio_get(bio);
1412        return bio;
1413
1414 out_unmap:
1415        for (j = 0; j < nr_pages; j++) {
1416                if (!pages[j])
1417                        break;
1418                put_page(pages[j]);
1419        }
1420 out:
1421        kfree(pages);
1422        bio_put(bio);
1423        return ERR_PTR(ret);
1424}
1425
1426static void __bio_unmap_user(struct bio *bio)
1427{
1428        struct bio_vec *bvec;
1429        int i;
1430
1431        /*
1432         * make sure we dirty pages we wrote to
1433         */
1434        bio_for_each_segment_all(bvec, bio, i) {
1435                if (bio_data_dir(bio) == READ)
1436                        set_page_dirty_lock(bvec->bv_page);
1437
1438                put_page(bvec->bv_page);
1439        }
1440
1441        bio_put(bio);
1442}
1443
1444/**
1445 *      bio_unmap_user  -       unmap a bio
1446 *      @bio:           the bio being unmapped
1447 *
1448 *      Unmap a bio previously mapped by bio_map_user(). Must be called with
1449 *      a process context.
1450 *
1451 *      bio_unmap_user() may sleep.
1452 */
1453void bio_unmap_user(struct bio *bio)
1454{
1455        __bio_unmap_user(bio);
1456        bio_put(bio);
1457}
1458
1459static void bio_map_kern_endio(struct bio *bio)
1460{
1461        bio_put(bio);
1462}
1463
1464/**
1465 *      bio_map_kern    -       map kernel address into bio
1466 *      @q: the struct request_queue for the bio
1467 *      @data: pointer to buffer to map
1468 *      @len: length in bytes
1469 *      @gfp_mask: allocation flags for bio allocation
1470 *
1471 *      Map the kernel address into a bio suitable for io to a block
1472 *      device. Returns an error pointer in case of error.
1473 */
1474struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1475                         gfp_t gfp_mask)
1476{
1477        unsigned long kaddr = (unsigned long)data;
1478        unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1479        unsigned long start = kaddr >> PAGE_SHIFT;
1480        const int nr_pages = end - start;
1481        int offset, i;
1482        struct bio *bio;
1483
1484        bio = bio_kmalloc(gfp_mask, nr_pages);
1485        if (!bio)
1486                return ERR_PTR(-ENOMEM);
1487
1488        offset = offset_in_page(kaddr);
1489        for (i = 0; i < nr_pages; i++) {
1490                unsigned int bytes = PAGE_SIZE - offset;
1491
1492                if (len <= 0)
1493                        break;
1494
1495                if (bytes > len)
1496                        bytes = len;
1497
1498                if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1499                                    offset) < bytes) {
1500                        /* we don't support partial mappings */
1501                        bio_put(bio);
1502                        return ERR_PTR(-EINVAL);
1503                }
1504
1505                data += bytes;
1506                len -= bytes;
1507                offset = 0;
1508        }
1509
1510        bio->bi_end_io = bio_map_kern_endio;
1511        return bio;
1512}
1513EXPORT_SYMBOL(bio_map_kern);
1514
1515static void bio_copy_kern_endio(struct bio *bio)
1516{
1517        bio_free_pages(bio);
1518        bio_put(bio);
1519}
1520
1521static void bio_copy_kern_endio_read(struct bio *bio)
1522{
1523        char *p = bio->bi_private;
1524        struct bio_vec *bvec;
1525        int i;
1526
1527        bio_for_each_segment_all(bvec, bio, i) {
1528                memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1529                p += bvec->bv_len;
1530        }
1531
1532        bio_copy_kern_endio(bio);
1533}
1534
1535/**
1536 *      bio_copy_kern   -       copy kernel address into bio
1537 *      @q: the struct request_queue for the bio
1538 *      @data: pointer to buffer to copy
1539 *      @len: length in bytes
1540 *      @gfp_mask: allocation flags for bio and page allocation
1541 *      @reading: data direction is READ
1542 *
1543 *      copy the kernel address into a bio suitable for io to a block
1544 *      device. Returns an error pointer in case of error.
1545 */
1546struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1547                          gfp_t gfp_mask, int reading)
1548{
1549        unsigned long kaddr = (unsigned long)data;
1550        unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1551        unsigned long start = kaddr >> PAGE_SHIFT;
1552        struct bio *bio;
1553        void *p = data;
1554        int nr_pages = 0;
1555
1556        /*
1557         * Overflow, abort
1558         */
1559        if (end < start)
1560                return ERR_PTR(-EINVAL);
1561
1562        nr_pages = end - start;
1563        bio = bio_kmalloc(gfp_mask, nr_pages);
1564        if (!bio)
1565                return ERR_PTR(-ENOMEM);
1566
1567        while (len) {
1568                struct page *page;
1569                unsigned int bytes = PAGE_SIZE;
1570
1571                if (bytes > len)
1572                        bytes = len;
1573
1574                page = alloc_page(q->bounce_gfp | gfp_mask);
1575                if (!page)
1576                        goto cleanup;
1577
1578                if (!reading)
1579                        memcpy(page_address(page), p, bytes);
1580
1581                if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1582                        break;
1583
1584                len -= bytes;
1585                p += bytes;
1586        }
1587
1588        if (reading) {
1589                bio->bi_end_io = bio_copy_kern_endio_read;
1590                bio->bi_private = data;
1591        } else {
1592                bio->bi_end_io = bio_copy_kern_endio;
1593                bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1594        }
1595
1596        return bio;
1597
1598cleanup:
1599        bio_free_pages(bio);
1600        bio_put(bio);
1601        return ERR_PTR(-ENOMEM);
1602}
1603
1604/*
1605 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1606 * for performing direct-IO in BIOs.
1607 *
1608 * The problem is that we cannot run set_page_dirty() from interrupt context
1609 * because the required locks are not interrupt-safe.  So what we can do is to
1610 * mark the pages dirty _before_ performing IO.  And in interrupt context,
1611 * check that the pages are still dirty.   If so, fine.  If not, redirty them
1612 * in process context.
1613 *
1614 * We special-case compound pages here: normally this means reads into hugetlb
1615 * pages.  The logic in here doesn't really work right for compound pages
1616 * because the VM does not uniformly chase down the head page in all cases.
1617 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1618 * handle them at all.  So we skip compound pages here at an early stage.
1619 *
1620 * Note that this code is very hard to test under normal circumstances because
1621 * direct-io pins the pages with get_user_pages().  This makes
1622 * is_page_cache_freeable return false, and the VM will not clean the pages.
1623 * But other code (eg, flusher threads) could clean the pages if they are mapped
1624 * pagecache.
1625 *
1626 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1627 * deferred bio dirtying paths.
1628 */
1629
1630/*
1631 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1632 */
1633void bio_set_pages_dirty(struct bio *bio)
1634{
1635        struct bio_vec *bvec;
1636        int i;
1637
1638        bio_for_each_segment_all(bvec, bio, i) {
1639                struct page *page = bvec->bv_page;
1640
1641                if (page && !PageCompound(page))
1642                        set_page_dirty_lock(page);
1643        }
1644}
1645
1646static void bio_release_pages(struct bio *bio)
1647{
1648        struct bio_vec *bvec;
1649        int i;
1650
1651        bio_for_each_segment_all(bvec, bio, i) {
1652                struct page *page = bvec->bv_page;
1653
1654                if (page)
1655                        put_page(page);
1656        }
1657}
1658
1659/*
1660 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1661 * If they are, then fine.  If, however, some pages are clean then they must
1662 * have been written out during the direct-IO read.  So we take another ref on
1663 * the BIO and the offending pages and re-dirty the pages in process context.
1664 *
1665 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1666 * here on.  It will run one put_page() against each page and will run one
1667 * bio_put() against the BIO.
1668 */
1669
1670static void bio_dirty_fn(struct work_struct *work);
1671
1672static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1673static DEFINE_SPINLOCK(bio_dirty_lock);
1674static struct bio *bio_dirty_list;
1675
1676/*
1677 * This runs in process context
1678 */
1679static void bio_dirty_fn(struct work_struct *work)
1680{
1681        unsigned long flags;
1682        struct bio *bio;
1683
1684        spin_lock_irqsave(&bio_dirty_lock, flags);
1685        bio = bio_dirty_list;
1686        bio_dirty_list = NULL;
1687        spin_unlock_irqrestore(&bio_dirty_lock, flags);
1688
1689        while (bio) {
1690                struct bio *next = bio->bi_private;
1691
1692                bio_set_pages_dirty(bio);
1693                bio_release_pages(bio);
1694                bio_put(bio);
1695                bio = next;
1696        }
1697}
1698
1699void bio_check_pages_dirty(struct bio *bio)
1700{
1701        struct bio_vec *bvec;
1702        int nr_clean_pages = 0;
1703        int i;
1704
1705        bio_for_each_segment_all(bvec, bio, i) {
1706                struct page *page = bvec->bv_page;
1707
1708                if (PageDirty(page) || PageCompound(page)) {
1709                        put_page(page);
1710                        bvec->bv_page = NULL;
1711                } else {
1712                        nr_clean_pages++;
1713                }
1714        }
1715
1716        if (nr_clean_pages) {
1717                unsigned long flags;
1718
1719                spin_lock_irqsave(&bio_dirty_lock, flags);
1720                bio->bi_private = bio_dirty_list;
1721                bio_dirty_list = bio;
1722                spin_unlock_irqrestore(&bio_dirty_lock, flags);
1723                schedule_work(&bio_dirty_work);
1724        } else {
1725                bio_put(bio);
1726        }
1727}
1728
1729void generic_start_io_acct(int rw, unsigned long sectors,
1730                           struct hd_struct *part)
1731{
1732        int cpu = part_stat_lock();
1733
1734        part_round_stats(cpu, part);
1735        part_stat_inc(cpu, part, ios[rw]);
1736        part_stat_add(cpu, part, sectors[rw], sectors);
1737        part_inc_in_flight(part, rw);
1738
1739        part_stat_unlock();
1740}
1741EXPORT_SYMBOL(generic_start_io_acct);
1742
1743void generic_end_io_acct(int rw, struct hd_struct *part,
1744                         unsigned long start_time)
1745{
1746        unsigned long duration = jiffies - start_time;
1747        int cpu = part_stat_lock();
1748
1749        part_stat_add(cpu, part, ticks[rw], duration);
1750        part_round_stats(cpu, part);
1751        part_dec_in_flight(part, rw);
1752
1753        part_stat_unlock();
1754}
1755EXPORT_SYMBOL(generic_end_io_acct);
1756
1757#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1758void bio_flush_dcache_pages(struct bio *bi)
1759{
1760        struct bio_vec bvec;
1761        struct bvec_iter iter;
1762
1763        bio_for_each_segment(bvec, bi, iter)
1764                flush_dcache_page(bvec.bv_page);
1765}
1766EXPORT_SYMBOL(bio_flush_dcache_pages);
1767#endif
1768
1769static inline bool bio_remaining_done(struct bio *bio)
1770{
1771        /*
1772         * If we're not chaining, then ->__bi_remaining is always 1 and
1773         * we always end io on the first invocation.
1774         */
1775        if (!bio_flagged(bio, BIO_CHAIN))
1776                return true;
1777
1778        BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1779
1780        if (atomic_dec_and_test(&bio->__bi_remaining)) {
1781                bio_clear_flag(bio, BIO_CHAIN);
1782                return true;
1783        }
1784
1785        return false;
1786}
1787
1788/**
1789 * bio_endio - end I/O on a bio
1790 * @bio:        bio
1791 *
1792 * Description:
1793 *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1794 *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1795 *   bio unless they own it and thus know that it has an end_io function.
1796 **/
1797void bio_endio(struct bio *bio)
1798{
1799again:
1800        if (!bio_remaining_done(bio))
1801                return;
1802
1803        /*
1804         * Need to have a real endio function for chained bios, otherwise
1805         * various corner cases will break (like stacking block devices that
1806         * save/restore bi_end_io) - however, we want to avoid unbounded
1807         * recursion and blowing the stack. Tail call optimization would
1808         * handle this, but compiling with frame pointers also disables
1809         * gcc's sibling call optimization.
1810         */
1811        if (bio->bi_end_io == bio_chain_endio) {
1812                bio = __bio_chain_endio(bio);
1813                goto again;
1814        }
1815
1816        if (bio->bi_end_io)
1817                bio->bi_end_io(bio);
1818}
1819EXPORT_SYMBOL(bio_endio);
1820
1821/**
1822 * bio_split - split a bio
1823 * @bio:        bio to split
1824 * @sectors:    number of sectors to split from the front of @bio
1825 * @gfp:        gfp mask
1826 * @bs:         bio set to allocate from
1827 *
1828 * Allocates and returns a new bio which represents @sectors from the start of
1829 * @bio, and updates @bio to represent the remaining sectors.
1830 *
1831 * Unless this is a discard request the newly allocated bio will point
1832 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1833 * @bio is not freed before the split.
1834 */
1835struct bio *bio_split(struct bio *bio, int sectors,
1836                      gfp_t gfp, struct bio_set *bs)
1837{
1838        struct bio *split = NULL;
1839
1840        BUG_ON(sectors <= 0);
1841        BUG_ON(sectors >= bio_sectors(bio));
1842
1843        split = bio_clone_fast(bio, gfp, bs);
1844        if (!split)
1845                return NULL;
1846
1847        split->bi_iter.bi_size = sectors << 9;
1848
1849        if (bio_integrity(split))
1850                bio_integrity_trim(split, 0, sectors);
1851
1852        bio_advance(bio, split->bi_iter.bi_size);
1853
1854        return split;
1855}
1856EXPORT_SYMBOL(bio_split);
1857
1858/**
1859 * bio_trim - trim a bio
1860 * @bio:        bio to trim
1861 * @offset:     number of sectors to trim from the front of @bio
1862 * @size:       size we want to trim @bio to, in sectors
1863 */
1864void bio_trim(struct bio *bio, int offset, int size)
1865{
1866        /* 'bio' is a cloned bio which we need to trim to match
1867         * the given offset and size.
1868         */
1869
1870        size <<= 9;
1871        if (offset == 0 && size == bio->bi_iter.bi_size)
1872                return;
1873
1874        bio_clear_flag(bio, BIO_SEG_VALID);
1875
1876        bio_advance(bio, offset << 9);
1877
1878        bio->bi_iter.bi_size = size;
1879}
1880EXPORT_SYMBOL_GPL(bio_trim);
1881
1882/*
1883 * create memory pools for biovec's in a bio_set.
1884 * use the global biovec slabs created for general use.
1885 */
1886mempool_t *biovec_create_pool(int pool_entries)
1887{
1888        struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1889
1890        return mempool_create_slab_pool(pool_entries, bp->slab);
1891}
1892
1893void bioset_free(struct bio_set *bs)
1894{
1895        if (bs->rescue_workqueue)
1896                destroy_workqueue(bs->rescue_workqueue);
1897
1898        if (bs->bio_pool)
1899                mempool_destroy(bs->bio_pool);
1900
1901        if (bs->bvec_pool)
1902                mempool_destroy(bs->bvec_pool);
1903
1904        bioset_integrity_free(bs);
1905        bio_put_slab(bs);
1906
1907        kfree(bs);
1908}
1909EXPORT_SYMBOL(bioset_free);
1910
1911static struct bio_set *__bioset_create(unsigned int pool_size,
1912                                       unsigned int front_pad,
1913                                       bool create_bvec_pool)
1914{
1915        unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1916        struct bio_set *bs;
1917
1918        bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1919        if (!bs)
1920                return NULL;
1921
1922        bs->front_pad = front_pad;
1923
1924        spin_lock_init(&bs->rescue_lock);
1925        bio_list_init(&bs->rescue_list);
1926        INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1927
1928        bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1929        if (!bs->bio_slab) {
1930                kfree(bs);
1931                return NULL;
1932        }
1933
1934        bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1935        if (!bs->bio_pool)
1936                goto bad;
1937
1938        if (create_bvec_pool) {
1939                bs->bvec_pool = biovec_create_pool(pool_size);
1940                if (!bs->bvec_pool)
1941                        goto bad;
1942        }
1943
1944        bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1945        if (!bs->rescue_workqueue)
1946                goto bad;
1947
1948        return bs;
1949bad:
1950        bioset_free(bs);
1951        return NULL;
1952}
1953
1954/**
1955 * bioset_create  - Create a bio_set
1956 * @pool_size:  Number of bio and bio_vecs to cache in the mempool
1957 * @front_pad:  Number of bytes to allocate in front of the returned bio
1958 *
1959 * Description:
1960 *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1961 *    to ask for a number of bytes to be allocated in front of the bio.
1962 *    Front pad allocation is useful for embedding the bio inside
1963 *    another structure, to avoid allocating extra data to go with the bio.
1964 *    Note that the bio must be embedded at the END of that structure always,
1965 *    or things will break badly.
1966 */
1967struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1968{
1969        return __bioset_create(pool_size, front_pad, true);
1970}
1971EXPORT_SYMBOL(bioset_create);
1972
1973/**
1974 * bioset_create_nobvec  - Create a bio_set without bio_vec mempool
1975 * @pool_size:  Number of bio to cache in the mempool
1976 * @front_pad:  Number of bytes to allocate in front of the returned bio
1977 *
1978 * Description:
1979 *    Same functionality as bioset_create() except that mempool is not
1980 *    created for bio_vecs. Saving some memory for bio_clone_fast() users.
1981 */
1982struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1983{
1984        return __bioset_create(pool_size, front_pad, false);
1985}
1986EXPORT_SYMBOL(bioset_create_nobvec);
1987
1988#ifdef CONFIG_BLK_CGROUP
1989
1990/**
1991 * bio_associate_blkcg - associate a bio with the specified blkcg
1992 * @bio: target bio
1993 * @blkcg_css: css of the blkcg to associate
1994 *
1995 * Associate @bio with the blkcg specified by @blkcg_css.  Block layer will
1996 * treat @bio as if it were issued by a task which belongs to the blkcg.
1997 *
1998 * This function takes an extra reference of @blkcg_css which will be put
1999 * when @bio is released.  The caller must own @bio and is responsible for
2000 * synchronizing calls to this function.
2001 */
2002int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2003{
2004        if (unlikely(bio->bi_css))
2005                return -EBUSY;
2006        css_get(blkcg_css);
2007        bio->bi_css = blkcg_css;
2008        return 0;
2009}
2010EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2011
2012/**
2013 * bio_associate_current - associate a bio with %current
2014 * @bio: target bio
2015 *
2016 * Associate @bio with %current if it hasn't been associated yet.  Block
2017 * layer will treat @bio as if it were issued by %current no matter which
2018 * task actually issues it.
2019 *
2020 * This function takes an extra reference of @task's io_context and blkcg
2021 * which will be put when @bio is released.  The caller must own @bio,
2022 * ensure %current->io_context exists, and is responsible for synchronizing
2023 * calls to this function.
2024 */
2025int bio_associate_current(struct bio *bio)
2026{
2027        struct io_context *ioc;
2028
2029        if (bio->bi_css)
2030                return -EBUSY;
2031
2032        ioc = current->io_context;
2033        if (!ioc)
2034                return -ENOENT;
2035
2036        get_io_context_active(ioc);
2037        bio->bi_ioc = ioc;
2038        bio->bi_css = task_get_css(current, io_cgrp_id);
2039        return 0;
2040}
2041EXPORT_SYMBOL_GPL(bio_associate_current);
2042
2043/**
2044 * bio_disassociate_task - undo bio_associate_current()
2045 * @bio: target bio
2046 */
2047void bio_disassociate_task(struct bio *bio)
2048{
2049        if (bio->bi_ioc) {
2050                put_io_context(bio->bi_ioc);
2051                bio->bi_ioc = NULL;
2052        }
2053        if (bio->bi_css) {
2054                css_put(bio->bi_css);
2055                bio->bi_css = NULL;
2056        }
2057}
2058
2059/**
2060 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2061 * @dst: destination bio
2062 * @src: source bio
2063 */
2064void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2065{
2066        if (src->bi_css)
2067                WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2068}
2069
2070#endif /* CONFIG_BLK_CGROUP */
2071
2072static void __init biovec_init_slabs(void)
2073{
2074        int i;
2075
2076        for (i = 0; i < BVEC_POOL_NR; i++) {
2077                int size;
2078                struct biovec_slab *bvs = bvec_slabs + i;
2079
2080                if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2081                        bvs->slab = NULL;
2082                        continue;
2083                }
2084
2085                size = bvs->nr_vecs * sizeof(struct bio_vec);
2086                bvs->slab = kmem_cache_create(bvs->name, size, 0,
2087                                SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2088        }
2089}
2090
2091static int __init init_bio(void)
2092{
2093        bio_slab_max = 2;
2094        bio_slab_nr = 0;
2095        bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2096        if (!bio_slabs)
2097                panic("bio: can't allocate bios\n");
2098
2099        bio_integrity_init();
2100        biovec_init_slabs();
2101
2102        fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2103        if (!fs_bio_set)
2104                panic("bio: can't allocate bios\n");
2105
2106        if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2107                panic("bio: can't create integrity pool\n");
2108
2109        return 0;
2110}
2111subsys_initcall(init_bio);
2112